1
|
Zhang Q, Zhu L, Li H, Chen Q, Li N, Li J, Zhao Z, Xiao D, Tang T, Bi C, Zhang Y, Zhang H, Zhang G, Li M, Zhu Y, Zhang J, Kong J. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review. PeerJ 2024; 12:e18712. [PMID: 39703920 PMCID: PMC11657192 DOI: 10.7717/peerj.18712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response. GABA is mainly synthesized through the GABA shunt and the polyamine degradation pathways. It works through three receptors (GABAA, GABAB, and GABAC), each exhibiting different pharmacological and physiological characteristics. GABA has a variety of physiological roles and applications. In plants, it regulates growth, development and stress responses. In mammals, it influences physiological functions such as nervous system regulation, blood pressure equilibrium, liver and kidneys enhancement, hormone secretion regulation, immunity enhancement, cancer prevention, as well as anti-aging effects. As a biologically active ingredient, GABA possesses unique physiological effects and medicinal value, leading to its widespread application and substantially increased market demand in the food and pharmaceutical industries. GABA is primarily produced through chemical synthesis, plant enrichment and microbial fermentation. In this review, we first make an overview of GABA, focusing on its synthesis, metabolism, GABA receptors and physiological functions. Next, we describe the industrial production methods of GABA. Finally, we discuss the development of ligands for the GABA receptor binding site, the prospects of GABA production and application, as well as its clinical trials in potential drugs or compounds targeting GABA for the treatment of epilepsy. The purpose of this review is to attract researchers from various fields to focus on GABA research, promote multidisciplinary communications and collaborations, break down disciplinary barriers, stimulate innovative research ideas and methods, and advance the development and application of GABA in medicine, agriculture, food and other fields.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Hailong Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Qu Chen
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Nan Li
- Department of Rehabilitation, Qingdao Binhai College Affiliated Hospital, Qingdao, China
| | - Jiansheng Li
- Department of Nephrology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Zichu Zhao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Di Xiao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Tingting Tang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Chunhua Bi
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Haili Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Guizhen Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Mingyang Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yanli Zhu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingjing Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Jingjing Kong
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhang K, Li C, Wu P, Gao X, Feng X, Shen J, Zhang N, Hu X, Wang S, Zhang H, Lv J, Sun J. Mechanisms of Zhixiao Tang on Anti-Inflammatory Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. J Inflamm Res 2024; 17:4587-4610. [PMID: 39011417 PMCID: PMC11249118 DOI: 10.2147/jir.s463067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose Zhixiao Tang (ZXT), a traditional Chinese compound prescription, has been used clinically to treat pneumonia in China. However, the underlying mechanism of ZXT treatment in pneumonia is still unclear. The present study aimed to reveal the potential mechanism of ZXT in pneumonia using a strategy combining metabolomics and network pharmacology. Methods Initially, the chemical compositions were identified by UPLC-QE-Orbitrap-MS, while the prediction of potential signal pathways was performed through network pharmacology. To assess the anti-inflammatory properties of ZXT in the context of pneumonia, models of 16HBE cells induced by LPS and zebrafish induced by CuSO4 were established to measure levels of inflammatory markers and apoptosis. Subsequently, the differential changes of endogenous metabolites in cells caused by ZXT were examined using metabolomics technology, and the molecular docking analysis of key targets was carried out using Autodock Vina software. Ultimately, the validation of the primary pathways and targets was conducted through quantitative RT-PCR and Western blot techniques. Results A total of 75 compounds were identified through UPLC-QE-Orbitrap-MS analyses. Network pharmacological analysis shows that it plays an anti-inflammatory role in C-type lectin receptor signaling pathway. After ZXT intervention, the inflammatory factors and apoptosis in cells were significantly reduced. Metabonomics analysis showed that 18 metabolites changed significantly. Four key genes were identified, which exhibited partial compatibility with the findings of network pharmacology. Molecular docking analysis confirmed the substantial affinity of the primary targets for ZXT. Furthermore, ZXT exerted a suppressive effect on neutrophil migration, down-regulated the expression of pro-inflammatory cytokine genes, and inhibited the up-regulation of the Dectin-1/SYK/NF-κB signaling pathway. In vivo cell experiments also yielded consistent experimental outcomes. Conclusion This study enhances comprehension of the pharmacological mechanism underlying ZXT's efficacy in pneumonia treatment, thereby establishing a scholarly basis for future research and clinical utilization of ZXT in pneumonia management.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Chunnan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Peitong Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xiaochen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xueqin Feng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jiaming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Nanxi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xuesheng Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shuo Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
3
|
Zaman R, Ravichandran V, Tan CK. Role of dietary supplements in the continuous battle against COVID-19. Phytother Res 2024; 38:1071-1088. [PMID: 38168043 DOI: 10.1002/ptr.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A sudden outbreak of the COVID-19 pandemic was a big blow to the world community on every level. Created by a novel coronavirus, SARS-CoV-2, which was previously unknown to the human immune system. The expert opinion almost immediately united on the fact that the most effective way of fighting the pandemic would be by building immunity artificially via a mass immunization program. However, it took about a year for the approval of the first vaccine against COVID-19. In the meantime, a big part of the general population started adapting nutritious diet plans and dietary supplements to boost natural immunity as a potential prophylactic strategy against SARS-CoV-2 infection. Whether they originate from mainstream medicine, such as synthetic supplements, or traditional herbal remedies in the form of single or poly-herbs, these supplements may comprise various components that exhibit immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial characteristics. There is a substantial body of predictions and expert opinions suggesting that enhancing one's diet with dietary supplements containing additional nutrients and bioactive compounds like vitamins, minerals, amino acids, fatty acids, phytochemicals, and probiotics can enhance the immune system's ability to develop resistance against COVID-19, although none of them have any conclusive evidence nor officially recommended by World Health Organization (WHO). The current review critically acclaims the gap between public perception-based preference and real evidence-based study to weigh the actual benefit of dietary supplements in relation to COVID-19 prevention and management.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vignesh Ravichandran
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Gupta N, Abd EL-Gawaad N, Osman Abdallah SA, Al-Dossari M. Possible modulating functions of probiotic Lactiplantibacillus plantarum in particulate matter-associated pulmonary inflammation. Front Cell Infect Microbiol 2024; 13:1290914. [PMID: 38264731 PMCID: PMC10803600 DOI: 10.3389/fcimb.2023.1290914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Pulmonary disease represents a substantial global health burden. Increased air pollution, especially fine particulate matter (PM2.5) is the most concerned proportion of air pollutants to respiratory health. PM2.5 may carry or combine with other toxic allergens and heavy metals, resulting in serious respiratory allergies and anaphylactic reactions in the host. Available treatment options such as antihistamines, steroids, and avoiding allergens/dust/pollutants could be limited due to certain side effects and immense exposure to air pollutants, especially in most polluted countries. In this mini-review, we summarized how PM2.5 triggers respiratory hyperresponsiveness and inflammation, and the probiotic Lactiplantibacillus plantarum supplementation could minimize the risk of the same. L. plantarum may confer beneficial effects in PM2.5-associated pulmonary inflammation due to significant antioxidant potential. We discussed L. plantarum's effect on PM2.5-induced reactive oxygen species (ROS), inflammatory cytokines, lipid peroxidation, and DNA damage. Available preclinical evidence shows L. plantarum induces gut-lung axis, SCFA, GABA, and other neurotransmitter signaling via gut microbiota modulation. SCFA signals are important in maintaining lung homeostasis and regulating intracellular defense mechanisms in alveolar cells. However, significant research is needed in this direction to contemplate L. plantarum's therapeutic potential in pulmonary allergies.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Greater Noida, India
| | - N.S. Abd EL-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - M. Al-Dossari
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Gómez-Carballa A, Albericio G, Montoto-Louzao J, Pérez P, Astorgano D, Rivero-Calle I, Martinón-Torres F, Esteban M, Salas A, García-Arriaza J. Lung transcriptomics of K18-hACE2 mice highlights mechanisms and genes involved in the MVA-S vaccine-mediated immune response and protection against SARS-CoV-2 infection. Antiviral Res 2023; 220:105760. [PMID: 37992765 DOI: 10.1016/j.antiviral.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julián Montoto-Louzao
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
6
|
Peng Y, Zhang L, Mok CKP, Ching JYL, Zhao S, Wong MKL, Zhu J, Chen C, Wang S, Yan S, Qin B, Liu Y, Zhang X, Cheung CP, Cheong PK, Ip KL, Fung ACH, Wong KKY, Hui DSC, Chan FKL, Ng SC, Tun HM. Baseline gut microbiota and metabolome predict durable immunogenicity to SARS-CoV-2 vaccines. Signal Transduct Target Ther 2023; 8:373. [PMID: 37743379 PMCID: PMC10518331 DOI: 10.1038/s41392-023-01629-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The role of gut microbiota in modulating the durability of COVID-19 vaccine immunity is yet to be characterised. In this cohort study, we collected blood and stool samples of 121 BNT162b2 and 40 CoronaVac vaccinees at baseline, 1 month, and 6 months post vaccination (p.v.). Neutralisation antibody, plasma cytokine and chemokines were measured and associated with the gut microbiota and metabolome composition. A significantly higher level of neutralising antibody (at 6 months p.v.) was found in BNT162b2 vaccinees who had higher relative abundances of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Roseburia faecis as well as higher concentrations of nicotinic acid (Vitamin B) and γ-Aminobutyric acid (P < 0.05) at baseline. CoronaVac vaccinees with high neutralising antibodies at 6 months p.v. had an increased relative abundance of Phocaeicola dorei, a lower relative abundance of Faecalibacterium prausnitzii, and a higher concentration of L-tryptophan (P < 0.05) at baseline. A higher antibody level at 6 months p.v. was also associated with a higher relative abundance of Dorea formicigenerans at 1 month p.v. among CoronaVac vaccinees (Rho = 0.62, p = 0.001, FDR = 0.123). Of the species altered following vaccination, 79.4% and 42.0% in the CoronaVac and BNT162b2 groups, respectively, recovered at 6 months. Specific to CoronaVac vaccinees, both bacteriome and virome diversity depleted following vaccination and did not recover to baseline at 6 months p.v. (FDR < 0.1). In conclusion, this study identified potential microbiota-based adjuvants that may extend the durability of immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong, China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris K P Mok
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew K L Wong
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunke Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuai Yan
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Biyan Qin
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pun Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Long Ip
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian C H Fung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong, China.
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
The GABA and GABA-Receptor System in Inflammation, Anti-Tumor Immune Responses, and COVID-19. Biomedicines 2023; 11:biomedicines11020254. [PMID: 36830790 PMCID: PMC9953446 DOI: 10.3390/biomedicines11020254] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
GABA and GABAA-receptors (GABAA-Rs) play major roles in neurodevelopment and neurotransmission in the central nervous system (CNS). There has been a growing appreciation that GABAA-Rs are also present on most immune cells. Studies in the fields of autoimmune disease, cancer, parasitology, and virology have observed that GABA-R ligands have anti-inflammatory actions on T cells and antigen-presenting cells (APCs), while also enhancing regulatory T cell (Treg) responses and shifting APCs toward anti-inflammatory phenotypes. These actions have enabled GABAA-R ligands to ameliorate autoimmune diseases, such as type 1 diabetes (T1D), multiple sclerosis (MS), and rheumatoid arthritis, as well as type 2 diabetes (T2D)-associated inflammation in preclinical models. Conversely, antagonism of GABAA-R activity promotes the pro-inflammatory responses of T cells and APCs, enhancing anti-tumor responses and reducing tumor burden in models of solid tumors. Lung epithelial cells also express GABA-Rs, whose activation helps maintain fluid homeostasis and promote recovery from injury. The ability of GABAA-R agonists to limit both excessive immune responses and lung epithelial cell injury may underlie recent findings that GABAA-R agonists reduce the severity of disease in mice infected with highly lethal coronaviruses (SARS-CoV-2 and MHV-1). These observations suggest that GABAA-R agonists may provide off-the-shelf therapies for COVID-19 caused by new SARS-CoV-2 variants, as well as novel beta-coronaviruses, which evade vaccine-induced immune responses and antiviral medications. We review these findings and further advance the notions that (1) immune cells possess GABAA-Rs to limit inflammation in the CNS, and (2) this natural "braking system" on inflammatory responses may be pharmacologically engaged to slow the progression of autoimmune diseases, reduce the severity of COVID-19, and perhaps limit neuroinflammation associated with long COVID.
Collapse
|
8
|
Secreted immune metabolites that mediate immune cell communication and function. Trends Immunol 2022; 43:990-1005. [PMID: 36347788 DOI: 10.1016/j.it.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Metabolites are emerging as essential factors for the immune system that are involved in both metabolic circuits and signaling cascades. Accumulated evidence suggests that altered metabolic programs initiated by the activation and maturation of immune cell types are accompanied by the delivery of various metabolites into the local environment. We propose that, in addition to protein/peptide ligands, secreted immune metabolites (SIMets) are essential components of immune communication networks that fine-tune immune responses under homeostatic and pathological conditions. We summarize recent advances in our understanding of SIMets and discuss the potential mechanisms by which some metabolites engage in immunological responses through receptor-, transporter-, and post-translational-mediated regulation. These insights may contribute to understanding physiology and developing effective therapeutics for inflammatory and immune-mediated diseases.
Collapse
|