1
|
Zhang X, Yang L, Feng K, Zhang H, Chen Y, Li W, Wang X, Zhang M, Wu Y, Wei S, Zheng Y, Meng G, Meng W, Chen X, Tang J. Shuxuening injection improves myocardial injury after myocardial infarction by regulating macrophage polarization via the TLR4/NF-κB and PI3K/Akt signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156418. [PMID: 39879705 DOI: 10.1016/j.phymed.2025.156418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Macrophage activation and polarization play pivotal roles in the inflammatory response and myocardial injury associated with myocardial infarction (MI). Modulating macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is a promising therapeutic approach for MI. Shuxuening injection (SXNI) is extensively utilized in clinical settings for MI treatment and has demonstrated therapeutic efficacy. However, the effects of SXNI on macrophage polarization post-MI and its underlying mechanisms remain insufficiently understood. AIM OF THE STUDY This study is aimed to evaluate the effects of SXNI on macrophage polarization following MI and to elucidate its potential mechanisms of action. METHODS A rat model of MI was established by ligation of the left anterior descending coronary artery. The cardioprotective effects of SXNI were assessed through echocardiography, TTC staining, Masson's trichrome staining, HE staining, TUNEL staining, and western blotting (WB). Macrophage polarization was evaluated using ELISA, immunofluorescence staining, and WB. An in vitro model of oxygen-glucose deprivation (OGD) was utilized to simulate MI in macrophages, and qRT-PCR was employed to examine M1/M2 polarization markers. UPLC-Q-TOF/MS was used to identify active components in SXNI. Network pharmacology analysis and molecular docking were utilized to predict the key targets and pathways, which were subsequently validated through WB and immunohistochemistry. RESULTS SXNI improved cardiac function, reduced infarct size, and attenuated myocardial tissue damage and apoptosis in MI rats. Staining analyses indicated a reduction in M1 macrophages (CD86+/CD68+) and an increase in M2 macrophages (CD206+/CD68+) in SXNI-treated animals. In vivo and in vitro experiments demonstrated that SXNI decreased M1 markers and pro-inflammatory cytokines levels while increasing M2 markers and the production of anti-inflammatory and pro-angiogenic cytokines. UPLC-Q-TOF/MS analysis identified 18 active components in SXNI. Network pharmacology analysis and molecular docking implicated the TLR4/NF-κB and PI3K/Akt pathways as central mechanisms, which were further confirmed by WB and immunohistochemistry. SXNI inhibited the expression of TLR4 and phosphorylated NF-κB while enhancing phosphorylated PI3 K and Akt levels. CONCLUSIONS SXNI modulates the TLR4/NF-κB and PI3K/Akt signaling pathways to promote the polarization of macrophages from the M1 to the M2 phenotype, thereby alleviating myocardial inflammation and injury. These findings provide a scientific basis for the clinical application of SXNI in MI management, and establish a scientific foundation for exploring novel therapeutic strategies for cardiovascular diseases based on macrophage polarization.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Liuqing Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Kairui Feng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hui Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yulong Chen
- College of pharmaceutical engineering of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weixia Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaoyan Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Mingliang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yali Wu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Shiting Wei
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Yajuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Gaoquan Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Weiting Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaofei Chen
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Jinfa Tang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China.
| |
Collapse
|
2
|
Yamamura R, Kinoshita M, Yasumizu Y, Yata T, Kihara K, Motooka D, Shiraishi N, Sugiyama Y, Beppu S, Murata H, Koizumi N, Sano I, Koda T, Okuno T, Mochizuki H. Transcriptome signature in the blood of neuromyelitis optica spectrum disorder under steroid tapering. Front Immunol 2025; 16:1508977. [PMID: 39963140 PMCID: PMC11830620 DOI: 10.3389/fimmu.2025.1508977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background The advent of biologics has significantly transformed treatment strategies for neuromyelitis optica spectrum disorder (NMOSD). However, there are no biomarkers that predict relapses associated with steroid tapering; therefore, it is critical to identify potential indicators of disease activity. In this study, we collected peripheral blood mononuclear cells (PBMCs) from NMOSD patients during steroid tapering and performed bulk RNA sequencing to analyze changes in immune dynamics caused by steroid reduction. Methods PBMCs were collected at 3-5 timepoints from 10 NMOSD patients at our hospital (including one relapse case), and bulk RNA sequencing was performed. All patients were positive for anti-AQP4 antibodies and had no history of biologic use. Results In one relapsed patient, gene groups with decreased expression at relapse were observed predominantly in monocytes, with upregulation in anti-inflammatory pathways such as IL-10, while the upregulated genes were related to interferon signaling. Moreover, after steroid tapering, in non-relapsed patients, genes with increased expression were enriched in inflammatory pathways, represented by interferon signaling, while genes with decreased expression were enriched in pathways related to IL-10 and glucocorticoid receptors. Weighted gene co-expression network analysis identified modules that correlated with steroid dosage, and the modules inversely correlated with steroid dosage were enriched in monocytes, with marked immune signature of interferon pathway. Conclusion This study identified peripheral blood transcriptome signatures that could lead to the identification of clinically relevant NMOSD disease activity biomarkers, and further highlights the pivotal role of interferon and IL-10 signaling in NMOSD.
Collapse
Affiliation(s)
- Ryohei Yamamura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Yasumizu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Tomohiro Yata
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Beppu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Murata
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoshi Koizumi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Itsuki Sano
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Huang SH, Wang CC, Shen PC, Liu ZM, Chen SJ, Tien YC, Lu CC. Suramin enhances proliferation, migration, and tendon gene expression of human supraspinatus tenocytes. J Orthop Res 2025; 43:252-263. [PMID: 39358851 DOI: 10.1002/jor.25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Rotator cuff tendinopathy is a common musculoskeletal disorder with limited pharmacological treatment strategies. This study aimed to investigate tenocytes' functional in vitro response from a ruptured supraspinatus tendon to suramin administration and to elucidate whether suramin can enhance tendon repair and modulate the inflammatory response to injury. Tenocytes were obtained from human supraspinatus tendons (n = 6). We investigated the effect of suramin on LPS-induced inflammatory responses and the underlying molecular mechanisms in THP-1 macrophages. Suramin enhanced the proliferation, cell viability, and migration of tenocytes. It also increased the protein expression of PCNA and Ki-67. Suramin-treated tenocytes exhibited increased expression of COL1A1, COL3A1, TNC, SCX, and VEGF. Suramin significantly reduced LPS-induced iNOS, COX2 synthesis, inflammatory cytokine TNF-α production, and inflammatory signaling by influencing the NF-κB pathways in THP-1 cells. Our results suggest that suramin holds great promise as a therapeutic option for treating rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chien Wang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Miao Liu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Jung Chen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Zhang XS, Wang Y, Sun H, Zerbe C, Falcone E, Bhattacharya S, Zhang M, Gao Z, Diaz-Rubio ME, Bharj D, Patel D, Pan S, Ro G, Grenard J, Armstrong A, Yin YS, Dominguez-Bello MG, Holland S, Su X, Blaser MJ. Gut microbiota phospholipids regulate intestinal gene expression and can counteract the effects of antibiotic treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.633906. [PMID: 39975029 PMCID: PMC11838270 DOI: 10.1101/2025.01.28.633906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The gut microbiome influences immune and metabolic homeostasis. Our research using non-obese diabetic (NOD) mice revealed that early-life antibiotic exposure remodels the gut microbiome affecting metabolism and accelerating type 1 diabetes (T1D) incidence, with cecal material transplant (CMT) mitigating the damage. Now examining murine intestinal lipidomic profiles, we identified 747 compounds. Comparing the lipidomic profiles of cecal contents of conventional and germ-free mice and their diets, we identified 87 microbially-produced lipids reduced by antibiotic exposure but CMT-restored. Parallel analysis of human fecal lipid profiles after azithromycin-exposure showed significant alterations with substantial overlap with mice. In vitro co-culture with mouse macrophages or small intestinal epithelial cells and human colonic epithelial cells identified phospholipids that repress inflammation through the NF κ B pathway. Oral administration of these phospholipids to antibiotic-treated NOD mice reduced expression of ileal genes involved in early stages of T1D pathogenesis. These findings indicate potential therapeutic anti-inflammatory roles of microbially-produced lipids.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute
| | - Haipeng Sun
- Department of Biochemistry and Microbiology, Rutgers University
| | - Christa Zerbe
- Clinical Center and NIAID, National Institutes of Health
| | - Emilia Falcone
- Clinical Center and NIAID, National Institutes of Health
| | | | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | - Zhan Gao
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | | | - Disha Bharj
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | - Disha Patel
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | - Samuel Pan
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | - Gabrielle Ro
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | | | | | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University
| | | | - Steven Holland
- Clinical Center and NIAID, National Institutes of Health
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University
| |
Collapse
|
5
|
Das BB. Novel Therapies for Right Ventricular Failure. Curr Cardiol Rep 2025; 27:26. [PMID: 39825962 DOI: 10.1007/s11886-024-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE OF REVIEW Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF. This review aims to reassure about the progress in RVF treatment by exploring the potential of contemporary therapies for heart failure, including angiotensin receptor and neprilysin inhibitors, sodium-glucose co-transporter 2 inhibitors, and soluble guanylate cyclase stimulators, which may be beneficial for treating RV failure, particularly when associated with left heart failure. Additionally, it examines novel therapies currently in the pipeline. RECENT FINDINGS Over the past decade, a new wave of RVF therapies has emerged, both pharmacological and device-centered. Novel pharmacological interventions targeting metabolism, calcium homeostasis, oxidative stress, extracellular matrix remodeling, endothelial function, and inflammation have shown significant promise in preclinical studies. There is also a burgeoning interest in the potential of epigenetic modifications as therapeutic targets for RVF. Undoubtedly, a deeper understanding of the mechanisms underlying RV failure, both with and without pulmonary hypertension, is urgently needed. This knowledge is not just a theoretical pursuit, but a crucial step that could lead to the development of pharmacological and cell-based therapeutic options that directly target the RV and pulmonary vasculature, aligning with the principles of precision medicine.
Collapse
Affiliation(s)
- Bibhuti B Das
- Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
| |
Collapse
|
6
|
Wang P, Li Z, Song Y, Zhang B, Fan C. Resveratrol-driven macrophage polarization: unveiling mechanisms and therapeutic potential. Front Pharmacol 2025; 15:1516609. [PMID: 39872049 PMCID: PMC11770351 DOI: 10.3389/fphar.2024.1516609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects. For example, resveratrol can activate the senescence-associated secretory phenotype (SASP) pathway and inhibit the signal transducer and activator of transcription (STAT3) and sphingosine-1-phosphate (S1P)-YAP signaling axes, promoting M1 polarization or suppressing M2 polarization, thereby inhibiting tumor growth. Conversely, it can promote M2 polarization or suppress M1 polarization by inhibiting the NF-κB signaling pathway or activating the PI3K/Akt and AMP-activated protein kinase (AMPK) pathways, thus alleviating inflammatory responses. Notably, the effect of resveratrol on macrophage polarization is concentration-dependent; moderate concentrations tend to promote M1 polarization, while higher concentrations may favor M2 polarization. This concentration dependence offers new perspectives for clinical treatment but also underscores the necessity for precise dosage control when using resveratrol. In summary, resveratrol exhibits significant potential in regulating macrophage polarization and treating related diseases.
Collapse
Affiliation(s)
- Panting Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| | - Zixi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Chaofeng Fan
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
8
|
Zhan P, Huang S, Chen D, Li Y, Chen D. Echinatin inhibits osteoarthritis through the NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03756-7. [PMID: 39747466 DOI: 10.1007/s00210-024-03756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Osteoarthritis (OA) is currently the most common degenerative joint disease in China and even worldwide and is the leading cause of disability in the elderly population. So far, due to an insufficient understanding of the pathogenesis and etiology of the disease, there is still no effective targeted treatment for early OA. Pro-inflammatory cytokine interleukin-1 is an important inflammatory mediator secreted in early OA, and IL-1β plays a crucial role in the pathogenesis of OA, affecting chondrocytes and the extracellular matrix of CARTILAGE. Echinatin has been used for years as a health supplement, retaining its antioxidant, anti-inflammatory, and autophagy-promoting effects. However, whether echinatin has inhibitory effects on OA is still unknown. In this study, we used an in vitro OA model of chondrocytes induced by IL-1β and an in vivo OA model of rats induced by anterior cruciate ligament transection (ACLT), and through experiments such as western blotting and IHC, we demonstrated that echinatin can be used as a novel drug for treating OA. Mechanistically, we found that echinatin inhibits the activity of chondrocytes induced by IL-1β through the NF-kB signaling pathway. This study can provide more effective treatment options for OA patients and further diagnostic and therapeutic methods for clinical treatment.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Shiming Huang
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Daohua Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Ying Li
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Dongfeng Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China.
| |
Collapse
|
9
|
Wang Y, Shan J, Zhang L, Wang R, Wu MY, Li HM, Xu HM. The role of FAM171A2-GRN-NF-κB pathway in TBBPA induced oxidative stress and inflammatory response in mouse-derived hippocampal neuronal HT22 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117445. [PMID: 39616664 DOI: 10.1016/j.ecoenv.2024.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the brominated flame retardants (BFRs) widely used in industry, which has a broad toxic effect on organisms. However, there is still limited research on the neurotoxic mechanism of TBBPA. Using mouse hippocampal neurons (HT22) cells, the toxicity of TBBPA was evaluated, especially focusing on its alteration on the key molecules in FAM171A2-GRN-NF-κB signaling pathway. The results showed that TBBPA exposure could lead to an increase in the production of inflammation-related genes IL-6, iNOS, TGF-β1, COX2, and TNF-α in both HT22 cells and HT22-AD-model, intensifying the inflammatory response; it inhibits the mRNA expression of antioxidative enzymes genes Sod1, Cat, Gpx1, and Gsta1, resulting in reduced antioxidant enzyme activities of SOD, CAT, and GSH-Px/GPX. Mechanistically, TBBPA caused the upregulation of FAM171A2 expression level, alongside increased GRN, IκBα and p65 levels; whereas the expression of GRN, IκBα and p65 was decreased after FAM171A2 knockdown, demonstrating TBBPA-induced upregulation of FAM171A2 should be responsible for the increased GRN, IκBα and p65 expression. Therefore, for the first time, our data indicate that TBBPA-induced oxidative stress and inflammatory response is closely related to the FAM171A2-GRN-NF-κB pathway.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Shan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Ling Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
10
|
Zhao X, Wu J, Lai J, Pan B, Ji M, Li X, He Y, Han J. CITMIC: Comprehensive Estimation of Cell Infiltration in Tumor Microenvironment based on Individualized Intercellular Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408007. [PMID: 39498855 PMCID: PMC11714168 DOI: 10.1002/advs.202408007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Indexed: 11/07/2024]
Abstract
The tumor microenvironment (TME) cells interact with each other and play a pivotal role in tumor progression and treatment response. A comprehensive characterization of cell and intercellular crosstalk in the TME is essential for understanding tumor biology and developing effective therapies. However, current cell infiltration analysis methods only partially describe the TME's cellular landscape and overlook cell-cell crosstalk. Here, this approach, CITMIC, can infer the cell infiltration of TME by simultaneously measuring 86 different cell types, constructing an individualized cell-cell crosstalk network based on functional similarities between cells, and using only gene transcription data. This is a novel approach to estimating the relative cell infiltration levels, which are shown to be superior to the current methods. The TME cell-based features generated by analyzing melanoma data are effective in predicting prognosis and treatment response. Interestingly, these features are found to be particularly effective in assessing the prognosis of high-stage patients, and this method is applied to multiple high-stage adenocarcinomas, where more significant prognostic performance is also observed. In conclusion, CITMIC offers a more comprehensive description of TME cell composition by considering cell-cell crosstalk, providing an important reference for the discovery of predictive biomarkers and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xilong Zhao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiashuo Wu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiyin Lai
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Bingyue Pan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Miao Ji
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Xiangmei Li
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yalan He
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Junwei Han
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| |
Collapse
|
11
|
Clevenger AJ, Jha A, Moore E, Raghavan SA. Manipulating immune activity of macrophages: a materials and mechanics perspective. Trends Biotechnol 2025; 43:131-144. [PMID: 39155172 PMCID: PMC11717646 DOI: 10.1016/j.tibtech.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
Collapse
Affiliation(s)
- Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Noori M, Azimirad M, Ghorbaninejad M, Meyfour A, Zali MR, Yadegar A. PPAR-γ agonist mitigates intestinal barrier dysfunction and inflammation induced by Clostridioides difficile SlpA in vitro. Sci Rep 2024; 14:32087. [PMID: 39738433 PMCID: PMC11686163 DOI: 10.1038/s41598-024-83815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells. Here, we investigated the role of PPAR-γ in SlpA-mediated inflammation in Caco-2 cells and THP-1 derived macrophages. The extraction of SlpA was carried out for three toxigenic C. difficile clinical strains (RT126, RT001, RT084) and a non-toxigenic strain (ATCC 700057). The gene expression of tight junction (TJ) proteins and inflammatory markers was determined using RT-qPCR. The production of proinflammatory cytokines and nitric oxide was measured by ELISA and Griss reaction, respectively. Western blotting was performed to detect PPAR-γ level before and after adding its agonist, pioglitazone. SlpA of C. difficile strains enhanced the expression of TLR-4, NF-κB, MyD88, IL-17, MCP-1, IL-8, IL-6, TNF-α, IL-1β, whilst the gene expression level of JAM-A, claudin-1, occludin, PPAR-γ and its receptor (CD36) was decreased in both Caco-2 cells and THP-1 derived macrophages. Moreover, pioglitazone caused a notable elevation in the expression level of PPAR-γ, only following treatment with RT126 SlpA. Besides, pioglitazone pretreatment improved TJ impairment in Caco-2 cells and attenuated proinflammatory cytokine expression in both SlpA-treated cell lines. SlpA can attenuate PPAR-γ expression, trigger TJ disruption, and stimulate inflammatory response in host cells. Notably, these events could be reversed by pretreatment of cells with PPAR-γ agonist. Further experiments are required to corroborate the present findings.
Collapse
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Avecilla V, Doke M, Appunni S, Rubens M, Ramamoorthy V, Das JK. Pathophysiological Features of Remodeling in Vascular Diseases: Impact of Inhibitor of DNA-Binding/Differentiation-3 and Estrogenic Endocrine Disruptors. Med Sci (Basel) 2024; 13:2. [PMID: 39846697 PMCID: PMC11755649 DOI: 10.3390/medsci13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025] Open
Abstract
Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (ID3), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases. This review explores the role of ID3 in vascular remodeling, emphasizing its involvement in processes such as apoptosis, cell proliferation, and extracellular matrix regulation. Furthermore, we examine how oxidative stress, intensified by exposure to estrogenic endocrine disruptors (EEDs) like polychlorinated biphenyls (PCBs) and bisphenol A (BPA), affects ID3 activity and contributes to vascular disease. Understanding the interaction between ID3 signaling and EED exposure provides critical insights into the molecular mechanisms underlying vascular remodeling and its role in the development and progression of vascular diseases.
Collapse
Affiliation(s)
- Vincent Avecilla
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA
- Avecilla Consulting LLC, Miami, FL 33131, USA
| | - Mayur Doke
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode 673008, Kerala, India
| | - Muni Rubens
- Baptist Health South Florida, Miami Gardens, FL 33176, USA
| | | | - Jayanta Kumar Das
- Department of Health and Natural Sciences, Florida Memorial University, Miami Gardens, FL 33054, USA
| |
Collapse
|
14
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
16
|
Moon HR, Yun JM. p-Coumaric acid modulates cholesterol efflux and lipid accumulation and inflammation in foam cells. Nutr Res Pract 2024; 18:774-792. [PMID: 39651322 PMCID: PMC11621437 DOI: 10.4162/nrp.2024.18.6.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a primary cause of cardiovascular disease associated with inflammation and lipid metabolism disorders. The accumulation of cholesterol-containing macrophage foam cells characterizes the early stages. The p-coumaric acid (p-CA) contained in vegetables may have various physiological activities. The inhibitory effect of p-CA on foam cell creation in THP-1 macrophages needs clarification. In this study, we explored the impact of p-CA on foam cells by co-treatment with oxidized low-density lipoprotein (ox-LDL) and lipopolysaccharides (LPS), mimicking the development of atherosclerosis in vitro and studied the regulation of its underlying mechanisms. MATERIALS/METHODS THP-1 cells differentiated by phorbol 12-myristate 13-acetate (1 μM) for 48 h and treated in the absence or presence of p-CA for 48 h. THP-1 macrophages were treated with combined ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability. Oil red O staining allowed us to observe lipid accumulation. Western blotting and quantitative polymerase chain reactions quantified corresponding proteins and mRNA. RESULTS Ox-LDL and LPS for 24 h enhanced the lipid accumulation using Oil red O in treated foam cells. By contrast, p-CA treatment inhibited lipid accumulation. p-CA significantly upregulated cholesterol efflux-related genes such as ATP binding cassette transporter A1, liver-X-receptor α and peroxisome proliferator-activated receptor gamma expression. Moreover, p-CA decreased lipid accumulation-related gene such as lectin-like oxidized low-density lipoprotein receptor-1, cluster of differentiation 36 and scavenger receptor class A1 expression. Combined ox-LDL and LPS increased nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and pro-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin [IL]-6) activation and expression compared with untreated. p-CA suppressed this increased expression of NF-κB and COX-2, TNF-α and IL-6. CONCLUSION p-CA may play a vital role in atherosclerosis inhibition and protective effects by suppressing lipid accumulation and foam cell creation by increasing cholesterol efflux and can be potential agents for preventing atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
17
|
Yan F, Li W, Sun X, Wang L, Liu Z, Zhong Z, Guo Z, Liu Z, Gao M, Zhang J, Wang C, Dong G, Li C, Chen S, Xiong H, Zhang H. Sappanone A Ameliorates Concanavalin A-induced Immune-Mediated Liver Injury by Regulating M1 Macrophage Polarization. Inflammation 2024:10.1007/s10753-024-02189-x. [PMID: 39589634 DOI: 10.1007/s10753-024-02189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
Sappanone A (SAP), a high-isoflavone compound derived from the traditional Chinese medicine Sumu, exhibits various pharmacological activities, including anti-inflammatory and anti-oxidant effects. However, its protective effects on the liver have rarely been reported. The aim of this study was to investigate the effects of SAP on immune-mediated liver injury induced by concanavalin A (Con A) in mice and to explore the underlying molecular mechanisms. Mice were administered SAP intraperitoneally (50 mg/kg body weight). Three hours later, Con A (18 mg/kg) was injected via the tail vein to induce liver damage. Livers and blood were collected 12 h after Con A challenge. Liver cell apoptosis, oxidative stress, and M1 macrophage activation in vivo were investigated. Bone marrow-derived macrophages were used to confirm the effects of SAP on M1 polarization in vitro. The results indicated that SAP decreased transaminase levels, inhibited apoptosis, and improved oxidative stress in mouse livers. Furthermore, SAP significantly reduced the proportion of macrophages, inhibited the expression of CD86, and downregulated the expression of M1 macrophage-related inflammatory cytokines. Moreover, SAP-treated macrophages alleviated liver damage caused by Con A compared to non-SAP-treated macrophages. Mechanistically, SAP inhibited the phosphorylation of key molecules in the MAPK and NF-κB signaling pathways in macrophages, resulting in an inhibitory effect on M1 macrophage activation. Taken together, SAP alleviates immune-mediated liver injury induced by Con A by suppressing M1 macrophage polarization, which is partially associated with NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Xueyang Sun
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhaoming Zhong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhengran Guo
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Ziyu Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Shang Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
18
|
Ramarapu R, Wulcan JM, Chang H, Moore PF, Vernau W, Keller SM. Single cell RNA-sequencing of feline peripheral immune cells with V(D)J repertoire and cross species analysis of T lymphocytes. Front Immunol 2024; 15:1438004. [PMID: 39620216 PMCID: PMC11604454 DOI: 10.3389/fimmu.2024.1438004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing. Methods Peripheral blood from 4 healthy cats was enriched for T cells by flow cytometry cell sorting using a mouse anti-feline CD5 monoclonal antibody. Libraries for whole transcriptome, αβ T cell receptor transcripts and γδ T cell receptor transcripts were constructed using the 10x Genomics Chromium Next GEM Single Cell 5' reagent kit and the Chromium Single Cell V(D)J Enrichment Kit with custom reverse primers for the feline orthologs. Results Unsupervised clustering of whole transcriptome data revealed 7 major cell populations - T cells, neutrophils, monocytic cells, B cells, plasmacytoid dendritic cells, mast cells and platelets. Sub cluster analysis of T cells resolved naive (CD4+ and CD8+), CD4+ effector T cells, CD8+ cytotoxic T cells and γδ T cells. Cross species analysis revealed a high conservation of T cell subsets along an effector gradient with equitable representation of veterinary species (horse, dog, pig) and humans with the cat. Our V(D)J repertoire analysis identified a subset of CD8+ cytotoxic T cells with skewed TRA and TRB gene usage, conserved TRA and TRB junctional motifs, restricted TRA/TRB pairing and reduced diversity in TRG junctional length. We also identified a public γδ T cell subset with invariant TRD and TRG chains and a CD4+ TEM-like phenotype. Among monocytic cells, we resolved three clusters of classical monocytes with polarization into pro- and anti-inflammatory phenotypes in addition to a cluster of conventional dendritic cells. Lastly, our neutrophil sub clustering revealed a larger mature neutrophil cluster and a smaller exhausted/activated cluster. Discussion Our study is the first to characterize subsets of circulating T cells utilizing an integrative approach of single cell RNA-sequencing, V(D)J repertoire analysis and cross species analysis. In addition, we characterize the transcriptome of several myeloid cell subsets and demonstrate immune cell relatedness across different species.
Collapse
MESH Headings
- Animals
- Cats
- Single-Cell Analysis
- Transcriptome
- Species Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Dogs
- Sequence Analysis, RNA
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- RNA-Seq
- V(D)J Recombination/genetics
Collapse
Affiliation(s)
- Raneesh Ramarapu
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Judit M. Wulcan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Stefan M. Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
20
|
Le MH, Humayun S, Lee HJ, Mi XJ, Justine EE, Tran THM, Park HR, Kim YJ. Structural identification and immunostimulatory effect of Bacillus velezensis GV1 polysaccharides via TLR4/NF-κB signaling pathway in RAW264.7 macrophages. Int J Biol Macromol 2024; 280:135808. [PMID: 39306178 DOI: 10.1016/j.ijbiomac.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Microbial polysaccharides derived from bacterial sources possess unique properties because of their structural complexity contributing to exceptional characteristics, including potent immunostimulatory effects. In this study, we extracted crude polysaccharide from Bacillus velezensis GV1 (BPS) which was isolated from Korean ginseng vinegar, and subsequently characterized for sugar composition and functional groups using FT-IR and methylation method. Structural analysis indicated that BPS was composed of mannan and glucan in a ratio of 7.5:2.5. The immunostimulatory effect of BPS was investigated in RAW264.7 macrophages. The results revealed that BPS significantly increased NO production, as well as the secretion and expression of key cytokines, such as IL-6, TNF-α, and IL-1β. These effects were confirmed using a TLR4 antagonist (TAK-242). Moreover, BPS exhibited immunostimulatory potential by promoting the NF-κB signaling pathway. In conclusion, this study establishes a foundation for the potential application of BPS as an immunostimulatory adjuvant or alternative component in functional foods, particularly for enhancing innate immune responses.
Collapse
Affiliation(s)
- Minh Ha Le
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Sanjida Humayun
- School of Natural Sciences and Health, Tallinn University, Narva mantee 25, 10120 Tallinn, Estonia.
| | - Hyo-Jun Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Xiao-Jie Mi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| | - Elsa Easter Justine
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Thi Hoa My Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Hye-Ryung Park
- Department of Hotel Food-service & Culinary Arts, Suwon Women's University, 1098 Juweok-ro, Hwaseong-si, Gyeonggi-do 18333, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
21
|
Park MY, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Park KI, Kim GS. Antioxidant and Anti-Inflammatory Properties of Conceivable Compounds from Glehnia littoralis Leaf Extract on RAW264.7 Cells. Nutrients 2024; 16:3656. [PMID: 39519489 PMCID: PMC11547663 DOI: 10.3390/nu16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glehnia littoralis is a medicinal plant, but the scientific basis is still unclear. This study thoroughly investigated phenols from Glehnia littoralis extract (GLE) to determine their potential as anti-inflammatory and antioxidant agents. METHODS High-performance liquid chromatography (HPLC) and mass spectrometry (MS) were used to analyze the compounds in GLE. In addition, we performed GLE in vitro in macrophages after lipopolysaccharide (LPS)-induced inflammation. RESULTS The extract contained eight peaks representing phenolic compounds and one peak representing riboflavin, with the corresponding mass spectrometry data documented. These biologically active compounds were purified by ultrafiltration using LC to determine their ability to target cyclooxygenase-2 (COX-2) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results showed that significant compounds were identified, demonstrating a binding affinity for both COX-2 and DPPH. This suggests that the compounds showing excellent binding affinity for COX-2 and DPPH may be the main active ingredients. Vital inflammatory cytokines, including COX-2, inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), were found to be down-regulated during the treatment. In addition, we revealed that the selected drugs exhibited potent binding capacity to inflammatory factors through molecular docking studies. In addition, we confirmed the presence of phenolic components in GLE extract and verified their possible anti-inflammatory and antioxidant properties. CONCLUSIONS This study provided evidence for an efficient strategy to identify critical active ingredients from various medicinal plants. These data may serve as a baseline for further investigations of applying GLE in the pharmaceutical industry.
Collapse
Affiliation(s)
- Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
22
|
Gao X, Shao S, Zhang X, Li C, Jiang Q, Li B. Interaction between CD244 and SHP2 regulates inflammation in chronic obstructive pulmonary disease via targeting the MAPK/NF-κB signaling pathway. PLoS One 2024; 19:e0312228. [PMID: 39423200 PMCID: PMC11488738 DOI: 10.1371/journal.pone.0312228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
This study delved into the interplay between CD244 and Src Homology 2 Domain Containing Phosphatase-2 (SHP2) in chronic obstructive pulmonary disease (COPD) pathogenesis, focusing on apoptosis and inflammation in cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. Analysis of the GSE100153 dataset identified 290 up-regulated and 344 down-regulated differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) highlighted the turquoise module had the highest correlation with COPD samples. Functional enrichment analysis linked these DEGs to critical COPD processes and pathways like neutrophil degranulation, protein kinase B activity, and diabetic cardiomyopathy. Observations on CD244 expression revealed its upregulation with increasing CSE concentrations, suggesting a dose-dependent relationship with inflammatory cytokines (IL-6, IL-8, TNF-α). CD244 knockdown mitigated CSE-induced apoptosis and inflammation, while overexpression exacerbated these responses. Co-immunoprecipitation (Co-IP) confirmed the physical interaction between CD244 and SHP2, emphasizing their regulatory connection. Analysis of Concurrently, the Nuclear Factor-kappa B (NF-κB) and Mitogen-activated protein kinase (MAPK) signaling pathways showed that modulating CD244 expression impacted key pathway components (p-JNK, p-IKKβ, p-ERK, p-P38, p-lkBα, p-P65), an effect reversed upon SHP2 knockdown. These findings underscore the pivotal role of the CD244/SHP2 axis in regulating inflammatory and apoptotic responses in CSE-exposed HBE cells, suggesting its potential as a therapeutic target in COPD treatment strategies.
Collapse
Affiliation(s)
- Xiaobing Gao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Suhua Shao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Xi Zhang
- Department of Outpatient, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Changjie Li
- Laboratory of Shanghai Yijian Medical Testing Institute, Shanghai, China
| | - Qianqian Jiang
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Li
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| |
Collapse
|
23
|
Maccaferri M, Pisciotta A, Carnevale G, Salvarani C, Pignatti E. Human dental pulp stem cells modulate pro-inflammatory macrophages both through cell-to-cell contact and paracrine signaling. Front Immunol 2024; 15:1440974. [PMID: 39450172 PMCID: PMC11499095 DOI: 10.3389/fimmu.2024.1440974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Macrophages play a key role in most of the inflammatory diseases such as Rheumatoid Arthritis (RA), but the mechanism underlying their pathogenesis is still under study. Among stem cells, human dental pulp stem cells (hDPSCs) have attracted attention due to their easy accessibility and immunomodulatory properties, making them a promising adjuvant therapy. In this study, we aimed to evaluate the capacity of hDPSCs to modulate the phenotypes of primary human macrophages. Additionally, we sought to observe the differences induced on macrophages when cultured directly with hDPSCs or through a cell culture insert, mimicking the paracrine communication pathway. Methods Monocytes, isolated from buffy coats, were differentiated into pro-inflammatory M1 and anti-inflammatory M2 macrophages. Subsequently, they were cultured with hDPSCs either directly or via a cell-culture insert for 48 hours. Finally, they were analyzed for protein, gene expression, cytokines levels and immunofluorescence. Results In our study, we have demonstrated that, hDPSCs, even without priming, can reduce TNFα levels and enhancing IL-10 release in pro-inflammatory macrophages, both through direct contact and paracrine signaling. Furthermore, we found that their effects are more pronounced when in cell-to-cell contact through the decrease of NF-kB and COX-2 expression and of CD80/PD-L1 colocalization. HDPSCs, when in contact with macrophages, showed enhanced expression of NF-kB, COX-2, ICAM-1, PD-L1, FAS-L, TNFα and IFNγ. Conclusion We showed that hDPSCs exert immunomodulatory effects on pro-inflammatory macrophages, with cell-to-cell contact yielding a more pronounced outcome compared to paracrine signaling. Our work highlights the immunomodulatory properties of hDPSCs on activated pro-inflammatory macrophages and the potential therapeutic role in inflamed tissue.
Collapse
Affiliation(s)
- Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCCS) di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
24
|
Chemello C, Facci L, Marcolin E, Ramaschi GE, Barbierato M, Giusti P, Bolego C, Zusso M. Fentanyl enhances immune cell response through TLR4/MD-2 complex. Front Pharmacol 2024; 15:1468644. [PMID: 39444612 PMCID: PMC11496304 DOI: 10.3389/fphar.2024.1468644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Opioids have been shown to induce neuroinflammation and immune cell activation, that might contribute to some of the opioid side effects, such as opioid-induced tolerance and paradoxical hyperalgesia. In this context, TLR4/MD-2 complex has been proposed as an off-target site for opioid action. This study was aimed at investigating the effect of fentanyl on lipopolysaccharide (LPS)-induced TLR4/MD-2 activation in rat primary microglia and human monocyte-derived macrophages (MDM). Materials and Methods The effect of fentanyl was first explored by measuring the expression and release of different proinflammatory mediators in primary rat microglia and human MDM by real-time PCR and ELISA. Then, the involvement of TLR4/MD-2 signaling was investigated studying NF-κB activation in HEK293 cells stably transfected with human TLR4, MD-2, and CD14 genes (HEK-Blue hTLR4 cells) and in human MDM. Results Fentanyl increased mRNA levels, as well as the LPS-induced secretion of proinflammatory mediators in primary microglia and MDM. Two inhibitors of TLR4/MD-2 signaling, namely the oxazoline derivative of N-palmitoylethanolamine (PEA-OXA) and CLI-095, blocked the production and release of proinflammatory cytokines by microglia stimulated with LPS and fentanyl, suggesting that TLR4/MD-2 could be the target of the proinflammatory activity of fentanyl. Finally, we showed that fentanyl in combination with LPS activated NF-κB signaling in human MDM and in HEK-Blue hTLR4 cells and this effect was blocked by inhibitors of TLR4/MD-2 complex. Discussion These results provide new insight into the mechanism of the proinflammatory activity of fentanyl, which involves the activation of TLR4/MD-2 signaling. Our findings might facilitate the development of novel inhibitors of TLR4/MD-2 signaling to combine with opioid-based analgesics for effective and safe pain management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Vegting Y, Hanford KM, Jongejan A, Gajadin GR, Versloot M, van der Bom-Baylon ND, Dekker T, Penne EL, van der Heijden JW, Houben E, Bemelman FJ, Neele AE, Moerland PD, Vogt L, Kroon J, Hilhorst ML. Cardiovascular risk in ANCA-associated vasculitis: Monocyte phenotyping reveals distinctive signatures between serological subsets. Atherosclerosis 2024; 397:118559. [PMID: 39186910 DOI: 10.1016/j.atherosclerosis.2024.118559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) is associated with an increased cardiovascular risk, particularly the myeloperoxidase AAV serotype (MPO-AAV). Distinct alterations in monocyte phenotypes may cause accelerated atherosclerotic disease in AAV. METHODS A cohort including 43 AAV patients and 19 healthy controls was included for downstream analyses. Extensive phenotyping of monocytes and monocyte-derived macrophages was performed using bulk RNA-sequencing and flow cytometry. An in vitro transendothelial migration assay reflecting intrinsic adhesive and migratory capacities of monocytes was employed. Subsequent sub-analyses were performed to investigate differences between serological subtypes. RESULTS Monocyte subset analysis showed increased classical monocytes during active disease, whereas non-classical monocytes were decreased compared to healthy controls (HC). RNA-sequencing revealed upregulation of distinct inflammatory pathways and lipid metabolism-related markers in monocytes of active AAV patients. No differences were detected in the intrinsic monocyte adhesion and migration capacity. Compared to proteinase-3(PR3)-AAV, monocytes of MPO-AAV patients in remission expressed genes related to inflammation, coagulation, platelet-binding and interferon signalling, whereas the expression of chemokine receptors indicative of acute inflammation and monocyte extravasation (i.e., CCR2 and CCR5) was increased in monocytes of PR3-AAV patients. During active disease, PR3-AAV was linked with elevated serum CRP and increased platelet counts compared to MPO-AAV. CONCLUSIONS These findings highlight changes in monocyte subset composition and activation, but not in the intrinsic migration capacity of AAV monocytes. MPO-AAV monocytes are associated with sustained upregulation of inflammatory genes, whereas PR3-AAV monocytes exhibit chemokine receptor upregulation. These molecular changes may play a role in elevating cardiovascular risk as well as in the underlying pathophysiology of AAV.
Collapse
Affiliation(s)
- Yosta Vegting
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Katie Ml Hanford
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands; Department of Epidemiology & Data Science (EDS), Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology, Amsterdam, the Netherlands
| | - Gayle Rs Gajadin
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E Lars Penne
- Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
| | | | - Eline Houben
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
| | - Frederike J Bemelman
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Annette E Neele
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands; Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands; Department of Epidemiology & Data Science (EDS), Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology, Amsterdam, the Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Marc L Hilhorst
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Cuevas-Tapia OA, Gutiérrez-Sánchez M, Pozos-Guillén A, Cauich-Rodríguez JV, Escobar-García DM. Biocompatibility and expression of transcription factors of a type B gelatin-Extracellular Matrix of Porcin Urinary Blader scaffold. J Biomater Appl 2024; 39:288-297. [PMID: 39073096 DOI: 10.1177/08853282241267867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE to evaluate a membrane based on type B gelatin (G) and porcine urinary bladder extracellular matrix (PUB-EM), highlighting the potential effect of the combination evaluated by biocompatibility and regulation of the expression of transcription factors involved in tissue regeneration. G-PUB-EM membranes were prepared at 12.5, 25, and 50% w/v, and evaluated for biocompatibility with Fibroblast. Chemical characterization by FTIR-ATR showed complex spectra during crosslinking process with glutaraldehyde. Physical tests were performed in deionized water and PBS for 48 h. A significant increase in swelling was observed during the first 2 h. Biocompatibility testing (MTS) and evaluation of the expression profile of genes involved in the cell cycle (Cyclin-D1 VEGF, TNF and NF-κ-B) by PCR showed an increase in viability in a PUB-EM content-dependent way, except for 50% PUB-EM membrane which showed cytotoxic effects with a decrease in cell viability below 70%. The membranes showed an increase in the expression of some factors of cell cycle, as well as inflammatory processes that could promote tissue repair. 12.5 and 25% gelatin type B/porcine urinary bladder extracellular matrix (G/PUB-EM) based membranes have potential for tissue regeneration applications. IMPACT STATEMENT The use of membranes based on type B gelatin and porcine urinary bladder for tissue engineering represents a novel strategy. Biocompatibility and signaling pathways play a primary role in tissue repair and wound recovery. Transcription factors that mediate signaling, cell division and vascularization are part of molecules that intervene in the regenerative potential of cells. These techniques will have a significant impact on tissue repair and regeneration and thus stop depending on tissue donors or other surgical sites from the same patient, as is the case with burn patients.
Collapse
Affiliation(s)
- Olivia Abril Cuevas-Tapia
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Mariana Gutiérrez-Sánchez
- Endodontics Posgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | | | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| |
Collapse
|
27
|
Kawamura A, Ito A, Takahashi A, Sawamoto A, Okuyama S, Nakajima M. Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide. J Pharmacol Sci 2024; 156:125-133. [PMID: 39179331 DOI: 10.1016/j.jphs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Benproperine (BNP) is a nonnarcotic antitussive drug that is used to treat bronchitis. In the present study, we examined the anti-inflammatory effects of BNP in vitro and in vivo. BNP was found to reduce the secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte/macrophage-lineage cells in vitro. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we used an animal model to determine whether BNP reduces IL-6 levels in vivo and improves sepsis symptoms. Notably, BNP reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. BNP reduced the mortality of septic mice administered a lethal dose of LPS. To reveal the mechanisms underlying the anti-inflammatory function of BNP, we assessed intracellular signaling in LPS-treated RAW264.7 cells. BNP induced the phosphorylation of protein kinase B (Akt) in RAW264.7 cells with/without LPS treatment. Wortmannin, an inhibitor of phosphoinositide 3-kinase reduced the phosphorylation levels of Akt. Wortmannin also obstructed the reduction of IL-6 secretion caused by BNP. Altogether, BNP was found to exhibit an anti-inflammatory function via Akt signaling. Therefore, BNP could be a drug candidate for inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Ayumi Kawamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Akane Ito
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Ayaka Takahashi
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
28
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
29
|
Liu XT, Chen X, Zhao N, Geng F, Zhu MM, Ren QG. Synergism of ApoE4 and systemic infectious burden is mediated by the APOE-NLRP3 axis in Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:517-526. [PMID: 39011734 DOI: 10.1111/pcn.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Systemic infections are associated with the development of AD, especially in individuals carrying the APOE4 genotype. However, the detailed mechanism through which APOE4 affects microglia inflammatory response remains unclear. METHODS We obtained human snRNA-seq data from the Synapse AD Knowledge Portal and assessed the DEGs between APOE3 and APOE4 isoforms in microglia. To verify the interaction between ApoE and infectious products, we used ApoE to stimulate in vitro and in vivo models in the presence or absence of LPS (or ATP). The NLRP3 gene knockout experiment was performed to demonstrate whether the APOE-NLRP3 axis was indispensable for microglia to regulate inflammation and mitochondrial autophagy. Results were evaluated by biochemical analyses and fluorescence imaging. RESULTS Compared with APOE3, up-regulated genes in APOE4 gene carriers were involved in pro-inflammatory responses. ApoE4-stimulation significantly increased the levels of NLRP3 inflammasomes and ROS in microglia. Moreover, compared with ApoE4 alone, the co-incubation of ApoE4 with LPS (or ATP) markedly promoted pyroptosis. Both NF-κB activation and mitochondrial autophagy dysfunction were contributed by the increased level of NLRP3 inflammasomes induced by ApoE4. Furthermore, the pathological impairment induced by ApoE4 could be reversed by NLRP3 KO. CONCLUSIONS Our study highlights the importance of NLRP3 inflammasomes in linking ApoE4 with microglia innate immune function. These findings not only provide a molecular basis for APOE4-mediated neuroinflammatory but also reveal the potential reason for the increased risk of AD in APOE4 gene carriers after contracting infectious diseases.
Collapse
Affiliation(s)
- Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Xiu Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
31
|
Zhou Y, Gu C, Zhu Y, Zhu Y, Chen Y, Shi L, Yang Y, Lu X, Pang H. Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: a review. Front Pharmacol 2024; 15:1463140. [PMID: 39188946 PMCID: PMC11345237 DOI: 10.3389/fphar.2024.1463140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Inflammation is a biological response of multicellular organisms caused by injuries, pathogens or irritants. An excessive inflammatory response can lead to tissue damage and various chronic diseases. Chronic inflammation is a common feature of many diseases, making the search for drugs to treat inflammation-related diseases urgent. Scutellarin, a natural flavonoid metabolite, is widely used in the treatment of various inflammation-related diseases for its anti-inflammatory, anti-oxidant and anti-cancer activities. Scutellarin can inhibit key inflammatory pathways (PI3K/Akt, MAPK, and NF-κB, etc.) and activate the anti-oxidant related pathways (Nrf2, ARE, ect.), thereby protecting tissues from inflammation and oxidative stress. Modern extraction technologies, such as microwave-assisted, ultrasound assisted, and supercritical fluid extraction, have been utilized to extract scutellarin from Scutellaria and Erigeron genera. These technologies improve efficiency and retain biological activity, making scutellarin suitable for large-scale production. Scutellarin has significant therapeutic effects in treating osteoarthritis, pulmonary fibrosis, kidney injury, and cardiovascular diseases. However, due to its low bioavailability and short half-life, its clinical application is limited. Researchers are exploring innovative formulations (β-cyclodextrin polymers, triglyceride mimetic active ingredients, and liposome precursors, etc.) to improve stability and absorption rates. Despite these challenges, the potential of scutellarin in anti-inflammatory, anti-oxidant, and anti-cancer applications remains enormous. By optimizing formulations, exploring combination therapies, and conducting in-depth mechanistic research, scutellarin can play an important role in treating various inflammatory diseases, providing patients with more and effective treatment options.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Chenlin Gu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yan Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yuting Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yutong Chen
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Li Shi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yang Yang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xin Lu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hanqing Pang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Onuma K, Watanabe K, Isayama K, Ogi S, Tokunaga Y, Mizukami Y. Bardoxolone methyl prevents metabolic dysfunction-associated steatohepatitis by inhibiting macrophage infiltration. Br J Pharmacol 2024; 181:2545-2565. [PMID: 38599607 DOI: 10.1111/bph.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Bardoxolone methyl (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester, CDDO-Me) is a potent activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which induces the expression of antioxidative-associated genes. CDDO-Me exerts protective effects against chronic inflammatory diseases in the kidneys and lungs. However, its pharmacological effects on metabolic dysfunction-associated steatohepatitis (MASH) caused by fat accumulation remain unknown. In this study, we examined the hepatoprotective effects of CDDO-Me in a diet-induced MASH mouse model and elucidated its pharmacological mechanisms using RNA-seq analysis. EXPERIMENTAL APPROACH CDDO-Me was orally administered to mice fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), and histological, biochemical, and transcriptomic analyses were performed on livers of mice that developed MASH. KEY RESULTS CDDO-Me administration induced the expression of antioxidant genes and cholesterol transporters downstream of Nrf2 and significantly prevented the symptoms of MASH. Whole-transcriptome analysis revealed that CDDO-Me inhibited the inflammatory pathway that led to phagocyte recruitment, in addition to activating the Nrf2-dependent pathway. Among inflammatory pathways, CC chemokine ligands (CCL)3 and CCL4, which are downstream of NF-κB and are associated with the recruitment of macrophages expressing CC chemokine receptors (CCR)1 and CCR5, were released into the blood in MASH mice. However, CDDO-Me directly inhibited the expression of CCL3-CCR1 and CCL4-CCR5 in macrophages. CONCLUSIONS AND IMPLICATIONS Overall, we revealed the potent hepatoprotective effect of CDDO-Me in a MASH mouse model and demonstrated that its pharmacological effects were closely associated with a reduction of macrophage infiltration, through CCL3-CCR1 and CCL4-CCR5 inhibition, in addition to Nrf2-mediated hepatoprotective effects.
Collapse
Affiliation(s)
- Kazuhiro Onuma
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Keishiro Isayama
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Sayaka Ogi
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Yasunori Tokunaga
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| |
Collapse
|
33
|
Angsusing J, Singh S, Samee W, Tadtong S, Stokes L, O’Connell M, Bielecka H, Toolmal N, Mangmool S, Chittasupho C. Anti-Inflammatory Activities of Yataprasen Thai Traditional Formulary and Its Active Compounds, Beta-Amyrin and Stigmasterol, in RAW264.7 and THP-1 Cells. Pharmaceuticals (Basel) 2024; 17:1018. [PMID: 39204123 PMCID: PMC11357128 DOI: 10.3390/ph17081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Yataprasen (YTPS) remedy formulary, a national Thai traditional medicine formulary, comprises 13 herbal plants. It has been extensively prescribed to relieve osteoarthritis and musculoskeletal pain in the Thai traditional medicine healthcare system. The aim of this study was to investigate the antioxidant and anti-inflammatory properties of the bioactive compounds (β-amyrin and stigmasterol) of YTPS remedy formulary ethanolic extract, along with its composition. The YTPS formulary extract contains 70.30 nM of β-amyrin and 605.76 nM of stigmasterol. The YTPS formulary extract exhibited ABTS and DPPH free radical scavenging activity, with IC50 values of 144.50 ± 2.82 and 31.85 ± 0.18 µg/mL, respectively. The ethanolic extract of YTPS at a concentration of 1000 µg/mL showed a significant (p < 0.01) anti-inflammatory effect, mainly by reducing IL-6 and TNF-α release in response to LPS. NO production was prominently lowered by 50% at 24.76 ± 1.48 µg/mL, 55.52 ± 24.40 µM, and more than 570 µM of YTPS formulary extract, β-amyrin, and stigmasterol, respectively. Major components of YTPS, β-amyrin, and stigmasterol exerted significant anti-inflammatory effects by inhibiting LPS-induced IL-1β, IL-6, TNF-α secretion in THP-1 cells. Our findings suggest that the ethanolic extract from YTPS holds promise as an alternative topical treatment for osteoarthritis and inflammatory disorders, potentially with fewer side effects than non-steroidal anti-inflammatory medications (NSAIDs).
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand;
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Nopparut Toolmal
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
35
|
Janssen LLG, van Leeuwen-Kerkhoff N, Westers TM, de Gruijl TD, van de Loosdrecht AA. The immunoregulatory role of monocytes and thrombomodulin in myelodysplastic neoplasms. Front Oncol 2024; 14:1414102. [PMID: 39132505 PMCID: PMC11310157 DOI: 10.3389/fonc.2024.1414102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are clonal disorders of the myeloid lineage leading to peripheral blood cytopenias. Dysregulation of innate immunity is hypothesized to be a potent driver of MDS. A recent study revealed increased thrombomodulin (TM) expression on classical monocytes in MDS, which was associated with prolonged survival. TM is a receptor with immunoregulatory capacities, however, its exact role in MDS development remains to be elucidated. In this review we focus on normal monocyte biology and report on the involvement of monocytes in myeloid disease entities with a special focus on MDS. Furthermore, we delve into the current knowledge on TM and its function in monocytes in health and disease and explore the role of TM-expressing monocytes as driver, supporter or epiphenomenon in the MDS bone marrow environment.
Collapse
Affiliation(s)
- Luca L. G. Janssen
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Nathalie van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Theresia M. Westers
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam, Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
36
|
Sun L, Apweiler M, Tirkey A, Klett D, Normann C, Dietz GPH, Lehner MD, Fiebich BL. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int J Mol Sci 2024; 25:8108. [PMID: 39125680 PMCID: PMC11312056 DOI: 10.3390/ijms25158108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory processes in the brain can exert important neuroprotective functions. However, in neurological and psychiatric disorders, it is often detrimental due to chronic microglial over-activation and the dysregulation of cytokines and chemokines. Growing evidence indicates the emerging yet prominent pathophysiological role of neuroinflammation in the development and progression of these disorders. Despite recent advances, there is still a pressing need for effective therapies, and targeting neuroinflammation is a promising approach. Therefore, in this study, we investigated the anti-neuroinflammatory potential of a marketed and quantified proprietary herbal extract of Ginkgo biloba leaves called EGb 761 (10-500 µg/mL) in BV2 microglial cells stimulated by LPS (10 ng/mL). Our results demonstrate significant inhibition of LPS-induced expression and release of cytokines tumor necrosis factor-α (TNF-α) and Interleukin 6 (IL-6) and chemokines C-X-C motif chemokine ligand 2 (CXCL2), CXCL10, c-c motif chemokine ligand 2 (CCL2) and CCL3 in BV2 microglial cells. The observed effects are possibly mediated by the mitogen-activated protein kinases (MAPK), p38 MAPK and ERK1/2, as well as the protein kinase C (PKC) and the nuclear factor (NF)-κB signaling cascades. The findings of this in vitro study highlight the anti-inflammatory properties of EGb 761 and its therapeutic potential, making it an emerging candidate for the treatment of neuroinflammatory diseases and warranting further research in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Ashwini Tirkey
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Dominik Klett
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Gunnar P. H. Dietz
- Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany;
| | - Martin D. Lehner
- Dr. Willmar Schwabe GmbH & Co. KG, Willmar-Schwabe-Straße 4, 76227 Karlsruhe, Germany;
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| |
Collapse
|
37
|
Zhu Z, Wang M, Lu S, Dai S, Liu J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1434654. [PMID: 39104386 PMCID: PMC11298811 DOI: 10.3389/fphar.2024.1434654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Heart failure (HF) has a severe impact on public health development due to high morbidity and mortality and is associated with imbalances in cardiac immunoregulation. Macrophages, a major cell population involved in cardiac immune response and inflammation, are highly heterogeneous and polarized into M1 and M2 types depending on the microenvironment. M1 macrophage releases inflammatory factors and chemokines to activate the immune response and remove harmful substances, while M2 macrophage releases anti-inflammatory factors to inhibit the overactive immune response and promote tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The dynamic balance of M1 and M2 is closely related to the Traditional Chinese Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a pathological state of the organism. Studies have confirmed that TCM produces positive effects on HF by regulating macrophage polarization. This review describes the critical role of macrophage polarization in inflammation, fibrosis, angiogenesis and electrophysiology in the course of HF, as well as the potential mechanism of TCM regulation of macrophage polarization in preventing and treating HF, thereby providing new ideas for clinical treatment and scientific research design of HF.
Collapse
Affiliation(s)
- Zheqin Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shenghua Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Sisi Dai
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
38
|
Tao X, Tao R, Wang K, Wu L. Anti-inflammatory mechanism of Apolipoprotein A-I. Front Immunol 2024; 15:1417270. [PMID: 39040119 PMCID: PMC11260610 DOI: 10.3389/fimmu.2024.1417270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Apolipoprotein A-I(ApoA-I) is a member of blood apolipoproteins, it is the main component of High density lipoprotein(HDL). ApoA-I undergoes a series of complex processes from its generation to its composition as spherical HDL. It not only has a cholesterol reversal transport function, but also has a function in modulating the inflammatory response. ApoA-I exerts its anti-inflammatory effects mainly by regulating the functions of immune cells, such as monocytes/macrophages, dendritic cells, neutrophils, and T lymphocytes. It also modulates the function of vascular endothelial cells and adipocytes. Additionally, ApoA-I directly exerts anti-inflammatory effects against pathogenic microorganisms or their products. Intensive research on ApoA-I will hopefully lead to better diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Kaiyang Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | | |
Collapse
|
39
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
40
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
41
|
Geanes ES, McLennan R, Pierce SH, Menden HL, Paul O, Sampath V, Bradley T. SARS-CoV-2 envelope protein regulates innate immune tolerance. iScience 2024; 27:109975. [PMID: 38827398 PMCID: PMC11140213 DOI: 10.1016/j.isci.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eric S. Geanes
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Stephen H. Pierce
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather L. Menden
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Oishi Paul
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
42
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
43
|
Li Z, Liu Z, Guo Y, Gao S, Tang Y, Li T, Xuan H. Propolis Alleviates Acute Lung Injury Induced by Heat-Inactivated Methicillin-Resistant Staphylococcus aureus via Regulating Inflammatory Mediators, Gut Microbiota and Serum Metabolites. Nutrients 2024; 16:1598. [PMID: 38892531 PMCID: PMC11175110 DOI: 10.3390/nu16111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Propolis has potential anti-inflammatory properties, but little is known about its efficacy against inflammatory reactions caused by drug-resistant bacteria, and the difference in efficacy between propolis and tree gum is also unclear. Here, an in vivo study was performed to study the effects of ethanol extract from poplar propolis (EEP) and poplar tree gum (EEG) against heat-inactivated methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) in mice. Pre-treatment with EEP and EEG (100 mg/kg, p.o.) resulted in significant protective effects on ALI in mice, and EEP exerted stronger activity to alleviate lung tissue lesions and ALI scores compared with that of EEG. Furthermore, EEP significantly suppressed the levels of pro-inflammatory mediators in the lung, including TNF-α, IL-1β, IL-6, and IFN-γ. Gut microbiota analysis revealed that both EEP and EEG could modulate the composition of the gut microbiota, enhance the abundance of beneficial microbiota and reduce the harmful ones, and partly restore the levels of short-chain fatty acids. EEP could modulate more serum metabolites and showed a more robust correlation between serum metabolites and gut microbiota. Overall, these results support the anti-inflammatory effects of propolis in the treatment of ALI, and the necessity of the quality control of propolis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Z.L.); (Z.L.); (Y.G.); (S.G.); (Y.T.); (T.L.)
| |
Collapse
|
44
|
Tezuka H, Imai S. Fine-tuning of mononuclear phagocytes for improved inflammatory responses: role of soybean-derived immunomodulatory compounds. Front Nutr 2024; 11:1399687. [PMID: 38854165 PMCID: PMC11157127 DOI: 10.3389/fnut.2024.1399687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
The concept of inflammation encompasses beneficial and detrimental aspects, which are referred to as infectious and sterile inflammations, respectively. Infectious inflammation plays a crucial role in host defense, whereas sterile inflammation encompasses allergic, autoimmune, and lifestyle-related diseases, leading to detrimental effects. Dendritic cells and macrophages, both of which are representative mononuclear phagocytes (MNPs), are essential for initiating immune responses, suggesting that the regulation of MNPs limits excessive inflammation. In this context, dietary components with immunomodulatory properties have been identified. Among them, soybean-derived compounds, including isoflavones, saponins, flavonoids, and bioactive peptides, act directly on MNPs to fine-tune immune responses. Notably, some soybean-derived compounds have demonstrated the ability to alleviate the symptom of allergy and autoimmunity in mouse models. In this review, we introduce and summarize the roles of soybean-derived compounds on MNP-mediated inflammatory responses. Understanding the mechanism by which soybean-derived molecules regulate MNPs could provide valuable insights for designing safe immunomodulators.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University (FHU), Aichi, Japan
| | - Shinjiro Imai
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University (FHU), Aichi, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
- Institute of Metabolic Function, Kanagawa, Japan
| |
Collapse
|
45
|
Ramarapu R, Wulcan JM, Chang H, Moore PF, Vernau W, Keller SM. Single cell RNA-sequencing of feline peripheral immune cells with V(D)J repertoire and cross species analysis of T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595010. [PMID: 38826195 PMCID: PMC11142102 DOI: 10.1101/2024.05.21.595010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Introduction The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing. Methods Peripheral blood from 4 healthy cats was enriched for T cells by flow cytometry cell sorting using a mouse anti-feline CD5 monoclonal antibody. Libraries for whole transcriptome, alpha/beta T cell receptor transcripts and gamma/delta T cell receptor transcripts were constructed using the 10x Genomics Chromium Next GEM Single Cell 5' reagent kit and the Chromium Single Cell V(D)J Enrichment Kit with custom reverse primers for the feline orthologs. Results Unsupervised clustering of whole transcriptome data revealed 7 major cell populations - T cells, neutrophils, monocytic cells, B cells, plasmacytoid dendritic cells, mast cells and platelets. Sub cluster analysis of T cells resolved naive (CD4+ and CD8+), CD4+ effector T cells, CD8+ cytotoxic T cells and gamma/delta T cells. Cross species analysis revealed a high conservation of T cell subsets along an effector gradient with equitable representation of veterinary species (horse, dog, pig) and humans with the cat. Our V(D)J repertoire analysis demonstrated a skewed T-cell receptor alpha gene usage and a restricted T-cell receptor gamma junctional length in CD8+ cytotoxic T cells compared to other alpha/beta T cell subsets. Among myeloid cells, we resolved three clusters of classical monocytes with polarization into pro- and anti-inflammatory phenotypes in addition to a cluster of conventional dendritic cells. Lastly, our neutrophil sub clustering revealed a larger mature neutrophil cluster and a smaller exhausted/activated cluster. Discussion Our study is the first to characterize subsets of circulating T cells utilizing an integrative approach of single cell RNA-sequencing, V(D)J repertoire analysis and cross species analysis. In addition, we characterize the transcriptome of several myeloid cell subsets and demonstrate immune cell relatedness across different species.
Collapse
Affiliation(s)
- Raneesh Ramarapu
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Judit M Wulcan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
46
|
Kuppa SS, Kang JY, Yang HY, Lee SC, Sankaranarayanan J, Kim HK, Seon JK. Hyaluronic Acid Viscosupplement Modulates Inflammatory Mediators in Chondrocyte and Macrophage Coculture via MAPK and NF-κB Signaling Pathways. ACS OMEGA 2024; 9:21467-21483. [PMID: 38764654 PMCID: PMC11097370 DOI: 10.1021/acsomega.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by cartilage degeneration and synovial inflammation. Paracrine interactions between chondrocytes and macrophages play an essential role in the onset and progression of OA. In this study, in replicating the inflammatory response during OA pathogenesis, chondrocytes were treated with interleukin-1β (IL-1β), and macrophages were treated with lipopolysaccharide and interferon-γ. In addition, a coculture system was developed to simulate the biological situation in the joint. In this study, we examined the impact of hyaluronic acid (HA) viscosupplement, particularly Hyruan Plus, on chondrocytes and macrophages. Notably, this viscosupplement has demonstrated promising outcomes in reducing inflammation; however, the underlying mechanism of action remains elusive. The viscosupplement attenuated inflammation, showing an inhibitory effect on nitric oxide production, downregulating proinflammatory cytokines such as matrix metalloproteinases (MMP13 and MMP3), and upregulating the expression levels of type II collagen and aggrecan in chondrocytes. HA also reduced the expression level of inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in macrophages, and HA exerted an overall protective effect by partially suppressing the MAPK pathway in chondrocytes and p65/NF-κB signaling in macrophages. Therefore, HA shows potential as a viscosupplement for treating arthritic joints.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hong Yeol Yang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jaishree Sankaranarayanan
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
47
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
48
|
Li JJ, Li L, Su SS, Liao ML, Gong QZ, Liu M, Jiang S, Zhang ZQ, Zhou H, Liu JX. Anti-inflammatory properties and characterization of water extracts obtained from Callicarpa kwangtungensis Chun using in vitro and in vivo rat models. Sci Rep 2024; 14:11047. [PMID: 38744989 PMCID: PMC11094131 DOI: 10.1038/s41598-024-61892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.
Collapse
Affiliation(s)
- Jun-Jian Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Shan-Shan Su
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Mei-Lan Liao
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Qiu-Zi Gong
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Mei Liu
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Shan Jiang
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Zai-Qi Zhang
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Second Affiliated Hospital of Gzangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
49
|
Abdel-Gaber R, Alamari G, Dkhil MA, Meryk A, Al-Shaebi EM, Al-Quraishy S. Krameria lappacea root extract's anticoccidial properties and coordinated control of CD4 T cells for IL-10 production and antioxidant monitoring. Front Immunol 2024; 15:1404297. [PMID: 38751432 PMCID: PMC11094240 DOI: 10.3389/fimmu.2024.1404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Alamari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Liu L, Lin L, Wang Y, Yan X, Li R, He M, Li H, Zhuo C, Li L, Zhang D, Wang X, Huang W, Li X, Mao Y, Chen H, Wu S, Jiang W, Zhu L. L-AP Alleviates Liver Injury in Septic Mice by Inhibiting Macrophage Activation via Suppressing NF-κB and NLRP3 Inflammasome/Caspase-1 Signal Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8460-8475. [PMID: 38564364 DOI: 10.1021/acs.jafc.3c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1β, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1β, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1β and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.
Collapse
Affiliation(s)
- Linling Liu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lan Lin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yingling Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Die Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xuemei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Huang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xinyue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Mao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongying Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ling Zhu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|