1
|
Gan Q, Jiang T, Li C, Gong X, Zhang J, Desai BK, Yan Y. De novo biosynthesis of 4,6-dihydroxycoumarin in Escherichia coli. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025:d4gc05694a. [PMID: 40013057 PMCID: PMC11848710 DOI: 10.1039/d4gc05694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Coumarins and their derivatives possess crucial biochemical and pharmaceutical properties. However, the exploration of the coumarin biosynthesis pathways remains limited, restricting their microbial biosynthesis, especially for hydroxycoumarins. In this work, we designed and verified novel artificial pathways to produce a valuable compound 4,6-dihydroxycoumarin (4,6-DHC) in Escherichia coli. Based on the retrosynthesis analysis, multiple routes were designed and verified by extending the shikimate pathway, screening the potential enzymes, and characterizing the enzymes involved. Rare codon optimization and protein engineering strategies were applied to optimize the rate-limiting steps. De novo biosynthesis of 4,6-DHC was achieved using the cheap carbon source glycerol, and the titer can reach 18.3 ± 0.7 mg L-1. Ultimately, inducible regulation of critical pathway genes with a tetracycline-inducible controller yielded a significant boost in 4,6-DHC production, achieving a titer of 56.7 ± 2.1 mg L-1. This research successfully created a microbial platform for 4,6-dihydroxycoumarin production and demonstrated a generalizable strategy for synthesizing valuable compounds.
Collapse
Affiliation(s)
- Qi Gan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Bhaven K Desai
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia Athens GA 30602 USA
| |
Collapse
|
2
|
Wang JY, Xie ZX, Cui YZ, Li BZ, Yuan YJ. Artificial design of the genome: from sequences to the 3D structure of chromosomes. Trends Biotechnol 2025; 43:304-317. [PMID: 39299833 DOI: 10.1016/j.tibtech.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Genome design is the foundation of genome synthesis, which provides a new platform for deepening our understanding of biological systems by exploring the fundamental components and structure of the genome. Artificial genome designs can endow unnatural genomes with desired functions. We provide a comprehensive overview of genome design principles ranging from DNA sequences to the 3D structure of chromosomes. Furthermore, we highlight applications of genome design in gene expression, genome structure, genome function, and biocontainment, and discuss the potential of artificial intelligence (AI) in genome design.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Kaur D, Singh RP, Gupta S. Construction of Pseudomonas aeruginosa SDK-6 with synthetic lipase gene cassette and optimization of different parameters using response surface methodology for over-expression of recombinant lipase. Folia Microbiol (Praha) 2024; 69:1279-1290. [PMID: 38700831 DOI: 10.1007/s12223-024-01167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/13/2024] [Indexed: 10/17/2024]
Abstract
Lipases are industrially important enzymes having vast applications in various fields. Cloning and expression of lipase enzyme-encoding genes in suitable host lead to their widespread use in different fields. The present study represents the first attempt towards the expression of the synthetic lipase gene in Pseudomonas aeruginosa. An alkalophilic lipase gene (GenBank accession number: NP_388152) from Bacillus subtilis was synthetically designed and introduced in the pJN105 vector and subsequently cloned in Pseudomonas aeruginosa SDK-6. Agarose gel electrophoresis confirmed the transformation of SDK-6, exhibiting a band difference of ~ 700 bp between native and recombinant pJN105. Further amplification of cloned lipase gene was confirmed using PCR amplification with Lip 1 and Lip 2 primers respectively, followed by restriction analysis. Approximately 15-fold increase in lipase production was observed in recombinant Pseudomonas as compared to the native strain. One factor at a time (OFAT) analysis revealed L-arabinose, inoculum size (0.5%; v/v), and agitation (120 rpm) as significant factors affecting the over-expression of lipase enzyme. Optimization of enzyme induction conditions by central composite design (CCD) led to 1.60-fold increase in the production of lipase at 0.65% (w/v) inducer concentration, OD600-1.075 before induction and 35 °C post induction temperature with overall lipase production of 50.50 IU/mL. Statistical validation of observed value via ANOVA showed an F-value of 138.70 at p < 0.01 with R2 of 0.9921.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India
- Department of Biotechnology and Food Technology, Punjabi University, Patiala-147002, Punjab, India
| | - Rupinder Pal Singh
- Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India.
| |
Collapse
|
4
|
Azizi-Dargahlou S, Pouresmaeil M, Ahmadabadi M. Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin. Mol Biotechnol 2024; 66:2595-2605. [PMID: 38244177 DOI: 10.1007/s12033-023-01043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
The natural source of chymosin, a key enzyme in the dairy industry, is insufficient for rapidly growing cheese industries. Large-scale production of recombinant proteins in heterologous hosts provides an efficient alternative solution. Here, the codon-optimized synthetic prochymosin gene, which has a CAI index of 0.926, was subcloned from a cloning vector (pUC57-bCYM) into the pBI121 vector, resulting in the construct named pBI121-bCYM. CAI ranges from 0 to 1 and higher CAI improves gene expression in heterologous hosts. The overexpression of the prochymosin gene was under the control of constitutive CaMV 35S promoter and NOS terminator and was transferred into the tobacco via A. tumefaciens strain LBA4404. Explant type, regeneration method, inoculation temperature, cell density (OD600) of Agrobacterium for inoculation, and acetosyringone concentration were leaf explants, direct somatic embryogenesis, 19 °C, 0.1, and 100 µM, respectively. The successful integration and expression of the prochymosin gene, along with the bioactivity of recombinant chymosin, were confirmed by PCR, RT-PCR, and milk coagulation assay, respectively. Overall, this study reports the first successful overexpression of the codon-optimized prochymosin form of the bovine chymosin enzyme in the tobacco via indirect transformation. Production of recombinant bovine chymosin in plants can be an easy-to-scale-up, safe, and inexpensive platform.
Collapse
Affiliation(s)
- Shahnam Azizi-Dargahlou
- Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahin Pouresmaeil
- Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabi, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
5
|
Zhao Y, Zhang S. Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. Int J Mol Sci 2024; 25:8398. [PMID: 39125967 PMCID: PMC11313453 DOI: 10.3390/ijms25158398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The codon usage bias (CUB) of genes encoded by different species' genomes varies greatly. The analysis of codon usage patterns enriches our comprehension of genetic and evolutionary characteristics across diverse species. In this study, we performed a genome-wide analysis of CUB and its influencing factors in six sequenced Eimeria species that cause coccidiosis in poultry: Eimeria acervulina, Eimeria necatrix, Eimeria brunetti, Eimeria tenella, Eimeria praecox, and Eimeria maxima. The GC content of protein-coding genes varies between 52.67% and 58.24% among the six Eimeria species. The distribution trend of GC content at different codon positions follows GC1 > GC3 > GC2. Most high-frequency codons tend to end with C/G, except in E. maxima. Additionally, there is a positive correlation between GC3 content and GC3s/C3s, but a significantly negative correlation with A3s. Analysis of the ENC-Plot, neutrality plot, and PR2-bias plot suggests that selection pressure has a stronger influence than mutational pressure on CUB in the six Eimeria genomes. Finally, we identified from 11 to 15 optimal codons, with GCA, CAG, and AGC being the most commonly used optimal codons across these species. This study offers a thorough exploration of the relationships between CUB and selection pressures within the protein-coding genes of Eimeria species. Genetic evolution in these species appears to be influenced by mutations and selection pressures. Additionally, the findings shed light on unique characteristics and evolutionary traits specific to the six Eimeria species.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | | |
Collapse
|
6
|
Yan R, Xie B, Xie K, Liu Q, Sui S, Wang S, Chen D, Liu J, Chen R, Dai J, Yang L. Unravelling and reconstructing the biosynthetic pathway of bergenin. Nat Commun 2024; 15:3539. [PMID: 38670975 PMCID: PMC11053098 DOI: 10.1038/s41467-024-47502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-β-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.
Collapse
Affiliation(s)
- Ruiqi Yan
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Binghan Xie
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China.
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China.
| | - Qi Liu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Shuqi Wang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China.
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China.
| | - Lin Yang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
7
|
Li Z. Study on the Construction and Application of Engineering Bacteria. LECTURE NOTES IN COMPUTER SCIENCE 2024:329-342. [DOI: 10.1007/978-3-031-64636-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Nuryana I, Laksmi FA, Dewi KS, Akbar FR, Nurhayati, Harmoko R. Codon optimization of a gene encoding DNA polymerase from Pyrococcus furiosus and its expression in Escherichia coli. J Genet Eng Biotechnol 2023; 21:129. [PMID: 37987973 PMCID: PMC10663413 DOI: 10.1186/s43141-023-00605-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA polymerase is an essential component in PCR assay for DNA synthesis. Improving DNA polymerase with characteristics indispensable for a powerful assay is crucial because it can be used in wide-range applications. Derived from Pyrococcus furiosus, Pfu DNA polymerase (Pfu pol) is one of the excellent polymerases due to its high fidelity. Therefore, we aimed to develop Pfu pol from a synthetic gene with codon optimization to increase its protein yield in Escherichia coli. RESULTS Recombinant Pfu pol was successfully expressed and purified with a two-step purification process using nickel affinity chromatography, followed by anion exchange chromatography. Subsequently, the purified Pfu pol was confirmed by Western blot analysis, resulting in a molecular weight of approximately 90 kDa. In the final purification process, we successfully obtained a large amount of purified enzyme (26.8 mg/L). Furthermore, the purified Pfu pol showed its functionality and efficiency when tested for DNA amplification using the standard PCR. CONCLUSIONS Overall, a high-level expression of recombinant Pfu pol was achieved by employing our approach in the present study. In the future, our findings will be useful for studies on synthesizing recombinant DNA polymerase in E. coli expression system.
Collapse
Affiliation(s)
- Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia.
| | - Kartika Sari Dewi
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Faiz Raihan Akbar
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Nurhayati
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Rikno Harmoko
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
9
|
Willems T, Hectors W, Rombaut J, De Rop AS, Goegebeur S, Delmulle T, De Mol ML, De Maeseneire SL, Soetaert WK. An exploratory in silico comparison of open-source codon harmonization tools. Microb Cell Fact 2023; 22:227. [PMID: 37932726 PMCID: PMC10626681 DOI: 10.1186/s12934-023-02230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Not changing the native constitution of genes prior to their expression by a heterologous host can affect the amount of proteins synthesized as well as their folding, hampering their activity and even cell viability. Over the past decades, several strategies have been developed to optimize the translation of heterologous genes by accommodating the difference in codon usage between species. While there have been a handful of studies assessing various codon optimization strategies, to the best of our knowledge, no research has been performed towards the evaluation and comparison of codon harmonization algorithms. To highlight their importance and encourage meaningful discussion, we compared different open-source codon harmonization tools pertaining to their in silico performance, and we investigated the influence of different gene-specific factors. RESULTS In total, 27 genes were harmonized with four tools toward two different heterologous hosts. The difference in %MinMax values between the harmonized and the original sequences was calculated (ΔMinMax), and statistical analysis of the obtained results was carried out. It became clear that not all tools perform similarly, and the choice of tool should depend on the intended application. Almost all biological factors under investigation (GC content, RNA secondary structures and choice of heterologous host) had a significant influence on the harmonization results and thus must be taken into account. These findings were substantiated using a validation dataset consisting of 8 strategically chosen genes. CONCLUSIONS Due to the size of the dataset, no complex models could be developed. However, this initial study showcases significant differences between the results of various codon harmonization tools. Although more elaborate investigation is needed, it is clear that biological factors such as GC content, RNA secondary structures and heterologous hosts must be taken into account when selecting the codon harmonization tool.
Collapse
Affiliation(s)
- Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Wim Hectors
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Stijn Goegebeur
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| |
Collapse
|
10
|
Dupuis JH, Cheung LKY, Newman L, Dee DR, Yada RY. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr Rev Food Sci Food Saf 2023; 22:882-912. [PMID: 36546356 DOI: 10.1111/1541-4337.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cellular agriculture is a rapidly emerging field, within which cultured meat has attracted the majority of media attention in recent years. An equally promising area of cellular agriculture, and one that has produced far more actual food ingredients that have been incorporated into commercially available products, is the use of cellular hosts to produce soluble proteins, herein referred to as precision cellular agriculture (PCAg). In PCAg, specific animal- or plant-sourced proteins are expressed recombinantly in unicellular hosts-the majority of which are yeast-and harvested for food use. The numerous advantages of PCAg over traditional agriculture, including a smaller carbon footprint and more consistent products, have led to extensive research on its utility. This review is the first to survey proteins currently being expressed using PCAg for food purposes. A growing number of viable expression hosts and recent advances for increased protein yields and process optimization have led to its application for producing milk, egg, and muscle proteins; plant hemoglobin; sweet-tasting plant proteins; and ice-binding proteins. Current knowledge gaps present research opportunities for optimizing expression hosts, tailoring posttranslational modifications, and expanding the scope of proteins produced. Considerations for the expansion of PCAg and its implications on food regulation, society, ethics, and the environment are also discussed. Considering the current trajectory of PCAg, food proteins from any biological source can likely be expressed recombinantly and used as purified food ingredients to create novel and tailored food products.
Collapse
Affiliation(s)
- John H Dupuis
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lennie K Y Cheung
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenore Newman
- Food and Agriculture Institute, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
13
|
Maltoni G, Scutteri L, Mensitieri F, Piaz FD, Hochkoeppler A. High-yield production in Escherichia coli and convenient purification of a candidate vaccine against SARS-CoV-2. Biotechnol Lett 2022; 44:1313-1322. [PMID: 36161539 PMCID: PMC9512991 DOI: 10.1007/s10529-022-03298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.
Collapse
Affiliation(s)
- Giulia Maltoni
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Scutteri
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Francesca Mensitieri
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy. .,CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
14
|
Abuei H, Pirouzfar M, Mojiri A, Behzad-Behbahani A, Kalantari T, Bemani P, Farhadi A. Maximizing the recovery of the native p28 bacterial peptide with improved activity and maintained solubility and stability in Escherichia coli BL21 (DE3). METHODS IN MICROBIOLOGY 2022; 200:106560. [PMID: 36031157 DOI: 10.1016/j.mimet.2022.106560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/06/2023]
Abstract
p28 is a natural bacterial product, which recently has attracted much attention as an efficient cell penetrating peptide (CPP) and a promising anticancer agent. Considering the interesting biological qualities of p28, maximizing its expression appears to be a prominent priority. The optimization of such bioprocesses might be facilitated by utilizing statistical approaches such as Design of Experiment (DoE). In this study, we aimed to maximize the expression of "biologically active" p28 in Escherichia coli BL21 (DE3) host by harnessing statistical tools and experimental methods. Using Minitab, Plackett-Burman and Box-Behnken Response Surface Methodology (RSM) designs were generated to optimize the conditions for the expression of p28. Each condition was experimentally investigated by assessing the biological activity of the purified p28 in the MCF-7 breast cancer cell line. Seven independent variables were investigated, and three of them including ethanol concentration, OD600 of the culture at the time of induction, and the post-induction temperature were demonstrated to significantly affect the p28 expression in E. coli. The cytotoxicity, penetration efficiency, and total process time were measured as dependent variables. The optimized expression conditions were validated experimentally, and the final products were investigated in terms of expression yield, solubility, and stability in vitro. Following the optimization, an 8-fold increase of the concentration of p28 expression was observed. In this study, we suggest an optimized combination of effective factors to produce soluble p28 in the E. coli host, a protocol that results in the production of a significantly high amount of the biologically active peptide with retained solubility and stability.
Collapse
Affiliation(s)
- Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Pirouzfar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Expression of Codon-Optimized Gene Encoding Murine Moloney Leukemia Virus Reverse Transcriptase in Escherichia coli. Protein J 2022; 41:515-526. [PMID: 35933571 PMCID: PMC9362449 DOI: 10.1007/s10930-022-10066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 10/27/2022]
Abstract
Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is the most frequently used enzyme in molecular biology for cDNA synthesis. To date, reverse transcription coupled with Polymerase Chain Reaction, known as RT-PCR, has been popular as an excellent approach for the detection of SARS-CoV-2 during the COVID-19 pandemic. In this study, we aimed to improve the enzymatic production and performance of MMLV-RT by optimizing both codon and culture conditions in E. coli expression system. By applying the optimized codon and culture conditions, the enzyme was successfully overexpressed and increased at high level based on the result of SDS-PAGE and Western blotting. The total amount of MMLV-RT has improved 85-fold from 0.002 g L-1 to 0.175 g L-1 of culture. One-step purification by nickel affinity chromatography has been performed to generate the purified enzyme for further analysis of qualitative and quantitative RT activity. Overall, our investigation provides useful strategies to enhance the recombinant enzyme of MMLV-RT in both production and performance. More importantly, the enzyme has shown promising activity to be used for RT-PCR assay.
Collapse
|
16
|
Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 352:127037. [PMID: 35318143 DOI: 10.1016/j.biortech.2022.127037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Rising global energy demands and climate crisis has created an unprecedented need for the bio-based circular economy to ensure sustainable development with the minimized carbon footprint. Along with conventional biofuels such as ethanol, microbes can be used to produce advanced biofuels which are equivalent to traditional fuels in their energy efficiencies and are compatible with already established infrastructure and hence can be directly blended in higher proportions without overhauling of the pre-existing setup. Metabolic engineering is at the frontiers to develop microbial chassis for biofuel bio-foundries to meet the industrial needs for clean energy. This review does a thorough inquiry of recent developments in metabolic engineering for increasing titers, rates, and yields (TRY) of biofuel production by engineered microorganisms.
Collapse
Affiliation(s)
- Swati Joshi
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India; Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - SukhDev Mishra
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Noushahi HA, Khan AH, Noushahi UF, Hussain M, Javed T, Zafar M, Batool M, Ahmed U, Liu K, Harrison MT, Saud S, Fahad S, Shu S. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. PLANT GROWTH REGULATION 2022; 97:439-454. [PMID: 35382096 PMCID: PMC8969394 DOI: 10.1007/s10725-022-00818-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 05/13/2023]
Abstract
"Triterpenoids" can be considered natural products derived from the cyclization of squalene, yielding 3-deoxytriterpenes (hydrocarbons) or 3-hydroxytriterpenes. Triterpenoids are metabolites of these two classes of triterpenes, produced by the functionalization of their carbon skeleton. They can be categorized into different groups based on their structural formula/design. Triterpenoids are an important group of compounds that are widely used in the fields of pharmacology, food, and industrial biotechnology. However, inadequate synthetic methods and insufficient knowledge of the biosynthesis of triterpenoids, such as their structure, enzymatic activity, and the methods used to produce pure and active triterpenoids, are key problems that limit the production of these active metabolites. Here, we summarize the derivatives, pharmaceutical properties, and biosynthetic pathways of triterpenoids and review the enzymes involved in their biosynthetic pathway. Furthermore, we concluded the screening methods, identified the genes involved in the pathways, and highlighted the appropriate strategies used to enhance their biosynthetic production to facilitate the commercial process of triterpenoids through the synthetic biology method.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, 3460000 Talca, Chile
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Usama Farhan Noushahi
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Shah Saud
- College of Life Science, Linyi University, 276000 Linyi, Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, 570228 Haikou, China
- Department of Agronomy, The University of Haripur, 22620 Haripur, Pakistan
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
18
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Tadi SRR, Nehru G, Sivaprakasam S. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Appl Biochem Biotechnol 2022; 194:1740-1754. [DOI: 10.1007/s12010-021-03783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
|
20
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Park J, Yim SS, Wang HH. High-Throughput Transcriptional Characterization of Regulatory Sequences from Bacterial Biosynthetic Gene Clusters. ACS Synth Biol 2021; 10:1859-1873. [PMID: 34288650 DOI: 10.1021/acssynbio.0c00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent efforts to sequence, survey, and functionally characterize the diverse biosynthetic capabilities of bacteria have identified numerous Biosynthetic Gene Clusters (BGCs). Genes found within BGCs are typically transcriptionally silent, suggesting their expression is tightly regulated. To better elucidate the underlying mechanisms and principles that govern BGC regulation on a DNA sequence level, we employed high-throughput DNA synthesis and multiplexed reporter assays to build and to characterize a library of BGC-derived regulatory sequences. Regulatory sequence transcription levels were measured in the Actinobacteria Streptomyces albidoflavus J1074, a popular model strain from a genus rich in BGC diversity. Transcriptional activities varied over 1000-fold in range and were used to identify key features associated with expression, including GC content, transcription start sites, and sequence motifs. Furthermore, we demonstrated that transcription levels could be modulated through coexpression of global regulatory proteins. Lastly, we developed and optimized a S. albidoflavus cell-free expression system for rapid characterization of regulatory sequences. This work helps to elucidate the regulatory landscape of BGCs and provides a diverse library of characterized regulatory sequences for rational engineering and activation of cryptic BGCs.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sung Sun Yim
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Harris H. Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| |
Collapse
|
22
|
Arsın H, Jasilionis A, Dahle H, Sandaa RA, Stokke R, Nordberg Karlsson E, Steen IH. Exploring Codon Adjustment Strategies towards Escherichia coli-Based Production of Viral Proteins Encoded by HTH1, a Novel Prophage of the Marine Bacterium Hypnocyclicus thermotrophus. Viruses 2021; 13:v13071215. [PMID: 34201869 PMCID: PMC8310279 DOI: 10.3390/v13071215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Marine viral sequence space is immense and presents a promising resource for the discovery of new enzymes interesting for research and biotechnology. However, bottlenecks in the functional annotation of viral genes and soluble heterologous production of proteins hinder access to downstream characterization, subsequently impeding the discovery process. While commonly utilized for the heterologous expression of prokaryotic genes, codon adjustment approaches have not been fully explored for viral genes. Herein, the sequence-based identification of a putative prophage is reported from within the genome of Hypnocyclicus thermotrophus, a Gram-negative, moderately thermophilic bacterium isolated from the Seven Sisters hydrothermal vent field. A prophage-associated gene cluster, consisting of 46 protein coding genes, was identified and given the proposed name Hypnocyclicus thermotrophus phage H1 (HTH1). HTH1 was taxonomically assigned to the viral family Siphoviridae, by lowest common ancestor analysis of its genome and phylogeny analyses based on proteins predicted as holin and DNA polymerase. The gene neighbourhood around the HTH1 lytic cassette was found most similar to viruses infecting Gram-positive bacteria. In the HTH1 lytic cassette, an N-acetylmuramoyl-L-alanine amidase (Amidase_2) with a peptidoglycan binding motif (LysM) was identified. A total of nine genes coding for enzymes putatively related to lysis, nucleic acid modification and of unknown function were subjected to heterologous expression in Escherichia coli. Codon optimization and codon harmonization approaches were applied in parallel to compare their effects on produced proteins. Comparison of protein yields and thermostability demonstrated that codon optimization yielded higher levels of soluble protein, but codon harmonization led to proteins with higher thermostability, implying a higher folding quality. Altogether, our study suggests that both codon optimization and codon harmonization are valuable approaches for successful heterologous expression of viral genes in E. coli, but codon harmonization may be preferable in obtaining recombinant viral proteins of higher folding quality.
Collapse
Affiliation(s)
- Hasan Arsın
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Correspondence: (H.A.); (I.H.S.); Tel.: +47-555-88-375 (I.H.S.)
| | - Andrius Jasilionis
- Division of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (A.J.); (E.N.K.)
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Computational Biology Unit, University of Bergen, N-5020 Bergen, Norway
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
| | - Runar Stokke
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (A.J.); (E.N.K.)
| | - Ida Helene Steen
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Correspondence: (H.A.); (I.H.S.); Tel.: +47-555-88-375 (I.H.S.)
| |
Collapse
|
23
|
Lin Y, Guan Y, Dong X, Ma Y, Wang X, Leng Y, Wu F, Ye JW, Chen GQ. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch. Metab Eng 2021; 64:134-145. [PMID: 33577951 DOI: 10.1016/j.ymben.2021.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Halomonas bluephagenesis has been successfully engineered to produce multiple products under open unsterile conditions utilizing costly glucose as the carbon source. It would be highly interesting to investigate if H. bluephagenesis, a chassis for the Next Generation Industrial Biotechnology (NGIB), can be reconstructed to become an extracellular hydrolytic enzyme producer replacing traditional enzyme producer Bacillus spp. If successful, cost of bulk hydrolytic enzymes such as amylase and protease, can be significantly reduced due to the contamination resistant and robust growth of H. bluephagenesis. This also allows H. bluephagenesis to be able to grow on low cost substrates such as starch. The modularized secretion machinery was constructed and fine-tuned in H. bluephagenesis using codon-optimized gene encoding α-amylase from Bacillus lichenifomis. Screening of suitable signal peptides and linkers based on super-fold green fluorescence protein (sfGFP) for enhanced expression in H. bluephagenesis resulted in a 7-fold enhancement of sfGFP secretion in the recombinant H. bluephagenesis. When the gene encoding sfGFP was replaced by α-amylase encoding gene, recombinant H. bluephagenesis harboring this amylase secretory system was able to produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), ectoine and L-threonine utilizing starch as the growth substrate, respectively. Recombinant H. bluephagenesis TN04 expressing genes encoding α-amylase and glucosidase on chromosome and plasmid-based systems, respectively, was able to grow on corn starch to approximately 10 g/L cell dry weight containing 51% PHB when grown in shake flasks. H. bluephagenesis was demonstrated to be a chassis for productions of extracellular enzymes and multiple products from low cost corn starch.
Collapse
Affiliation(s)
- Yina Lin
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China
| | - Yuying Guan
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Dong
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yueyuan Ma
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China
| | - Yuchen Leng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Aguirre A, Peiru S, Rasia R, Castelli ME, Menzella HG. Cloning and Production of Thermostable Enzymes for the Hydrolysis of Steryl Glucosides in Biodiesel. Methods Mol Biol 2021; 2290:203-214. [PMID: 34009592 DOI: 10.1007/978-1-0716-1323-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vegetable oil-derived biodiesels have a major quality problem due to the presence of precipitates formed by steryl glucosides, which clog filters and injectors of diesel engines. An efficient, scalable, and cost-effective method to hydrolyze steryl glucosides using thermostable enzymes has been developed. Here, methods to discover, express in recombinant microorganisms and manufacture enzymes with SGase activity, as well as methods to treat biodiesel with such enzymes, and to measure the content of steryl glucosides in biodiesel samples are presented.
Collapse
Affiliation(s)
- Andrés Aguirre
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina
| | - Salvador Peiru
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina
| | - Rodolfo Rasia
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Hugo G Menzella
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina.
| |
Collapse
|
25
|
Daletos G, Stephanopoulos G. Protein engineering strategies for microbial production of isoprenoids. Metab Eng Commun 2020; 11:e00129. [PMID: 32612930 PMCID: PMC7322351 DOI: 10.1016/j.mec.2020.e00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 01/16/2023] Open
Abstract
Isoprenoids comprise one of the most chemically diverse family of natural products with high commercial interest. The structural diversity of isoprenoids is mainly due to the modular activity of three distinct classes of enzymes, including prenyl diphosphate synthases, terpene synthases, and cytochrome P450s. The heterologous expression of these enzymes in microbial systems is suggested to be a promising sustainable way for the production of isoprenoids. Several limitations are associated with native enzymes, such as low stability, activity, and expression profiles. To address these challenges, protein engineering has been applied to improve the catalytic activity, selectivity, and substrate turnover of enzymes. In addition, the natural promiscuity and modular fashion of isoprenoid enzymes render them excellent targets for combinatorial studies and the production of new-to-nature metabolites. In this review, we discuss key individual and multienzyme level strategies for the successful implementation of enzyme engineering towards efficient microbial production of high-value isoprenoids. Challenges and future directions of protein engineering as a complementary strategy to metabolic engineering are likewise outlined.
Collapse
Affiliation(s)
- Georgios Daletos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
26
|
Presenting a codon-optimized palette of fluorescent proteins for use in Candida albicans. Sci Rep 2020; 10:6158. [PMID: 32273559 PMCID: PMC7145796 DOI: 10.1038/s41598-020-63308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Fluorescent proteins with varying colors are indispensable tools for the life sciences research community. These fluorophores are often developed for use in mammalian systems, with incremental enhancements or new versions published frequently. However, the successful application of these labels in other organisms in the tree of life, such as the fungus Candida albicans, can be difficult to achieve due to the difficulty in engineering constructs for good expression in these organisms. In this contribution, we present a palette of Candida-optimized fluorescent proteins ranging from cyan to red and assess their application potential. We also compare a range of reported expression optimization techniques, and find that none of these strategies is generally applicable, and that even very closely related proteins require the application of different strategies to achieve good expression. In addition to reporting new fluorescent protein variants for applications in Candida albicans, our work highlights the ongoing challenges in optimizing protein expression in heterologous systems.
Collapse
|
27
|
Altermann E, Hickey WJ. Grand Challenges in Microbiotechnology: Through the Prism of Microbiotechnology. Front Microbiol 2020; 11:430. [PMID: 32265872 PMCID: PMC7099634 DOI: 10.3389/fmicb.2020.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Eric Altermann
- AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - William J Hickey
- Department of Soil Science, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
28
|
Sinitski D, Gruner K, Bernhagen J, Panstruga R. Studying Plant MIF/D-DT-Like Genes and Proteins (MDLs). Methods Mol Biol 2020; 2080:249-261. [PMID: 31745887 DOI: 10.1007/978-1-4939-9936-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human macrophage migration inhibitory factor (MIF) is an inflammatory cytokine with chemokine-like characteristics and an upstream regulator of host innate immunity. It is a critical mediator of a variety of human diseases, such as acute and chronic inflammatory diseases, autoimmunity, atherosclerosis, and cancer. MIF is an atypical chemokine that not only signals through its cognate receptor CD74, but also interacts with the classical chemokine receptors CXCR2 and CXCR4. MIF and its homolog D-dopachrome tautomerase (D-DT)/MIF-2 are structurally unique proteins that are conserved across kingdoms and that share a remarkable homology with bacterial tautomerases/isomerases, albeit the relevance of the tautomerase activity in mammalian systems has remained unclear. Intriguingly, in silico analysis also predicts MIF orthologs in plants such as in the model plant Arabidopsis thaliana. There are three predicted MIF orthologs in A. thaliana, which have been termed A. thaliana MIF/D-DT-like proteins (AtMDLs). Anticipating that there will be a future research interest in studying AtMDLs or other plant MDLs, here we describe methods how to clone, recombinantly express and purify AtMDL proteins, taking into account codon usage differences between plant and mammalian cell systems.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Katrin Gruner
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
- Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
29
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
30
|
Doyle BM, Turner SM, Sunshine MD, Doerfler PA, Poirier AE, Vaught LA, Jorgensen ML, Falk DJ, Byrne BJ, Fuller DD. AAV Gene Therapy Utilizing Glycosylation-Independent Lysosomal Targeting Tagged GAA in the Hypoglossal Motor System of Pompe Mice. Mol Ther Methods Clin Dev 2019; 15:194-203. [PMID: 31660421 PMCID: PMC6807287 DOI: 10.1016/j.omtm.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Pompe disease is caused by mutations in the gene encoding the lysosomal glycogen-metabolizing enzyme, acid-alpha glucosidase (GAA). Tongue myofibers and hypoglossal motoneurons appear to be particularly susceptible in Pompe disease. Here we used intramuscular delivery of adeno-associated virus serotype 9 (AAV9) for targeted delivery of an enhanced form of GAA to tongue myofibers and motoneurons in 6-month-old Pompe (Gaa -/- ) mice. We hypothesized that addition of a glycosylation-independent lysosomal targeting tag to the protein would result in enhanced expression in tongue (hypoglossal) motoneurons when compared to the untagged GAA. Mice received an injection into the base of the tongue with AAV9 encoding either the tagged or untagged enzyme; tissues were harvested 4 months later. Both AAV9 constructs effectively drove GAA expression in lingual myofibers and hypoglossal motoneurons. However, mice treated with the AAV9 construct encoding the modified GAA enzyme had a >200% increase in the number of GAA-positive motoneurons as compared to the untagged GAA (p < 0.008). Our results confirm that tongue delivery of AAV9-encoding GAA can effectively target tongue myofibers and associated motoneurons in Pompe mice and indicate that the effectiveness of this approach can be improved by addition of the glycosylation-independent lysosomal targeting tag.
Collapse
Affiliation(s)
- Brendan M. Doyle
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Sara M.F. Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Michael D. Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Phillip A. Doerfler
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Amy E. Poirier
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A. Vaught
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Marda L. Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Darin J. Falk
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Mcknight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Lee DH, Chu KB, Kang HJ, Lee SH, Chopra M, Choi HJ, Moon EK, Inn KS, Quan FS. Protection induced by malaria virus-like particles containing codon-optimized AMA-1 of Plasmodium berghei. Malar J 2019; 18:394. [PMID: 31796032 PMCID: PMC6888966 DOI: 10.1186/s12936-019-3017-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
Background Despite the extensive endeavours, developing an effective malaria vaccine remains as a great challenge. Apical membrane antigen 1 (AMA-1) located on the merozoite surface of parasites belonging to the genus Plasmodium is involved in red blood cell invasion. Methods Influenza virus-like particle (VLP) vaccines containing codon-optimized or native (non-codon optimized) AMA-1 from Plasmodium berghei were generated. VLP-induced protective immunity was evaluated in a mouse model. Results Mice immunized with VLP vaccine containing the codon-optimized AMA-1 elicited higher levels of P. berghei-specific IgG and IgG2a antibody responses compared to VLPs containing non-codon optimized AMA-1 before and after challenge infection. Codon-optimized AMA-1 VLP vaccination induced higher levels of CD4+ T cells, CD8+ T cells, B cells, and germinal centre cell responses compared to non-codon optimized AMA-1 VLPs. Importantly, the codon-optimized AMA-1 VLP vaccination showed lower body weight loss, longer survival and a significant decrease in parasitaemia compared to non-codon optimized VLP vaccination. Conclusion Overall, VLP vaccine expressing codon-optimized AMA-1 induced better protective efficacy than VLPs expressing the non-codon optimized AMA-1. Current findings highlight the importance of codon-optimization for vaccine use and its potential involvement in future malaria vaccine design strategies.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Manika Chopra
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea. .,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Ouephanit C, Boonvitthya N, Bozonnet S, Chulalaksananukul W. High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression. Molecules 2019; 24:molecules24193515. [PMID: 31569777 PMCID: PMC6804294 DOI: 10.3390/molecules24193515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France.
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
33
|
Alanjary M, Cano-Prieto C, Gross H, Medema MH. Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 2019; 36:1249-1261. [PMID: 31259995 DOI: 10.1039/c9np00021f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2014 to 2019Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) have been the subject of engineering efforts for multiple decades. Their modular assembly line architecture potentially allows unlocking vast chemical space for biosynthesis. However, attempts thus far are often met with mixed success, due to limited molecular compatibility of the parts used for engineering. Now, new engineering strategies, increases in genomic data, and improved computational tools provide more opportunities for major progress. In this review we highlight some of the challenges and progressive strategies for the re-design of NRPSs & type I PKSs and survey useful computational tools and approaches to attain the ultimate goal of semi-automated and design-based engineering of novel peptide and polyketide products.
Collapse
Affiliation(s)
- Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Bertrand RL, Sorensen JL. Lost in Translation: Challenges with Heterologous Expression of Lichen Polyketide Synthases. ChemistrySelect 2019. [DOI: 10.1002/slct.201901762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Salwan R, Sharma V. Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Arch Microbiol 2019; 201:863-877. [PMID: 31025057 DOI: 10.1007/s00203-019-01662-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Proteases, one of the largest groups of industrial enzymes occupy a major share in detergent industry. To meet the existing demands, proteases with efficient catalytic properties are being explored from bacteria residing in extreme habitats. Alkaline proteases are also considered as promising candidates for industrial sectors due to the activity and stability under alkaline and harsh environment. Therefore, a systematic review on experimental studies of bacterial proteases was conducted with emphasis on purification, characterization, cloning and expression and their suitability as detergent additive. Relevant searches using a combination of filters/keywords were performed in the online databases; PubMed, Science Direct, Scopus and Web of Science. Over thousands of research papers, 71 articles in Scopus, 48 articles in Science Direct, 18 articles in PubMed and 8 articles in Web of Science were selected with regard to bacterial extracellular proteases till date. Selected articles revealed majority of the studies conducted between the years 2015 and 17 and were focused on purification of proteases from bacteria. Among microbes, a total of 41 bacterial genera have been explored with limited studies from extreme habitats. Majority of the studies have reported the involvement of subtilisin-like serine proteases with effective properties for detergent industries. The studies revealed shifting of trend from purification to cloning to genetic engineering to meet the industrial demands. The present systematic review describes the proteases from extremophilic bacteria and use of biotechnological techniques such as site-directed mutagenesis and codon optimization to engineer enzymes with better hot spots in the active sites to meet industrial challenges.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr. YSP- University of Horticulture and Forestry, Neri, Hamirpur, HP, 177 001, India. .,University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|
36
|
Faraji H, Ramezani M, Mashkani B, Sadeghnia HR, Benhangi HM, Hosseini Teshnizi S, Soltani F. Comparison of expression optimization of new derivative of staphylokinase (SAK-2RGD-TTI) with the rSAK. Biotechnol Prog 2019; 35:e2819. [PMID: 30972956 DOI: 10.1002/btpr.2819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 11/06/2022]
Abstract
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3-4 days. The highest expression was obtained at the range of 2-3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25-37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7-9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.
Collapse
Affiliation(s)
- Habibollah Faraji
- Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Neurocognitive Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid M Benhangi
- Department of Toxicology, Islamic Azad University, Shahreza, Isfahan, Iran
| | - Saeed Hosseini Teshnizi
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Konczal J, Bower J, Gray CH. Re-introducing non-optimal synonymous codons into codon-optimized constructs enhances soluble recovery of recombinant proteins from Escherichia coli. PLoS One 2019; 14:e0215892. [PMID: 31013332 PMCID: PMC6478350 DOI: 10.1371/journal.pone.0215892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gene synthesis services have largely superseded traditional PCR methods for the generation of cDNAs destined for bacterial expression vectors. This, in turn, has increased the application of codon-optimized cDNAs where codons rarely used by Escherchia coli are replaced with common synonymous codons to accelerate translation of the target. A markedly accelerated rate of expression often results in a significant uplift in the levels of target protein but a substantial proportion of the enhanced yield can partition to the insoluble fraction rendering a significant portion of the gains unavailable for native purification. We have assessed several expression attenuation strategies for their utility in the manipulation of the soluble fraction towards higher levels of soluble target recovery from codon optimized systems. Using a set of human small GTPases as a case study, we compare the degeneration of the T7 promoter sequence, the use of alternative translational start codons and the manipulation of synonymous codon usage. Degeneration of both the T7 promoter and the translational start codon merely depressed overall expression and did not increase the percentage of product recovered in native purification of the soluble fraction. However, the selective introduction of rare non-optimal codons back into the codon-optimized sequence resulted in significantly elevated recovery of soluble targets. We propose that slowing the rate of extension during translation using a small number of rare codons allows more time for the co-translational folding of the nascent polypeptide. This increases the proportion of the target recovered in the soluble fraction by immobilized metal affinity chromatography (IMAC). Thus, a "de-optimization" of codon-optimized cDNAs, to attenuate or pause the translation process, may prove a useful strategy for improved recombinant protein production.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Justin Bower
- Drug Discovery Program, CRUK Beatson Institute, Glasgow, United Kingdom
| | | |
Collapse
|
38
|
"CodonWizard" - An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expr Purif 2019; 160:84-93. [PMID: 30953700 DOI: 10.1016/j.pep.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 11/22/2022]
Abstract
Optimization of coding sequences to maximize protein expression yield is often outsourced to external service providers during commercial gene synthesis and thus unfortunately remains a black box for many researchers. The presented software program "CodonWizard" offers scientists a powerful but easy-to-use tool for customizable codon optimization: The intuitive graphical user interface empowers even scientists inexperienced in the art to straightforward design, modify, test and save complex codon optimization strategies and to publicly share successful otimization strategies among the scientific community. "Codon Wizard" provides highly flexible features for sequence analysis and completely customizable modification/optimization of codon usage of any given input sequence data (DNA/RNA/peptide) using freely combinable algorithms, allowing for implementation of contemporary, well-established optimization strategies as well as novel, proprietary ones alike. Contrary to comparable tools, "Codon Wizard" thus finally opens up ways for an empirical approach to codon optimization and may also >be used completely offline to protect resulting intellectual property. As a benchmark, the reliability, intuitiveness and utility of the application could be demonstrated by increasing the yield of recombinant TEV-protease expressed in E. coli by several orders of magnitude after codon optimization using "CodonWizard" - Permanently available for download on the web at http://schwalbe.org.chemie.uni-frankfurt.de/node/3324.
Collapse
|
39
|
Cerminati S, Paoletti L, Aguirre A, Peirú S, Menzella HG, Castelli ME. Industrial uses of phospholipases: current state and future applications. Appl Microbiol Biotechnol 2019; 103:2571-2582. [DOI: 10.1007/s00253-019-09658-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/18/2022]
|
40
|
Gaikwad SS, Lee HJ, Kim JY, Choi KS. Expression and serological application of recombinant epitope-repeat protein carrying an immunodominant epitope of Newcastle disease virus nucleoprotein. Clin Exp Vaccine Res 2019; 8:27-34. [PMID: 30775348 PMCID: PMC6369128 DOI: 10.7774/cevr.2019.8.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The aim of the present study was to develop a serodiagnostic test for differentiation infected from vaccinated animal (DIVA) strategy accompanying the marker vaccine lacking an immunodominant epitope (IDE) of nucleoprotein of Newcastle disease virus (NDV). Materials and Methods Recombinant epitope-repeat protein (rERP) gene encoding eight repeats of the IDE sequence (ETQFLDLMRAVANSMR) by tetra-glycine linker was synthesized. Recombinant baculovirus carrying the rERP gene was generated to express the rERP in insect cells. Specificity and sensitivity of an indirect enzyme-linked immunosorbent assay (ELISA) employing the rERP was evaluated. Results The rERP with molecular weight of 20 kDa was successfully expressed by the recombinant baculovirus in an insect-baculovirus system. The rERP was antigenically functional as demonstrated by Western blotting. An indirect ELISA employing the rERP was developed and its specificity and sensitivity was determined. The ELISA test allowed discrimination of NDV infected sera from epitope deletion virus vaccinated sera. Conclusion The preliminary results represent rERP ELISA as a promising DIVA diagnostic tool.
Collapse
Affiliation(s)
- Satish S Gaikwad
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Parbhani, India
| | - Hyun-Jeong Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Ji-Ye Kim
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Kang-Seuk Choi
- Planning and Coordination Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
41
|
Nieuwkoop T, Claassens NJ, van der Oost J. Improved protein production and codon optimization analyses in Escherichia coli by bicistronic design. Microb Biotechnol 2019; 12:173-179. [PMID: 30484964 PMCID: PMC6302717 DOI: 10.1111/1751-7915.13332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Different codon optimization algorithms are available that aim at improving protein production by optimizing translation elongation. In these algorithms, it is generally not considered how the altered protein coding sequence will affect the secondary structure of the corresponding RNA transcript, particularly not the effect on the 5'-UTR structure and related ribosome binding site availability. This is a serious drawback, because the influence of codon usage on mRNA secondary structures, especially near the start of a gene, may strongly influence translation initiation. In this study, we aim to reduce the effect of codon usage on translation initiation by applying a bicistronic design (BCD) element. Protein production of several codon-optimized gene variants is tested in parallel for a BCD and a standard monocistronic design (MCD). We demonstrate that these distinct architectures can drastically change the relative performance of different codon optimization algorithms. We conclude that a BCD is indispensable in future studies that aim to reveal the impact of codon optimization and codon usage correlations. Furthermore, irrespective of the algorithm used, using a BCD does improve protein production compared with an MCD. The overall highest expression from BCDs for both GFP and RFP is at least twofold higher than the highest levels found for the MCDs, while for codon variants having very low expression from the MCD, even 10-fold to 100-fold increases in expression were achieved by the BCD. This shows the great potential of the BCD element for recombinant protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708 WEWageningenThe Netherlands
| | - Nico J. Claassens
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708 WEWageningenThe Netherlands
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - John van der Oost
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708 WEWageningenThe Netherlands
| |
Collapse
|
42
|
Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the Methanocaldococcus jannaschii Orthogonal Pair. Genes (Basel) 2018; 9:genes9110546. [PMID: 30424562 PMCID: PMC6266110 DOI: 10.3390/genes9110546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.
Collapse
|
43
|
Wang G, Jia W, Chen N, Zhang K, Wang L, Lv P, He R, Wang M, Zhang D. A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:232. [PMID: 30159032 PMCID: PMC6109270 DOI: 10.1186/s13068-018-1223-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei, the most widely used cellulase producer, also has promising applications in lignocellulose-based biorefinery: consolidated bioprocessing for the production of high value-added products. However, such applications are thwarted by the time-consuming metabolic engineering processes (design-build-test-learn cycle) for T. reesei, resulted from (i) the spore separation-mediated purification as the multinucleate hyphae, (ii) transformant screening for high expression levels since unavailable of episomal expression system, and (iii) cases of inexpressible heterologous proteins. RESULTS In this study, a GFP-fusion coupled fluorescence-activated cell sorting (FACS) platform was established to speed up the build and test process of the DBTL cycle, by enabling rapid selection for expressible heterologous genes and bypassing both laborious spore separation and transformant screening. Here, the feasibility of flow cytometry in analyzing and sorting T. reesei cells harboring GFP-fused expressible protein was proven, as well as the application of the platform for constitutive promoter strength evaluation. As a proof-of-concept, the platform was employed to construct the first T. reesei strain producing fatty alcohol, resulting in up to 2 mg hexadecanol being produced per gram biomass. Pathway construction was enabled through rapid selection of functional fatty acyl-CoA reductase encoding gene Tafar1 from three candidate genes and strains with high expression level from spore pools. As a result of using this method, the total costed time for the build and test cycle using T. reesei, subsequently, reduced by approx. 75% from 2 months to 2 weeks. CONCLUSION This study established the GFP-fusion coupling FACS platform and the first filamentous fungal fatty alcohol-producing cell factory, and demonstrated versatile applications of the platform in the metabolic engineering of filamentous fungi, which can be harnessed to potentially advance the application of filamentous fungi in lignocellulose-based biorefinery.
Collapse
Affiliation(s)
- Guokun Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Wendi Jia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Na Chen
- Tangshan Academy of Agricultural Sciences, Tangshan, 063001 People’s Republic of China
| | - Ke Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Pin Lv
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Min Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Dongyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
44
|
Improving heterologous expression of porcine follicle-stimulating hormone in Pichia pastoris by integrating molecular strategies and culture condition optimization. Appl Microbiol Biotechnol 2018; 102:8867-8882. [PMID: 30136206 DOI: 10.1007/s00253-018-9260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Collapse
|
45
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
46
|
Escudero JA, Nivina A, Cambray G, López-Igual R, Loot C, Mazel D. Recoding of synonymous genes to expand evolutionary landscapes requires control of secondary structure affecting translation. Biotechnol Bioeng 2018; 115:184-191. [DOI: 10.1002/bit.26450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jose A. Escudero
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid Spain
- VISAVET Health Surveillance Centre; Universidad Complutense Madrid; Madrid Spain
| | - Aleksandra Nivina
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | | | - Rocío López-Igual
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| | - Celine Loot
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| | - Didier Mazel
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| |
Collapse
|
47
|
Alatortseva GI, Sidorov AV, Nesterenko LN, Luhverchik LN, Zhukina MV, Amiantova II, Milovanova AV, Vorobev DS, Ammur YI, Mikhailov MI, Kyuregyan KK, Kichatova VS, Potemkin IA, Isaeva OV, Malinnikova EY, Karlsen AA, Blinov VM, Nurmatov ZS, Nurmatov AZ, Kasymov OT, Zhavoronok SV, Zverev VV. DESIGN OF HEPATITIS E VIRUS GENOTYPE 1 RECOMBINANT ORF3 PROTEIN BY CODON OPTIMIZATION METHOD. ЖУРНАЛ МИКРОБИОЛОГИИ, ЭПИДЕМИОЛОГИИ И ИММУНОБИОЛОГИИ 2017. [DOI: 10.36233/0372-9311-2017-6-63-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim. The development of the hepatitis E virus (HEV) genotype 1 full-size ORF3 recombinant polypeptide. Materials and methods. Escherichia coli strains, plasmid vectors, serological and clinical samples, ELISA reagent kits, molecular biological, bioinformatic, biotechnological, biochemical and serological methods. Results. HEV genotype 1 RNA had been isolated from clinical samples collected in Kyrgyzstan. DNA copy of subgenomic virus RNA had been cloned and used for further development of E.coli strains producing full-size recombinant protein ORF3 fused to E.coli beta-galactosidase. Codons optimization method was used in aim to increase expression level of recombinant protein. Recombinant protein ORF3 had been isolated from the inclusion bodies of the E.coli biomass and purified by size exclusion chromatography. Antigenic specificity of recombinant polypeptide had been confirmed by enzyme-linked immunosorbent assay and Western blotting with the specific sera. Conclusion. HEVgenotype 1 ORF3 recombinant antigen had been designed, and it’s applicability in diagnostic tests had been experimentally confirmed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu. I. Ammur
- Mechnikov Research Institute of Vaccines and Sera
| | - M. I. Mikhailov
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - K. K. Kyuregyan
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - V. S. Kichatova
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - I. A. Potemkin
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - O. V. Isaeva
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - E. Yu. Malinnikova
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - A. A. Karlsen
- Mechnikov Research Institute of Vaccines and Sera, Russian Medical Academy of Continuous Professional Education
| | - V. M. Blinov
- Mechnikov Research Institute of Vaccines and Sera
| | | | | | - O. T. Kasymov
- Scientific Production Association «Preventive Medicine»
| | | | - V. V. Zverev
- Mechnikov Research Institute of Vaccines and Sera
| |
Collapse
|
48
|
Paul P, Malakar AK, Chakraborty S. Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes. Food Sci Biotechnol 2017; 27:725-733. [PMID: 30263798 DOI: 10.1007/s10068-017-0285-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
The plant Brassica campestris includes the vegetables turnip and Chinese cabbage, important plants of economic importance. Here, we have analysed the codon usage bias of B. campestris for 116 protein coding genes. Neutrality analysis showed that B. campestris had a wide range of GC3s, and a significant correlation was observed between GC12 and GC3. Nc versus GC3s plot showed a few genes on or proximate to the expected curve, but the majority of points were found to be scattered distantly from the expected curve. Correspondence analysis on codon usage revealed that the position preference of codons on multidimensional space totally depends on the presence of A and T at synonymous third codon position. These results altogether suggest that composition bias along with selection (major) and mutation pressure (minor) affects the codon usage pattern of the protein coding genes in Brassica campestris.
Collapse
Affiliation(s)
- Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | - Arup Kumar Malakar
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | | |
Collapse
|
49
|
Deng SQ, Cai QD, Deng MZ, Huang Q, Peng HJ. Scorpion neurotoxin AaIT-expressing Beauveria bassiana enhances the virulence against Aedes albopictus mosquitoes. AMB Express 2017; 7:121. [PMID: 28605881 PMCID: PMC5466577 DOI: 10.1186/s13568-017-0422-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the insecticidal efficacy of this entomopathogen Beauveria bassiana, the fungus was genetically modified to express an insect-specific scorpion neurotoxin AaIT. The virulence of the recombinant B. bassiana strain (Bb-AaIT) against Aedes albopictus adults (which occurs via penetration through the cuticle during spore germination or by conidia ingestion), and the larvae (by conidia ingestion) was measured with bioassays. The median lethal concentration (LC50) of Bb-AaIT against A. albopictus larvae was 313.3-fold lower on day 4 and 11.3-fold lower on day 10 than that of the wild type (WT). Through conidia feeding or body contact, Bb-AaIT killed 50% of adult female mosquitoes at 3.9- or 1.9-fold reduced concentrations on day 4 and at 2.1- or 2.4-fold reduced concentrations on day 10. Compared with the results for the WT, the median lethal time (LT50) of Bb-AaIT was reduced by 28.6% at 1 × 107 conidia ml-1 and 34.3% at 1 × 106 conidia ml-1 in the larvae bioassay by conidia ingestion, while it decreased 32.3% at 1 × 107 conidia ml-1 by conidia ingestion and 24.2% at 1 × 108 conidia ml-1 by penetrating through the cuticle in the adult bioassay. All the differences were significant. Our findings indicated that Bb-AaIT had higher virulence and faster action than the WT in killing the larval and adult mosquitoes, and therefore, it is valuable for development as a commercial mosquito pesticide.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Qun-Di Cai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Ming-Zhi Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Qiang Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| |
Collapse
|
50
|
Edri I, Goldenberg M, Lisnyansky M, Strulovich R, Newman H, Loewenstein A, Khananshvili D, Giladi M, Haitin Y. Overexpression and Purification of Human Cis-prenyltransferase in Escherichia coli. J Vis Exp 2017. [PMID: 28809830 DOI: 10.3791/56430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prenyltransferases (PT) are a group of enzymes that catalyze chain elongation of allylic diphosphate using isopentenyl diphosphate (IPP) via multiple condensation reactions. DHDDS (dehydrodolichyl diphosphate synthase) is a eukaryotic long-chain cis-PT (forming cis double bonds from the condensation reaction) that catalyzes chain elongation of farnesyl diphosphate (FPP, an allylic diphosphate) via multiple condensations with isopentenyl diphosphate (IPP). DHDDS is of biomedical importance, as a non-conservative mutation (K42E) in the enzyme results in retinitis pigmentosa, ultimately leading to blindness. Therefore, the present protocol was developed in order to acquire large quantities of purified DHDDS, suitable for mechanistic studies. Here, the usage of protein fusion, optimized culture conditions and codon-optimization were used to allow the overexpression and purification of functionally active human DHDDS in E. coli. The described protocol is simple, cost-effective and time sparing. The homology of cis-PT among different species suggests that this protocol may be applied for other eukaryotic cis-PT as well, such as those involved in natural rubber synthesis.
Collapse
Affiliation(s)
- Ilan Edri
- Sackler Faculty of Medicine, Tel Aviv University
| | | | - Michal Lisnyansky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Roi Strulovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Anat Loewenstein
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University;
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|