1
|
Xiao Y, Wang J, Sun P, Ding T, Li J, Deng Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: A review. Int J Food Microbiol 2025; 426:110901. [PMID: 39243533 DOI: 10.1016/j.ijfoodmicro.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Collapse
Affiliation(s)
- Yang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; School of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, China
| | - Jiayang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Pengdong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
2
|
Pakkiyam S, Marimuthu M, Kumar J, Ganesh V, Veerapandian M. Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics. Int J Biol Macromol 2024; 293:139369. [PMID: 39743089 DOI: 10.1016/j.ijbiomac.2024.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system. Classical methods deployed in dermal biofilm crosstalk studies often hamper many individuals from early diagnosis and rationalized therapy. Herein, the present report aims to study the role of skin microbiota and mechanisms of microbial crosstalk with host immune system. The emerging analytical tools devised for sensor/biosensor platforms, including molecularly imprinted polymers, microarrays, aptamers, CRISPR-cas9, and optical/electrochemical approaches, are discussed as alternative methods for important biomarker analysis. Further, the types and characteristics of microorganism-derived macromolecules and the recent skin organoid toward personalized therapy are highlighted. This information will largely benefit researchers involved in the pathophysiology of skin disease, wound dressing materials, including diagnostic and healing patch designs, in addition to biological macromolecules devoted to wound repair.
Collapse
Affiliation(s)
- Sangavi Pakkiyam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Marimuthu
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology Tiruchirappalli Campus, Trichy 621 105, Tamil Nadu, India; Innovaspark STEM Edutainment Centre, Karaikudi 630 003, Tamil Nadu, India
| | - Jitendra Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - V Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. mBio 2024:e0343324. [PMID: 39714184 DOI: 10.1128/mbio.03433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote pathogen fitness in stationary phase. We discovered that the maintenance of lipid asymmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type (WT) and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48 h stationary phase cultures. The mutant defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48 h. However, by 96 h the culturability of the WT and mutant strains were equivalent. By monitoring the abundances of genomically barcoded libraries of WT and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96 h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the defect of ∆mlaE. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for maintaining the culturability of V. cholerae because it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. IMPORTANCE Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction is limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high-energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis that emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G Zingl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A Morano
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Lavrikova A, Janda M, Bujdáková H, Hensel K. Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178184. [PMID: 39718071 DOI: 10.1016/j.scitotenv.2024.178184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited. This study reports the effects of a cold plasma generated by a pulsed streamer corona discharge in air on single- and mixed-species biofilms of P. aeruginosa and S. aureus. The plasma causes significant biofilm biomass reduction, bacteria inactivation, and alteration in intracellular metabolism. For single-species biofilms S. aureus is found more tolerant to plasma than P. aeruginosa, and mixed-species biofilms display higher tolerance of both bacteria to plasma than in single-species biofilms. A comparison between wet and dehydrated biofilms reveals reduced plasma efficacy in wet environments. Consequently, biofilm dehydration prior to the plasma treatment facilitates penetration of plasma reactive species leading to higher bacteria inactivation. The evaluation of plasma-generated gaseous reactive species reveals O3 and NO2 being dominant species contributing to the etching mechanism of the overall plasma anti-biofilm effect. Despite the strong anti-biofilm effect is obtained, the biofilm regrowth on the next day after plasma treatment implies on the inability of pulsed streamer corona discharge to permanently eradicate biofilms on a surface. The search for adequate plasma treatment conditions of biofilms remains crucial to avoid the appearance of more adaptive biofilms.
Collapse
Affiliation(s)
- Aleksandra Lavrikova
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia; Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
| | - Mário Janda
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Karol Hensel
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| |
Collapse
|
5
|
Pitell S, Spencer-Williams I, Huffman D, Moncure P, Millstone J, Stout J, Gilbertson L, Haig SJ. Not the Silver Bullet: Uncovering the Unexpected Limited Impacts of Silver-Containing Showerheads on the Drinking Water Microbiome. ACS ES&T WATER 2024; 4:5364-5376. [PMID: 39698548 PMCID: PMC11650587 DOI: 10.1021/acsestwater.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
The incidence of waterborne disease outbreaks in the United States attributed to drinking water-associated pathogens that can cause infections in the immunocompromised DWPIs (e.g., Legionella pneumophila, nontuberculous mycobacteria (NTM), and Pseudomonas aeruginosa, among others) appears to be increasing. An emerging technology adopted to reduce DWPIs are point-of-use devices, such as showerheads that contain silver, a known antimicrobial material. In this study, we evaluate the effect of silver-containing showerheads on DWPI density and the broader microbiome in shower water under real-use conditions in a full-scale shower system, considering three different silver-modified showerhead designs: (i) silver mesh within the showerhead, (ii) silver-coated copper mesh in the head and hose, and (iii) silver-embedded polymer composite compared to conventional plastic and metal showerheads. We found no significant difference in targeted DWPI transcriptional activity in collected water across silver and nonsilver shower head designs. Yet, the presence of silver and how it was incorporated in the showerhead influenced the metal concentrations, microbial rare taxa, and microbiome functionality. Microbial dynamics were also influenced by the showerhead age (i.e., time after installation). The results of this study provide valuable information for consumers and building managers to consider when choosing a showerhead meant to reduce microorganisms in shower water.
Collapse
Affiliation(s)
- Sarah Pitell
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Isaiah Spencer-Williams
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel Huffman
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paige Moncure
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jill Millstone
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Janet Stout
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Special
Pathogens Laboratory, Pittsburgh, Pennsylvania 15219, United States
| | - Leanne Gilbertson
- Department
of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sarah-Jane Haig
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024; 37:e0018623. [PMID: 39388143 PMCID: PMC11640306 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene
and Environmental Medicine, University Medicine
Greifswald, Greifswald,
Germany
| | - Franziska Lexow
- Department for
Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and
Control, Robert Koch Institute,
Berlin, Germany
| | - Anna Bludau
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Antonia Milena Köster
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Martin Misailovski
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
- Department of
Geriatrics, University of Göttingen Medical
Center, Göttingen,
Germany
| | - Ulrike Seifert
- Friedrich
Loeffler-Institute of Medical Microbiology – Virology, University
Medicine Greifswald,
Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G.
Enders MVZ GbR, Stuttgart,
Germany
| | - William Rutala
- Division of Infectious
Diseases, University of North Carolina School of
Medicine, Chapel Hill,
North Carolina, USA
| | - Stephanie J. Dancer
- Department of
Microbiology, University Hospital
Hairmyres, Glasgow,
United Kingdom
- School of Applied
Sciences, Edinburgh Napier University,
Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| |
Collapse
|
7
|
Neyaz LA, Arafa SH, Alsulami FS, Ashi H, Elbanna K, Abulreesh HH. Culture-Based Standard Methods for the Isolation of Campylobacter spp. in Food and Water. Pol J Microbiol 2024; 73:433-454. [PMID: 39670639 PMCID: PMC11639288 DOI: 10.33073/pjm-2024-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Campylobacter spp. is a major source of global gastrointestinal infections. Their enteric infections are linked to the consumption of undercooked poultry products, contaminated milk and water, and the handling of wild animals and birds. The detection of Campylobacter spp. in water and food samples mainly depends on culture-based techniques. Public Health England (PHE), the U.S. Food and Drug Administration (FDA), and the International Standard Organization (ISO) have standardized Campylobacter spp. isolation and enumeration procedures for food and water samples, which involve the usage of selective agar media and enrichment broth. Different types of selective plating and enrichment media have been prepared for Campylobacter spp. detection and assessment during regular food surveillance and food poisoning. To date, culture media remains the standard option for microbiological food analysis and has been approved by the U.S. Environmental Protection Agency (US EPA), Food and Agriculture Organization (FAO), and World Health Organization (WHO). This review discusses the standard microbiological protocols for Campylobacter spp. isolation and enumeration in food and water and evaluates detection media (pre-enrichment, selective enrichment, and selective plating) for their rational applications. Moreover, it also elaborates on the advantages and disadvantages of recent chromogenic culture media in Campylobacter spp.-oriented food surveillance. This review also highlights the challenges of culture-based techniques, future developments, and alternative methods for Campylobacter spp. detection in food and water samples.
Collapse
Affiliation(s)
- Leena A. Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sara H. Arafa
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fatimah S. Alsulami
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayat Ashi
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Gou Y, Liu D, Xin Y, Wang T, Li J, Xi Y, Zheng X, Che T, Zhang Y, Li T, Feng J. Viable but nonculturable state in the zoonotic pathogen Bartonella henselae induced by low-grade fever temperature and antibiotic treatment. Front Cell Infect Microbiol 2024; 14:1486426. [PMID: 39639866 PMCID: PMC11619046 DOI: 10.3389/fcimb.2024.1486426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
The zoonotic pathogen Bartonella henselae is responsible for diverse human diseases, from mild to life-threatening, but it often eludes detection in culture-based assays. This study investigates the potential of B. henselae to enter a viable but nonculturable (VBNC) state when exposed to human fever temperature or antibiotics, with this state confirmed by successful resuscitation. Viability was assessed using SYBR Green I/PI staining and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), while culturability was determined through colony-forming unit (CFU) counting on blood agar plates. Resuscitation of VBNC cells was attempted using modified Schneider's medium with 10% defibrillated sheep blood. In the results, B. henselae cells entered a VBNC state after 19 days of exposure to 38.8°C. Antibiotics, particularly with bactericidal activity, induced the VBNC state within 4 days treatment. Successful resuscitation confirmed the VBNC state developed via the above two strategies. Transmission electron microscopy (TEM) examination revealed intact cell structures and dense cytosol in VBNC cells, with a significant increase in plasmolytic cells. Notably, VBNC cells demonstrated greater drug tolerance than cells in the stationary phase, which encompassed a substantial portion of persisters. Proteomic analysis revealed the up-regulation of proteins linked to host cell invasion and stress resistance, while proteins related to signaling and cellular processes were down-regulated. Fluorescence in situ hybridization (FISH) analysis confirmed that the VBNC state truly boosted B. henselae's invasion of HUVECs. This study highlights B. henselae's capacity to enter a VBNC state under thermal and antibiotic stress, emphasizing the urgent need for advanced diagnostic and therapeutic strategies to effectively target VBNC cells, which complicate diagnosis and treatment.
Collapse
Affiliation(s)
- Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Dongxia Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Ting Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jiaxin Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Yiwen Xi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Xiaoling Zheng
- Department of Scientific Experimental Research, Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, China
| | - Tuanjie Che
- Department of Scientific Experimental Research, Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Microbiome and Disease Research, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Tingting Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622497. [PMID: 39574722 PMCID: PMC11580980 DOI: 10.1101/2024.11.07.622497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote the pathogen's fitness in stationary phase. We discovered that the Mla ( m aintenance of lipid a symmetry) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48h stationary phase cultures. The mutant's defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48h. However, by 96h the culturability of the mutant and wild-type strains were equivalent. By monitoring the abundances of genomically barcoded libraries of wild-type and Δ mlaE strains, we observed that a few barcodes dominated the mutant culture at 96h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the mlaE mutant's defect. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for the maintenance of V. cholerae's culturability as it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. Importance Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction are limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis which emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Cirilli N, Schiavoni V, Tagliabracci V, Gesuita R, Tiano L, Fabrizzi B, D'Antuono A, Peruzzi A, Cedraro N, Carle F, Moretti M, Ferrante L, Vignaroli C, Biavasco F, Mangiaterra G. Role of viable but non culturable cells in patients with cystic fibrosis in the era of highly effective modulator therapy. J Cyst Fibros 2024; 23:1153-1158. [PMID: 38423895 DOI: 10.1016/j.jcf.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lung infections antibiotic treatment in Cystic Fibrosis patients (pwCF) is often complicated by bacterial persisters, including the so-called Viable but Non Culturable (VBNC) forms, live cells undetected by the routine cultural microbiological methods. This study investigated the occurrence of VBNC cells of five CF bacterial pathogens in 94 pwCF over one year and the possible associations with the patients' clinical features. METHODS Sputum samples, recovered at routine visits and during exacerbation episodes, were analyzed for the presence of the five pathogens by both routine culture-based assays and species-specific qPCR. VBNC cells were estimated as the difference between molecular and cultural counts and their presence was matched with the clinical data in particular the therapeutic regimens. RESULTS All but ten pwCF showed the presence of VBNC cells at least once during the study. Pseudomonas aeruginosa and methicillin-susceptible Staphylococcus aureus were the species most frequently found in the VBNC state. Only the former showed a significant association between chronic infection and VBNC cells presence; VBNC-MSSA positive patients significantly increased overtime. The presence of non culturable bacteria was generally concurrent with poor lung functionality and more frequent pulmonary exacerbations. No significant association with modulator treatment was evidenced. CONCLUSIONS The obtained data demonstrated the overwhelming occurrence of bacterial VBNC cells in CF lung infections, warranting a constant monitoring of pwCF and underlining the need of implementing the routine culture-based assays with culture-independent techniques. This is pivotal to understand the CF bacterial population dynamics and to efficiently contrast the lung infection progression and worsening.
Collapse
Affiliation(s)
- Natalia Cirilli
- Cystic Fibrosis Centre, Department of Gastroenterology and Transplantation, University Hospital of Marche, Via Conca, 71, Ancona 60126, Italy.
| | - Valentina Schiavoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Tagliabracci
- Cystic Fibrosis Centre, Department of Gastroenterology and Transplantation, University Hospital of Marche, Via Conca, 71, Ancona 60126, Italy
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics e Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Centre, Department of Gastroenterology and Transplantation, University Hospital of Marche, Via Conca, 71, Ancona 60126, Italy
| | - Anastasia D'Antuono
- Cystic Fibrosis Centre, Department of Gastroenterology and Transplantation, University Hospital of Marche, Via Conca, 71, Ancona 60126, Italy
| | - Arianna Peruzzi
- Cystic Fibrosis Centre, Department of Gastroenterology and Transplantation, University Hospital of Marche, Via Conca, 71, Ancona 60126, Italy
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Flavia Carle
- Center of Epidemiology, Biostatistics e Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
| | - Marco Moretti
- Clinical Laboratory, University Hospital of Marche, Ancona, Italy
| | - Luigi Ferrante
- Center of Epidemiology, Biostatistics e Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
11
|
Zhang Y, Gao Z, He L. Optical detection and enumeration of Escherichia coli and Salmonella enterica using a low-magnification light microscope. J Microbiol Methods 2024; 226:107041. [PMID: 39277021 DOI: 10.1016/j.mimet.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
A rapid and cost-effective method for detecting bacterial cells from surfaces is critical to food safety, clinical hygiene, and pharmacy quality. Herein, we established an optical detection method based on a gold chip coating with 3-mercaptophenylboronic acid (3-MPBA) to capture bacterial cells, which allows for the detection and quantification of bacterial cells with a standard light microscope under low-magnification (10×) objective lens. Then, integrate the developed optical detection method with swab sampling to detect bacterial cells loading on stainless-steel surfaces. Using Salmonella enterica (SE1045) and Escherichia coli (E. coli OP50) as model bacterial cells, we achieved a capture efficiency of up to 76.0 ± 2.0 % for SE1045 cells and 81.1 ± 3.3 % for E. coli OP50 cells at 103 CFU/mL upon the optimized conditions, which slightly decreased with the increasing bacterial concentrations. Our assay showed good linear relationships between the concentrations of bacterial cells with the cell counting in images in the range of 103 -107 CFU/mL for SE1045, and 103 -108 CFU/mL for E. coli OP50 cells. The limit of detection (LOD) was 103 CFU/mL for both SE1045 and E. coli OP50 cells. A further increase in sensitivity in detecting E. coli OP50 cells was achieved through a heat treatment, enabling the LOD to be reduced as low as 102 CFU/mL. Furthermore, a preliminary application succeeded in assessing bacterial contamination on stainless-steel surfaces following integration with the approximately 40 % recovery rate, suggesting prospects for evaluating the bacteria from surfaces. The entire process was completed within around 2 h, costing merely a few dollars per sample. Considering the low cost of standard light microscopes, our method holds significant potential for practical industrial applications in bacterial contamination control on surfaces, especially in low-resource settings.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA..
| |
Collapse
|
12
|
Radeva S, Vergiev S, Georgiev G, Niyazi D. Emerging Vibrio vulnificus-Associated Infections After Seawater Exposure-Cases from the Bulgarian Black Sea Coast. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1748. [PMID: 39596933 PMCID: PMC11595927 DOI: 10.3390/medicina60111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Objectives: The aim of the current report is to present three cases of necrotizing fasciitis and sepsis caused by Vibrio vulnificus on the Bulgarian Black Sea coast. Materials and Methods: Two of the patients are males, 70 and 86 years of age, respectively, and one is an 86-year-old female. Data were collected from the patients' examination records. V. vulnificus was isolated on 5% sheep blood agar from wound and blood samples and identified by the automated system Phoenix M50 (BD, Franklin Lakes, NJ, USA). Antimicrobial susceptibility was tested with two well-known methods (disk diffusion and broth microdilution). Results: All of the patients were admitted to our hospital due to pain, swelling, ulceration, and bullae on the legs and were febrile. They underwent surgery and received intensive care support. One of the patients developed septicemia and septic shock; one of his legs was amputated, but the outcome was fatal. The other patient received immediate approptiate antibiotic and surgical treatment, and the outcome was favorable. The third patient underwent emergency fasciotomy but died a few hours after admission. Conclusions: Global climate change is affecting the distribution of Vibrio spp., and their incidence is expected to increase. It is important to highlight the need for awareness among immunocompromised and elderly patients of the potential threat posed by V. vulnificus infections.
Collapse
Affiliation(s)
- Stephanie Radeva
- Microbiology Laboratory, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Stoyan Vergiev
- Department of Ecology and Environmental Protection, Technical University of Varna, 9010 Varna, Bulgaria;
| | - Georgi Georgiev
- Anesthesiology and Intensive Care Ward, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria;
| | - Denis Niyazi
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
- Microbiology Laboratory, University Multidisciplinary Hospital for Active Treatment “St. Marina”, 9010 Varna, Bulgaria
| |
Collapse
|
13
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
14
|
Mwangi EW, Shemesh M, Rodov V. Investigating the Antibacterial Effect of a Novel Gallic Acid-Based Green Sanitizer Formulation. Foods 2024; 13:3322. [PMID: 39456384 PMCID: PMC11507653 DOI: 10.3390/foods13203322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of the present study was to investigate the mechanism of action of our newly developed green sanitizer formulation comprising a natural phenolic compound, gallic acid (GA), strengthened by the Generally Recognized as Safe (GRAS) materials hydrogen peroxide (H2O2) and DL-lactic acid (LA). Combining 8 mM GA with 1 mM H2O2 resulted in an abundant generation of reactive oxygen species (ROS) and a bactericidal effect towards Gram-negative (Escherichia coli, Pseudomonas syringae, and Pectobacterium brasiliense) and Gram-positive (Bacillus subtilis) bacteria (4 to 8 log CFU mL-1 reduction). However, the exposure to this dual formulation (DF) caused only a modest 0.7 log CFU mL-1 reduction in the Gram-positive L. innocua population. Amending the DF with 20 mM LA to yield a triple formulation (TF) resulted in the efficient synergistic control of L. innocua proliferation without increasing ROS production. Despite the inability to grow on plates (>7 log CFU mL-1 population reduction), the TF-exposed L. innocua maintained high intracellular ATP pools and stable membrane integrity. The response of L. innocua to TF could be qualified as a "viable but nonculturable" (VBNC) phenomenon, while with the other species tested this formulation caused cell death. This research system may offer a platform for exploring the VBNC phenomenon, a critical food safety topic.
Collapse
Affiliation(s)
- Esther W. Mwangi
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Moshe Shemesh
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
| | - Victor Rodov
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
| |
Collapse
|
15
|
Fernández-Juárez V, Riedinger DJ, Gusmao JB, Delgado-Zambrano LF, Coll-García G, Papazachariou V, Herlemann DPR, Pansch C, Andersson AF, Labrenz M, Riemann L. Temperature, sediment resuspension, and salinity drive the prevalence of Vibrio vulnificus in the coastal Baltic Sea. mBio 2024; 15:e0156924. [PMID: 39297655 PMCID: PMC11481517 DOI: 10.1128/mbio.01569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024] Open
Abstract
The number of Vibrio-related infections in humans, e.g., by Vibrio vulnificus, has increased along the coasts of the Baltic Sea. Due to climate change, vibriosis risk is expected to increase. It is, therefore, pertinent to design a strategy for mitigation of the vibriosis threat in the Baltic Sea area, but a prerequisite is to identify the environmental conditions promoting the occurrence of pathogenic Vibrio spp., like V. vulnificus. To address this, we sampled three coastal Baltic sites in Finland, Germany, and Denmark with salinities between 6 and 21 from May to October 2022. The absolute and relative abundances of Vibrio spp. and V. vulnificus in water were compared to environmental conditions, including the presence of the eelgrass Zostera marina, which has been suggested to reduce pathogenic Vibrio species abundance. In the water column, V. vulnificus only occurred at the German station between July and August at salinity 8.1-11.2. Temperature and phosphate (PO43-) were identified as the most influencing factors for Vibrio spp. and V. vulnificus. The accumulation of Vibrio spp. in the sediment and the co-occurrence with sediment bacteria in the water column indicate that sediment resuspension contributed to V. vulnificus abundance. Interestingly, V. vulnificus co-occurred with specific cyanobacteria taxa, as well as specific bacteria associated with cyanobacteria. Although we found no reduction in Vibrio spp. or V. vulnificus associated with eelgrass beds, our study underscores the importance of extended heatwaves and sediment resuspension, which may elevate the availability of PO43-, for Vibrio species levels at intermediate salinities in the Baltic Sea. IMPORTANCE Elevated sea surface temperatures are increasing the prevalence of pathogenic Vibrio at higher latitudes. The recent increase in Vibrio-related wound infections and deaths along the Baltic coasts is, therefore, of serious health concern. We used culture-independent data generated from three Baltic coastal sites in Denmark, Germany, and Finland from May to October (2022), with a special focus on Vibrio vulnificus, and combined it with environmental data. Our temporal model shows that temperature, combined with sediment resuspension, drives the prevalence of V. vulnificus at intermediate salinities in the coastal Baltic Sea.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David J. Riedinger
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Joao Bosco Gusmao
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | | | - Guillem Coll-García
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel P. R. Herlemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- Estonian University of Life Sciences, Tartu, Estonia
| | - Christian Pansch
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Anders F. Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Zelmer AR, Yang D, Gunn NJ, Solomon LB, Nelson R, Kidd SP, Richter K, Atkins GJ. Osteomyelitis-relevant antibiotics at clinical concentrations show limited effectivity against acute and chronic intracellular S. aureus infections in osteocytes. Antimicrob Agents Chemother 2024; 68:e0080824. [PMID: 39194210 PMCID: PMC11459924 DOI: 10.1128/aac.00808-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.
Collapse
Affiliation(s)
- Anja R. Zelmer
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Dongqing Yang
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Nicholas J. Gunn
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - L. Bogdan Solomon
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Department of Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, Australia
| | - Stephen P. Kidd
- Australian Center for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
- Research Center for Infectious Disease, School of Biological Science, University of Adelaide, Adelaide, Australia
| | - Katharina Richter
- Department of Surgery, Richter Lab, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, Australia
| | - Gerald J. Atkins
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
18
|
Wu R, Li C, Li J, Sjollema J, Geertsema-Doornbusch GI, de Haan-Visser HW, Dijkstra ESC, Ren Y, Zhang Z, Liu J, Flemming HC, Busscher HJ, van der Mei HC. Bacterial killing and the dimensions of bacterial death. NPJ Biofilms Microbiomes 2024; 10:87. [PMID: 39289404 PMCID: PMC11408613 DOI: 10.1038/s41522-024-00559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria can be dead, alive, or exhibit slowed or suspended life forms, making bacterial death difficult to establish. Here, agar-plating, microscopic-counting, SYTO9/propidium-iodide staining, MTT-conversion, and bioluminescence-imaging were used to determine bacterial death upon exposure to different conditions. Rank correlations between pairs of assay outcomes were low, indicating different assays measure different aspects of bacterial death. Principal-component analysis yielded two principal components, named "reproductive-ability" (PC1) and "metabolic-activity" (PC2). Plotting of these principal components in two-dimensional space revealed a dead region, with borders defined by the PC1 and PC2 values. Sensu stricto implies an unpractical reality that all assays determining PC1 and PC2 must be carried out in order to establish bacterial death. Considering this unpracticality, it is suggested that at least one assay determining reproductive activity (PC1) and one assay determining metabolic activity (PC2) should be used to establish bacterial death. Minimally, researchers should specifically describe which dimension of bacterial death is assessed, when addressing bacterial death.
Collapse
Affiliation(s)
- Renfei Wu
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Cong Li
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gésinda I Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - H Willy de Haan-Visser
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Emma S C Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Hans C Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, 45141, Essen, Germany
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), 7 Nanhai Rd, Qingdao, 266071, China
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
19
|
Sun X, Zhou X, Yu R, Zhou X, Zhang J, Xu T, Wang J, Li M, Li X, Zhang M, Xu J, Zhang J. Assessing the physiological properties of baker's yeast based on single-cell Raman spectrum technology. Synth Syst Biotechnol 2024; 10:110-118. [PMID: 39493334 PMCID: PMC11530575 DOI: 10.1016/j.synbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 11/05/2024] Open
Abstract
With rapid progress in the yeast fermentation industry, a comprehensive commercial yeast quality assessment approach integrating efficiency, accuracy, sensitivity, and cost-effectiveness is required. In this study, a new yeast quality assessment method based on single-cell Raman technology was developed and contrasted with traditional methods. The findings demonstrated significant associations (Pearson correlation coefficient of 0.933 on average) between the two methods in measuring physiological indicators, including cell viability and intracellular trehalose content, demonstrating the credibility of the Raman method compared to the traditional method. Furthermore, the sensitivity of the Raman method in viable but non-culturable cells was higher in measuring yeast cell viability (17.9 % more sensitive). According to the accurate quantitative analysis of metabolic activity level (MAL) of yeast cells, the cell vitality was accurately quantified at population and single-cell levels, offering a more comprehensive assessment of yeast fermentation performance. Overall, the single-cell Raman method integrates credibility, feasibility, accuracy, and sensitivity in yeast quality assessment, offering a new technological framework for quality assessments of live-cell yeast products.
Collapse
Affiliation(s)
- Xi Sun
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
- Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xin Zhou
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ran Yu
- Sino-French Joint-Venture Dynasty Winery LTD., Tianjin, 300402, China
| | - Xiaofang Zhou
- Sino-French Joint-Venture Dynasty Winery LTD., Tianjin, 300402, China
| | - Jun Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
| | - Teng Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jianmei Wang
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mengqi Li
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiaoting Li
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jian Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 230026, China
| | - Jia Zhang
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 230026, China
| |
Collapse
|
20
|
Zhao Q, Xu Z, Liu X, Zhu H, Li Z, Liu Y, Yang J, Dong Q. Formation and recovery of Listeria monocytogenes in viable but nonculturable state under different temperatures combined with low nutrition and high NaCl concentration. Food Res Int 2024; 192:114774. [PMID: 39147498 DOI: 10.1016/j.foodres.2024.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The viable but nonculturable (VBNC) state occurs when bacteria lose their ability to grow and multiply on conventional media when stressed by adverse environmental factors, but they remain active and can revive under certain conditions, posing a food safety risk. In this study, the VBNC state of Listeria monocytogenes was induced with different temperatures combined with low nutrient conditions; the VBNC state of L. monocytogenes was confirmed in conjunction with the housekeeping gene abcZ using a molecular biology assay (PMA-qPCR) to calculate the viable bacterial count; The resuscitation conditions for the VBNC state of L. monocytogenes were investigated utilizing various nutrients in the culture medium and pasteurized milk. Four strains of L. monocytogenes reached the VBNC stage after 14, 21, 21, and 35 days at 20°C with 20% (or 30%) NaCl. Resuscitation studies indicate that Trypticase Soy Broth (TSB) combined with Tween 80 and sodium pyruvate is more effective for resuscitation. The Chinese national standard technology GB 4789.30-2016 was used to inoculate lettuce, chicken, and pasteurized milk with L. monocytogenes ATCC 19115 VBNC state. This research has significant implications for commercial food processing, long-term storage, disinfection, disease prevention, and control.
Collapse
Affiliation(s)
- Qing Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiwen Xu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 299 Mian Bei Rd., Shanghai 201210, China.
| | - Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jielin Yang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 299 Mian Bei Rd., Shanghai 201210, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
21
|
Ramesh R, Sathiyamurthy K, Meganathan V, Athmanathan B. Induction and comparative resuscitation of viable but nonculturable state on Vibrio parahaemolyticus serotypes O3:K6 and O1:K25. Arch Microbiol 2024; 206:376. [PMID: 39141167 DOI: 10.1007/s00203-024-04102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.
Collapse
Affiliation(s)
- Rohini Ramesh
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Baskaran Athmanathan
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
22
|
Li L, Bae S. Quantitative detection and survival analysis of VBNC Salmonella Typhimurium in flour using droplet digital PCR and DNA-intercalating dyes. Microbiol Spectr 2024; 12:e0024924. [PMID: 38975767 PMCID: PMC11302299 DOI: 10.1128/spectrum.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/09/2024] Open
Abstract
The difficulty in detecting viable but non-culturable (VBNC) Salmonella by culture-dependent methods poses a risk to food safety. In our study, we applied a viability test to Salmonella following a lethal treatment and to flour samples inoculated with Salmonella to evaluate the effectiveness of viability polymerase chain reaction (PCR). Our findings revealed that the combination of both ddPCR and qPCR with those DNA-intercalating dyes could quantify viable cells at low concentrations when the plate counting method failed to detect them post-inactivation. Prolonged UV exposure did not induce cell membrane disruption, as confirmed with PMA-ddPCR, with insignificant differences in gene copies. However, samples exposed to DyeTox13 and DyeTox13 + EMA showed lower gene copy numbers, implying that enzymatic activity was decreased by UV exposure duration. In addition, temperature-dependent survival in flour revealed uniform decay rates and D values (time required for a 1 log reduction) of DNA in untreated samples across various temperatures. By contrast, different decay rates were observed with DNA-intercalating dyes (DyeTox13 and DyeTox13 + EMA), showing faster metabolic activity loss at higher temperatures in flour. The decay rates and D values, determined through plate counting and those DNA-intercalating dyes, indicated the potential presence of VBNC Salmonella. A strong correlation between DyeTox13 dyes and the plate counting method suggested DyeTox13 as a rapid alternative for detecting Salmonella in flour. The ddPCR with DNA-intercalating dyes could effectively evaluate Salmonella viability, facilitating more precise monitoring of VBNC in food. IMPORTANCE Salmonella, a major foodborne pathogen, poses significant risks, particularly to vulnerable groups like infants, older people, and the immunocompromised. Accurate detection is vital for public health and food safety, given its potential to cause severe and life-threatening symptoms. Our study demonstrated digital polymerase chain reaction (ddPCR) with DNA-intercalating dyes for identifying the different physiological statuses of Salmonella. Also, the application of ddPCR with DNA-intercalating dyes offers quantification of viable cells post-disinfection as an alternative method in food. Utilizing ddPCR and DNA-intercalating dyes, we enhanced the detection of VBNC Salmonella, a form often undetectable by conventional methods. This innovative approach could significantly improve the precision and efficiency of detection for viable Salmonella. By providing deeper insights into its transmission potential, our method is a critical tool in preventing outbreaks and ensuring the safety of food products. This research contributes substantially to global efforts in controlling foodborne illnesses and safeguarding public health.
Collapse
Affiliation(s)
- Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Lu Z, Xing T, Zhao Z, Li Z, Hou D, Ma Z, Chen S, Yang Y, Li S, Zhang H. Induction of Salmonella Enteritidis into a Viable but Nonculturable State by Cinnamaldehyde and Its Resuscitation. Foodborne Pathog Dis 2024; 21:499-507. [PMID: 38695190 DOI: 10.1089/fpd.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Trans-cinnamaldehyde (TC), a typical plant-derived compound, has been widely used in the control of foodborne pathogen contamination. Nevertheless, the risk associated with the occurrence of viable but nonculturable (VBNC) bacteria induced by TC remains unclear. The results of this study showed that Salmonella Enteritidis (S. Enteritidis) entered the VBNC state after being induced by TC at a minimum inhibitory concentration of 312.5 μg/mL and survived for at least 22 days under TC treatment. Enhanced resistance was found against heat treatment (75°C, 30 s), antibiotics (i.e., ampicillin, ceftriaxone sodium, chloramphenicol), and hydrogen peroxide (3%) in VBNC S. Enteritidis. A synergistic effect against VBNC S. Enteritidis occurred when TC was combined with acid treatment, including lactic acid and acetic acid (pH = 3.5). VBNC and resuscitated S. Enteritidis by sodium pyruvate treatment (100 mM) were found to retain the infectious ability to Caco-2 cells. Relative expression levels of the stress-related genes relA, spoT, ppx, lon, katG, sodA, dnaK, and grpE were upregulated in VBNC S. Enteritidis. Accumulation of reactive oxygen species (ROS) and protein aggregates was observed in VBNC cells. Besides, the resuscitation of VBNC cells was accompanied with clearance of ROS and protein aggregates. In summary, this study presents a comprehensive characterization of stress tolerance and resuscitation of VBNC S. Enteritidis induced by cinnamaldehyde, and the results provide useful information for the development of effective control strategy against VBNC pathogenic bacteria in food production.
Collapse
Affiliation(s)
- Ziying Lu
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Tong Xing
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Zepeng Zhao
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Zefeng Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Dongping Hou
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Zhuolin Ma
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Siyi Chen
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Yuheng Yang
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Shaoting Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Hongmei Zhang
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Li T, Feng K, Wang S, Yang X, Peng X, Tu Q, Deng Y. Beyond water and soil: Air emerges as a major reservoir of human pathogens. ENVIRONMENT INTERNATIONAL 2024; 190:108869. [PMID: 38968831 DOI: 10.1016/j.envint.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.
Collapse
Affiliation(s)
- Tong Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Zhao S, Dou C, Zhang J, Huang L, Gao Y, Du B, Cui X, Zhao H, Xue G, Ke Y, Gan L, Feng J, Feng Y, Cui J, Yan C, Xu Z, Fu T, Yu Z, Yang Y, Yuan J, You F. Multiple factors trigger the formation and resuscitation of the VBNC state in alcohol-producing Klebsiella pneumoniae. Appl Environ Microbiol 2024; 90:e0055724. [PMID: 38953658 PMCID: PMC11267895 DOI: 10.1128/aem.00557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chenpu Dou
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Department of Neurosurgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Jian Zhang
- Department of Neurosurgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yagang Gao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Hubert A, Tabuteau H, Farasin J, Loncar A, Dufresne A, Méheust Y, Le Borgne T. Fluid flow drives phenotypic heterogeneity in bacterial growth and adhesion on surfaces. Nat Commun 2024; 15:6161. [PMID: 39039040 PMCID: PMC11263347 DOI: 10.1038/s41467-024-49997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria often thrive in surface-attached communities, where they can form biofilms affording them multiple advantages. In this sessile form, fluid flow is a key component of their environments, renewing nutrients and transporting metabolic products and signaling molecules. It also controls colonization patterns and growth rates on surfaces, through bacteria transport, attachment and detachment. However, the current understanding of bacterial growth on surfaces neglects the possibility that bacteria may modulate their division behavior as a response to flow. Here, we employed single-cell imaging in microfluidic experiments to demonstrate that attached Escherichia coli cells can enter a growth arrest state while simultaneously enhancing their adhesion underflow. Despite utilizing clonal populations, we observed a non-uniform response characterized by bistable dynamics, with co-existing subpopulations of non-dividing and actively dividing bacteria. As the proportion of non-dividing bacteria increased with the applied flow rate, it resulted in a reduction in the average growth rate of bacterial populations on flow-exposed surfaces. Dividing bacteria exhibited asymmetric attachment, whereas non-dividing counterparts adhered to the surface via both cell poles. Hence, this phenotypic diversity allows bacterial colonies to combine enhanced attachment with sustained growth, although at a reduced rate, which may be a significant advantage in fluctuating flow conditions.
Collapse
Affiliation(s)
- Antoine Hubert
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Hervé Tabuteau
- Institut de Physique de Rennes, UMR 6251 University of Rennes and CNRS, Rennes, France.
| | - Julien Farasin
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Aleksandar Loncar
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Alexis Dufresne
- ECOBIO, UMR 6553 University of Rennes and CNRS, Rennes, France
| | - Yves Méheust
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Tanguy Le Borgne
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France.
| |
Collapse
|
27
|
Poscente V, Di Gregorio L, Costanzo M, Bernini R, Bevivino A. Flow cytometry: Unravelling the real antimicrobial and antibiofilm efficacy of natural bioactive compounds. J Microbiol Methods 2024; 222:106956. [PMID: 38759758 DOI: 10.1016/j.mimet.2024.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Flow cytometry (FCM) provides unique information on bacterial viability and physiology, allowing a real-time early warning antimicrobial and antibiofilm monitoring system for preventing the spread risk of foodborne disease. The present work used a combined culture-based and FCM approach to assess the in vitro efficacy of essential oils (EOs) from condiment plants commonly used in Mediterranean Europe (i.e., thyme EO, oregano EO, basil EO, and lemon EO) against planktonic and sessile cells of food-pathogenic Listeria monocytogenes 56 LY, and contaminant and alterative species Escherichia coli ATCC 25922 and Pseudomonas fluorescens ATCC 13525. Evaluation of the bacterial response to the increasing concentrations of natural compounds posed FCM as a crucial technique for the quantification of the live/dead, and viable but non-culturable (VBNC) cells when antimicrobial agents exert no real bactericidal action. Furthermore, the FCM results displayed higher numbers of viable bacteria expressed as Active Fluorescent Units (AFUs) with a greater level of repeatability compared with outcomes of the plate-count method. Overall, accurate counting of viable microbial cells is a critically important parameter in food microbiology, and flow cytometry provides an innovative approach with high-throughput potential for applications in the food industry as "flow microbiology".
Collapse
Affiliation(s)
- Valeria Poscente
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy; Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.
| | - Manuela Costanzo
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| |
Collapse
|
28
|
Xu JX, Chen GQ, Chen YL, Wu HM, Chen D, Liu H. Nanowire-assisted electroporation via inducing cell destruction for inhibiting formation of VBNC bacteria: Comparison with chlorination. WATER RESEARCH 2024; 258:121776. [PMID: 38772317 DOI: 10.1016/j.watres.2024.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
The induction of viable but nonculturable (VBNC) bacteria with cellular integrity and low metabolic activity by chemical disinfection causes a significant underestimation of potential microbiological risks in drinking water. Herein, a physical Co3O4 nanowire-assisted electroporation (NW-EP) was developed to induce cell damage via the locally enhanced electric field over nanowire tips, potentially achieving effective inhibition of VBNC cells as compared with chemical chlorination (Cl2). NW-EP enabled over 5-log removal of culturable cell for various G+/G- bacteria under voltage of 1.0 V and hydraulic retention time of 180 s, and with ∼3-6 times lower energy consumption than Cl2. NW-EP also achieved much higher removals (∼84.6 % and 89.5 %) of viable Bacillus cereus (G+) and Acinetobacter schindleri (G-) via generating unrecoverable pores on cell wall and reversible/irreversible pores on cell membrane than Cl2 (∼28.6 % and 41.1 %) with insignificant cell damage. The residual VBNC bacteria with cell wall damage and membrane pore resealing exhibited gradual inactivation by osmotic stress, leading to ∼99.8 % cell inactivation after 24 h storage (∼59.4 % for Cl2). Characterizations of cell membrane integrity and cell morphology revealed that osmotic stress promoted cell membrane damage for the gradual inactivation of VBNC cells during storage. The excellent adaptability of NW-EP for controlling VBNC cells in DI, tap and lake waters suggested its promising application potentials for drinking water, such as design of an external device on household taps.
Collapse
Affiliation(s)
- Jin-Xiang Xu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Gen-Qiang Chen
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Yi-Lang Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Hai-Ming Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Hai Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
29
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
30
|
Zhang B, Fu Y, Wang F, Jin P, Xu P, Li H, Xu X, Shen C. The risk of viable but non-culturable (VBNC) enterococci and antibiotic resistance transmission during simulated municipal sludge composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:1-9. [PMID: 38703551 DOI: 10.1016/j.wasman.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 104/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used.
Collapse
Affiliation(s)
- Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pingri Jin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Beijing Enterprises Water Group (CHINA) Investment Limited, Beijing 100102, China
| | - Pengcheng Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoming Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
31
|
Pîndaru AM, Măruțescu L, Popa M, Chifiriuc MC. A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants' Bactericidal Activity. Int J Mol Sci 2024; 25:7158. [PMID: 39000264 PMCID: PMC11241575 DOI: 10.3390/ijms25137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae) and four multidrug-resistant pathogens. The proposed FCM protocol measures changes in scattered light and counts following disinfectant exposure, neutralization, and culture steps. Unlike other available FCM-based methods, this approach does not rely on autofluorescence measurements, impedance cytometry, or fluorescent dyes. The FCM scattered light signals revealed both decreased count rates and morphological changes after treatment with minimum inhibitory concentrations (MICs) and higher concentrations for all tested bacteria. The results from the FCM measurements showed excellent correlation with those from standard assays, providing a rapid tool for monitoring the susceptibility profile of clinical, multidrug-resistant pathogens to chemical disinfectants, which could support infection prevention and control procedures for healthcare environments. This label-free FCM protocol offers a novel and rapid tool for environmental health experts, aiding in the optimization of disinfectant selection for the prevention and control of HAIs.
Collapse
Affiliation(s)
- Andreea Maria Pîndaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
| | - Luminița Măruțescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Marcela Popa
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| |
Collapse
|
32
|
Liu Z, Zhou Y, Wang H, Liu C, Wang L. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus. Int J Food Microbiol 2024; 417:110691. [PMID: 38631283 DOI: 10.1016/j.ijfoodmicro.2024.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Yi Zhou
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Chengchu Liu
- University of Maryland Sea Grant Extension Program, UMES Center for Food Science and Technology, Princess Anne, MD, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
33
|
Se J, Xie Y, Ma Q, Zhu L, Fu Y, Xu X, Shen C, Nannipieri P. Drying-wetting cycle enhances stress resistance of Escherichia coli O157:H7 in a model soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123988. [PMID: 38648967 DOI: 10.1016/j.envpol.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Outbreaks of Escherichia coli (E. coli) O157:H7 in farms are often triggered by heavy rains and flooding. Most cells die with the decreasing of soil moisture, while few cells enter a dormant state and then resuscitate after rewetting. The resistance of dormant cells to stress has been extensively studied, whereas the molecular mechanisms of the cross-resistance development of the resuscitated cells are poorly known. We performed a comparative proteomic analysis on O157:H7 before and after undergoing soil dry-wet alternation. A differential expression of 820 proteins was identified in resuscitated cells compared to exponential-phase cells, as determined by proteomics analysis. The GO and KEGG pathway enrichment analyses revealed that up-regulated proteins were associated with oxidative phosphorylation, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, ribosome activity, and transmembrane transporters, indicating increased energy production and protein synthesis in resuscitated O157:H7. Moreover, proteins related to acid, osmotic, heat, oxidative, antibiotic stress and horizontal gene transfer efficiency were up-regulated, suggesting a potential improvement in stress resistance. Subsequent validation experiments demonstrated that the survival rates of the resuscitated cells were 476.54 and 7786.34 times higher than the exponential-phase cells, with pH levels of 1.5 and 2.5, respectively. Similarly, resuscitated cells showed higher survival rates under osmotic stress, with 7.5%, 15%, and 30% NaCl resulting in survival rates that were 460.58, 1974.55, and 3475.31 times higher. Resuscitated cells also exhibited increased resistance to heat stress, with survival rates 69.64 and 139.72 times higher at 55 °C and 90 °C, respectively. Furthermore, the horizontal gene transfer (HGT) efficiency of resuscitated cells was significantly higher (153.12-fold) compared to exponential phase cells. This study provides new insights into bacteria behavior under changing soil moisture and this may explain O157:H7 outbreaks following rainfall and flooding, as the dry-wet cycle promotes stress cross-resistance development.
Collapse
Affiliation(s)
- Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Yinan Xie
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingxu Ma
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| | - Paolo Nannipieri
- Emeritus Professor, University of Firenze, Firenze, 50144, Italy
| |
Collapse
|
34
|
Horikian A, Jeanvoine A, Amarache A, Tourtet M, Ory J, Boulestreau H, Van der Mee Marquet N, Lemaitre N, Eveillard M, Lepelletier D, Bertrand X, Valot B, Hocquet D. High-risk clones of Pseudomonas aeruginosa contaminate the drinking water networks of French cities. NPJ CLEAN WATER 2024; 7:35. [DOI: 10.1038/s41545-024-00323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/25/2024] [Indexed: 01/04/2025]
Abstract
AbstractPseudomonas aeruginosa is a major opportunistic pathogen responsible for severe infections in immunocompromised patients. The contamination of drinking water networks (DWNs) with this pathogen is underestimated, as it is mostly in the state of persister cells undetected by the recommended monitoring technique. We collected water samples from eight cities distant from each other and searched for P. aeruginosa using a culture-based method that resuscitates persister cells. The genomes of isolates were sequenced. Five DWNs of the eight tested (62.5%) were contaminated with P. aeruginosa, of which four were contaminated with high-risk clones (ST308, ST395). Surprisingly, the ST308 isolates retrieved from the four independent and distant DWNs were clonal. Most P. aeruginosa isolates shared a genomic island conferring tolerance to copper-ions. The population structure of the collection may result from both a common source of contamination by plumbing supplies and the selection of clones sharing genetic elements that presumably aided their propagation in DWNs.
Collapse
|
35
|
Cai Y, Chen C, Sun T, Li G, Wang W, Zhao H, An T. Mariculture waters as yet another hotbed for the creation and transfer of new antibiotic-resistant pathogenome. ENVIRONMENT INTERNATIONAL 2024; 187:108704. [PMID: 38692150 DOI: 10.1016/j.envint.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
With the rapid growth of aquaculture globally, large amounts of antibiotics have been used to treat aquatic disease, which may accelerate induction and spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquaculture environments. Herein, metagenomic and 16S rRNA analyses were used to analyze the potentials and co-occurrence patterns of pathogenome (culturable and unculturable pathogens), antibiotic resistome (ARGs), and mobilome (mobile genetic elements (MGEs)) from mariculture waters near 5000 km coast of South China. Total 207 species of pathogens were identified, with only 10 culturable species. Furthermore, more pathogen species were detected in mariculture waters than those in coastal waters, and mariculture waters were prone to become reservoirs of unculturable pathogens. In addition, 913 subtypes of 21 ARG types were also identified, with multidrug resistance genes as the majority. MGEs including plasmids, integrons, transposons, and insertion sequences were abundantly present in mariculture waters. The co-occurrence network pattern between pathogenome, antibiotic resistome, and mobilome suggested that most of pathogens may be potential multidrug resistant hosts, possibly due to high frequency of horizontal gene transfer. These findings increase our understanding of mariculture waters as reservoirs of antibiotic resistome and mobilome, and as yet another hotbed for creation and transfer of new antibiotic-resistant pathogenome.
Collapse
Affiliation(s)
- Yiwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunliang Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
36
|
Okurowska K, Monk PN, Karunakaran E. Increased tolerance to commonly used antibiotics in a Pseudomonas aeruginosa ex vivo porcine keratitis model. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001459. [PMID: 38739119 PMCID: PMC11165664 DOI: 10.1099/mic.0.001459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.
Collapse
Affiliation(s)
- Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
- National Institute for Health and Care Research, University of Leeds, Leeds LS2 9JT, UK
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
37
|
Zuponcic J, Cunha F, Springer G, Ximenes E, Ladisch MR. Effect of flux and shear rate on E. coli recovery in tangential flow filtration through a single hollow fiber. Biotechnol Prog 2024; 40:e3432. [PMID: 38329370 DOI: 10.1002/btpr.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria which enter a viable but non-culturable (VBNC) state impede efforts to reach detectable concentrations required for PCR methods. This motivated a strategy for tangential flow filtration to concentrate bacteria in aqueous samples while maintaining the bacteria in a viable state, maximizing their recovery and achieving high fluxes through a single hollow fiber membrane. Filtrations were carried out for green fluorescent protein (GFP) E. coli at high shear rates (up to 27,000 sec-1) through 0.2 μm cut-off polyethersulfone (PES) microfilter membranes or 50 kDa polysulfone (PS) ultrafilter membranes. High shear minimized bacterial attachment on membrane surfaces, which would otherwise occur due to forced convection of the particles to the membrane surface at high flux conditions. Single fiber filter modules were constructed to facilitate concentration of Escherichia coli at fluxes ranging from 55 to 4500 L m-2 h-1. The effect of high shear rates on bacterial viability was found to be minimal with bacterial losses during filtration caused principally by their accumulation on the membrane surface. Recoveries of 90% were achievable at high shear rates when the average flux was ≤300 L m-2 h-1. This corresponded to a 3-h filtration time for a 225 mL sample through a single hollow fiber. Detectable bacteria concentrations of 1800 colony-forming unit (CFU)/mL were achieved for starting concentrations of 140 CFU/mL.
Collapse
Affiliation(s)
- Jessica Zuponcic
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Fernanda Cunha
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Grant Springer
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eduardo Ximenes
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Environmental and Occupational Health, Indiana University, Bloomington, Indiana, USA
| | - Michael R Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
38
|
Lopes N, Pereira RB, Correia A, Vilanova M, Cerca N, França A. Deletion of codY impairs Staphylococcus epidermidis biofilm formation, generation of viable but non-culturable cells and stimulates cytokine production in human macrophages. J Med Microbiol 2024; 73. [PMID: 38743043 DOI: 10.1099/jmm.0.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.
Collapse
Affiliation(s)
- Nathalie Lopes
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Renato B Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| | - Angela França
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| |
Collapse
|
39
|
Myung H, Joung YS. Contribution of Particulates to Airborne Disease Transmission and Severity: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6846-6867. [PMID: 38568611 DOI: 10.1021/acs.est.3c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.
Collapse
Affiliation(s)
- Hyunji Myung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
40
|
Pan Z, Cao S. Optimization of culture medium to improve bio-cementation effect based on response surface method. Sci Rep 2024; 14:8752. [PMID: 38627410 PMCID: PMC11021397 DOI: 10.1038/s41598-024-58063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The main challenge in the large-scale application of MICP lies in its low efficiency and promoting biofilm growth can effectively address this problem. In the present study, a prediction model was proposed using the response surface method. With the prediction model, optimum concentrations of nutrients in the medium can be obtained. Moreover, the optimized medium was compared with other media via bio-cementation tests. The results show that this prediction model was accurate and effective, and the predicted results were close to the measured results. By using the prediction model, the optimized culture media was determined (20.0 g/l yeast extract, 10.0 g/l polypeptone, 5.0 g/l ammonium sulfate, and 10.0 g/l NaCl). Furthermore, the optimized medium significantly promoted the growth of biofilm compared to other media. In the medium, the effect of polypeptone on biofilm growth was smaller than the effect of yeast extract and increasing the concentration of polypeptone was not beneficial in promoting biofilm growth. In addition, the sand column solidified with the optimized medium had the highest strength and the largest calcium carbonate contents. The prediction model represents a platform technology that leverages culture medium to impart novel sensing, adjustive, and responsive multifunctionality to structural materials in the civil engineering and material engineering fields.
Collapse
Affiliation(s)
- Zhikun Pan
- Shenzhen SEZ Construction Solid Waste Resources Co. Ltd., Shenzhen, 518034, China
| | - Shiding Cao
- State Key Laboratory for Tunnel Engineering, China University of Mining and Technology Beijing, Beijing, 100083, China.
- Shenzhen General Integrated Transportation and Municipal Engineering Design and Research Institute Co. Ltd., Shenzhen, 518003, China.
| |
Collapse
|
41
|
Meliefste HM, Mudde SE, Ammerman NC, de Steenwinkel JEM, Bax HI. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 2024; 15:1392606. [PMID: 38690364 PMCID: PMC11058659 DOI: 10.3389/fmicb.2024.1392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen causing severe pulmonary infections in patients with underlying lung disease and cystic fibrosis in particular. The rising prevalence of M. abscessus infections poses an alarming threat, as the success rates of available treatment options are limited. Central to this challenge is the absence of preclinical in vitro models that accurately mimic in vivo conditions and that can reliably predict treatment outcomes in patients. M. abscessus is notorious for its association with biofilm formation within the lung. Bacteria in biofilms are more recalcitrant to antibiotic treatment compared to planktonic bacteria, which likely contributes to the lack of correlation between preclinical drug activity testing (typically performed on planktonic bacteria) and treatment outcome. In recent years, there has been a growing interest in M. abscessus biofilm research. However, the absence of standardized methods for biofilm culture, biofilm characterization and drug activity testing has led to a wide spectrum of, sometimes inconsistent, findings across various studies. Factors such as strain selection, culture medium, and incubation time hugely impact biofilm development, phenotypical characteristics and antibiotic susceptibility. Additionally, a broad range of techniques are used to study M. abscessus biofilms, including quantification of colony-forming units, crystal violet staining and fluorescence microscopy. Yet, limitations of these techniques and the selected readouts for analysis affect study outcomes. Currently, research on the activity of conventional antibiotics, such as clarithromycin and amikacin, against M. abscessus biofilms yield ambiguous results, underscoring the substantial impact of experimental conditions on drug activity assessment. Beyond traditional drug activity testing, the exploration of novel anti-biofilm compounds and the improvement of in vitro biofilm models are ongoing. In this review, we outline the laboratory models, experimental variables and techniques that are used to study M. abscessus biofilms. We elaborate on the current insights of M. abscessus biofilm characteristics and describe the present understanding of the activity of traditional antibiotics, as well as potential novel compounds, against M. abscessus biofilms. Ultimately, this work contributes to the advancement of fundamental knowledge and practical applications of accurate preclinical M. abscessus models, thereby facilitating progress towards improved therapies for M. abscessus infections.
Collapse
Affiliation(s)
| | - Saskia Emily Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Christine Ammerman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Hannelore Iris Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
42
|
Mukhopadhyay S, Bishayi R, Shaji A, Lee AH, Gupta R, Mohajeri M, Katiyar A, McKee B, Schmitz IR, Shin R, Lele TP, Lele PP. Dynamic Adaptation in Extant Porins Facilitates Antibiotic Tolerance in Energetic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583920. [PMID: 38496420 PMCID: PMC10942424 DOI: 10.1101/2024.03.07.583920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.
Collapse
|
43
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Iqbal S, Begum F, Ullah I, Jalal N, Shaw P. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol 2024:1-21. [PMID: 38385313 DOI: 10.1080/1040841x.2024.2319669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Microbes represent the most common organisms on Earth; however, less than 2% of microbial species in the environment can undergo cultivation for study under laboratory conditions, and the rest of the enigmatic, microbial world remains mysterious, constituting a kind of "microbial dark matter" (MDM). In the last two decades, remarkable progress has been made in culture-dependent and culture-independent techniques. More recently, studies of MDM have relied on culture-independent techniques to recover genetic material through either unicellular genomics or shotgun metagenomics to construct single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs), respectively, which provide information about evolution and metabolism. Despite the remarkable progress made in the past decades, the functional diversity of MDM still remains uncharacterized. This review comprehensively summarizes the recently developed culture-dependent and culture-independent techniques for characterizing MDM, discussing major challenges, opportunities, and potential applications. These activities contribute to expanding our knowledge of the microbial world and have implications for various fields including Biotechnology, Bioprospecting, Functional genomics, Medicine, Evolutionary and Planetary biology. Overall, this review aims to peel off the layers from MDM, shed light on recent advancements, identify future challenges, and illuminate the exciting opportunities that lie ahead in unraveling the secrets of this intriguing microbial realm.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ihsan Ullah
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Nasir Jalal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| | - Peter Shaw
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| |
Collapse
|
45
|
Williams A, Gaoh SD, Savenka A, Paredes A, Alusta P, Ahn Y, Buzatu DA. A flow cytometric assay to detect viability and persistence of Salmonella enterica subsp. enterica serotypes in nuclease-free water at 4 and 25°C. Front Microbiol 2024; 15:1342478. [PMID: 38435692 PMCID: PMC10906097 DOI: 10.3389/fmicb.2024.1342478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Salmonella spp. is one of the most isolated microorganisms reported to be responsible for human foodborne diseases and death. Water constitutes a major reservoir where the Salmonella spp. can persist and go undetected when present in low numbers. In this study, we assessed the viability of 12 serotypes of Salmonella enterica subsp. enterica for 160 days in nuclease-free water at 4 and 25°C using flow cytometry and Tryptic Soy Agar (TSA) plate counts. The results show that all 12 serotypes remain viable after 160 days in distilled water using flow cytometry, whereas traditional plate counts failed to detect ten serotypes incubated at 25°C. Moreover, the findings demonstrate that 4°C constitutes a more favorable environment where Salmonella can remain viable for prolonged periods without nutrients. Under such conditions, however, Salmonella exhibits a higher susceptibility to all tested antibiotics and benzalkonium chloride (BZK). The pre-enrichment with Universal Pre-enrichment Broth (UP) and 1/10 × Tryptic Soy broth (1/10 × TSB) resuscitated all tested serotypes on TSA plates, nevertheless cell size decreased after 160 days. Furthermore, phenotype microarray (PM) analysis of S. Inverness and S. Enteritidis combined with principal component analysis (PCA) revealed an inter-individual variability in serotypes with their phenotype characteristics, and the impact of long-term storage at 4 and 25°C for 160 days in nuclease-free water. This study provides an insight to Salmonella spp. long-term survivability at different temperatures and highlights the need for powerful tools to detect this microorganism to reduce the risk of disease transmission of foodborne pathogens via nuclease-free water.
Collapse
Affiliation(s)
- Anna Williams
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Alena Savenka
- Office of Scientific Research, Nanotechnology Branch, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Angel Paredes
- Office of Scientific Research, Nanotechnology Branch, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Pierre Alusta
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Dan A. Buzatu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
46
|
Cantlay S, Garrison NL, Patterson R, Wagner K, Kirk Z, Fan J, Primerano DA, Sullivan MLG, Franks JM, Stolz DB, Horzempa J. Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state. Front Microbiol 2024; 15:1347488. [PMID: 38380104 PMCID: PMC10877056 DOI: 10.3389/fmicb.2024.1347488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.
Collapse
Affiliation(s)
- Stuart Cantlay
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Nicole L. Garrison
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Rachelle Patterson
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Kassey Wagner
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Zoei Kirk
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Donald A. Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| |
Collapse
|
47
|
Response to Questions Posed by the Food Safety and Inspection Service: Enhancing Salmonella Control in Poultry Products. J Food Prot 2024; 87:100168. [PMID: 37939849 DOI: 10.1016/j.jfp.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
|
48
|
Cheng T, Boneca IG. The shapeshifting Helicobacter pylori: From a corkscrew to a ball. Mol Microbiol 2024; 121:260-274. [PMID: 38173305 DOI: 10.1111/mmi.15218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
There is growing evidence that bacterial morphology is closely related to their lifestyle. The helical Helicobacter pylori relies on its unique shape for survival and efficient colonization of the human stomach. Yet, they have been observed to transform into another distinctive morphology, the spherical coccoid. Despite being hypothesized to be involved in the persistence and transmission of this species, years of effort in deciphering the roles of the coccoid form remain fruitless since contrasting observations regarding its lifestyle were reported. Here, we discuss the two forms of H. pylori with a focus on the coccoid form, the molecular mechanism behind its morphological transformation, and experimental approaches to further develop our understanding of this phenomenon. We also propose a putative mechanism of the coccoid formation in H. pylori through induction of a type-I toxin-antitoxin (TA) system recently shown to influence the morphology of this species.
Collapse
Affiliation(s)
- Thimoro Cheng
- Institut Pasteur, Université Paris Cité, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| |
Collapse
|
49
|
Tang MLY, Lau SCK. Effects of chlorination on the survival of sewage bacteria in seawater microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13216. [PMID: 37990630 PMCID: PMC10866060 DOI: 10.1111/1758-2229.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Chlorination is a commonly used disinfection method in sewage treatment process. However, resistant bacteria may survive chlorination and enter the receiving aquatic environment upon effluent discharge. There has been limited research on the effects of chlorination on bacterial survival in seawater. To address this knowledge gap, microcosm experiments were conducted to simulate the discharge of chlorinated effluents into coastal seawater. The results revealed that bacterial communities in seawater-based effluents survived better in seawater than those in freshwater-based effluents. High chlorine dosages could significantly reduce the viable bacterial populations and their chance of regrowth in seawater. Additionally, faecal indicator bacteria (FIB) that entered the viable but non-culturable (VBNC) state under chlorination tended to persist in the VBNC state without resuscitation during seawater incubation. Because of the prevalence of VBNC indicator bacteria, qPCR quantification of FIB was more effective than conventional culture-based methods in tracing viable pathogenic chlorine-resistant bacteria, although the correlation strength varied depending on the type of effluent. This study sheds light on how chlorine dosages and the intrinsic properties of effluents affect bacterial survival in seawater and highlights the potential and limitations of using FIB in monitoring the health risks associated with the discharge of chlorinated effluents.
Collapse
Affiliation(s)
- Mandy Lok Yi Tang
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
| | - Stanley Chun Kwan Lau
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
- Center for Ocean Research in Hong Kong and MacauHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
50
|
Morot A, Delavat F, Bazire A, Paillard C, Dufour A, Rodrigues S. Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms 2024; 12:186. [PMID: 38258011 PMCID: PMC10820411 DOI: 10.3390/microorganisms12010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The Vibrio genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in the environment. The involvement of the biofilm lifestyle in the virulence of Vibrio pathogens of aquatic organisms remains to be investigated. Vibrio harveyi ORM4 is a pathogen responsible for an outbreak in European abalone Haliotis tuberculata populations. In the present study, we used a dynamic biofilm culture technique coupled with laser scanning microscopy to characterize the biofilm formed by V. harveyi ORM4. We furthermore used RNA-seq analysis to examine the global changes in gene expression in biofilm cells compared to planktonic bacteria, and to identify biofilm- and virulence-related genes showing altered expression. A total of 1565 genes were differentially expressed, including genes associated with motility, polysaccharide synthesis, and quorum sensing. The up-regulation of 18 genes associated with the synthesis of the type III secretion system suggests that this virulence factor is induced in V. harveyi ORM4 biofilms, providing indirect evidence of a relationship between biofilm and virulence.
Collapse
Affiliation(s)
- Amandine Morot
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | | | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| |
Collapse
|