1
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
3
|
Zolpirani FH, Ghaemi EA, Yasaghi M, Nikokar I, Ardebili A. Effect of phenylalanine arginyl β-naphthylamide on the imipenem resistance, elastase production, and the expression of quorum sensing and virulence factor genes in Pseudomonas aeruginosa clinical isolates. Braz J Microbiol 2024; 55:2715-2726. [PMID: 38926315 PMCID: PMC11405361 DOI: 10.1007/s42770-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most important nosocomial pathogens that possess the ability to produce multiple antibiotic resistance and virulence factors. Elastase B (LasB) is the major factor implicated in tissue invasion and damage during P. aeruginosa infections, whose synthesis is regulated by the quorum sensing (QS) system. Anti-virulence approach is now considered as potential therapeutic alternative and/or adjuvant to current antibiotics' failure. The aim of this study is primarily to find out the impact of the efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN) on the production of elastase B and the gene expression of lasI quorum sensing and lasB virulence factor in clinical isolates of P. aeruginosa. Five P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Antimicrobial susceptibility of isolates was performed by the disk agar diffusion method. Effect of the PAβN on imipenem susceptibility, bacterial viability, and elastase production was evaluated. The expression of lasB and lasI genes was measured by quantitative real-time PCR in the presence of PAβN. All isolates were identified as multidrug-resistant (MDR) and showed resistance to carbapenem (MIC = 64-256 µg/mL). Susceptibility of isolates to imipenem was highly increased in the presence of efflux inhibitor. PAβN significantly reduced elastase activity in three isolates tested without affecting bacterial growth. In addition, the relative expression of both lasB and lasI genes was diminished in all isolates in the presence of inhibitor. Efflux inhibition by using the EPI PAβN could be a potential target for controlling the P. aeruginosa virulence and pathogenesis. Furthermore, impairment of drug efflux by PAβN indicates its capability to be used as antimicrobial adjuvant that can decrease the resistance and lower the effective doses of current drugs.
Collapse
Affiliation(s)
- Fatemeh Hojjati Zolpirani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Yasaghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Iraj Nikokar
- Department of Laboratory Sciences, Langroud School of Allied Medical Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Medical Bacteriology, Golestan University of Medical Sciences, 49341-74515, Gorgan, Iran.
| |
Collapse
|
4
|
Roy RK, Bera A, Patra N. Insights into Allosteric Inhibition of the AcrB Efflux Pump: Role of Distinct Binding Pockets, Protomer Preferences, and Crosstalk Disruption. J Chem Inf Model 2024; 64:5964-5976. [PMID: 39011748 DOI: 10.1021/acs.jcim.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AcrB, a key component in bacterial efflux processes, exhibits distinct binding pockets that influence inhibitor interactions. In addition to the well-known distal binding pocket within the periplasmic domain, a noteworthy pocket amidst the transmembrane (TM) helices serves as an alternate binding site for inhibitors. The bacterial efflux mechanism involves a pivotal functional rotation of the TM protein, inducing conformational changes in each protomer and propelling drugs toward the outer membrane domain. Surprisingly, inhibitors binding to the TM domain display a preference for L protomers over T protomers. Metadynamics simulations elucidate that Lys940 in the TM domain of AcrB can adopt two conformations in L protomers, whereas the energy barrier for such transitions is higher in T protomers. This phenomenon results in stable inhibitor binding in l protomers. Upon a detailed analysis of unbinding pathways using random accelerated molecular dynamics and umbrella sampling, we have identified three distinct routes for ligand exit from the allosteric site, specifically involving regions within the TM domains─TM4, TM5, and TM10. To explore allosteric crosstalk, we focused on the following key residues: Val452 from the TM domain and Ala831 from the porter domain. Surprisingly, our findings reveal that inhibitor binding disrupts this communication. The shortest path connecting Val452 and Ala831 increases upon inhibitor binding, suggesting sabotage of the natural interdomain communication dynamics. This result highlights the intricate interplay between inhibitor binding and allosteric signaling within our studied system.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Abhishek Bera
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
5
|
Lu WJ, Lian YW, Chang CJ, Lin HJ, Huang CY, Hsu PH, Lin HT. Screening and Evaluation of Potential Efflux Pump Inhibitors with a Seaweed Compound Diphenylmethane-Scaffold against Drug-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:628. [PMID: 39061310 PMCID: PMC11274134 DOI: 10.3390/antibiotics13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-resistant efflux pumps play a crucial role in bacterial antibiotic resistance. In this study, potential efflux pump inhibitors (EPIs) with a diphenylmethane scaffold were screened and evaluated against drug-resistant Escherichia coli. Twenty-four compounds were docked against the drug-binding site of E. coli multidrug transporter AcrB, and 2,2-diphenylethanol (DPE), di-p-tolyl-methanol (DPT), and 4-(benzylphenyl) acetonitrile (BPA) were screened for their highest binding free energy. The modulation assay was further used for EPI evaluation, revealing that DPE, DPT, and BPA could reduce the drug IC50 value in E. coli strains overexpressing AcrB, indicating their modulation activity. Only DPE and BPA enhanced intracellular dye accumulation and inhibited the efflux of ethidium bromide and erythromycin. In addition, DPE and BPA showed an elevated post-antibiotic effect on drug-resistant E. coli, and they did not damage the permeability of the bacterial outer membrane. The cell toxicity test showed that DPE and BPA had limited human-cell toxicity. Therefore, DPE and BPA demonstrate efflux pump inhibitory activity, and they should be further explored as potential enhancers to improve the effectiveness of existing antibiotics against drug-resistant E. coli.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Yu-Wei Lian
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
| | - Chun-Ju Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
| | - Chian-Yun Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
| | - Pang-Hung Hsu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hong-Ting Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-J.L.); (Y.-W.L.); (C.-J.C.); (H.-J.L.); (C.-Y.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
6
|
Suzuki S, Morita Y, Ishige S, Kai K, Kawasaki K, Matsushita K, Ogura K, Miyoshi-Akiyama† T, Shimizu T. Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001464. [PMID: 38900549 PMCID: PMC11263931 DOI: 10.1099/mic.0.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shota Ishige
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kiyohiro Kai
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 6110011, Japan
| | - Tohru Miyoshi-Akiyama†
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
7
|
Nowicki K, Krajewska J, Stępniewski TM, Wielechowska M, Wińska P, Kaczmarczyk A, Korpowska J, Selent J, Marek-Urban PH, Durka K, Woźniak K, Laudy AE, Luliński S. Exploiting thiol-functionalized benzosiloxaboroles for achieving diverse substitution patterns - synthesis, characterization and biological evaluation of promising antibacterial agents. RSC Med Chem 2024; 15:1751-1772. [PMID: 38784477 PMCID: PMC11110727 DOI: 10.1039/d4md00061g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Benzosiloxaboroles are an emerging class of medicinal agents possessing promising antimicrobial activity. Herein, the expedient synthesis of two novel thiol-functionalized benzosiloxaboroles 1e and 2e is reported. The presence of the SH group allowed for diverse structural modifications involving the thiol-Michael addition, oxidation, as well as nucleophilic substitution giving rise to a series of 27 new benzosiloxaboroles containing various polar functional groups, e.g., carbonyl, ester, amide, imide, nitrile, sulfonyl and sulfonamide, and pendant heterocyclic rings. The activity of the obtained compounds against selected bacterial and yeast strains, including multidrug-resistant clinical strains, was investigated. Compounds 6, 12, 20 and 22-24 show high activity against Staphylococcus aureus, including both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains, with MIC values in the range of 1.56-12.5 μg mL-1, while their cytotoxicity is relatively low. The in vitro assay performed with 2-(phenylsulfonyl)ethylthio derivative 20 revealed that, in contrast to the majority of known antibacterial oxaboroles, the plausible mechanism of antibacterial action, involving inhibition of the leucyl-tRNA synthetase enzyme, is not responsible for the antibacterial activity. Structural bioinformatic analysis involving molecular dynamics simulations provided a possible explanation for this finding.
Collapse
Affiliation(s)
- Krzysztof Nowicki
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Tomasz M Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Kaczmarczyk
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Julia Korpowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jana Selent
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Paulina H Marek-Urban
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, University of Warsaw Pasteura 1 00-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
8
|
Liu G, Qin P, Cheng X, Wu L, Zhao W, Gao W. Evaluation of the mechanistic basis for the antibacterial activity of ursolic acid against Staphylococcus aureus. Front Microbiol 2024; 15:1389242. [PMID: 38827151 PMCID: PMC11140147 DOI: 10.3389/fmicb.2024.1389242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
The antibiotics are generally regarded as the first choice approach to treat dairy mastitis, targeting the public health problems associated with the food safety and the emergence of antibioticresistant bacteria. The objective of the study was to evaluate the antibacterial efficacy of ursolic acid (UA) when used to treat Staphylococcus aureus and other isolates associated with bovine mastitis and to clarify the mechanistic basis for these effects. The bacteriostatic properties of UA extracted from Rosmarinus officinalis L. at four different purity levels were assessed by calculating minimum inhibitory concentration (MIC) values, while the synergistic effects of combining 98% UA with antibiotics were evaluated by measuring the fractional inhibitory concentration index (FICI). Changes in biofilm formation and the growth curves of the clinical isolates were assessed to clarify the bacteriostatic effect of UA. Furthermore, the cell wall integrity, protein synthesis, and reactive oxygen species (ROS) production were assessed to determine the antibacterial mechanism of UA treatment. Ultimately, UA was revealed to exhibit robust activity against Gram-positive bacteria including S. aureus (ATCC 25923), Streptococcus dysgalactiae (ATCC27957), Streptococcus agalactiae (ATCC13813), Enterococcus faecalis (ATCC29212), and Streptococcus mutans (ATCC25175). However, it did not affect Escherichia coli (ATCC 25922). The MIC values of UA preparations that were 98, 50, 30, and 10% pure against S. aureus were 39, 312, 625, and 625 μg/mL, respectively, whereas the corresponding MIC for E. coli was >5,000 μg/mL. The minimum bactericidal concentrations of 98% UA when used to treat three clinical S. aureus isolates (S4, S5, and S6) were 78, 78, and 156 μg/mL, respectively. Levels of biofilm formation for clinical S. aureus isolates decreased with increasing 98% UA concentrations. Above the MIC dose, UA treatment resulted in the dissolution of bacterial cell walls and membranes, with cells becoming irregularly shaped and exhibiting markedly impaired intracellular protein synthesis. S. aureus treated with 98% UA was able to rapidly promote intracellular ROS biogenesis. Together, these data highlight the promising utility of UA as a compound that can be used together with other antibiotics for the treatment of infections caused by S. aureus.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Wentao Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
9
|
Pacholak P, Durka K, Woźniak K, Krajewska J, Laudy AE, Luliński S. Ethynyl-substituted benzosiloxaboroles: the role of C(π)⋯B interactions in their crystal packing and use in Cu(i)-catalyzed 1,3-dipolar cycloaddition. RSC Adv 2024; 14:16069-16082. [PMID: 38765480 PMCID: PMC11099988 DOI: 10.1039/d4ra02137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The synthesis and characterization of two novel 6-ethynyl-7-halogen substituted benzosiloxaboroles (Hal = F, Cl) is reported. The crystal structures of these compounds show a unique type of supramolecular assembly dictated by distinctive C(π)⋯B interactions resulting in the formation of columnar networks involving alternating ethynyl groups and boron atoms. The QTAIM, NBO and NCI analyses were performed in order to obtain a deeper quantitative insight into the nature of these interactions including energy and charge density distribution. The fluoro derivative 1c was used as a starting material in Cu-catalyzed 1,3-dipolar cycloaddition reactions with substituted benzenesulfonyl azides giving rise to benzosiloxaboroles with pendant 1-(arylsulfonyl)-1,2,3-triazole-4-yl functionalities or analogous ionic species, i.e., 1,2,3-triazolium arylsulfonates. Screening of antimicrobial activity of obtained derivatives against a wide selection of Gram-positive and Gram-negative bacteria as well as fungi strains was performed and the obtained results were compared with the data obtained previously for related benzosiloxaborole derivatives.
Collapse
Affiliation(s)
- P Pacholak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - K Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - K Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - J Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - A E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - S Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
10
|
Lee T, Lee S, Kim MK, Ahn JH, Park JS, Seo HW, Park KH, Chong Y. 3- O-Substituted Quercetin: an Antibiotic-Potentiating Agent against Multidrug-Resistant Gram-Negative Enterobacteriaceae through Simultaneous Inhibition of Efflux Pump and Broad-Spectrum Carbapenemases. ACS Infect Dis 2024; 10:1624-1643. [PMID: 38652574 DOI: 10.1021/acsinfecdis.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The discovery of safe and efficient inhibitors against efflux pumps as well as metallo-β-lactamases (MBL) is one of the main challenges in the development of multidrug-resistant (MDR) reversal agents which can be utilized in the treatment of carbapenem-resistant Gram-negative bacteria. In this study, we have identified that introduction of an ethylene-linked sterically demanding group at the 3-OH position of the previously reported MDR reversal agent di-F-Q endows the resulting compounds with hereto unknown multitarget inhibitory activity against both efflux pumps and broad-spectrum β-lactamases including difficult-to-inhibit MBLs. A molecular docking study of the multitarget inhibitors against efflux pump, as well as various classes of β-lactamases, revealed that the 3-O-alkyl substituents occupy the novel binding sites in efflux pumps as well as carbapenemases. Not surprisingly, the multitarget inhibitors rescued the antibiotic activity of a carbapenem antibiotic, meropenem (MEM), in NDM-1 (New Delhi Metallo-β-lactamase-1)-producing carbapenem-resistant Enterobacteriaceae (CRE), and they reduced MICs of MEM more than four-fold (synergistic effect) in 8-9 out of 14 clinical strains. The antibiotic-potentiating activity of the multitarget inhibitors was also demonstrated in CRE-infected mouse model. Taken together, these results suggest that combining inhibitory activity against two critical targets in MDR Gram-negative bacteria, efflux pumps, and β-lactamases, in one molecule is possible, and the multitarget inhibitors may provide new avenues for the discovery of safe and efficient MDR reversal agents.
Collapse
Affiliation(s)
- Taegum Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Seongyeon Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Joong Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Ji Sun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Ho Park
- Department of Infectious Disease, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
11
|
Liu Y, Van Horn AM, Pham MTN, Dinh BNN, Chen R, Raphael SDR, Paulino A, Thaker K, Somadder A, Frost DJ, Menke CC, Slimak ZC, Slonczewski JL. Fitness trade-offs of multidrug efflux pumps in Escherichia coli K-12 in acid or base, and with aromatic phytochemicals. Appl Environ Microbiol 2024; 90:e0209623. [PMID: 38289137 PMCID: PMC10880634 DOI: 10.1128/aem.02096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Rachel Chen
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Kavya Thaker
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Ika Irianti M, Vincken JP, van Dinteren S, Ter Beest E, Pos KM, Araya-Cloutier C. Prenylated isoflavonoids from Fabaceae against the NorA efflux pump in Staphylococcus aureus. Sci Rep 2023; 13:22548. [PMID: 38110428 PMCID: PMC10728173 DOI: 10.1038/s41598-023-48992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Overexpression of NorA efflux pumps plays a pivotal role in the multidrug-resistance mechanism in S. aureus. Here, we investigated the activities of prenylated isoflavonoids, present in the legume plant family (Fabaceae), as natural efflux pump inhibitors (EPIs) in fluoroquinolone-resistant S. aureus. We found that four prenylated isoflavonoids, namely neobavaisoflavone, glabrene, glyceollin I, and glyceollin III, showed efflux pump inhibition in the norA overexpressing S. aureus. At sub-inhibitory concentrations, neobavaisoflavone (6.25 µg/mL, 19 µM) and glabrene (12.5 µg/mL, 39 µM), showed up to 6 times more Eth accumulation in norA overexpressing S. aureus than in the control. In addition, these two compounds boosted the MIC of fluoroquinolones up to eightfold. No fluoroquinolone potentiation was observed with these isoflavonoids in the norA knockout strain, indicating NorA as the main target of these potential EPIs. In comparison to the reported NorA EPI reserpine, neobavaisoflavone showed similar potentiation of fluoroquinolone activity at 10 µM, higher Eth accumulation, and less cytotoxicity. Neobavaisoflavone and glabrene did not exhibit membrane permeabilization effects or cytotoxicity on Caco-2 cells. In conclusion, our findings suggest that the prenylated isoflavonoids neobavaisoflavone and glabrene are promising phytochemicals that could be developed as antimicrobials and resistance-modifying agents to treat fluoroquinolone-resistant S. aureus strains.
Collapse
Affiliation(s)
- Marina Ika Irianti
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Ellen Ter Beest
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
14
|
MacGowan AP, Attwood MLG, Noel AR, Barber R, Aron Z, Opperman TJ, Grimsey E, Stone J, Ricci V, Piddock LJV. Exposure of Escherichia coli to antibiotic-efflux pump inhibitor combinations in a pharmacokinetic model: impact on bacterial clearance and drug resistance. J Antimicrob Chemother 2023; 78:2869-2877. [PMID: 37837411 DOI: 10.1093/jac/dkad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Efflux pump inhibitors (EPIs) offer an attractive therapeutic option when combined with existing classes. However, their optimal dosing strategies are unknown. METHODS MICs of ciprofloxacin (CIP)+/-chlorpromazine, phenylalanine-arginine β naphthylamide (PAβN) and a developmental molecule MBX-4191 were determined and the pharmacodynamics (PD) was studied in an in vitro model employing Escherichia coli MG1655 and its isogenic MarR mutant (I1147). Exposure ranging experiments were performed initially then fractionation. Changes in bacterial load and population profiles were assessed. Strains recovered after EPI simulations were studied by WGS. RESULTS The CIPMICs for E. coli MG1655 and I1147 were 0.08 and 0.03 mg/L. Chlorpromazine at a concentration of 60 mg/L, PAβN concentrations of 30 mg/L and MBX-4191 concentrations of 0.5-1.0 mg/L reduced CIP MICs for I1147 and enhanced bacterial killing. Using CIP at an AUC of 1.2 mg·h/L, chlorpromazine AUC was best related to reduction in bacterial load at 24 h, however, when the time drug concentration was greater than 25 mg/L (T > 25 mg/L) chlorpromazine was also strongly related to the effect. For PaβN with CIP AUC, 0.6 mg·h/L PaβN AUC was best related to a reduction in bacterial load. MBX-4191T > 0.5-0.75 mg·h/L was best related to reduction in bacterial load. Changes in population profiles were not seen in experiments of ciprofloxacin + EPIs. WGS of recovered strains from simulations with all three EPIs showed mutations in gyrA, gyrB or marR. CONCLUSIONS AUC was the pharmacodynamic driver for chlorpromazine and PAβN while T > threshold was the driver for MBX-4191 and important in the activity of chlorpromazine and PAβN. Changes in population profiles did not occur with combinations of ciprofloxacin + EPIs, however, mutations in gyrA, gyrB and marR were detected.
Collapse
Affiliation(s)
- Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - M L G Attwood
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Alan R Noel
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - R Barber
- Microbiotix Inc, 1 Innovation Drive, Worcester, MA 01605, USA
| | - Zachary Aron
- Microbiotix Inc, 1 Innovation Drive, Worcester, MA 01605, USA
| | | | - Elizabeth Grimsey
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jack Stone
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vito Ricci
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - L J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
He L, Yang S, Xuan W, Zhen X, Qi Q, Qi Y, Li Q, Du M, Hamblin MR, Huang L. Phenylalanine-Arginine-β-Naphthylamide Enhances the Photobactericidal Effect of Methylene Blue on Pseudomonas aeruginosa. Photobiomodul Photomed Laser Surg 2023; 41:569-575. [PMID: 37870413 PMCID: PMC10615054 DOI: 10.1089/photob.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/19/2023] [Indexed: 10/24/2023] Open
Abstract
Objective: To investigate the effectiveness, dosing sequence, concentration, and mechanism of antimicrobial photodynamic inactivation (aPDI) using methylene blue (MB) plus phenylalanine-arginine-β-naphthylamide (PAβN) against Pseudomonas aeruginosa. Methods: P. aeruginosa bacterial suspension was incubated with MB for different times (5-240 min), and then, 10 J/cm2 red light was irradiated. The efflux pump inhibitor (EPI) PAβN (10-100 μg/mL) was combined with MB (1-20 μM) in different sequences (PAβN-first, PAβN+MB, PAβN-after). Colony-forming units were then determined by serial dilution. Results: Using MB 10 μM plus 10 J/cm2, the killing effect of MB-aPDI on P. aeruginosa increased first and then decreased with longer incubation time. The killing effect of MB+PAβN-aPDI on P. aeruginosa was better than that of MB-aPDI (p < 0.05) by up to 2 logs. PAβN-first had the best killing effect, whereas PAβN-after had the worst killing effect. The killing effect increased with PAβN concentration and at 100 μg/mL reached 5.1 logs. Conclusions: The EPI PAβN enhanced the bactericidal effect of MB-aPDI on P. aeruginosa, especially when added before MB. It is proposed that MB is a substrate of the resistance-nodulation-division family efflux pump.
Collapse
Affiliation(s)
- Lixia He
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanlin Yang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Department of Otorhinolaryngology, Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiumei Zhen
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Qi Qi
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongqi Qi
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingxiang Li
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Meixia Du
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg–Doornfontein Campus, Doornfontein, South Africa
| | - Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
17
|
Coșeriu RL, Mare AD, Toma F, Vintilă C, Ciurea CN, Togănel RO, Cighir A, Simion A, Man A. Uncovering the Resistance Mechanisms in Extended-Drug-Resistant Pseudomonas aeruginosa Clinical Isolates: Insights from Gene Expression and Phenotypic Tests. Microorganisms 2023; 11:2211. [PMID: 37764055 PMCID: PMC10535578 DOI: 10.3390/microorganisms11092211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: The purpose of the study was to describe the activity of mex efflux pumps in Multidrug-Resistant (MDR) clinical isolates of Pseudomonas aeruginosa and to compare the carbapenem-resistance identification tests with PCR; (2) Methods: Sixty MDR P. aeruginosa were analyzed for detection of carbapenemase by disk diffusion inhibitory method, carbapenem inactivation method and Modified Hodge Test. Endpoint PCR was used to detect 7 carbapenemase genes (blaKPC, blaOXA48-like, blaNDM, blaGES-2, blaSPM, blaIMP, blaVIM) and mcr-1 for colistin resistance. The expression of mexA, mexB, mexC, mexE and mexX genes corresponding to the four main efflux pumps was also evaluated; (3) Results: From the tested strains, 71.66% presented at least one carbapenemase gene, with blaGES-2 as the most occurring gene (63.3%). Compared with the PCR, the accuracy of phenotypic tests did not exceed 25% for P. aeruginosa. The efflux pump genes were present in all strains except one. In 85% of the isolates, an overactivity of mexA, mexB and mostly mexC was detected. Previous treatment with ceftriaxone increased the activity of mexC by more than 160 times; (4) Conclusions: In our MDR P. aeruginosa clinical isolates, the carbapenem resistance is not accurately detected by phenotypic tests, due to the overexpression of mex efflux pumps and in a lesser amount, due to carbapenemase production.
Collapse
Affiliation(s)
- Răzvan Lucian Coșeriu
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Camelia Vintilă
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Radu Ovidiu Togănel
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anastasia Simion
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| |
Collapse
|
18
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
19
|
Russo CM, Howey KG, O'Reilly MC. Scalable and Chromatography-Free Synthesis of Efflux Pump Inhibitor Phenylalanine Arginine β-Naphthylamide for Its Validation in Wild-Type Bacterial Strains. ChemMedChem 2023; 18:e202300128. [PMID: 37126222 PMCID: PMC10524873 DOI: 10.1002/cmdc.202300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
Phenylalanine arginine β-naphthylamine, or PAβN, is a C-terminus capped dipeptide discovered in 1999 as an RND-type efflux pump inhibitor (EPI). Since then, PAβN has become a standard tool compound in EPI research and development. Despite this, PAβN lacks a detailed or efficient synthesis, and standard parameters for its use in wild-type bacterial strains are inconsistent or non-existent. Therefore, a scalable and chromatography-free synthesis of PAβN was developed using streamlined traditional solution-phase peptide coupling chemistry. With this procedure, gram scale quantities of PAβN were synthesized alongside analogues and stereoisomers to build a focused library to evaluate simple structure activity relationships. While most analogues were less active than the broadly utilized L,L-PAβN itself, we identified that its enantiomer, D,D-PAβN, also provided 8- to 16-fold potentiation of the antibiotic levofloxacin at 40 to 50 μg/mL concentrations of EPI in various wild-type Pseudomonas aeruginosa strains. Additionally, D,D-PAβN was shown to be significantly more hydrolytically stable than L,L-PAβN, indicating that it may be a useful, and now readily synthesized, tool compound facilitating future EPI research.
Collapse
Affiliation(s)
| | - Kelsey G Howey
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | |
Collapse
|
20
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
21
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
22
|
Kumawat M, Nabi B, Daswani M, Viquar I, Pal N, Sharma P, Tiwari S, Sarma DK, Shubham S, Kumar M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb Pathog 2023:106182. [PMID: 37263448 DOI: 10.1016/j.micpath.2023.106182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Muskan Daswani
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Iqra Viquar
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Shikha Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
23
|
Pun M, Khazanov N, Galsurker O, Kerem Z, Senderowitz H, Yedidia I. Inhibition of AcrAB-TolC enhances antimicrobial activity of phytochemicals in Pectobacterium brasiliense. FRONTIERS IN PLANT SCIENCE 2023; 14:1161702. [PMID: 37229130 PMCID: PMC10203483 DOI: 10.3389/fpls.2023.1161702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Introduction The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
24
|
Başaran SN, Öksüz L. The role of efflux pumps ın antıbıotıc resıstance of gram negatıve rods. Arch Microbiol 2023; 205:192. [PMID: 37060362 DOI: 10.1007/s00203-023-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Antibiotic resistance is an important public health problem today, causing increased morbidity and mortality. Resistance to antibiotics in bacteria can develop by various mechanisms such as a change in the target site of the drug, a change in the outer membrane permeability, enzymatic defusing of the drug and efflux of the antimicrobial compound. Some bacteria have the potential to develop resistance to more than one drug by using several mechanisms together. One of the important resistance mechanisms of bacteria is active efflux pumps (EPs). EPs are pump proteins found in all cell types, located in the cell membrane. They are responsible for the excretion of various intracellular and extracellular substances (antibiotics, etc.) out of the cell. There is much research on various antimicrobials that cause antibiotic resistance in Gram negative rods, but studies on EPs are relatively few. Due to the concern that antibiotics will be insufficient in the treatment of diseases, a good understanding of EPs and the discovery of new EP inhibitors will shed light on the future of humanity. In this review, the structure of bacterial EPs in Gram negative bacteria, the role of EPs in multidrug resistance, the importance of EP inhibitors in the fight against antibiotic resistance and the phenotypic and genotypic detection methods of EPs are discussed.
Collapse
Affiliation(s)
- Sena Nur Başaran
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
26
|
Guo T, Chen Y, Chen W, Semple SJ, Gu X, Polyak SW, Sun G, Venter H, Ma S. Design and synthesis of benzochromene derivatives as AcrB inhibitors for the reversal of bacterial multidrug resistance. Eur J Med Chem 2023; 249:115148. [PMID: 36709649 DOI: 10.1016/j.ejmech.2023.115148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
A series of novel benzo[h]chromene compounds were designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their ability to potentiate the effect of antibiotics. Compounds with antibiotic-potentiating effects were then evaluated for inhibition of Nile Red efflux, and for off-target effects including activity on the outer and inner bacterial membranes and toxicity. Six compounds were identified to reduce the MIC values of at least one of the tested antibiotics by at least 4-fold, and further reduced the MICs in the presence of a membrane permeabilizer. The identified compounds were also able to inhibit Nile Red efflux at concentrations between 50 μM and 200 μM. The compounds did not disrupt the bacterial outer membrane nor display toxicity in a nematode model (Caenorhabditis elegans). The 4-methoxyphenoxy)propoxy derivative compound G6 possessed the most potent antibacterial potentiation with erythromycin by 8-fold even without the presence of a membrane permeabilizer. Furthermore, H6, G6, G10 and G11 completely abolished the Nile Red efflux at a concentration of 50 μM. The 3,4-dihydro-2H-benzo[h]chromen-5-yl)(morpholino)methanone core appears to be a promising chemical skeleton to be further studied in the discovery of more putative AcrB inhibitors.
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yang Chen
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Xiaotong Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Steven W Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
27
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
28
|
RND Pump-Mediated Efflux of Amotosalen, a Compound Used in Pathogen Inactivation Technology to Enhance Safety of Blood Transfusion Products, May Compromise Its Gram-Negative Anti-Bacterial Activity. mSphere 2023; 8:e0067322. [PMID: 36853056 PMCID: PMC10117049 DOI: 10.1128/msphere.00673-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Pathogen inactivation is a strategy to improve the safety of transfusion products. The only pathogen reduction technology for blood products currently approved in the US utilizes a psoralen compound, called amotosalen, in combination with UVA light to inactivate bacteria, viruses, and protozoa. Psoralens have structural similarity to bacterial multidrug efflux pump substrates. As these efflux pumps are often overexpressed in multidrug-resistant pathogens, we tested whether contemporary drug-resistant pathogens might show resistance to amotosalen and other psoralens based on multidrug efflux mechanisms through genetic, biophysical, and molecular modeling analysis. The main efflux systems in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa are tripartite resistance-nodulation-cell division (RND) systems, which span the inner and outer membranes of Gram-negative pathogens, and expel antibiotics from the bacterial cytoplasm into the extracellular space. We provide evidence that amotosalen is an efflux substrate for the E. coli AcrAB, Acinetobacter baumannii AdeABC, and P. aeruginosa MexXY RND efflux pumps. Furthermore, we show that the MICs for contemporary Gram-negative bacterial isolates for these species and others in vitro approached and exceeded the concentration of amotosalen used in the approved platelet and plasma inactivation procedures. These findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens. IMPORTANCE Pathogen inactivation is a strategy to enhance the safety of transfused blood products. We identify the compound, amotosalen, widely used for pathogen inactivation, as a bacterial multidrug efflux substrate. Specifically, experiments suggest that amotosalen is pumped out of bacteria by major efflux pumps in E. coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Such efflux pumps are often overexpressed in multidrug-resistant pathogens. Importantly, the MICs for contemporary multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Burkholderia spp., and Stenotrophomonas maltophilia isolates approached or exceeded the amotosalen concentration used in approved platelet and plasma inactivation procedures, potentially as a result of efflux pump activity. Although there are important differences in methodology between our experiments and blood product pathogen inactivation, these findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens.
Collapse
|
29
|
Phan TV, Nguyen VTV, Nguyen CHH, Vu TT, Tran TD, Le MT, Trinh DTT, Tran VH, Thai KM. Discovery of AcrAB-TolC pump inhibitors: Virtual screening and molecular dynamics simulation approach. J Biomol Struct Dyn 2023; 41:12503-12520. [PMID: 36762699 DOI: 10.1080/07391102.2023.2175381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
AcrAB-TolC tripartite efflux pump, which belongs to the RND superfamily, is a main multi-drug efflux system of Escherichia coli (E. coli) because of the broad resistance on various antibiotics. With the discovering of efflux pump inhibitors (EPIs), a combination between these and antibiotics is one of the most promising therapies. Therefore, building a virtual screening model with prediction capacities for the efflux pump inhibitory activities of candidates from DrugBank and ZINC15 dataset, is one of the key goals of this project. Based on the database of 170 diverse chemical structures collected from 28 research journals, two 2D-QSAR models and a 3D-pharmacophore model have been performed. On the AcrB protein (PDB 4DX7), two binding sites have been discovered that match to the hydrophobic trap in the distal pocket and the switch loop in the proximal pocket. After virtual screening processes, twenty candidate AcrAB-TolC inhibitors have been subjected to molecular dynamics simulations, binding free energy calculations and ADMET predictions. The results indicate that three compounds namely DB09233, DB02581, and DB15224 are potential inhibitors with ΔGbind of -42.30 ± 4.58, -40.76 ± 7.30 and -31.06 ± 7.63 kcal.mol-1, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thien-Vy Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vu-Thuy-Vy Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Minh-Tri Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dieu-Thuong Thi Trinh
- Faculty of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Viet-Hung Tran
- Institute of Drug, Quality Control, Ho Chi Minh City, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Liu S, Liu J, Fu N, Kornmatitsuk B, Yan Z, Luo J. Phenylalanine-arginine β-naphthylamide could enhance neomycin-sensitivity on Riemerella anatipestifer in vitro and in vivo. Front Microbiol 2023; 13:985789. [PMID: 36713163 PMCID: PMC9873997 DOI: 10.3389/fmicb.2022.985789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer is an important duck pathogen responsible for septicemia and infectious serositis, which has caused great economic losses to the duck industry. Phenylalanine-arginine β-naphthylamide (PAβN) is an efflux pump inhibitor, which mainly reduces the efflux effect by competing with antibiotics for efflux pump channels. Here, we found that R. anatipestifer strain GD2019 showed resistances to gentamicin, amikacin, kanamycin, and neomycin. Notably, PAβN could significantly reduce the Minimal inhibitory concentrations (MICs) of neomycin on the GD2019 strain. Moreover, PAβN combined with neomycin significantly decreased bacterial loads, relieved pathological injury and increase survival rate (p < 0.05) for the ducks lethally challenged by the GD2019 strain. Therefore, our results suggested, in vitro and in vivo, PAβN could reduce neomycin-resistant of R. anatipestifer. Importantly, finding of this study provide a new approach for treating antibiotic-resistant R. anatipestifer infection.
Collapse
Affiliation(s)
- Shiqi Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,Jinzhai County Agriculture and Rural Bureau, Jinzhai, Anhui, China
| | - Junfa Liu
- Wen's Group Academy, Xinxing, Guangdong, China
| | - Ning Fu
- Chifeng Institute of Agricultural Sciences, Chifeng, China
| | - Bunlue Kornmatitsuk
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Junrong Luo, ✉
| |
Collapse
|
31
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
32
|
Phan TV, Nguyen CHH, Nguyen VTV. 3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Due to the widespread resistance to several antibiotics, the AcrAB-TolC tripartite efflux pump is the primary multi-drug efflux system of Escherichia coli. One of the most promising treatments since the discovery of efflux pump inhibitors is the combination of them with antibiotics.
AIM: Based on the efflux pump inhibitor database and the structure of AcrB, the research was created the virtual screening models with prediction capabilities for the efflux pump inhibitory effects of candidates from the DrugBank and Traditional Chinese Medical databank.
Methods: The pharmacophore models were developed by MOE 2015.10 software using a database of 119 efflux pump inhibitors discovered in 12 research publications and belonged to different structural classes. The binding site was found on the AcrB protein (PDB: 4DX7) by LeadIT 2.0.2 software that corresponds to the hydrophobic trap in the proximal pocket.
Results: The potential inhibitors which satisfied the pharmacophore model and had docking scores under -20 kJ.mol-1 have been established. In which, TCM_20290, DB00303, DB04642, DB08116, TCM_29530, and 2,5-dimethyl-3-O-D-glucopyranosyl-naphthol have the best docking scores of -32.76, -26.59, -26.14, -25.62, -24.88, and -22.82 kJ.mol-1, respectively.
Conclusions: After the screening, the result was obtained six compounds may be potential efflux pump inhibitors that can be used for additional studies. In the future, further in vitro and in vivo research should be required to confirm the effects of these compounds. The ongoing battle against antibiotic resistance shows promise with the finding on initiators that can obstruct AcrAB–TolC multidrug efflux pumps.
Keywords: AcrAB-TolC, inhibitors, Escherichia coli, pharmacophore, molecular docking.
Collapse
|
33
|
Wang N, Chen X, Luo J, Deng F, Shi F, Wu Q, Huang Y, Ouyang Q, Qin R, Zhou H. Artemisinin derivative DHA27 enhances the antibacterial effect of aminoglycosides against Pseudomonas aeruginosa by inhibiting mRNA expression of aminoglycoside-modifying enzymes. Front Pharmacol 2022; 13:970400. [PMID: 36353502 PMCID: PMC9637796 DOI: 10.3389/fphar.2022.970400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Bacterial resistance is becoming increasingly serious, the present study aimed to investigate the mechanism of antibacterial sensitization effect of DHA27 combined with tobramycin in tobramycin-resistant Pseudomonas aeruginosa (PA). We found that DHA27 combined with aminoglycosides had an antibacterial sensitization effect on PA. Tobramycin, owing to its lower toxic and side effects, was selected to further study the molecular mechanism of drug combination. A sublethal-dose bacterial challenge/sepsis mouse model was established to study the protective effect of DHA27 plus tobramycin. Scanning electron microscopy was used to investigate whether DHA27 exerts the antibacterial sensitization effect by directly affecting bacterial morphology. The effect of DHA27 on daunorubicin accumulation in bacteria was studied, and quantitative reverse transcription PCR was used to study the effect of DHA27 plus tobramycin on 16S rRNA methyltransferase and aminoglycoside-modifying enzyme mRNA expression. Twenty clinical isolates of PA were found to be tobramycin resistant; DHA27 plus tobramycin had a significant antibacterial sensitization effect on many of these resistant strains. DHA27 plus tobramycin reduced the bacterial load in the spleen and lungs of sepsis model mice and levels of proinflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ). DHA27 plus tobramycin significantly inhibited the mRNA expression of aminoglycoside-modifying enzymes in bacteria. DHA27 combined with AGs had an antibacterial sensitization effect on PA; the molecular mechanism underlying this effect is closely related to the inhibition of the mRNA expression of aminoglycoside-modifying enzymes, especially aac(3)-II.
Collapse
Affiliation(s)
- Nuoyan Wang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuemin Chen
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing Luo
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fei Deng
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yasi Huang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Klobucar K, Jardine E, Farha MA, MacKinnon MR, Fragis M, Nkonge B, Bhando T, Borrillo L, Tsai CN, Johnson JW, Coombes BK, Magolan J, Brown ED. Genetic and Chemical Screening Reveals Targets and Compounds to Potentiate Gram-Positive Antibiotics against Gram-Negative Bacteria. ACS Infect Dis 2022; 8:2187-2197. [PMID: 36098580 DOI: 10.1021/acsinfecdis.2c00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Emily Jardine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Marc R MacKinnon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brenda Nkonge
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Timsy Bhando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louis Borrillo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
35
|
Seukep AJ, Mbuntcha HG, Kuete V, Chu Y, Fan E, Guo MQ. What Approaches to Thwart Bacterial Efflux Pumps-Mediated Resistance? Antibiotics (Basel) 2022; 11:antibiotics11101287. [PMID: 36289945 PMCID: PMC9598416 DOI: 10.3390/antibiotics11101287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022] Open
Abstract
An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic’s effects, yet given their great adaptability, unexpected mechanisms are still to be discovered. Over-expression of efflux pumps (EPs) constitutes the leading strategy of bacterial resistance, and it is also a primary driver in the establishment of multidrug resistance (MDR). Extensive efforts are being made to develop antibiotic resistance breakers (ARBs) with the ultimate goal of re-sensitizing bacteria to medications to which they have become unresponsive. EP inhibitors (EPIs) appear to be the principal group of ARBs used to impair the efflux system machinery. Due to the high toxicity of synthetic EPIs, there is a growing interest in natural, safe, and innocuous ones, whereby plant extracts emerge to be excellent candidates. Besides EPIs, further alternatives are being explored including the development of nanoparticle carriers, biologics, and phage therapy, among others. What roles do EPs play in the occurrence of MDR? What weapons do we have to thwart EP-mediated resistance? What are the obstacles to their development? These are some of the core questions addressed in the present review.
Collapse
Affiliation(s)
- Armel Jackson Seukep
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea P.O. Box 63, Cameroon
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Helene Gueaba Mbuntcha
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- College of Life Sciences, Linyi University, Linyi 276005, China
- Correspondence: (E.F.); (M.-Q.G.)
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (E.F.); (M.-Q.G.)
| |
Collapse
|
36
|
Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. BIOLOGY 2022; 11:biology11091328. [PMID: 36138807 PMCID: PMC9495857 DOI: 10.3390/biology11091328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Multidrug-resistant bacterial infections, especially that caused by Gram-negative bacteria, have posed serious health issues worldwide. Bacteria have different mechanisms that can confer multidrug resistance to bacteria, among these mechanisms are drug efflux pumps that play the main role in conferring multidrug resistance by recognizing then expelling a wide range of compounds, especially antibiotics, and reducing their concentration to sub-toxic levels. Small molecule inhibitors that target drug efflux pumps especially the AcrAB-TolC multidrug efflux pump, from E. coli, appear as a new promising and attractive approach that could increase the required accumulation of antimicrobials to eliminate bacteria as well as leading to reverse antibiotic resistance and prevent the development of resistance in clinically relevant bacterial pathogens and enhances the activity of antibiotics or prolong their effectiveness. Abstract Infections caused by multidrug resistance (MDR) of Gram-negative bacteria have become one of the most severe public health problems worldwide. The main mechanism that confers MDR to bacteria is drug efflux pumps, as they expel a wide range of compounds, especially antibiotics. Among the different types of drug efflux pumps, the resistance nodulation division (RND) superfamily confers MDR to various Gram-negative bacteria species. The AcrAB-TolC multidrug efflux pump, from E. coli, a member of RND, is the best-characterized example and an excellent model for understanding MDR because of an abundance of functional and structural data. Small molecule inhibitors that target the AcrAB-TolC drug efflux pump represent a new solution to reversing MDR in Gram-negative bacteria and restoring the efficacy of various used drugs that are clinically relevant to these pathogens, especially in the high shortage of drugs for multidrug-resistant Gram-negative bacteria. This review will investigate solutions of MDR in Gram-negative bacteria by studying the inhibition of the AcrAB-TolC multidrug efflux pump.
Collapse
|
37
|
Krajewska J, Nowicki K, Durka K, Marek-Urban PH, Wińska P, Stępniewski T, Woźniak K, Laudy AE, Luliński S. Oxazoline scaffold in synthesis of benzosiloxaboroles and related ring-expanded heterocycles: diverse reactivity, structural peculiarities and antimicrobial activity. RSC Adv 2022; 12:23099-23117. [PMID: 36090419 PMCID: PMC9379557 DOI: 10.1039/d2ra03910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two isomeric benzosiloxaborole derivatives 3a and 5a bearing fluorine and 4,4-dimethyl-2-oxazolin-2-yl substituents attached to the aromatic rings were obtained. Both compounds were prone to hydrolytic cleavage of the oxazoline ring after initial protonation or methylation of the nitrogen atom. The derivative 3c featuring N-methylammoniumalkyl ester functionality was successfully subjected to N-sulfonylation and N-acylation reactions to give respective derivatives which demonstrates its potential for modular synthesis of structurally extended benzosiloxaboroles. Compound 5c bearing N-ammoniumalkyl ester underwent conversion to a unique macrocyclic dimer due to siloxaborole ring opening. Furthermore, an unexpected 4-electron reduction of the oxazoline ring occurred during an attempted synthesis of 5a. The reaction gave rise to an unprecedented 7-membered heterocyclic system 4a comprising a relatively stable B-O-B-O-Si linkage and stabilized by an intramolecular N-B coordination. It could be cleaved to derivative 4c bearing BOH and SiMe2OH groups which acts as a pseudo-diol as demonstrated by formation of an adduct with Tavaborole. Apart from the multinuclear NMR spectroscopy characterization, crystal structures of the obtained products were determined in many cases by X-ray diffraction. Investigation of biological activity of the obtained compounds revealed that derivatives 3e and 3f with pendant N-methyl arylsulfonamide groups exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P, methicillin-resistant S. aureus (MRSA) ATCC 43300 as well as the MRSA clinical strains, with MIC values in the range of 3.12-6.25 mg L-1. These two compounds also showed activity against Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 6057 (with MICs of 25-50 mg L-1). The results of the antimicrobial activity and cytotoxicity studies indicate that 3e and 3f can be considered as potential antibacterial agents, especially against S. aureus MRSA.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Krzysztof Nowicki
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF) Carrer del Dr Aiguader, 88 08003 Barcelona Spain
| | - Krzysztof Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
38
|
Abdel-Karim SAAM, El-Ganiny AMA, El-Sayed MA, Abbas HAA. Promising FDA-approved drugs with efflux pump inhibitory activities against clinical isolates of Staphylococcus aureus. PLoS One 2022; 17:e0272417. [PMID: 35905077 PMCID: PMC9337675 DOI: 10.1371/journal.pone.0272417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Background and objectives Staphylococcus aureus is an opportunistic pathogen that causes wide range of nosocomial and community-acquired infections which have spread worldwide leading to an urgent need for developing effective anti-staphylococcal agents. Efflux is an important resistance mechanism that bacteria used to fight the antimicrobial action. This study aimed to investigate the efflux mechanism in S. aureus and assess diclofenac, domperidone, glyceryl trinitrate and metformin as potential efflux pump inhibitors that can be used in combination with antibiotics for treating topical infections caused by S. aureus. Materials and methods Efflux was detected qualitatively by the ethidium bromide Cart-Wheel method followed by investigating the presence of efflux genes by polymerase chain reaction. Twenty-six isolates were selected for further investigation of efflux by Cart-Wheel method in absence and presence of tested compounds followed by quantitative efflux assay. Furthermore, antibiotics minimum inhibitory concentrations in absence and presence of tested compounds were determined. The effects of tested drugs on expression levels of efflux genes norA, fexA and tetK were determined by quantitative real time-polymerase chain reaction. Results Efflux was found in 65.3% of isolates, the prevalence of norA, tetK, fexA and msrA genes were 91.7%, 77.8%, 27.8% and 6.9%. Efflux assay revealed that tested drugs had potential efflux inhibitory activities, reduced the antibiotic’s MICs and significantly decreased the relative expression of efflux genes. Conclusion Diclofenac sodium, domperidone and glyceryl trinitrate showed higher efflux inhibitory activities than verapamil and metformin. To our knowledge, this is the first report that shows that diclofenac sodium, glyceryl trinitrate and domperidone have efflux pump inhibitory activities against S. aureus.
Collapse
Affiliation(s)
| | | | - Mona Abdelmonem El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
39
|
Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel) 2022; 11:antibiotics11040520. [PMID: 35453271 PMCID: PMC9032748 DOI: 10.3390/antibiotics11040520] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.
Collapse
|
40
|
MacNair CR, Farha MA, Serrano-Wu MH, Lee KK, Hubbard B, Côté JP, Carfrae LA, Tu MM, Gaulin JL, Hunt DK, Hung DT, Brown ED. Preclinical Development of Pentamidine Analogs Identifies a Potent and Nontoxic Antibiotic Adjuvant. ACS Infect Dis 2022; 8:768-777. [PMID: 35319198 DOI: 10.1021/acsinfecdis.1c00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The difficulty in treating Gram-negative bacteria can largely be attributed to their highly impermeable outer membrane (OM), which serves as a barrier to many otherwise active antibiotics. This can be overcome with the use of perturbant molecules, which disrupt OM integrity and sensitize Gram-negative bacteria to many clinically available Gram-positive-active antibiotics. Although many new perturbants have been identified in recent years, most of these molecules are impeded by toxicity due to the similarities between pathogen and host cell membranes. For example, our group recently reported the cryptic OM-perturbing activity of the antiprotozoal drug pentamidine. Its development as an antibiotic adjuvant is limited, however, by toxicity concerns. Herein, we took a medicinal chemistry approach to develop novel analogs of pentamidine, aiming to improve its OM activity while reducing its off-target toxicity. We identified the compound P35, which induces OM disruption and potentiates Gram-positive-active antibiotics in Acinetobacter baumannii and Klebsiella pneumoniae. Relative to pentamidine, P35 has reduced mammalian cell cytotoxicity and hERG trafficking inhibition. Additionally, P35 outperforms pentamidine in a murine model of A. baumannii bacteremia. Together, this preclinical analysis supports P35 as a promising lead for further development as an OM perturbant.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Maya A. Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Michael H. Serrano-Wu
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Katie K. Lee
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Brian Hubbard
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Lindsey A. Carfrae
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Megan M. Tu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Jeffrey L. Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Diana K. Hunt
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deborah T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
41
|
Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J Med Microbiol 2022; 71. [PMID: 35324422 PMCID: PMC9176267 DOI: 10.1099/jmm.0.001496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction. We are becoming increasingly reliant on the effectiveness of biocides to combat the spread of Gram-negative multi-drug-resistant (MDR) pathogens, including Klebsiella pneumoniae. It has been shown that chlorhexidine exposure can lead to mutations in the efflux pump repressor regulators SmvR and RamR, but the contribution of each individual efflux pump to biocide tolerance is unknown. Hypothesis. Multiple efflux pumps, including SmvA and AcrAB-TolC, are involved in increased tolerance to biocides. However, strains with upregulated AcrAB-TolC caused by biocide exposure are more problematic due to their increased MDR phenotype. Aim. To investigate the role of AcrAB-TolC in the tolerance to several biocides, including chlorhexidine, and the potential threat of cross-resistance to antibiotics through increased expression of this efflux pump. Methodology. Antimicrobial susceptibility testing was performed on K. pneumoniae isolates with ramR mutations selected for after exposure to chlorhexidine, as well as transposon mutants in components and regulators of AcrAB-TolC. RTPCR was used to detect the expression levels of this pump after biocide exposure. Strains from the globally important ST258 clade were compared for genetic differences in acrAB-TolC and its regulators and for phenotypic differences in antimicrobial susceptibility. Results. Cross-resistance to antimicrobials was observed following mutations in ramR. Exposure to chlorhexidine led to increased expression of acrA and its activator ramA, and transposon mutants in AcrAB-TolC have increased susceptibility to several biocides, including chlorhexidine. Variations in ramR within the ST258 clade led to an increase in tolerance to certain biocides, although this was strain dependent. One strain, MKP103, that had increased levels of biocide tolerance showed a unique mutation in ramR that was reflected in enhanced expression of acrA and ramA. MKP103 transposon variants were able to further enhance their tolerance to specific biocides with mutations affecting SmvA. Conclusions. Biocide tolerance in K. pneumoniae is dependent upon several components, with increased efflux through AcrAB-TolC being an important one.
Collapse
Affiliation(s)
- Matthew E Wand
- UK Health Security Agency, Research and Development, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - J Mark Sutton
- UK Health Security Agency, Research and Development, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
42
|
Tambat R, Mahey N, Chandal N, Verma DK, Jangra M, Thakur KG, Nandanwar H. A Microbe-Derived Efflux Pump Inhibitor of the Resistance-Nodulation-Cell Division Protein Restores Antibiotic Susceptibility in Escherichia coli and Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:255-270. [PMID: 35045260 DOI: 10.1021/acsinfecdis.1c00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of efflux pump inhibitors (EPIs) as potentiators along with the traditional antibiotics assists in the warfare against antibiotic-resistant superbugs. Efflux pumps of the resistance-nodulation-cell division (RND) family play crucial roles in multidrug resistance in Escherichia coli and Pseudomonas aeruginosa. Despite several efforts, clinically useful inhibitors are not available at present. This study describes ethyl 4-bromopyrrole-2-carboxylate (RP1) isolation, an inhibitor of RND transporters from the library of 4000 microbial exudates. RP1 acts synergistically with antibiotics by reducing their minimum inhibitory concentration in strains overexpressing archetype RND transporters (AcrAB-TolC and MexAB-OprM). It also improves the accumulation of Hoechst 33342 and inhibits its efflux (a hallmark of EPI functionality). The antibiotic-RP1 combinations prolong the postantibiotic effects and reduce the mutation prevention concentration of antibiotics. Additionally, from Biolayer Interferometry spectra, it appears that RP1 is bound to AcrB. RP1 displays low mammalian cytotoxicity, no Ca2+ channel inhibitory effects, and reduces the intracellular invasion of E. coli and P. aeruginosa in macrophages. Furthermore, the RP1-levofloxacin combination is nontoxic, well-tolerated, and notably effective in a murine lung infection model. In sum, RP1 is a potent EPI and worthy of further consideration as a potentiator to improve the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
- Rushikesh Tambat
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Nisha Mahey
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Nishtha Chandal
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Dipesh Kumar Verma
- Structural Biology Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Manoj Jangra
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
43
|
Wrońska N, Szlaur M, Zawadzka K, Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030847. [PMID: 35164112 PMCID: PMC8838219 DOI: 10.3390/molecules27030847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Currently, the pharmaceutical industry is well-developed, and a large number of chemotherapeutics are being produced. These include antibacterial substances, which can be used in treating humans and animals suffering from bacterial infections, and as animal growth promoters in the agricultural industry. As a result of the excessive use of antibiotics and emerging resistance amongst bacteria, new antimicrobial drugs are needed. Due to the increasing trend of using natural, ecological, and safe products, there is a special need for novel phytocompounds. The compounds analysed in the present study include two triterpenoids ursolic acid (UA) and oleanolic acid (OA) and the flavonoid dihydromyricetin (DHM). All the compounds displayed antimicrobial activity against Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Listeria monocytogenes ATCC 19115) and Gram-negative bacteria (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442, and Campylobacter jejuni ATCC 33560) without adverse effects on eukaryotic cells. Both the triterpenoids showed the best antibacterial potential against the Gram-positive strains. They showed synergistic activity against all the tested microorganisms, and a bactericidal effect with the combination OA with UA against both Staphylococcus strains. In addition, the synergistic action of DHM, UA, and OA was reported for the first time in this study. Our results also showed that combination with triterpenoids enhanced the antimicrobial potential of DHM.
Collapse
|
44
|
Guo Y, Huang C, Su H, Zhang Z, Chen M, Wang R, Zhang D, Zhang L, Liu M. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes. Vet Res 2022; 53:3. [PMID: 35012652 PMCID: PMC8744338 DOI: 10.1186/s13567-021-01021-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0-97.7% and 36.5-71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10-5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Yuru Guo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chengcheng Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongyu Su
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zehui Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Menghan Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ruxia Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dexian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Luyao Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
45
|
Brindangnanam P, Sawant AR, Prashanth K, Coumar MS. Bacterial effluxome as a barrier against antimicrobial agents: structural biology aspects and drug targeting. Tissue Barriers 2021; 10:2013695. [PMID: 34957912 DOI: 10.1080/21688370.2021.2013695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. The bacterial membrane is the first layer of defense for the bacteria against antimicrobial agents (AMA), specifically transporters in the membrane efflux these AMA out of the bacteria and plays a significant role in the AMR development. Understanding the structure and the functions of these efflux transporters is essential to overcome AMR. This review discusses efflux transporters (primary, secondary, and tripartite), their domain architectures, substrate specificities, and efflux pump inhibitors (EPI). Special emphasis on nosocomial ESKAPEE (Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli) pathogens, their multidrug efflux targets and inhibitors are discussed. Deep knowledge about the functioning of efflux pumps and their structural aspects will open up opportunities for developing new EPI, which could be used along with AMA as combination therapy to overcome the emerging AMR crisis.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Ajit Ramesh Sawant
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
46
|
Self-inhibitory peptides targeting the Neisseria gonorrhoeae MtrCDE efflux pump increase antibiotic susceptibility. Antimicrob Agents Chemother 2021; 66:e0154221. [PMID: 34633841 PMCID: PMC8765275 DOI: 10.1128/aac.01542-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is an increasing public health threat due to rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains have emerged that are resistant to all antibiotics routinely used to treat the infection. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here we have shown that peptides rationally-designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics, in a dose-dependent manner and with no toxicity to human cells. Co-treatment of bacteria with subinhibitory concentrations of peptide led to 2-64 fold increases in the susceptibility to erythromycin, azithromycin, ciprofloxacin and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P and WHO X. The co-treatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibility to azithromycin, ciprofloxacin and ceftriaxone in WHO P and WHO X that was of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides could be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.
Collapse
|
47
|
Salillas S, Galano-Frutos JJ, Mahía A, Maity R, Conde-Giménez M, Anoz-Carbonell E, Berlamont H, Velazquez-Campoy A, Touati E, Mamat U, Schaible UE, Gálvez JA, Díaz-de-Villegas MD, Haesebrouck F, Aínsa JA, Sancho J. Selective Targeting of Human and Animal Pathogens of the Helicobacter Genus by Flavodoxin Inhibitors: Efficacy, Synergy, Resistance and Mechanistic Studies. Int J Mol Sci 2021; 22:ijms221810137. [PMID: 34576300 PMCID: PMC8467567 DOI: 10.3390/ijms221810137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial resistant (AMR) bacteria constitute a global health concern. Helicobacter pylori is a Gram-negative bacterium that infects about half of the human population and is a major cause of peptic ulcer disease and gastric cancer. Increasing resistance to triple and quadruple H. pylori eradication therapies poses great challenges and urges the development of novel, ideally narrow spectrum, antimicrobials targeting H. pylori. Here, we describe the antimicrobial spectrum of a family of nitrobenzoxadiazol-based antimicrobials initially discovered as inhibitors of flavodoxin: an essential H. pylori protein. Two groups of inhibitors are described. One group is formed by narrow-spectrum compounds, highly specific for H. pylori, but ineffective against enterohepatic Helicobacter species and other Gram-negative or Gram-positive bacteria. The second group includes extended-spectrum antimicrobials additionally targeting Gram-positive bacteria, the Gram-negative Campylobacter jejuni, and most Helicobacter species, but not affecting other Gram-negative pathogens. To identify the binding site of the inhibitors in the flavodoxin structure, several H. pylori-flavodoxin variants have been engineered and tested using isothermal titration calorimetry. An initial study of the inhibitors capacity to generate resistances and of their synergism with antimicrobials commonly used in H. pylori eradication therapies is described. The narrow-spectrum inhibitors, which are expected to affect the microbiota less dramatically than current antimicrobial drugs, offer an opportunity to develop new and specific H. pylori eradication combinations to deal with AMR in H. pylori. On the other hand, the extended-spectrum inhibitors constitute a new family of promising antimicrobials, with a potential use against AMR Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Sandra Salillas
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Juan José Galano-Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Alejandro Mahía
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Ritwik Maity
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - María Conde-Giménez
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Helena Berlamont
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (H.B.); (F.H.)
| | - Adrian Velazquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- CIBER de Enfermedades Hepáticas y Digestivas CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, CNRS UMR2001, Department of Microbiology, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris, France;
| | - Uwe Mamat
- Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (U.M.); (U.E.S.)
| | - Ulrich E. Schaible
- Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (U.M.); (U.E.S.)
| | - José A. Gálvez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC—Departamento de Química Orgánica, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain; (J.A.G.); (M.D.D.-d.-V.)
| | - María D. Díaz-de-Villegas
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC—Departamento de Química Orgánica, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain; (J.A.G.); (M.D.D.-d.-V.)
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (H.B.); (F.H.)
| | - José A. Aínsa
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER de Enfermedades Respiratorias—CIBERES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
48
|
Interest of Homodialkyl Neamine Derivatives against Resistant P. aeruginosa, E. coli, and β-Lactamases-Producing Bacteria-Effect of Alkyl Chain Length on the Interaction with LPS. Int J Mol Sci 2021; 22:ijms22168707. [PMID: 34445410 PMCID: PMC8396045 DOI: 10.3390/ijms22168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3′,6-dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3′,6-homodialkyl neamine derivatives carrying different alkyl chains (C7–C11) to interact with LPS and alter membrane permeability. 3′,6-Dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3′,6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3′,6-dinonyl- and 3′,6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.
Collapse
|
49
|
Pacholak P, Krajewska J, Wińska P, Dunikowska J, Gogowska U, Mierzejewska J, Durka K, Woźniak K, Laudy AE, Luliński S. Development of structurally extended benzosiloxaboroles - synthesis and in vitro biological evaluation. RSC Adv 2021; 11:25104-25121. [PMID: 35478884 PMCID: PMC9037100 DOI: 10.1039/d1ra04127d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
The synthesis of potassium 6-hydroxy-7-chloro-1,1-dimethyl-3,3-difluorobenzo-1,2,3-siloxaborolate 5b from readily available 4-bromo-2-chlorophenol was developed. This compound proved useful in various derivatizations resulting in a wide range of O-functionalized benzosiloxaboroles. Reactions of 5b with selected substituted benzoyl chlorides gave rise to a series of respective derivatives with 6-benzoate side groups attached to the benzosiloxaborole core. Furthermore, treatment of 5b with substituted benzenesufonyl chlorides afforded several benzosiloxaboroles bearing functionalized benzenesulfonate moieties at the 6 position. The synthesis of related chloropyridine-2-yloxy substituted benzosiloxaboroles was accomplished by a standard approach involving silylation/boronation of appropriate heterodiaryl ethers. Investigation of biological activity of obtained compounds revealed that some benzoate and most benzenesulfonate derivatives exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P as well as methicillin-resistant S. aureus ATCC 43300 with the MIC values in the range of 0.39–3.12 mg L−1. Some benzenesulfonate derivatives showed also potent activity against Enterococcus faecalis ATCC 29212 and E. faecium ATCC 6057 with MIC = 6.25 mg L−1. Importantly, for the most promising cocci-active benzenesulfonate derivatives the obtained MIC values were far below the cytotoxicity limit determined with respect to human normal lung fibroblasts (MRC-5). For those derivatives, the obtained IC50 values were higher than 12.3 mg L−1. The results of antimicrobial activity and cytotoxicity indicate that the tested compounds can be considered as potential antibacterial agents. The synthesis of potassium 6-hydroxy-7-chloro-1,1-dimethyl-3,3-difluorobenzo-1,2,3-siloxaborolate 5b from readily available 4-bromo-2-chlorophenol was developed.![]()
Collapse
Affiliation(s)
- P Pacholak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland .,University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - J Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Oczki 3 02-007 Warsaw Poland
| | - P Wińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - J Dunikowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - U Gogowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - J Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - K Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - K Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - A E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Oczki 3 02-007 Warsaw Poland
| | - S Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
50
|
de Araújo ACJ, Freitas PR, Dos Santos Barbosa CR, Muniz DF, de Almeida RS, Alencar de Menezes IR, Ribeiro-Filho J, Tintino SR, Coutinho HDM. In Vitro and In Silico Inhibition of Staphylococcus aureus Efflux Pump NorA by α-Pinene and Limonene. Curr Microbiol 2021; 78:3388-3393. [PMID: 34268598 DOI: 10.1007/s00284-021-02611-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
Since the discovery of the first antibiotics, bacteria have acquired a variety of resistance mechanisms, with efflux pump (EP) being the most prominent mechanism for intracellular targeting drugs. These proteins have become efficient mechanisms of resistance to antibiotics in species such as Staphylococcus aureus and, therefore, have been identified as promising therapeutic targets in antibacterial drug development. Accordingly, evidence suggests that monoterpenes can act as EP inhibitors and can be useful in circumventing bacterial resistance. This study aimed to evaluate the effectiveness of monoterpenes α-pinene and limonene as EP inhibitors against a strain of S. aureus expressing NorA protein. The minimum inhibitory concentration (MIC) against the 1199B strain of S. aureus, which carries genes encoding efflux proteins associated with antibiotic resistance to norfloxacin, was assessed through the broth microdilution method. The results obtained served as a subsidy for the analysis of the NorA pump inhibition with norfloxacin and ethidium bromide. Docking techniques, in silico, were used to evaluate the interaction of monoterpenes with NorA. Both monoterpenes showed no clinically effective antibacterial activity. Nevertheless, these compounds were found to decrease the MICs of ethidium bromide and norfloxacin indicating EP inhibition, which was confirmed by molecular docking analyses. In conclusion, α-pinene and limonene showed promising antibiotic-enhancing properties in S. aureus 1199B strain, indicating that monoterpenes can be used in targeted drug development to combat antibiotic resistance associated with EP expression.
Collapse
Affiliation(s)
- Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Priscilla Ramos Freitas
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | | | - Débora Feitosa Muniz
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Jaime Ribeiro-Filho
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato, CE, 63105-000, Brazil.
| |
Collapse
|