1
|
Martinez Bravo G, Annarapu G, Carmona E, Nawarskas J, Clark R, Novelli E, Mota Alvidrez RI. Platelets in Thrombosis and Atherosclerosis: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1608-1621. [PMID: 38885926 PMCID: PMC11373056 DOI: 10.1016/j.ajpath.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
This review focuses on the dual role of platelets in atherosclerosis and thrombosis, exploring their involvement in inflammation, angiogenesis, and plaque formation, as well as their hemostatic and prothrombotic functions. Beyond their thrombotic functions, platelets engage in complex interactions with diverse cell types, influencing disease resolution and progression. The contribution of platelet degranulation helps in the formation of atheromatous plaque, whereas the reciprocal interaction with monocytes adds complexity. Alterations in platelet membrane receptors and signaling cascades contribute to advanced atherosclerosis, culminating in atherothrombotic events. Understanding these multifaceted roles of platelets will lead to the development of targeted antiplatelet strategies for effective cardiovascular disease prevention and treatment. Understanding platelet functions in atherosclerosis and atherothrombosis at different stages of disease will be critical for designing targeted treatments and medications to prevent or cure the disease Through this understanding, platelets can be targeted at specific times in the atherosclerosis process, possibly preventing the development of atherothrombosis.
Collapse
Affiliation(s)
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emely Carmona
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Nawarskas
- Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Ross Clark
- Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico
| | - Enrico Novelli
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Roberto I Mota Alvidrez
- Biomedical Engineering Department, University of New Mexico, Albuquerque, New Mexico; Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
2
|
De Giovanni M, Dang EV, Chen KY, An J, Madhani HD, Cyster JG. Platelets and mast cells promote pathogenic eosinophil recruitment during invasive fungal infection via the 5-HIAA-GPR35 ligand-receptor system. Immunity 2023; 56:1548-1560.e5. [PMID: 37279752 PMCID: PMC10360074 DOI: 10.1016/j.immuni.2023.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Eric V Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Y Chen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
4
|
Sim MS, Kim HJ, Bae I, Kim C, Chang HS, Choi Y, Lee DH, Park HS, Chung IY. Calcium ionophore-activated platelets induce eosinophil extracellular trap formation. Allergol Int 2022:S1323-8930(22)00138-1. [PMID: 36586745 DOI: 10.1016/j.alit.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Platelets play a modulatory role in inflammatory response by secreting a vast array of granules and disintegrating into membrane-bound microparticles upon activation. The interplay between eosinophils and platelets is postulated to be implicated in the pathology of allergic airway inflammation. In this study, we investigated whether activated platelets can induce eosinophil extracellular trap (EET) formation, a cellular process by which activated eosinophils release net-like DNA fibers. METHODS Platelets were stimulated with the calcium ionophore, A23187, and the platelet agonists, thrombin and adenosine diphosphate (ADP). Platelet cultures were fractionated into conditioned medium (CM) and pellet, which were then overlaid on eosinophils to examine EET formation. RESULTS The CM and pellet from A23187-activated platelets stimulated eosinophils to generate EET, whereas those from thrombin- or ADP-activated platelets failed to induce such generation. The EET-inducing activity of the A23187-activated platelet culture was linearly proportional to the number of activated platelets. Interestingly, while EET formation induced by the direct stimulation of eosinophils with A23187 was NADPH oxidase (NOX)-dependent, EET formation induced by A23187-activated platelets was NOX-independent and significantly inhibited by necroptosis pathway inhibitors. CONCLUSIONS Activated platelets and their products may induce EET formation, thereby potentiating their role in eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Myeong Seong Sim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Hye Jeong Kim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Ikhyeon Bae
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Chun Kim
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Hun Soo Chang
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| | - Il Yup Chung
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
5
|
Fiouane S, Chebbo M, Beley S, Paganini J, Picard C, D'Journo X, Thomas P, Chiaroni J, Chanez P, Gras D, Di Cristofaro J. Mobilisation of HLA-F on the surface of bronchial epithelial cells and platelets in asthmatic patients. HLA 2022; 100:491-499. [PMID: 35988034 PMCID: PMC9804204 DOI: 10.1111/tan.14782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Uncontrolled inflammation of the airways in chronic obstructive lung diseases leads to exacerbation, accelerated lung dysfunction and respiratory insufficiency. Among these diseases, asthma affects 358 million people worldwide. Human bronchial epithelium cells (HBEC) express both anti-inflammatory and activating molecules, and their deregulated expression contribute to immune cell recruitment and activation, especially platelets (PLT) particularly involved in lung tissue inflammation in asthma context. Previous results supported that HLA-G dysregulation in lung tissue is associated with immune cell activation. We investigated here HLA-F expression, reported to be mobilised on immune cell surface upon activation and displaying its highest affinity for the KIR3DS1-activating NK receptor. We explored HLA-F transcriptional expression in HBEC; HLA-F total expression in PBMC and HBEC collected from healthy individuals at rest and upon chemical activation and HLA-F membrane expression in PBMC, HBEC and PLT collected from healthy individuals at rest and upon chemical activation. We compared HLA-F transcriptional expression in HBEC from healthy individuals and asthmatic patients and its surface expression in HBEC and PLT from healthy individuals and asthmatic patients. Our results support that HLA-F is expressed by HBEC and PLT under healthy physiological conditions and is retained in cytoplasm, barely expressed on the surface, as previously reported in immune cells. In both cell types, HLA-F reaches the surface in the inflammatory asthma context whereas no effect is observed at the transcriptional level. Our study suggests that HLA-F surface expression is a ubiquitous post-transcriptional process in activated cells. It may be of therapeutic interest in controlling lung inflammation.
Collapse
Affiliation(s)
- Sabrina Fiouane
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Mohamad Chebbo
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Sophie Beley
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | | | - Christophe Picard
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Xavier‐Benoît D'Journo
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Pascal‐Alexandre Thomas
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Jacques Chiaroni
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Pascal Chanez
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance,Clinique des Bronches, Allergies et SommeilNorth Hospital, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Delphine Gras
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Julie Di Cristofaro
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| |
Collapse
|
6
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
7
|
Solomon Y, Woldu B, Mesfin N, Enawgaw B. Selected hematological abnormalities and their associated factors among asthmatic patients in Northwest Ethiopia: a cross-sectional study. BMC Pulm Med 2022; 22:228. [PMID: 35698065 PMCID: PMC9190135 DOI: 10.1186/s12890-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease that affects the lungs. Variation in whole blood cell lines is caused by the progression and severity of asthma. Common hematological abnormalities encountered during asthma include eosinophilia, neutrophilia, leukocytosis, and increased erythrocyte sedimentation rate. The main aim of this study was to assess the selected hematological abnormalities and their associated factors among asthmatic patients in Northwest Ethiopia from March to May 2021. Methodology A hospital-based cross-sectional study was conducted on a total of 320 asthmatic patients in Northwest Ethiopia. A simple random sampling technique was employed to select study participants. A pre-tested structured questionnaire and a checklist were used to collect data. Blood samples were collected from asthmatic patients for complete blood count and erythrocyte sedimentation rate determination. Hematological profiles were analyzed by Unicel DxH 800 (Beckman Coulter, Ireland). The erythrocyte sedimentation rate was determined by using the Westergren method. The data were entered into EpiData version 3.0.4 and analyzed with a statistical package for social science version 20 software. The bi-variable and multi-variable binary logistic regression models were used to assess the factors associated with hematological abnormalities. A p value of less than 0.05 in the multivariable logistic regression analysis was considered statistically significant. Results The overall prevalence of neutrophilia, eosinophilia, thrombocytopenia, leukocytosis, and basophilia was 35.3%, 20%, 11.9%, 10.3%, and 4.1%, respectively. Neutrophilia was associated with a lack of physical activity (AOR = 3.25; 95% CI 1.43–7.37) and a history of taking non-asthmatic drugs within the previous three months (AOR = 2.63; 95% CI 1.22–5.65). Being admitted to the emergency department (AOR = 0.27; 95% CI 0.11–5.67) was found to be associated with eosinophilia. In addition, being admitted to the emergency department (AOR = 5.44; 95%CI: 2.6–11.3) was associated with thrombocytopenia. Conclusion The current study demonstrated the predominant prevalence of neutrophilia, followed by eosinophilia, among asthma patients. Therefore, hematological abnormalities should be taken into account for proper monitoring and management of asthmatic patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02020-z.
Collapse
Affiliation(s)
- Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Berhanu Woldu
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Nebiyu Mesfin
- Department of Internal Medicine, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
8
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
9
|
Kalmarzi RN, Ahmadiniaz M, Ataee P, Babaei E, Khalafi B, Kooti W, Darehbagh RR. Platelet Count and IgE Level in Chronic Idiopathic Urticaria: A Case-control Study. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:44-49. [PMID: 35289259 DOI: 10.2174/2772270816666220314154951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Chronic Urticaria is an allergic disorder that affects about 0.5 to 5% of the population in different communities. The disease's chronic course and long-term onset impose high economic and psychological costs on communities, adversely affecting individual and social life. Platelets play a role in various pathophysiological processes, including inflammation and immunology. Growing evidence suggests that platelets are actively involved in the pathogenesis of various inflammatory disorders, including inflammatory skin diseases. This study investigated the relationship between platelet and immunoglobulin-E markers and chronic idiopathic urticaria. MATERIALS AND METHODS In the present case-control study, for the study population, patients with chronic idiopathic urticaria were referred to the Asthma and Allergy Clinic, and their caregivers were selected as the case and control groups, respectively. In this study, the mean platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and Total IgE values were simultaneously measured in the case and control groups. After taking 5CCs of venous blood, a blood sample was sent to the laboratory for platelet and IgE marker measurements. RESULTS 100 patients and 100 healthy persons were evaluated in this study. The mean age in the case group was 34.95, and in the control group was 35.78 years. The results showed that the mean values of PLT, MPV, PDW, and Total IgE in the case group were 12.86, 9.83, 252190, and 147.05, respectively. The mean values of PLT, MPV, PDW, and Total IgE in the control group were 16.93, 7.53, 231410, and 15.29, respectively, which was statistically significant (P = 0.001). Moreover, total IgE in the Autologous Serum Skin Test (ASST) positive group was higher than ASST negative group and was statistically significant (P = 0.001). CONCLUSION The study results indicate the possible role of platelets in urticaria and inflammation. MPV in patients with chronic urticaria was higher than in the control group. The present study showed no significant relationship between the severity of urticaria and platelet markers, but there was a significant relationship between the severity of urticaria and ASST. Moreover, the severity of urticaria was higher in the positive skin test group.
Collapse
Affiliation(s)
- Rasoul Nasiri Kalmarzi
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cellular & Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Ahmadiniaz
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pedram Ataee
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Pediatrics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Babaei
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behzad Khalafi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Virtual school, Tehran University of Medical Sciences, Tehran, Iran
| | - Wesam Kooti
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
10
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, Valladolid C, Sun H, Cruz MA, Hube B, Naglik JR, Luong AU, Kheradmand F, Corry DB. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 2021; 54:2595-2610.e7. [PMID: 34506733 DOI: 10.1016/j.immuni.2021.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jill E Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lynn Bimler
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John M Knight
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christian Valladolid
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Hua Sun
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Jena 07745, Germany; Institute of Microbiology, Friedrich Schiller University, Jena 07737, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Amber U Luong
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA.
| |
Collapse
|
12
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
13
|
Johansson MW. Seeing Is Believing: Extravascular Platelet Recruitment in Asthma and Allergic Inflammation. Am J Respir Cell Mol Biol 2021; 64:521-522. [PMID: 33705683 PMCID: PMC8086035 DOI: 10.1165/rcmb.2021-0045ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mats W Johansson
- Morgridge Institute for Research Madison, Wisconsin and.,Departments of Biomolecular Chemistry and Medicine University of Wisconsin Madison, Wisconsin
| |
Collapse
|
14
|
The blocking effect of the glycoprotein IIb/IIIa receptor in the mouse model of asthma. Clin Mol Allergy 2021; 19:11. [PMID: 34256766 PMCID: PMC8275907 DOI: 10.1186/s12948-021-00149-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is apparent that the interaction between platelets and eosinophils plays a critical role in the activation of allergic inflammation. We investigated whether blocking of the glycoprotein (GP) IIb/IIIa receptor can attenuate allergic inflammation and airway hyperresponsiveness through inhibition of platelet-eosinophil aggregation (PEA) in asthma. METHODS BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 0 and 14, followed by 3 nebulized OVA challenges on days 28-30. On each challenge day, 5 mg/kg tirofiban was administered intraperitoneally 30 min before the challenge. Mice were assessed for airway hyperresponsiveness (AHR), airway inflammation, and the degree of PEA. Finally, the activation levels of platelets and eosinophils were evaluated. RESULTS Tirofiban treatment decreased AHR and eosinophilic inflammation in Bronchoalveolar Lavage (BAL) fluid. This treatment also reduced the levels of interleukin (IL)-4, IL-5, and IL-13 in BAL fluid and airway inflammatory cell infiltration in histological evaluation. Interestingly, the blocking of the GP IIb/IIIa receptor more reduced PEA in both blood and lung tissue of tirofiban-treated mice than in those of the positive control mice, and both eosinophilic and platelet activations were attenuated in tirofiban-treated mice. CONCLUSIONS The blocking of GP IIb/IIIa receptor with tirofiban can attenuate AHR and airway inflammation through the inhibition of PEA and activation.
Collapse
|
15
|
Mikkelsen S, Boldsen JK, Møller BK, Dinh KM, Rostgaard K, Petersen MS, Kaspersen KA, Pedersen OB, Thørner LW, Handgaard LJ, Ostrowski SR, Sigsgaard T, Erikstrup C. Atopic respiratory diseases and IgE sensitization are associated with leukocyte subset concentrations in 14,440 blood donors. Clin Chim Acta 2021; 520:139-146. [PMID: 34118238 DOI: 10.1016/j.cca.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Allergic rhinitis (AR), allergic conjunctivitis (AC), and asthma are characterized by activation of the immune system. The aim of this study was to explore the long-term association between AR, AC, asthma, and specific immunoglobulin E (IgE) and blood platelet and leukocyte differential counts. MATERIAL AND METHODS In the Danish Blood Donor Study, 14,440 participants from Central Denmark Region had platelet and leukocyte differential counts available and completed a questionnaire regarding AR, AC, and asthma. Of these participants, 8485 were tested for IgE to inhalation allergens. RESULTS The prevalence of AR, AC, asthma, and IgE sensitization was 19%, 15%, 9%, and 29%, respectively. AR, AC, asthma, wheeze, and IgE sensitization was associated with increased blood eosinophil concentration even in IgE sensitized participants who did not report any allergy or asthma. The strongest associations were observed for participants with current disease. We found no differences in eosinophil concentration between months without symptoms and months with symptoms of AR and asthma. CONCLUSION AR, AC, asthma, wheezing, and IgE sensitization to inhalation allergens are associated with increased eosinophil concentration. This may reflect a persistent inflammation even in periods without symptomatic disease.
Collapse
Affiliation(s)
- Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jens Kjærgaard Boldsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
| | - Bjarne Kuno Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Rostgaard
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Kathrine Agergård Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Lise Wegner Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Linda Jenny Handgaard
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark; Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
16
|
Bartig KA, Lee KE, Mosher DF, Mathur SK, Johansson MW. Platelet association with leukocytes in active eosinophilic esophagitis. PLoS One 2021; 16:e0250521. [PMID: 33891621 PMCID: PMC8064567 DOI: 10.1371/journal.pone.0250521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
We previously demonstrated that the percentage of blood eosinophils that are associated with platelets and thus positive for CD41 (integrin αIIb-subunit) correlates with and predicts peak eosinophil count (PEC) in biopsies of eosinophilic esophagitis (EoE) patients after treatment. Thus, flow cytometric determination of CD41+ eosinophils is a potential measure of EoE disease activity. Determinants of association of platelets with eosinophils and other leukocytes in EoE are largely unknown. The objectives of this study were to test the hypotheses that platelets associate with blood leukocytes other than eosinophils in EoE and that such associations also predict EoE activity. Whole blood flow cytometry was performed on samples from 25 subjects before and after two months of standard of care EoE treatment. CD41 positivity of cells within gates for eosinophils, neutrophils, monocytes, lymphocytes, and natural killer cells was compared. We found that percent CD41+ neutrophils, monocytes, and eosinophils correlated with one another such that principal component analysis of the five cell types identified “myeloid” and “lymphoid” factors. Percent CD41+ neutrophils or monocytes, or the myeloid factor, like CD41+ eosinophils, correlated with PEC after treatment, and CD41+ neutrophils or the myeloid factor predicted PEC < 6/high power field after treatment, albeit with lower area under the curve than for CD41+ eosinophils. We conclude that the processes driving platelets to associate with eosinophils in EoE also drive association of platelets with neutrophils and monocytes and that association of platelets with all three cell types is related to disease activity. Clinicaltrials.gov identifier: NCT02775045.
Collapse
Affiliation(s)
- Kelly A. Bartig
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristine E. Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Sameer K. Mathur
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Yan B, Yang J, Xie Y, Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J 2021; 14:100521. [PMID: 33589865 PMCID: PMC7877210 DOI: 10.1016/j.waojou.2021.100521] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES A novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is causing the worldwide coronavirus disease 2019 (COVID-19) outbreak with high mortality. A unique finding among COVID-19 patients was a decline of eosinophil levels (eosinopenia). However, results from previous studies on the relationship between eosinopenia and disease severity were inconsistent. The objective of this study is to determine the relationship between eosinopenia and COVID-19 mortality as well as the clinical conditions that could potentially lead to mortality. METHODS One hundred ninety patients diagnosed as moderate, severe, or critical COVID-19 at hospital admission were enrolled. Data collected from patients' medical records on the second day after hospital admission included medical histories, clinical symptoms, chest images of computed tomography (CT), laboratory examinations, and outcomes. RESULTS Eosinophil levels were significantly lower in patients with critical disease, when compared to those with moderate and severe diseases. After controlled for confounding factors, ie, age, gender, hypertension, coronary heart disease, diabetes, and chronic lung disease, a progressive decline of eosinophil levels was independently associated with mortality. Moreover, eosinophil levels significantly and positively correlated with platelet and D-dimer levels but significantly and inversely correlated with serum levels of urea, creatinine, aspartate aminotransferase, lactate dehydrogenase, and creatine kinase. CONCLUSIONS Eosinopenia, if progressively worsening, indicates that COVID-19 patients may progress to critical disease and have a significantly higher chance of mortality. Additionally, eosinopenia correlates with biomarkers of coagulation disorder and those of tissue damage in kidney, liver, and other tissues.
Collapse
Affiliation(s)
- Bingdi Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, PR China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yan Xie
- Office of Institutional Research, University of Redlands, Redlands, CA, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
18
|
Erdogan T. Role of systemic immune-inflammation index in asthma and NSAID-exacerbated respiratory disease. CLINICAL RESPIRATORY JOURNAL 2020; 15:400-405. [PMID: 33249745 DOI: 10.1111/crj.13314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Asthma is a heterogeneous disease characterized by chronic progressive airway inflammation. Although the disease has numerous phenotypes, there are no practical biomarkers for distinguishing the phenotypes from one another. To address this challenge, we aimed to reveal whether the systemic immune-inflammation index (SII), an important indicator of systemic inflammation and prognosis in various malignancies and vasculitis, can be used for distinguishing between asthma and NSAID-exacerbated respiratory disease (NERD). METHODS The study enrolled 105 patients (asthma: n = 69; NERD: n = 36). SII was calculated using the formula of neutrophil X platelet/lymphocyte number. Major risk factors, namely ACT score, eosinophil level, total IgE level, N-L ratio (NLR), P-L ratio (PLR), and SII, were evaluated by logistic regression analysis. RESULTS No significant differences were found between the clinical features of the two study groups. Patients with an SII value ≥895.6 had a probability of having NERD with a sensitivity of 30.56%, whereas those with a lower SII had a probability of having asthma with a sensitivity of 92.65%. In the logistic regression analysis, no risk factor was determined for identifying asthma or NERD. The N-L ratio was found to be the risk factor affecting categorized SII (OR = 264.2, 95% CI 9.9-7046.5, P = 0.001). CONCLUSION This is the first study to evaluate SII as a tool for differentiating asthma phenotypes. The presence of SII below the cutoff value can help exclude the diagnosis of NERD. There is a need for large-scale prospective studies to compare different phenotypes and determine the optimal cutoff value.
Collapse
Affiliation(s)
- Tuba Erdogan
- Faculty of Medicine, Department of Chest Disease, Division of Immunology and Allergy, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
19
|
Shih MY, Wang JD. Reply to acquired platelet dysfunction with eosinophilia: A false premise. Pediatr Neonatol 2020; 61:568-569. [PMID: 32828716 DOI: 10.1016/j.pedneo.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ming-Yang Shih
- Center for Rare Disease and Hemophilia, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiaan-Der Wang
- Center for Rare Disease and Hemophilia, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
20
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Pei F, Zhang GR, Zhou LX, Liu JY, Ma G, Kou QY, He ZJ, Chen MY, Nie Y, Wu JF, Guan XD. Early Immunoparalysis Was Associated with Poor Prognosis in Elderly Patients with Sepsis: Secondary Analysis of the ETASS Study. Infect Drug Resist 2020; 13:2053-2061. [PMID: 32636658 PMCID: PMC7335299 DOI: 10.2147/idr.s246513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Although immune dysfunction has been investigated in adult septic patients, early immune status remains unclear. In this study, our primary aim was to assess early immune status in adult patients with sepsis stratified by age and its relevance to hospital mortality. Patients and Methods A post hoc analysis of a multicenter, randomized controlled trial was conducted; 273 patients whose immune status was evaluated within 48 hours after onset of sepsis were enrolled. Early immune status was evaluated by the percentage of monocyte human leukocyte antigen-DR (mHLA-DR) in total monocytes within 48 hours after onset of sepsis and it was classified as immunoparalysis (mHLA-DR ≤30%) or non-immunoparalysis (>30%). Three logistic regression models were conducted to explore the associations between early immunoparalysis and hospital mortality. We also developed two sensitivity analyses to find out whether the definition of early immune status (24 hours vs 48 hours after onset of sepsis) and immunotherapy affect the primary outcome. Results Of the 181 elderly (≥60yrs) and 92 non-elderly (<60yrs) septic patients, 71 (39.2%) and 25 (27.2%) died in hospital, respectively. The percentage of early immunoparalysis in the elderly was twice of that in the non-elderly patients (32% vs 16%, p=0.006). For the elderly, hospital mortality was higher in the immunoparalysis ones than the non-immunoparalysis ones (53.4% vs 32.5%, p=0.009). But there was no significant difference in hospital mortality between immunoparalysis non-elderly patients and non-immunoparalysis non-elderly ones (33.5% vs 26.0%, p=0.541). By means of logistic regression models, we found that early immunoparalysis was independently associated with increased hospital mortality in elderly, but not in non-elderly patients. Sensitivity analysis further confirmed the definition of early immune status and immunotherapy did not affect the outcomes. Conclusion The elderly were more susceptible to early immunoparalysis after onset of sepsis. Early immunoparalysis was independently associated with poor prognosis in elderly, but not in non-elderly patients.
Collapse
Affiliation(s)
- Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University & The University of Birmingham, Guangzhou 510080, People's Republic of China
| | - Guan-Rong Zhang
- Information and Statistics Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Li-Xin Zhou
- Department of Critical Care Medicine, Foshan First Municipal People's Hospital, Foshan 528000, People's Republic of China
| | - Ji-Yun Liu
- Department of Critical Care Medicine, Guangzhou First Municipal People's Hospital, Guangzhou 510180, People's Republic of China
| | - Gang Ma
- Department of Critical Care Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, People's Republic of China
| | - Qiu-Ye Kou
- Department of Critical Care Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People's Republic of China
| | - Zhi-Jie He
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Min-Ying Chen
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yao Nie
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Jian-Feng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University & The University of Birmingham, Guangzhou 510080, People's Republic of China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | |
Collapse
|
22
|
Brosnahan MM. Eosinophils of the horse: Part II: Eosinophils in clinical diseases. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
23
|
Butler MP, Thosar SS, Smales C, DeYoung PN, Wu H, Hussain MV, Morimoto M, Hu K, Scheer FAJL, Shea SA. Effects of obstructive sleep apnea on endogenous circadian rhythms assessed during relaxed wakefulness; an exploratory analysis. Chronobiol Int 2020; 37:856-866. [PMID: 32192382 DOI: 10.1080/07420528.2020.1740723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obstructive sleep apnea (OSA) is associated with hypertension, cardiovascular disease, and a change in the 24 h pattern of adverse cardiovascular events and mortality. Adverse cardiovascular events occur more frequently in the middle of the night in people with OSA, earlier than the morning prevalence of these events in the general population. It is unknown if these changes are associated with a change in the underlying circadian rhythms, independent of behaviors such as sleep, physical activity, and meal intake. In this exploratory analysis, we studied the endogenous circadian rhythms of blood pressure, heart rate, melatonin and cortisol in 11 participants (48 ± 4 years; seven with OSA) throughout a 5 day study that was originally designed to examine circadian characteristics of obstructive apnea events. After a baseline night, participants completed 10 recurring 5 h 20 min behavioral cycles divided evenly into standardized sleep and wake periods. Blood pressure and heart rate were recorded in a relaxed semirecumbent posture 15 minutes after each scheduled wake time. Salivary melatonin and cortisol concentrations were measured at 1-1.5 h intervals during wakefulness. Mixed-model cosinor analyses were performed to determine the rhythmicity of all variables with respect to external time and separately to circadian phases (aligned to the dim light melatonin onset, DLMO). The circadian rhythm of blood pressure peaked much later in OSA compared to control participants (group × circadian phase, p < .05); there was also a trend toward a slightly delayed cortisol rhythm in the OSA group. Rhythms of heart rate and melatonin did not differ between the groups. In this exploratory analysis, OSA appears to be associated with a phase change (relative to DLMO) in the endogenous circadian rhythm of blood pressure during relaxed wakefulness, independent of common daily behaviors.
Collapse
Affiliation(s)
- Matthew P Butler
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University , Portland, OR, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University , Portland, OR, USA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School , Boston, MA, USA
| | - Saurabh S Thosar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University , Portland, OR, USA.,School of Nursing, Oregon Health & Science University , Portland, Oregon, USA
| | - Carolina Smales
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA
| | - Pamela N DeYoung
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA
| | - Huijuan Wu
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School , Boston, MA, USA.,Department of Neurology, Changzheng Hospita, Second Military Medical University , Shanghai, China
| | - Mohammad V Hussain
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA
| | - Miki Morimoto
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School , Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School , Boston, MA, USA
| | - Steven A Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University , Portland, OR, USA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital , Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School , Boston, MA, USA.,OHSU-PSU School of Public Health, Oregon Health & Science University , Portland, Oregon, USA
| |
Collapse
|
24
|
Simon SCS, Hu X, Panten J, Grees M, Renders S, Thomas D, Weber R, Schulze TJ, Utikal J, Umansky V. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology 2020; 9:1727116. [PMID: 32117594 PMCID: PMC7028332 DOI: 10.1080/2162402x.2020.1727116] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023] Open
Abstract
Eosinophils have been identified as a prognostic marker in immunotherapy of melanoma and suggested to contribute to anti-tumor host defense. However, the influence of immune checkpoint inhibitors (ICI) on the eosinophil population is poorly studied. Here, we applied routine laboratory tests, multicolor flow cytometry, RNA microarray analysis, and bio-plex assay to analyze circulating eosinophils and related serum inflammatory factors in 32 patients treated with pembrolizumab or the combination of nivolumab and ipilimumab. We demonstrated that clinical responses to ICI treatment were associated with an eosinophil accumulation in the peripheral blood. Moreover, immunotherapy led to the alteration of the eosinophil genetic and activation profile. Elevated serum concentrations of IL-16 during ICI treatment were found to be associated with increased frequencies of eosinophils in the peripheral blood. Using immunohistochemistry, we observed an enhanced eosinophil degranulation and a positive correlation between eosinophil and CD8+ T cell infiltration of tumor tissues from melanoma patients treated with ICI. Our findings highlight additional mechanisms of ICI effects and suggest the level of eosinophils as a novel predictive marker for melanoma patients who may benefit from this immunotherapy.
Collapse
Affiliation(s)
- Sonja C S Simon
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jasper Panten
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Research Group Hematopoietic and Leukemic Stem Cells, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Research Group Hematopoietic and Leukemic Stem Cells, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Daniel Thomas
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Torsten J Schulze
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Diagnostics, Institute Springe, Springe, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
25
|
Johansson MW, McKernan EM, Fichtinger PS, Angulo EL, Bagley JL, Lee KE, Evans MD, Lomeli LD, Mosher DF, Cook SM, Gaumnitz EA, Mathur SK. α IIb-Integrin (CD41) associated with blood eosinophils is a potential biomarker for disease activity in eosinophilic esophagitis. J Allergy Clin Immunol 2020; 145:1699-1701. [PMID: 32004525 DOI: 10.1016/j.jaci.2020.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wis.
| | | | | | - Evelyn L Angulo
- Department of Medicine, University of Wisconsin, Madison, Wis
| | | | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wis
| | - Michael D Evans
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wis
| | - Luis D Lomeli
- Department of Medicine, University of Wisconsin, Madison, Wis
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Shelly M Cook
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wis
| | - Eric A Gaumnitz
- Department of Medicine, University of Wisconsin, Madison, Wis
| | - Sameer K Mathur
- Department of Medicine, University of Wisconsin, Madison, Wis
| |
Collapse
|
26
|
Abstract
In the US, disagreement over the biological basis of "chronic Lyme disease" has resulted in the institutionalization of two standards of care: "mainstream" and "Lyme-literate." For mainstream physicians, chronic Lyme disease is a "medically unexplained illness" that presents with an abundance of "symptoms" in the absence of diagnostic "signs." For Lyme-literate physicians, and complementary and alternative medicine practitioners more generally, symptoms alone provide sufficient evidence for medical explanation. Drawing upon ethnographic research among mainstream and Lyme-literate physicians, I suggest that medically unexplained illness is not a biomedical anomaly but an intrinsic feature of biomedicine.
Collapse
Affiliation(s)
- Abigail A Dumes
- Department of Women's Studies, University of Michigan , Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Murakami-Malaquias-da-Silva F, Rosa EP, Oliveira JG, Avelar IS, Palma-Cruz M, Fernandes Silva JG, Rigonato-Oliveira NC, Bussadori SK, Negreiros RM, Ligeiro-de-Oliveira AP, Lino-Dos-Santos-Franco A, Horliana AC. The role of periodontal treatment associated with photodynamic therapy on the modulation of systemic inflammation in the experimental model of asthma and periodontitis. Photodiagnosis Photodyn Ther 2019; 29:101619. [PMID: 31841684 DOI: 10.1016/j.pdpdt.2019.101619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The association of Periodontitis (P) with several systemic diseases, among them asthma (A), has been previously studied. As periodontal treatment (TTO) associated with photodynamic therapy (PDT) is able to treat P, the aim of this study is to verify whether periodontitis exerts systemic effects on asthma, and whether TTO, associated or not with PDT, is capable of altering the systemic course of both pathologies. METHODS 64 male Balb/c mice were divided into 8 groups (n = 8): Basal (B), P, P + TTO, P + TTO + PDT, Asthma, A + P, A + P + TTO, A + P + TTO + PDT. After 43 days, all animals were euthanized. The total and differential leukocyte count in serum, platelet count, alveolar bronchial lavage cell count, femoral lavage cell count in addition to the reactivity of the trachea, lung edema and gingiva cytokines were analyzed. The frequency of inflammatory cells was assessed via flow cytometry. One-way ANOVA test was used, followed by the Student-Newman-Keuls post-test. RESULTS There was an increase in the number of blood circulating eosinophils in group A when compared to group B (p < 0.01); this characterized the asthma experimental model. P (p < 0.05) presented a lower amount of cytokine TNF-α in the gingiva when compared to the Asthma group. Apart from that, there was no statistical difference found for the other analyzed parameters. CONCLUSION These data contributed to elucidate that P and A, associated or not with TTO and PDT, are not able to interfere with the systemic parameters of Balb/c mice.
Collapse
Affiliation(s)
| | - Ellen Perim Rosa
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Jessica Gonzaga Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Isabella Sena Avelar
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Marlon Palma-Cruz
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Joao Gabriel Fernandes Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | | | - Sandra Kalil Bussadori
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Renata Matalon Negreiros
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Ana Paula Ligeiro-de-Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Anna Carolina Horliana
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| |
Collapse
|
28
|
Imoto Y, Kato A, Takabayashi T, Stevens W, Norton JE, Suh LA, Carter RG, Weibman AR, Hulse KE, Harris KE, Peters AT, Grammer LC, Tan BK, Welch K, Shintani-Smith S, Conley DB, Kern RC, Fujieda S, Schleimer RP. Increased thrombin-activatable fibrinolysis inhibitor levels in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2019; 144:1566-1574.e6. [PMID: 31562871 PMCID: PMC6900453 DOI: 10.1016/j.jaci.2019.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory disease subdivided based on the presence or absence of nasal polyps (NPs). Histologic features of chronic rhinosinusitis with nasal polyps (CRSwNP) include inflammatory cell infiltration and excessive fibrin deposition in NPs. Thrombin-activatable fibrinolysis inhibitor (TAFI) is an enzyme that plays an antifibrinolytic role in the body. The significance of TAFI has been documented in patients with chronic inflammatory diseases, including chronic lung disease; however, it has not been evaluated in the pathogenesis of NPs. OBJECTIVE The objective of this study was to evaluate the potential role of TAFI in the pathogenesis of NPs. METHODS Nasal lavage fluid was collected from control subjects and patients with CRS. We measured levels of thrombin/anti-thrombin complex (TATc) and TAFI protein using an ELISA. RESULTS TATc levels in nasal lavage fluid were significantly increased in patients with CRSwNP and patients with chronic rhinosinusitis without nasal polyps (CRSsNP) compared with control subjects, and TAFI levels in nasal lavage fluid were also significantly increased in patients with CRSwNP compared with those in control subjects and patients with CRSsNP. There was a significant correlation between TATc and TAFI levels in nasal lavage fluid. Interestingly, patients with CRS and asthma showed increased TATc and TAFI levels in nasal lavage fluid compared with those in patients with CRS without asthma, especially patients with CRSwNP. CONCLUSIONS Increased TATc and TAFI levels in nasal passages of patients with CRSwNP might participate in fibrin deposition in NPs and might play a role in the pathogenesis of CRSwNP and asthma.
Collapse
Affiliation(s)
- Yoshimasa Imoto
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Tetsuji Takabayashi
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Whitney Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ava R Weibman
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
29
|
Karta MR, Cavagnero K, Miller M, Badrani J, Naji L, Doherty TA, Broide DH. Platelets attach to lung type 2 innate lymphoid cells (ILC2s) expressing P-selectin glycoprotein ligand 1 and influence ILC2 function. J Allergy Clin Immunol 2019; 144:1112-1115.e8. [PMID: 31201889 DOI: 10.1016/j.jaci.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Maya R Karta
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Kellen Cavagnero
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Jana Badrani
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Luay Naji
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Taylor A Doherty
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
30
|
Trinh HKT, Nguyen TVT, Choi Y, Park HS, Shin YS. The synergistic effects of clopidogrel with montelukast may be beneficial for asthma treatment. J Cell Mol Med 2019; 23:3441-3450. [PMID: 30905080 PMCID: PMC6484307 DOI: 10.1111/jcmm.14239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets modulate asthma pathogenesis by forming the platelet‐eosinophil aggregation (PEA), which facilitates the activation of eosinophils. Platelets exhibit the purinergic receptor (P2Y12R), which responds to cysteinyl leukotriene E4 (LTE4). We have suggested that the combination of an antiplatelet drug (clopidogrel, [Clo]) and montelukast (Mon) would synergistically suppress asthma. BALB/c mice were intraperitoneally sensitized with ovalbumin (OVA) on days 0 and 14 and subsequently challenged on days 28‐30 and 42‐44. Mice were administered with Clo (10 mg/kg), Mon (10 mg/kg) or both drugs (Clo/Mon) orally 30 minutes before the OVA (1%) challenge on days 42‐44. Mice were assayed for airway hyper‐responsiveness (AHR) to methacholine and airway inflammation. Clopidogrel and montelukast attenuated the increased AHR; the combined treatment was more effective than a single treatment for total and eosinophil counts (all P < 0.05). Levels of interleukin (IL)‐4, IL‐5, IL‐13, platelet factor 4, eosinophil peroxidase and LTE4 increased in the bronchoalveolar lavage fluid of asthmatic mice, but these levels decreased in mice treated with Clo/Mon (all P < 0.05). Goblet cell hyperplasia decreased in response to Clo/Mon. Mouse platelets and eosinophils were isolated and co‐cultured for an in vitro assay with 10 µmol/L adenosine diphosphate (ADP), LTE4 (200 nmol/L), Mon (1 µmol/L), Clo (1 µmol/L) and Clo/Mon (1 µmol/L). Flow cytometry revealed that the increased formation of the PEA (%) was fully mediated by ADP and partly mediated by LTE4. Clo/Mon reduced ADP‐induced PEA formation and P‐selectin expression (P < 0.05). In conclusion, Clo/Mon synergistically relieved asthma by inhibiting ADP‐mediated PEA formation.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Thuy Van Thao Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
31
|
Al‐Amri ASH, Al‐Marzooqi W, Al‐Abri M, Johnson EH. Ultrastructural observations on the platelets of the Arabian oryx (Oryx leucoryx). Anat Histol Embryol 2019; 48:244-249. [DOI: 10.1111/ahe.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed Saif Hilal Al‐Amri
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Waleed Al‐Marzooqi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Mohammed Al‐Abri
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Eugene H. Johnson
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| |
Collapse
|
32
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
33
|
Obeso D, Mera-Berriatua L, Rodríguez-Coira J, Rosace D, Fernández P, Martín-Antoniano IA, Santaolalla M, Marco Martín G, Chivato T, Fernández-Rivas M, Ramos T, Blanco C, Alvarado MI, Domínguez C, Angulo S, Barbas C, Barber D, Villaseñor A, Escribese MM. Multi-omics analysis points to altered platelet functions in severe food-associated respiratory allergy. Allergy 2018; 73:2137-2149. [PMID: 30028518 DOI: 10.1111/all.13563] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to study the progression of allergic inflammation. Our aim was to identify the underlying mechanisms and the associated biomarkers of this progression, focusing on severe phenotypes, using transcriptomics and metabolomics. METHODS Twenty-five subjects were included in the study. Plasma samples were analyzed using gas and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively). Individuals were classified in four groups-"nonallergic," "mild," "moderate," and "severe"-based on their clinical history, their response to an oral challenge test with profilin, and after a refinement using a mathematical metabolomic model. PBMCs were used for microarray analysis. RESULTS We found a set of transcripts and metabolites that were specific for the "severe" phenotype. By metabolomics, a decrease in carbohydrates and pyruvate and an increase in lactate were detected, suggesting aerobic glycolysis. Other metabolites were incremented in "severe" group: lysophospholipids, sphingosine-1-phosphate, sphinganine-1-phosphate, and lauric, myristic, palmitic, and oleic fatty acids. On the other hand, carnitines were decreased along severity. Significant transcripts in the "severe" group were found to be downregulated and were associated with platelet functions, protein synthesis, histone modification, and fatty acid metabolism. CONCLUSION We have found evidence that points to the association of severe allergic inflammation with platelet functions alteration, together with reduced protein synthesis, and switch of immune cells to aerobic glycolysis.
Collapse
Affiliation(s)
- David Obeso
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Leticia Mera-Berriatua
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Juan Rodríguez-Coira
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Domenico Rosace
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Paloma Fernández
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Isabel Adoración Martín-Antoniano
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Clínicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | | | | | - Tomás Chivato
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Clínicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | | | - Tania Ramos
- Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid España
| | - Carlos Blanco
- Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid España
| | | | | | - Santiago Angulo
- Departamento de Matemática Aplicada y Estadística; Universidad San Pablo CEU; Madrid España
| | - Coral Barbas
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Domingo Barber
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Alma Villaseñor
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - María M. Escribese
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Básicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| |
Collapse
|
34
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
35
|
Eosinophils from Physiology to Disease: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9095275. [PMID: 29619379 PMCID: PMC5829361 DOI: 10.1155/2018/9095275] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a "golden age" of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances.
Collapse
|