1
|
Maghrebi O, Amoriello R, Ballerini C. Application of Multiplex Immunoassay in Aging Research: A Methodological Approach. Methods Mol Biol 2025; 2857:99-107. [PMID: 39348058 DOI: 10.1007/978-1-0716-4128-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
One of the characteristics of aging and age-related disorders is the formation and evolution of a chronic, low-grade, and hence subclinical, inflammatory state known as inflammaging. Although the progression of inflammaging is now recognized as one of the main driving forces of aging and one of the main risk factors for morbidity and mortality in older subjects, current knowledge on the causative agents of inflammaging itself and chronic, aging-related diseases is still incomplete. In this chapter, we offer a methodological approach for assessing inflammation associated with aging through the use of multiplex immunoassay, which enables the rapid, reproducible, and simultaneous dosage of several cytokines, chemokines, and inflammatory mediators with little biological sample usage.
Collapse
Affiliation(s)
- Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Xie Y, Liu Y, Wu Q. Effect of gender and age on bDMARD efficacy for axial spondyloarthritis patients: a meta-analysis of randomized controlled trials. Rheumatology (Oxford) 2024; 63:2914-2922. [PMID: 38317498 DOI: 10.1093/rheumatology/keae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To study the therapeutic variations of biologic and targeted synthetic DMARDs (b/tsDMARDs) between genders and across age stages in axial SpA (axSpA) patients through meta-analysis. METHODS Randomized controlled trials published by PubMed, Scopus and Embase before 10 August 2023, testing the efficacy of b/tsDMARDs in axSpA, were searched and systematically reviewed. The Assessment of Spondyloarthritis International Society ≥40% improvement (ASAS40) was used as the primary outcome of treatment response. RESULTS Only one study meet the inclusion criteria related to tsDMARDs, which was excluded from further analysis. Nine studies of bDMARDs, with 4127 patients, were included for the final analysis. When compared with placebo, both males [odds ratio (OR) 3.14 (95% CI 2.66, 3.70)] and females [OR 2.32 (95% CI 1.82, 2.82)] and younger [OR 4.00 (95% CI 2.50, 6.40)] and older [OR 2.21 (95% CI 1.15, 4.22)] patients presented significantly better responses to bDMARDs. Also, the efficacies were more evident in males [OR 1.89 (95% CI 1.56, 2.30)] and younger [OR 2.07 (95% CI 1.42, 3.02)] patients. Subgroup analysis revealed that the gender difference in efficacy was more obvious in non-radiographic axSpA (nr-axSpA) patients (Pheterogeneity = 0.03, I2 = 78.1%). Moreover, males with radiographic axSpA (r-axSpA) and nr-axSpA shared similar responses to bDMARDs (Pheterogeneity = 0.87, I2 = 0%), while females with r-axSpA showed greater response than those with nr-axSpA (Pheterogeneity = 0.005, I2 = 87.4%). CONCLUSIONS The bDMARDs were efficacious in all axSpA patients regardless of gender or age. However, the treatment responses were more evident in male and younger patients. Also, females with r-axSpA had greater responses than those with nr-axSpA, whereas no relevant difference was observed in males, indicating that the gender difference on efficacy was greater in nr-axSpA patients.
Collapse
Affiliation(s)
- Yan Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Tsinghua Clinical Research Institute, School of Medicine, Tsinghua University, Beijing, China
- Office of Clinical Trial Institute, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Qiuhong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li W, Wang X, Diao H, Yang Y, Ding L, Huan W, Chen Y, Cui W. Systemic immune inflammation index with all-cause and cause-specific mortality: a meta-analysis. Inflamm Res 2024:10.1007/s00011-024-01959-5. [PMID: 39400697 DOI: 10.1007/s00011-024-01959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
IMPORTANCE Studies have reported an association among systemic immune inflammation index (SII), all-cause and cause-specific mortality, but the results are inconsistent. OBJECTIVE To comprehensively explore the association between Systemic Immune Inflammation (SII) and the risk of all-cause mortality, cardiovascular disease (CVD), and cancer mortality. EVIDENCE REVIEW A meta-analysis was conducted by reviewing existing literature. The search encompassed prominent databases including PubMed, Embase, Cochrane, and the Web of Science, with the cutoff date set at March 1, 2024. Furthermore, subgroup analyses and dose-response assessments were undertaken to provide a nuanced exploration of mortality risk factors. FINDINGS A total of 33 articles were included (427,819 participants). In the study, SII was associated with an increased risk of all-cause mortality (HR = 1.45, 95%CI [1.36,1.54], P < 0.05). SII increased the risk of CVD mortality (HR = 1.44, 95%CI [1.29,1.60], P < 0.05). The Linear independence shows that for every 100 units increase in SII, the risk of all-cause and CVD death increases by 5% and 6%. SII was not associated with a statistically significant risk of cancer death (HR = 1.09, 95%CI [0.96,1.23], P < 0.05). CONCLUSIONS AND RELEVANCE Meta-analysis showed that SII was associated with all-cause mortality and CVD mortality. More data and basic research are needed to confirm the association.
Collapse
Affiliation(s)
- Wei Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China
| | - Xiaoning Wang
- Department of blood transfusion, The First Hospital of Jilin University, Changchun, China
| | - Houze Diao
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China
| | - Yuting Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China
| | - Liyi Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China
| | - Wenru Huan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China
| | - Yaozhi Chen
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Xinmin Street 1, Changchun, 130021, China.
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163, Xinmin Street, Changchun, China.
| |
Collapse
|
5
|
Theodorakis N, Feretzakis G, Hitas C, Kreouzi M, Kalantzi S, Spyridaki A, Kollia Z, Verykios VS, Nikolaou M. Immunosenescence: How Aging Increases Susceptibility to Bacterial Infections and Virulence Factors. Microorganisms 2024; 12:2052. [PMID: 39458361 PMCID: PMC11510421 DOI: 10.3390/microorganisms12102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The process of aging leads to a progressive decline in the immune system function, known as immunosenescence, which compromises both innate and adaptive responses. This includes impairments in phagocytosis and decreased production, activation, and function of T- and B-lymphocytes, among other effects. Bacteria exploit immunosenescence by using various virulence factors to evade the host's defenses, leading to severe and often life-threatening infections. This manuscript explores the complex relationship between immunosenescence and bacterial virulence, focusing on the underlying mechanisms that increase vulnerability to bacterial infections in the elderly. Additionally, it discusses how machine learning methods can provide accurate modeling of interactions between the weakened immune system and bacterial virulence mechanisms, guiding the development of personalized interventions. The development of vaccines, novel antibiotics, and antivirulence therapies for multidrug-resistant bacteria, as well as the investigation of potential immune-boosting therapies, are promising strategies in this field. Future research should focus on how machine learning approaches can be integrated with immunological, microbiological, and clinical data to develop personalized interventions that improve outcomes for bacterial infections in the growing elderly population.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Christos Hitas
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Magdalini Kreouzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Sofia Kalantzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Aikaterini Spyridaki
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Zoi Kollia
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Maria Nikolaou
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| |
Collapse
|
6
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Darreh-Shori T, Baidya ATK, Brouwer M, Kumar A, Kumar R. Repurposing Duloxetine as a Potent Butyrylcholinesterase Inhibitor: Potential Cholinergic Enhancing Benefits for Elderly Individuals with Depression and Cognitive Impairment. ACS OMEGA 2024; 9:37299-37309. [PMID: 39246500 PMCID: PMC11375813 DOI: 10.1021/acsomega.4c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Despite the advent of new treatment strategies, cholinesterase inhibitors (ChEIs) are still the go-to treatment for dementia disorders. ChEIs act by inhibiting the main acetylcholine-degrading enzyme, acetylcholinesterase (AChE). Nonetheless, accumulating evidence indicates that the impact of inhibition of the sister enzyme, butyrylcholinesterase (BChE), could be even broader in older adults due to the multifaceted role of BChE in several biological functional pathways. Therefore, we employed an in silico modeling-based drug repurposing strategy to identify novel potent BChE inhibitors from the FDA drug database. This was followed by in vitro screening and ex vivo enzyme kinetic validation using human plasma samples as the source of BChE. The analysis revealed that the antidepressant drug, duloxetine, inhibited BChE with high selectivity in comparison to AChE. In contrast, two other antidepressants, namely, citalopram and escitalopram exhibited a weak to moderate activity. Ex vivo enzyme inhibition kinetic analyses indicated that duloxetine acted as a competitive inhibitor of BChE with an inhibition constant (K i) of 210 nM. This K i value is comparable with 100-400 nM concentration of duloxetine following normal dosages in humans, thereby indicating that duloxetine should be able to induce a pharmacologically and biologically relevant in vivo inhibition of BChE. Additionally, we performed the enzyme inhibition kinetic assessment in parallel for ethopropazine, a known potent selective BChE inhibitor, and physostigmine, a dual inhibitor of AChE and BChE. These analyses indicated that duloxetine should be considered a potent BChE inhibitor since its K i was comparable with ethopropazine (K i = 150 nM) but was 4 times smaller than that of physostigmine (K i = 840 nM). In conclusion, this study reports the discovery of duloxetine being a highly potent selective competitive BChE inhibitor. This, in turn, indicates that duloxetine could be the choice of antidepressive treatment in older adults with both depressive and dementia symptoms since it may offer additional clinically beneficial effects via this secondary mode of cholinergic enhancing action.
Collapse
Affiliation(s)
- Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Seventh Floor, 141 52 Stockholm, Sweden
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, Uttar Pradesh, India
| | - Medea Brouwer
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Seventh Floor, 141 52 Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Seventh Floor, 141 52 Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Guo K, Wang Q, Zhang L, Qiao R, Huo Y, Jing L, Wang X, Song Z, Li S, Zhang J, Yang Y, Mahe J, Liu Z. Relationship between changes in the triglyceride glucose-body mass index and frail development trajectory and incidence in middle-aged and elderly individuals: a national cohort study. Cardiovasc Diabetol 2024; 23:304. [PMID: 39152445 PMCID: PMC11330012 DOI: 10.1186/s12933-024-02373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Insulin resistance is linked to an increased risk of frailty, yet the comprehensive relationship between the triglyceride glucose-body mass index (TyG-BMI), which reflects weight, and frailty, remains unclear. This relationship is investigated in this study. METHODS Data from 9135 participants in the China Health and Retirement Longitudinal Study (2011-2020) were analysed. Baseline TyG-BMI, changes in the TyG-BMI and cumulative TyG-BMI between baseline and 2015, along with the frailty index (FI) over nine years, were calculated. Participants were grouped into different categories based on TyG-BMI changes using K-means clustering. FI trajectories were assessed using a group-based trajectory model. Logistic and Cox regression models were used to analyse the associations between the TyG-BMI and FI trajectory and frail incidence. Nonlinear relationships were explored using restricted cubic splines, and a linear mixed-effects model was used to evaluate FI development speed. Weighted quantile regression was used to identify the primary contributing factors. RESULTS Four classes of changes in the TyG-BMI and two FI trajectories were identified. Individuals in the third (OR = 1.25, 95% CI: 1.10-1.42) and fourth (OR = 1.83, 95% CI: 1.61-2.09) quartiles of baseline TyG-BMI, those with consistently second to highest (OR = 1.49, 95% CI: 1.32-1.70) and the highest (OR = 2.17, 95% CI: 1.84-2.56) TyG-BMI changes, and those in the third (OR = 1.20, 95% CI: 1.05-1.36) and fourth (OR = 1.94, 95% CI: 1.70-2.22) quartiles of the cumulative TyG-BMI had greater odds of experiencing a rapid FI trajectory. Higher frail risk was noted in those in the fourth quartile of baseline TyG-BMI (HR = 1.42, 95% CI: 1.28-1.58), with consistently second to highest (HR = 1.23, 95% CI: 1.12-1.34) and the highest TyG-BMI changes (HR = 1.58, 95% CI: 1.42-1.77), and those in the third (HR = 1.10, 95% CI: 1.00-1.21) and fourth quartile of cumulative TyG-BMI (HR = 1.46, 95% CI: 1.33-1.60). Participants with persistently second-lowest to the highest TyG-BMI changes (β = 0.15, 0.38 and 0.76 respectively) and those experiencing the third to fourth cumulative TyG-BMI (β = 0.25 and 0.56, respectively) demonstrated accelerated FI progression. A U-shaped association was observed between TyG-BMI levels and both rapid FI trajectory and higher frail risk, with BMI being the primary factor. CONCLUSION A higher TyG-BMI is associated with the rapid development of FI trajectory and a greater frail risk. However, excessively low TyG-BMI levels also appear to contribute to frail development. Maintaining a healthy TyG-BMI, especially a healthy BMI, may help prevent or delay the frail onset.
Collapse
Affiliation(s)
- Kai Guo
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Qi Wang
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Lin Zhang
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Suzhou, China
- Monash University-Southeast University Joint Research Institute (Suzhou), Southeast University, Suzhou, China
| | - Rui Qiao
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Yujia Huo
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Suzhou, China
- Monash University-Southeast University Joint Research Institute (Suzhou), Southeast University, Suzhou, China
| | - Lipeng Jing
- The School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaowan Wang
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Zixuan Song
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Siyu Li
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Jinming Zhang
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Yanfang Yang
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China
| | - Jinli Mahe
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengran Liu
- The School of public health, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, China.
| |
Collapse
|
10
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
11
|
Alam R, Fan X, Hippe DS, Tachiki LM, Gong E, Huynh E, Nghiem P, Park SY. Lack of Clinically Significant Relationships of Age or Body Mass Index with Merkel Cell Carcinoma Immunotherapy Outcomes. Cancers (Basel) 2024; 16:2480. [PMID: 39001542 PMCID: PMC11240446 DOI: 10.3390/cancers16132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with a high risk of metastasis. The development of anti-PD-1/PD-L1 immunotherapy has improved outcomes for advanced MCC, yet about 50% of such patients do not achieve durable responses. This study analyzed the effects of age and body mass index (BMI) on immunotherapy response in 183 advanced MCC patients from a single-center longitudinal database. Using Fine-Gray or Cox regression models, treatment response, progression-free survival (PFS), MCC-specific survival, and overall survival (OS) were evaluated. Age showed a significant non-linear relationship with treatment response (p = 0.04), with patients much older or younger than 70 years less likely to respond. However, age was not significantly associated with PFS (p = 0.21), MCC-specific survival (p = 0.72), or OS (p = 0.36). Similarly, BMI was not significantly correlated with treatment response (p = 0.41), PFS (p = 0.52), MCC-specific survival (p = 0.78), or OS (p = 0.71). Unlike previous studies suggesting that obesity and advanced age improve outcomes in other cancers, these associations were not observed in MCC. These findings suggest that age and BMI should not influence eligibility for immunotherapy in MCC patients, emphasizing the importance of unbiased patient selection for this treatment.
Collapse
Affiliation(s)
- Rian Alam
- Department of Dermatology, University of Washington, Seattle, WA 98109, USA; (R.A.)
| | - Xinyi Fan
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, WA 98109, USA
| | - Daniel S. Hippe
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, WA 98109, USA
| | - Lisa M. Tachiki
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, WA 98109, USA
- Division of Hematology/Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Emily Gong
- Department of Dermatology, University of Washington, Seattle, WA 98109, USA; (R.A.)
| | - Emily Huynh
- Department of Dermatology, University of Washington, Seattle, WA 98109, USA; (R.A.)
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington, Seattle, WA 98109, USA; (R.A.)
| | - Song Youn Park
- Department of Dermatology, University of Washington, Seattle, WA 98109, USA; (R.A.)
| |
Collapse
|
12
|
Yu Y, Li X, Zheng M, Zhou L, Zhang J, Wang J, Sun B. The potential benefits and mechanisms of protein nutritional intervention on bone health improvement. Crit Rev Food Sci Nutr 2024; 64:6380-6394. [PMID: 36655469 DOI: 10.1080/10408398.2023.2168250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Osteoporosis commonly occurs in the older people and severe patients, with the main reason of the imbalance of bone metabolism (the rate of bone resorption exceeding the rate of bone formation), resulting in a decrease in bone mineral density and destruction of bone microstructure and further leading to the increased risk of fragility fracture. Recent studies indicate that protein nutritional support is beneficial for attenuating osteoporosis and improving bone health. This review summarized the classical mechanisms of protein intervention for alleviating osteoporosis on both suppressing bone resorption and regulating bone formation related pathways (promoting osteoblasts generation and proliferation, enhancing calcium absorption, and increasing collagen and mineral deposition), as well as the potential novel mechanisms via activating autophagy of osteoblasts, altering bone related miRNA profiles, regulating muscle-bone axis, and modulating gut microbiota abundance. Protein nutritional intervention is expected to provide novel approaches for the prevention and adjuvant therapy of osteoporosis.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Mengjun Zheng
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
13
|
Ukraintseva S, Yashkin AP, Akushevich I, Arbeev K, Duan H, Gorbunova G, Stallard E, Yashin A. Associations of infections and vaccines with Alzheimer's disease point to a role of compromised immunity rather than specific pathogen in AD. Exp Gerontol 2024; 190:112411. [PMID: 38548241 PMCID: PMC11060001 DOI: 10.1016/j.exger.2024.112411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Diverse pathogens (viral, bacterial, fungal) have been associated with Alzheimer's disease (AD) and related traits in various studies. This suggests that compromised immunity, rather than specific microbes, may play a role in AD by increasing an individual's vulnerability to various infections, which could contribute to neurodegeneration. If true, then vaccines that have heterologous effects on immunity, extending beyond protection against the targeted disease, may hold a potential for AD prevention. METHODS We evaluated the associations of common adult infections (herpes simplex, zoster (shingles), pneumonia, and recurrent mycoses), and vaccinations against shingles and pneumonia, with the risks of AD and other dementias in a pseudorandomized sample of the Health and Retirement Study (HRS). RESULTS Shingles, pneumonia and mycoses, diagnosed between ages 65 and 75, were all associated with significantly increased risk of AD later in life, by 16 %-42 %. Pneumococcal and shingles vaccines administered between ages 65-75 were both associated with a significantly lower risk of AD, by 15 %-21 %. These effects became less pronounced when AD was combined with other dementias. DISCUSSION Our findings suggest that both the pneumococcal polysaccharide vaccine and the live attenuated zoster vaccine can offer significant protection against AD. It remains to be determined if non-live shingles vaccine has a similar beneficial effect on AD. This study also found significant associations of various infections with the risk of AD, but not with the risks of other dementias. This indicates that vulnerability to infections may play a more significant role in AD than in other types of dementia, which warrants further investigation.
Collapse
Affiliation(s)
- Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Galina Gorbunova
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Morrison AI, Sjoerds MJ, Vonk LA, Gibbs S, Koning JJ. In vitro immunity: an overview of immunocompetent organ-on-chip models. Front Immunol 2024; 15:1373186. [PMID: 38835750 PMCID: PMC11148285 DOI: 10.3389/fimmu.2024.1373186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Impressive advances have been made to replicate human physiology in vitro over the last few years due to the growth of the organ-on-chip (OoC) field in both industrial and academic settings. OoCs are a type of microphysiological system (MPS) that imitates functional and dynamic aspects of native human organ biology on a microfluidic device. Organoids and organotypic models, ranging in their complexity from simple single-cell to complex multi-cell type constructs, are being incorporated into OoC microfluidic devices to better mimic human physiology. OoC technology has now progressed to the stage at which it has received official recognition by the Food and Drug Administration (FDA) for use as an alternative to standard procedures in drug development, such as animal studies and traditional in vitro assays. However, an area that is still lagging behind is the incorporation of the immune system, which is a critical element required to investigate human health and disease. In this review, we summarise the progress made to integrate human immunology into various OoC systems, specifically focusing on models related to organ barriers and lymphoid organs. These models utilise microfluidic devices that are either commercially available or custom-made. This review explores the difference between the use of innate and adaptive immune cells and their role for modelling organ-specific diseases in OoCs. Immunocompetent multi-OoC models are also highlighted and the extent to which they recapitulate systemic physiology is discussed. Together, the aim of this review is to describe the current state of immune-OoCs, the limitations and the future perspectives needed to improve the field.
Collapse
Affiliation(s)
- Andrew I. Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Mirthe J. Sjoerds
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leander A. Vonk
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jasper J. Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
15
|
de Nóbrega T, da Silva M, Rampani E, Curi R, Bazotte R. Tolerability of glutamine supplementation in older adults: a double-blind placebo-controlled randomized clinical trial. Braz J Med Biol Res 2024; 57:e13468. [PMID: 38808890 PMCID: PMC11136481 DOI: 10.1590/1414-431x2024e13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
In this double-blind placebo-controlled randomized investigation, we assessed the tolerability of glutamine in older adults recruited from three daycare centers. The relevance of studying glutamine supplementation in elderly patients lies in its potential to provide a well-tolerated intervention. Glutamine, a crucial amino acid, plays a vital role in various physiological processes, including immune function and protein synthesis. Understanding its impact on older adults is essential, given the potential implications for their health and well-being. Participants received a daily dose of 12.4 g of oral effervescent glutamine (EGln group) or maltodextrin (placebo group) for 60 days. Fifteen patients from each group completed the study. The mean ages were 77.0±9.1 and 79.0±6.9 years for the EGln and placebo groups, respectively. We evaluated body mass index, aminogram, hemogram, plasma levels of glucose, prealbumin, albumin, urea, creatinine, uric acid, C-reactive protein, vitamin D, calcium, sodium, potassium, and the plasma activities of aspartate aminotransferase and alanine aminotransferase. Notably, we quantified a broad array of inflammatory markers and growth factors providing a holistic understanding of the potential effects of glutamine supplementation. The results demonstrated that oral glutamine did not induce significant changes in any evaluated parameters, and no adverse effects were reported. This finding suggested that the dosage of glutamine used in this study was well-tolerated and safe. This information contributes to the broader understanding of glutamine supplementation, emphasizing its safety and supporting its potential as a viable intervention for maintaining health in aging individuals.
Collapse
Affiliation(s)
- T.C.M. de Nóbrega
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - M.A.R.C.P. da Silva
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - E.M. Rampani
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R. Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
- Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - R.B. Bazotte
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
16
|
Bandettini WP. Understanding Myocarditis: From an Early Sketch Toward a More Complete Picture. JACC. ADVANCES 2024; 3:100856. [PMID: 38939684 PMCID: PMC11198192 DOI: 10.1016/j.jacadv.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- W. Patricia Bandettini
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med 2024; 295:416-435. [PMID: 37941149 DOI: 10.1111/joim.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The current increase in lifespan without an equivalent increase in healthspan poses a grave challenge to the healthcare system and a severe burden on society. However, some individuals seem to be able to live a long and healthy life without the occurrence of major debilitating chronic diseases, and part of this trait seems to be hidden in their genome. In this review, we discuss the findings from studies on the genetic component of human longevity and the main challenges accompanying these studies. We subsequently focus on results from genetic studies in model organisms and comparative genomic approaches to highlight the most important conserved longevity-associated pathways. By combining the results from studies using these different approaches, we conclude that only five main pathways have been consistently linked to longevity, namely (1) insulin/insulin-like growth factor 1 signalling, (2) DNA-damage response and repair, (3) immune function, (4) cholesterol metabolism and (5) telomere maintenance. As our current approaches to study the relevance of these pathways in humans are limited, we suggest that future studies on the genetics of human longevity should focus on the identification and functional characterization of rare genetic variants in genes involved in these pathways.
Collapse
Affiliation(s)
- Larissa Smulders
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Pagac MP, Stalder M, Campiche R. Menopause and facial skin microbiomes: a pilot study revealing novel insights into their relationship. FRONTIERS IN AGING 2024; 5:1353082. [PMID: 38577131 PMCID: PMC10991793 DOI: 10.3389/fragi.2024.1353082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
Introduction: The human skin microbial composition is affected by age. Previous studies reported skin microbiome diversity shifts between elderly and significantly younger subjects. Some studies implied that menopausal status, which is inherently linked to age, could be associated with changes in skin microbial compositions. Nevertheless, the influence of menopausal status on skin microbiome profiles while minimizing the impact of aging-associated changes in skin parameters still needs further clarification. Methods: We performed an observational study on healthy Caucasian female volunteers, which were grouped according to their pre- or postmenopausal status. Bacterial community structures on facial skin were analyzed using 16S rRNA gene sequencing. Cutometer® measurements were performed to evaluate aging-associated changes in facial skin biophysical properties. Results: The relative abundance of the lipophilic Cutibacterium genus was decreased, and bacterial diversity was increased in skin samples of postmenopausal volunteers. The mean age difference between examined groups in this study was 12.4 years only. Accordingly, Cutometer® measurements revealed no differences in aging-associated skin biophysical parameters between pre- and postmenopausal groups. Consequently, no correlation was detected between Shannon diversity and measured age-dependent biomechanical properties of facial skin. Discussion: These findings are in line with previous studies, which investigated the wide-ranging impact of chronological aging on skin microbial communities. However, this work reports for the first time a direct association between menopausal status and facial microbiomes on skin of similarly aged study participants, and hence uncouples aging-associated skin biophysical parameters, such as viscoelastic properties, from the equation. These findings open avenues for the development of microbiome-targeting strategies for treatment of menopause-associated skin disorders.
Collapse
|
19
|
Punzon-Jimenez P, Machado-Lopez A, Perez-Moraga R, Llera-Oyola J, Grases D, Galvez-Viedma M, Sibai M, Satorres-Perez E, Lopez-Agullo S, Badenes R, Ferrer-Gomez C, Porta-Pardo E, Roson B, Simon C, Mas A. Effect of aging on the human myometrium at single-cell resolution. Nat Commun 2024; 15:945. [PMID: 38296945 PMCID: PMC10830479 DOI: 10.1038/s41467-024-45143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.
Collapse
Affiliation(s)
- Paula Punzon-Jimenez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Alba Machado-Lopez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Raul Perez-Moraga
- Carlos Simon Foundation, Valencia, Spain
- R&D Department, Igenomix, Valencia, Spain
| | | | - Daniela Grases
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | - Mustafa Sibai
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | | | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Hospital Clinico Universitario, Valencia, Spain
| | | | | | - Beatriz Roson
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA.
| | - Aymara Mas
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
| |
Collapse
|
20
|
Albandar JM. Disparities and social determinants of periodontal diseases. Periodontol 2000 2024. [PMID: 38217495 DOI: 10.1111/prd.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Periodontal diseases are highly prevalent in populations worldwide and are a major global public health problem, with major negative impacts on individuals and communities. This study investigates evidence of disparities in periodontal diseases by age groups, gender, and socioeconomic factors. There is ample evidence that these diseases disproportionally affect poorer and marginalized groups and are closely associated with certain demographics and socioeconomic status. Disparities in periodontal health are associated with social inequalities, which in turn are caused by old age, gender inequality, income and education gaps, access to health care, social class, and other factors. In health care, these factors may result in some individuals receiving better and more professional care compared to others. This study also reviews the potential causes of these disparities and the means to bridge the gap in disease prevalence. Identifying and implementing effective strategies to eliminate inequities among minorities and marginalized groups in oral health status and dental care should be prioritized in populations globally.
Collapse
Affiliation(s)
- Jasim M Albandar
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Jiang D, Xu Y, Yang L, Li P, Han X, Li Q, Yang Y, Chao L. Identification and validation of senescence-related genes in polycystic ovary syndrome. J Ovarian Res 2024; 17:7. [PMID: 38184636 PMCID: PMC10770899 DOI: 10.1186/s13048-023-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an exceedingly intractable issue affecting female endocrine and reproductive health. However, the etiology and intricate pathological mechanisms of PCOS remain unclear. Nowadays, aging was found to share multiple common pathological mechanisms with PCOS, which causes probing into the pathogenesis of PCOS from senescence. However, no bioinformatics analyses have specifically focused on connection between PCOS and ovarian aging. METHODS Differentially expressed aging-related genes in PCOS were identified and then analyzed using function enrichment method. Hub genes were determined based on multiple algorithms, and expression validation of hub genes was performed in both datasets and experiments (human granulosa-like tumor cell line, KGN; human Granulosa Cell, hGCs). Finally, a transcription factor-miRNA-gene network of hub genes was constructed. RESULTS Here, we identified 73 aging-related differential expression genes (ARDEGs) by intersecting DEGs in PCOS and senescence-related gene set. Furthermore, we performed biological functions and potential pathways of ARDEGs and potential hub genes were also screened by multiple algorithms. From the perspective of immune dysfunction, we analyzed the correlation between PCOS and immune cells. Finally, TF-miRNA-gene networks were constructed. Finally, TF-miRNA-gene networks were constructed. CONCLUSIONS Our work aimed to elucidate the relation between PCOS and cellular senescence based on bioinformatics strategy, deepening the understanding of mechanisms and to seek for novel therapy strategies for improving reproductive lifespan and female health. Exploring the potential molecular mechanism of cell aging in PCOS is expected to bring a new breakthrough for PCOS diagnosis and therapy strategies. And this, might deepen our understanding about intricate mechanisms of ovarian aging.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
22
|
Valido E, Boehl G, Krebs J, Pannek J, Stojic S, Atanasov AG, Glisic M, Stoyanov J. Immune Status of Individuals with Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:16385. [PMID: 38003575 PMCID: PMC10670917 DOI: 10.3390/ijms242216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with spinal cord injury (SCI) have higher infection rates compared to those without SCI. In this review, the immune status difference between individuals with and without traumatic SCI is investigated by examining their peripheral immune cells and markers. PubMed, Cochrane, EMBASE, and Ovid MEDLINE were searched without language or date restrictions. Studies reporting peripheral immune markers' concentration and changes in functional capabilities of immune cells that compared individuals with and without SCI were included. Studies with participants with active infection, immune disease, and central nervous system (CNS) immune markers were excluded. The review followed the PRISMA guidelines. Effect estimates were measured by Weighted Mean Difference (WMD) using a random-effects model. Study quality was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Fifty-four studies (1813 with SCI and 1378 without SCI) contributed to the meta-analysis. Leukocytes (n = 23, WMD 0.78, 95% CI 0.17; 1.38, I2 83%), neutrophils (n = 11, WMD 0.76, 95% CI 0.09; 1.42, I2 89%), C-reactive protein (CRP) (n = 12, WMD 2.25, 95% CI 1.14; 3.56, I2 95%), and IL6 (n = 13, WMD 2.33, 95% CI 1.20; 3.49, I2 97%) were higher in individuals with SCI vs. without SCI. Clinical factors (phase of injury, completeness of injury, sympathetic innervation impairment, age, sex) and study-related factors (sample size, study design, and serum vs. plasma) partially explained heterogeneity. Immune cells exhibited lower functional capability in individuals with SCI vs. those without SCI. Most studies (75.6%) had a moderate risk of bias. The immune status of individuals with SCI differs from those without SCI and is clinically influenced by the phase of injury, completeness of injury, sympathetic innervation impairment, age, and sex. These results provide information that is vital for monitoring and management strategies to effectively improve the immune status of individuals with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003 Lucerne, Switzerland
| | | | - Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
| | - Jürgen Pannek
- Neuro-Urology, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Atanas G. Atanasov
- Ludwig Boltzman Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
23
|
Lee R, Lee WY, Park HJ. Effects of Melatonin on Liver of D-Galactose-Induced Aged Mouse Model. Curr Issues Mol Biol 2023; 45:8412-8426. [PMID: 37886973 PMCID: PMC10604925 DOI: 10.3390/cimb45100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Melatonin, a hormone secreted by the pineal gland of vertebrates, regulates sleep, blood pressure, and circadian and seasonal rhythms, and acts as an antioxidant and anti-inflammatory agent. We investigated the protective effects of melatonin against markers of D-galactose (D-Gal)-induced hepatocellular aging, including liver inflammation, hepatocyte structural damage, and non-alcoholic fatty liver. Mice were divided into four groups: phosphate-buffered saline (PBS, control), D-Gal (200 mg/kg/day), melatonin (20 mg/kg), and D-Gal (200 mg/kg) and melatonin (20 mg) cotreatment. The treatments were administered once daily for eight consecutive weeks. Melatonin treatment alleviated D-Gal-induced hepatocyte impairment. The AST level was significantly increased in the D-Gal-treated groups compared to that in the control group, while the ALT level was decreased compared to the melatonin and D-Gal cotreated group. Inflammatory genes, such as IL1-β, NF-κB, IL-6, TNFα, and iNOS, were significantly increased in the D-Gal aging model, whereas the expression levels of these genes were low in the D-Gal and melatonin cotreated group. Interestingly, the expression levels of hepatic steatosis-related genes, such as LXRα, C/EBPα, PPARα, ACC, ACOX1, and CPT-1, were markedly decreased in the D-Gal and melatonin cotreated group. These results suggest that melatonin suppresses hepatic steatosis and inflammation in a mouse model of D-Gal-induced aging.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Yong Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
24
|
Abstract
Increasing evidence suggests that there is acceleration of lung ageing in chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), with the accumulation of senescent cells in the lung. Senescent cells fail to repair tissue damage and release an array of inflammatory proteins, known as the senescence-associated secretory phenotype, which drive further senescence and disease progression. This suggests that targeting cellular senescence with senotherapies may treat the underlying disease process in COPD and IPF and thus reduce disease progression and mortality. Several existing or future drugs may inhibit the development of cellular senescence which is driven by chronic oxidative stress (senostatics), including inhibitors of PI3K-mTOR signalling pathways, antagomirs of critical microRNAs and novel antioxidants. Other drugs (senolytics) selectively remove senescent cells by promoting apoptosis. Clinical studies with senotherapies are already underway in chronic lung diseases.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College London, United Kingdom.
| |
Collapse
|
25
|
Dzięgielewska-Gęsiak S, Muc-Wierzgoń M. Inflammation and Oxidative Stress in Frailty and Metabolic Syndromes-Two Sides of the Same Coin. Metabolites 2023; 13:475. [PMID: 37110134 PMCID: PMC10144989 DOI: 10.3390/metabo13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In developed countries, aging is often seen as typical, but it is made complicated by many disorders and co-morbidities. Insulin resistance seems to be an underlying pathomechanism in frailty and metabolic syndromes. The decline in insulin sensitivity leads to changes in the oxidant-antioxidant balance and an accelerated inflammatory response, especially by adipocytes and macrophages in adipose tissue, as well as muscle mass density. Thus, in the pathophysiology of syndemic disorders-the metabolic syndrome and frailty syndrome-an extremely important role may be played by increased oxidative stress and pro-inflammatory state. Papers included in this review explored available full texts and the reference lists of relevant studies from the last 20 years, before the end of 2022; we also investigated the PubMed and Google Scholar electronic databases. The online resources describing an elderly population (≥65 years old) published as full texts were searched for the following terms: "oxidative stress and/or inflammation", "frailty and/or metabolic syndrome". Then, all resources were analyzed and narratively described in the context of oxidative stress and/or inflammation markers which underlie pathomechanisms of frailty and/or metabolic syndromes in elderly patients. So far, different metabolic pathways discussed in this review show that a similar pathogenesis underlies the development of the metabolic as well as frailty syndromes in the context of increased oxidative stress and acceleration of inflammation. Thus, we argue that the syndemia of the syndromes represents two sides of the same coin.
Collapse
Affiliation(s)
- Sylwia Dzięgielewska-Gęsiak
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|