1
|
Liu C, An C, Zhang J, Liu Y, Zhang Q, Ding H, Ma S, Xue W. Evaluation of Safety and Probiotic Properties of Weissella spp. in Fermented Vegetables From Xi'an, Shaanxi, China. Food Sci Nutr 2025; 13:e4592. [PMID: 39803218 PMCID: PMC11717038 DOI: 10.1002/fsn3.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
The genus Weissella, commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several Weissella strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all Weissella strains in food applications. This study sought to expand our understanding of the biotechnological capabilities of Weissella spp. by examining the safety and functional characteristics of strains isolated from spontaneous fermentation. In this investigation, nine Weissella strains were evaluated for their safety and probiotic potential. The safety assessment revealed that the antibiotic resistance profiles of strains 16-2, 38-3, 69-3, 91-3, 91-5, 104-4, and 106-5 were comparable or superior to the reference strain LGG. Hemolytic activity and ammonia production were also evaluated, but no positive results were observed. Further probiotic experiments demonstrated that strain 91-5 exhibited superior performance in several areas, including survival rates in simulated gastrointestinal fluids, cell surface properties (hydrophobicity and adhesion to Caco-2 cells), ABTS+ scavenging ability, antimicrobial activity, and cholesterol assimilation in vitro. Additionally, strain 104-4 produced an exopolysaccharide (EPS) yield of 35.11 g/L after 48 h of culture in MRS-sucrose (60 g/L) medium, surpassing most previously reported values. These findings suggest that strains 91-5 and 104-4 show promise as potential probiotic candidates for the development of new functional food supplements. Furthermore, this research expands the theoretical basis for considering Weissella strains as novel probiotics.
Collapse
Affiliation(s)
- Chen Liu
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Chao An
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Jingjing Zhang
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Yao Liu
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Qiwen Zhang
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Hao Ding
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Saijian Ma
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Wenjiao Xue
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| |
Collapse
|
2
|
Wang A, Du Q, Li X, Cui Y, Luo J, Li C, Peng C, Zhong X, Huang G. Intracellular and Extracellular Metabolic Response of the Lactic Acid Bacterium Weissella confusa Under Salt Stress. Metabolites 2024; 14:695. [PMID: 39728476 DOI: 10.3390/metabo14120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Weissella confusa is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of W. confusa isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of W. confusa under salt stress are not fully understood. METHODS To study the effect of NaCl stress on W. confusa, growth performance and metabolite profiles of the strains were compared between a NaCl-free group and a 35% NaCl-treated group. Growth performance was assessed by measuring viable cell counts and examining the cells using scanning electron microscopy (SEM). Intracellular and extracellular metabolites were analyzed by non-targeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS). RESULTS It was found that the viable cell count of W. confusa decreased with increasing salinity, and cells could survive even in saturated saline (35%) medium for 24 h. When exposed to 35% NaCl, W. confusa cells exhibited surface pores and protein leakage. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 42 different metabolites were identified in the cells and 18 different metabolites in the culture medium. These different metabolites were mainly involved in amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. In addition, salt-exposed cells exhibited higher levels of intracellular ectoine and lactose, whose precursors, such as aspartate, L-2,4-diaminobutanoate, and galactinol, were reduced in the culture medium. CONCLUSIONS This study provides insight into the metabolic responses of W. confusa under salt stress, revealing its ability to maintain viability and alter metabolism in response to high NaCl concentrations. Key metabolites such as ectoine and lactose, as well as changes in amino acid and nucleotide metabolism, may contribute to its tolerance to salt. These findings may improve our understanding of the bacterium's survival mechanisms and have potential applications in food fermentation and biotechnology.
Collapse
Affiliation(s)
- Ali Wang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
| | - Qinqin Du
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Xiaomin Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Yimin Cui
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiahua Luo
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Cairong Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Chong Peng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Xianfeng Zhong
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
- School of Agricultural and Biological Engineering, Foshan University, Foshan 528231, China
| | - Guidong Huang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
| |
Collapse
|
3
|
Zhang D, Ji H, Wang S, Liu M, Chen M, Liu H. Modulation of fecal microbiota and reductions in fecal antibiotic resistance genes (ARGs) driven by Weissella-fermented feed in growing pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117044. [PMID: 39317072 DOI: 10.1016/j.ecoenv.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Probiotics-induced feed fermentation can improve the composition of microbiota, leading to benefits in pig production. However, the influence of probiotics-driven feed fermentation on pollution reduction is limited. This study aimed to analyze the impact of Weissella-based feed fermentation on the chemical characteristics, changes in microbial abundance, and antibiotic resistance genes (ARGs). Moreover, the possible mechanism and the association among them was also analyzed. First, pigs reared on fermented feed exhibited improved growth performance. The fermentation group showed a significant reduction in emissions of total phosphorus (TP), total carbon (TC), organic matter (OM), copper (Cu), and zinc (Zn) levels in feces compared to the control group. The fermentation group also showed a significant decrease in the ARGs, especially for the tetX, tetW, tetQ, tetL, tetO, tet32, tet44, ermG, ermF, CfxA2, CfxA3, aph3-III, aadA, and ant9-I, compared to the control group. The primary functional microbiota, characterized by increased levels of Bifidobacterium, Megasphaera, and Mitsuokella, and decreased levels of Methanosphaera, and Ruminiclostridium, displayed both negative and positive correlations with ARGs, TC, TP, OM, Cu, and Zn. Furthermore, a significant association was observed between the alterations in microbiota and ARGs and the lactic acid concentration in the fermented feed. The molecular docking results showed a good fit between lactate dehydrogenase and three antibiotics, particularly tetracycline. In conclusion, these results offer novel targets and strategies to address environmental pollutants associated with pig farming.
Collapse
Affiliation(s)
- Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Meixia Chen
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
4
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Wu X, Wu S, Shan J, Shen S, Deng X. Resolution of Peritoneal Dialysis-Associated Peritonitis From Weissella confusa Combined Gastric Hookworm Disease: A Case Report and Literature Review. Semin Dial 2024; 37:404-407. [PMID: 39078724 DOI: 10.1111/sdi.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/17/2024] [Accepted: 07/12/2024] [Indexed: 10/11/2024]
Abstract
We reported a rare case of peritoneal dialysis-associated peritonitis caused by Weissella confusa. In this case, the symptoms of peritonitis were insidious and atypical, with only turbid peritoneal dialysis effluent and no fever or abdominal pain. The peritoneal dialysis effluent showed slightly elevated leukocytes (predominantly lymphocytes). Weissella confusa was confirmed through repeated peritoneal dialysis effluent cultures. Gastroscopy revealed erosive gastritis with a hookworm infection. The patient recovered after antibiotic and deworming treatments. Our report highlights the unusual and atypical symptoms, characterized by insidious onset, turbid peritoneal dialysis fluid, and an absence of typical signs such as fever or abdominal pain.
Collapse
Affiliation(s)
- Xiujuan Wu
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing, China
| | - Shaorui Wu
- Shaoxing University School of Medicine, Shaoxing, China
| | - Juanping Shan
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing, China
| | - Shuijuan Shen
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing, China
| | - Xuan Deng
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
6
|
Fries-Craft K, Anderson C, Schmitz-Esser S, Bobeck EA. Sequencing approaches to identify distal jejunum microbial community composition and function in broiler chickens fed anti-interleukin-10 during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:104001. [PMID: 39002368 PMCID: PMC11298949 DOI: 10.1016/j.psj.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Strategies to counteract interleukin (IL)-10-mediated immune evasion by Eimeria spp. during coccidiosis- like anti-IL-10 antibodies- may protect broiler chicken health and reduce incidence of secondary necrotic enteritis (Clostridium perfringens) via undetermined mechanisms. Objectives were to use sequencing techniques to evaluate jejunal microbial community composition and function in anti-IL-10-fed broilers during coccidiosis and necrotic enteritis. On d0, Ross 308 chicks were placed in 32 cages (15 chicks/ cage) for a 25-d study and randomly assigned to diets ± 0.03% anti-IL-10. Six chicks/ diet were euthanized for distal jejunum content and tissue collection on d 14 (baseline) before inoculating the remainder with saline or 15,000 E. maxima oocysts (M6 strain). Half the chicks challenged with E. maxima were challenged with C. perfringens (1×108 colony forming units) on d 18 and 19. Follow-up samples (6 chicks/treatment) were collected at 7 and 11 d postinoculation (pi) for the E. maxima-only group, or 3 and 7 dpi for the E. maxima + C. perfringens group with 3/7 dpi being designated as peak and 7/11dpi as postpeak challenge. DNA was extracted from digesta for microbiota composition analysis (16S rRNA gene sequencing) while RNA was extracted from tissue to evaluate the metatranscriptome (RNA sequencing). Alpha diversity and genus relative abundances were analyzed using the diet or challenge main effects with associated interactions (SAS 9.4; P ≤ 0.05). No baseline microbial changes were associated with dietary anti-IL-10. At peak challenge, a diet main effect reduced observed species 36.7% in chicks fed anti-IL-10 vs. control; however, the challenge effect reduced observed species and Shannon diversity 51.2-58.3% and 33.0 to 35.5%, respectively, in chicks challenged with E. maxima ± C. perfringens compared to their unchallenged counterparts (P ≤ 0.05). Low sequencing depth limited metatranscriptomic analysis of jejunal microbial function via RNA sequencing. This study demonstrates that challenge impacted the broiler distal jejunum microbiota more than anti-IL-10 while future research to characterize the microbial metatranscriptome may benefit from investigating other intestinal compartments.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - C Anderson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Küçükgöz K, Venema K, Trząskowska M. Gut microbiota modulatory capacity of fermented ketchup in a validated in vitro model of the colon. Food Res Int 2024; 192:114801. [PMID: 39147503 DOI: 10.1016/j.foodres.2024.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to evaluate the effects of fermented beetroot ketchup enriched with Lactobacillus johnsonii K4 and non-fermented beetroot ketchup on pooled fecal microbiota from healthy adults in in vitro colon model. The research focused on how these products influenced the composition and functionality of the gut microbiota, as well as metabolite production, using the validated dynamic in vitro colon model, TNO Intestinal Model (TIM-2). After an initial starvation phase, a single 60 g dose of predigested and freeze-dried ketchup was introduced into the model. The potential probiotic strain Lactobacillus johnsonii K4 was added over three days. A carbohydrate mixture of standard ileal effluent medium (SIEM) served as the control. Our analysis identified 21 bacterial taxa that were significantly modulated (q-value < 0.2) when comparing ketchup samples to control samples. Notably, the ketchup samples led to an increase in butyrate-producing taxa, including Faecalibacterium, Blautia, Ruminococcaceae, Ruminiclostridium 6, and Anaerostipes. Conversely, there was a reduction in potentially pathogenic genera Desulfovibrio and Escherichia-Shigella. Distinct profiles of short-chain fatty acids (SCFA) were observed among the fermented ketchup, non-fermented ketchup, and control samples. Non-fermented ketchup resulted in higher proportions of acetate, propionate, and butyrate compared to the other interventions. This may be related to the fermentation with lactic acid bacteria in fermented samples with lower levels of substrate for SCFAs production. However, fermented ketchup sample has higher relative abundance of beneficial bacteria like Lactobacillus, Weissella and Dorea in gut microbiota. These findings suggest that beetroot ketchup, can positively influence gut microbiota composition and function, highlighting its potential benefits for human health.
Collapse
Affiliation(s)
- Kübra Küçükgöz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition, 3702-776 Warsaw, Poland.
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, the Netherlands; Current address: Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands.
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition, 3702-776 Warsaw, Poland.
| |
Collapse
|
8
|
Singh JK, Devi PB, Reddy GB, Jaiswal AK, Kavitake D, Shetty PH. Biosynthesis, classification, properties, and applications of Weissella bacteriocins. Front Microbiol 2024; 15:1406904. [PMID: 38939182 PMCID: PMC11210197 DOI: 10.3389/fmicb.2024.1406904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
This review aims to comprehensively chronicle the biosynthesis, classification, properties, and applications of bacteriocins produced by Weissella genus strains, particularly emphasizing their potential benefits in food preservation, human health, and animal productivity. Lactic Acid Bacteria (LAB) are a class of microorganisms well-known for their beneficial role in food fermentation, probiotics, and human health. A notable property of LAB is that they can synthesize antimicrobial peptides known as bacteriocins that exhibit antimicrobial action against both closely related and other bacteria as well. Bacteriocins produced by Weissella spp. are known to exhibit antimicrobial activity against several pathogenic bacteria including food spoilage species, making them highly invaluable for potential application in food preservation and food safety. Importantly, they provide significant health benefits to humans, including combating infections, reducing inflammation, and modulating the gut microbiota. In addition to their applications in food fermentation and probiotics, Weissella bacteriocins show promising prospects in poultry production, processing, and improving animal productivity. Future research should explore the utilization of Weissella bacteriocins in innovative food safety measures and medical applications, emphasizing their potential to combat antibiotic-resistant pathogens, enhance gut microbiota composition and function, and synergize with existing antimicrobial therapies.
Collapse
Affiliation(s)
- Jahnavi Kumari Singh
- Department of Food Science and Technology, Pondicherry University, Pondicherry, India
| | | | - G. Bhanuprakash Reddy
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| | - Digambar Kavitake
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | | |
Collapse
|
9
|
Benameur F, Belkaaloul K, Kheroua O. Isolation of 60 strains from fermented milk of mares and donkeys in Algeria and identification by 16S rRNA sequencing of lactobacilli: Assessment of probiotic skills of important strains and aromatic productivity power. Vet World 2024; 17:829-841. [PMID: 38798294 PMCID: PMC11111728 DOI: 10.14202/vetworld.2024.829-841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Donkey and mare milk have high nutritional and functional values, but their lactic acid bacteria (LAB) content remains poorly studied and undervalued in the Algerian dairy industry. This study aimed to isolate and select LAB strains that produce antimicrobial substances during fermentation and to characterize the probiotic profiles of each extracted strain to indicate their potential for antioxidant and proteolytic activity. Materials and Methods This study focuses on isolating and identifying lactic acid bacterial strains from 10 Equid-fermented milk samples collected in two regions of El Bayed Wilaya (Algeria). Identification of LAB strains was obtained by 16S rRNA sequencing. The probiotic properties of important strains and their aromatic productivity power are assessed. To evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Chryseobacterium joostei, Pseudomonas aeruginosa, and Escherichia coli, we selected 21 strains. Different induction methods have been used to amplify the antibacterial effects against these pathogenic strains. Results Among a total of 60 identified strains, 31 had a probiotic profile, and most were catalase-negative. Aromatic productivity power was observed in eight strains: Lactiplantibacillus plantarum, Lactobacillus casei, Lactobacillus paracasei, Weissella confusa, Weissella cibaria, Leuconostoc mesenteroides, Leuconostoc lactis, and Lactobacillus sp1. Conclusion Our results provide insight into the considerable diversity of LAB present in fermented donkey and mare milk. To meet the expectations of the Algerian dairy industry, it is important that the probiotic skills of the nine selected strains are met. In addition, a significant number of these strains may have important probiotic activity and biotechnological potential.
Collapse
Affiliation(s)
- Fouzia Benameur
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Kawthar Belkaaloul
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Omar Kheroua
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
10
|
Teixeira CG, Belguesmia Y, da Silva Rodrigues R, Lucau-Danila A, Nero LA, de Carvalho AF, Drider D. Assessment of safety and in situ antibacterial activity of Weissella cibaria strains isolated from dairy farms in Minas Gerais State, Brazil, for their food application. Braz J Microbiol 2024; 55:699-710. [PMID: 38253975 PMCID: PMC10920571 DOI: 10.1007/s42770-023-01244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite-Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Yanath Belguesmia
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Rafaela da Silva Rodrigues
- InovaLeite-Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Anca Lucau-Danila
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite-Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|
11
|
Quintanilla-Pineda M, Ibañez FC, Garrote-Achou C, Marzo F. A Novel Postbiotic Product Based on Weissella cibaria for Enhancing Disease Resistance in Rainbow Trout: Aquaculture Application. Animals (Basel) 2024; 14:744. [PMID: 38473129 DOI: 10.3390/ani14050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Postbiotics are innovative tools in animal husbandry, providing eco-friendly solutions for disease management within the industry. In this study, a new postbiotic product was evaluated for its impact on the health of rainbow trout (Oncorhynchus mykiss). In vivo studies were conducted to assess the safety of the Weissella cibaria strains used in postbiotic production. Additionally, this study evaluated the impact of diet supplementation with 0.50% postbiotics on growth performance during a 30-day feeding trial; the gut microbial communities, immunomodulation, and protection against Yersinia ruckeri infection were evaluated. The strains did not harm the animals during the 20-day observation period. Furthermore, the effect of postbiotics on growth performance was not significant (p < 0.05). The treated group showed a significant increase in acid-lactic bacteria on the 30th day of the feeding trial, with counts of 3.42 ± 0.21 log CFU/mL. Additionally, there was an up-regulation of the pro-inflammatory cytokine IL-1β in head kidney samples after 48 h of feed supplementation, whereas cytokines IL-10, IL-8, INF-γ, and TNF-α were down-regulated. The findings indicate that rainbow trout fed with postbiotics saw an improvement in their survival rate against Y. ruckeri, with a 20.66% survival improvement in the treated group. This study proves that incorporating postbiotics from two strains of W. cibaria previously isolated from rainbow trout into the diet of fish has immunomodulatory effects, enhances intestinal microbial composition, and improves fish resistance against Y. ruckeri.
Collapse
Affiliation(s)
- Mario Quintanilla-Pineda
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
- PENTABIOL SL, 31191 Pamplona, Spain
| | - Francisco C Ibañez
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | - Florencio Marzo
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
12
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
13
|
Gao Y, Zhang J, Chen H, Jin X, Lin Z, Fan C, Shan Z, Teng W, Li J. Dynamic changes in the gut microbiota during three consecutive trimesters of pregnancy and their correlation with abnormal glucose and lipid metabolism. Eur J Med Res 2024; 29:117. [PMID: 38347605 PMCID: PMC10860297 DOI: 10.1186/s40001-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION During normal pregnancy, changes in the gut microbiota (GM) in response to physiological alterations in hormonal secretion, immune functions and homeostasis have received extensive attention. However, the dynamic changes in the GM during three consecutive trimesters of pregnancy and their relationship with glucose and lipid metabolism have not been reported. In this study, we aimed to investigate the dynamic changes in the diversity and species of the GM during three consecutive trimesters in women who naturally conceived, and their relationships with abnormal fasting blood glucose (FBG) and serum lipid levels. METHODS A total of 30 pregnant women without any known chronic or autoimmune inflammatory disease history before pregnancy were enrolled during the first trimester. Serum and stool samples were collected during the first trimester, the second trimester, and the third trimester. Serum samples were tested for FBG and blood lipid levels, and stool specimens were analyzed by 16S rDNA sequencing. RESULTS The abundance ratio of bacteroidetes/firmicutes showed an increasing tendency in most of the subjects (19/30, 63.3%) from the first to the third trimester. LEfSe analysis showed that the abundance of Bilophila was significantly increased from the first to the third trimester. In addition, at the genus level, the increased relative abundance of Mitsuokella, Clostridium sensu stricto and Weissella were potentially involved in the development of high FBG during pregnancy. The raised relative abundance of Corynebacterium, Rothia and Granulicatella potentially contributed to the occurrence of dyslipidemia during pregnancy. CONCLUSIONS There are dynamic changes in the GM during the three trimesters, and the alterations in some bacterium abundance may contribute to the development of high FBG and dyslipidemia during pregnancy. Monitoring enterotypes and correcting dysbiosis in the first trimester may become new strategies for predicting and preventing glucolipid metabolism disorders during pregnancy.
Collapse
Affiliation(s)
- Yiyang Gao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jinjia Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Haiying Chen
- Department of Obstetrics and Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhenyu Lin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
14
|
Akinyemi MO, Ogunremi OR, Adeleke RA, Ezekiel CN. Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria. Probiotics Antimicrob Proteins 2024; 16:163-180. [PMID: 36520357 DOI: 10.1007/s12602-022-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Probiotic microorganisms are incorporated in foods due to their numerous health benefits. We investigated lactic acid bacteria (LAB) and yeasts isolated from goat milk in Nigeria for novel probiotic strains. In this study, a total of 27 LAB and 23 yeast strains were assessed for their probiotic potentials. Only six LAB strains (Weissella cibaria GM 93m3, Weissella confusa GM 92m1, Pediococcus acidilactici GM 18a, Pediococcus pentosaceus GM 23d, Lactiplantibacillus pentosus GM 102s4, Limosilactobacillus fermentum GM 30m1) and four yeast strains (Candida tropicalis 12a, C. tropicalis 33d, Diutina rugosa 53b, and D. rugosa 77a) identified using partial 16S and 26S rDNA sequencing, respectively, showed survival at pH 2.5, 0.3% bile salt, and simulated gastrointestinal conditions and possessed auto-aggregative and hydrophobic properties, thus satisfying key in vitro criteria as probiotics. All LAB strains showed coaggregation properties and antimicrobial activities against pathogens. Pediococcus pentosaceus GM 23d recorded the strongest coaggregation percentage (34-94%) against 14 pathogens, while W. cibaria GM 93m3 showed the least (6-57%) against eight of the 14 pathogens. The whole cell and extracellular extracts of LAB and yeast strains, with the exception of D. rugosa 77a, had either 2,2-diphenyl-1-picryl-hydrazyl and/or hydroxyl radical scavenging activity. In conclusion, all six LAB and four yeast strains are important probiotic candidates that can be further investigated for use as functional starter cultures.
Collapse
Affiliation(s)
- Muiz O Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Omotade R Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria
| | - Rasheed A Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| |
Collapse
|
15
|
Russo P, Diez-Ozaeta I, Mangieri N, Tamame M, Spano G, Dueñas MT, López P, Mohedano ML. Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods 2023; 13:69. [PMID: 38201097 PMCID: PMC10778100 DOI: 10.3390/foods13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Gluten consumption causes several immunological and non-immunological intolerances in susceptible individuals. In this study, the dextran-producing Weissella cibaria BAL3C-5 and its derivative, the riboflavin-overproducing strain BAL3C-5 C120T, together with a commercial bakery yeast, were used to ferment gluten-free (GF)-doughs obtained from corn and rice flours at two different concentrations and supplemented with either quinoa, buckwheat, or chickpea to obtain laboratory-scale GF bread. The levels of dextran, riboflavin, and total flavins were determined in the fermented and breads. Both strains grew in fermented doughs and contributed dextran, especially to those made with corn plus quinoa (~1 g/100 g). The highest riboflavin (350-150 µg/100 g) and total flavin (2.3-1.75 mg/100 g) levels were observed with BAL3C-5 C120T, though some differences were detected between the various doughs or breads, suggesting an impact of the type of flour used. The safety assessment confirmed the lack of pathogenic factors in the bacterial strains, such as hemolysin and gelatinase activity, as well as the genetic determinants for biogenic amine production. Some intrinsic resistance to antibiotics, including vancomycin and kanamycin, was found. These results indicated the microbiological safety of both W. cibaria strains and indicated their potential application in baking to produce GF bread.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Iñaki Diez-Ozaeta
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Giuseppe Spano
- DAFNE Department, University of Foggia, 71122 Foggia, Italy;
| | - Maria Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| |
Collapse
|
16
|
Dimov SG. The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening. BIOTECH 2023; 12:63. [PMID: 37987480 PMCID: PMC10660856 DOI: 10.3390/biotech12040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
This mini review deals with some controversial non-starter lactic acid bacteria (NSLAB) species known to be both human and animal pathogens but also health-promoting and probiotic. The focus is on Lactococcus garvieae, two Streptococcus species (S. uberis and S. parauberis), four Weissella species (W. hellenica, W. confusa, W. paramesenteroides, and W. cibaria), and Mammalicoccus sciuri, which worldwide, are often found within the microbiotas of different kinds of cheese, mainly traditional artisanal cheeses made from raw milk and/or relying on environmental bacteria for their ripening. Based on literature data, the virulence and health-promoting effects of these bacteria are examined, and some of the mechanisms of these actions are reviewed. Additionally, their possible roles in cheese ripening are also discussed. The analysis of the literature data available so far showed that, in general, the pathogenic and the beneficial strains, despite belonging to the same species, show somewhat different genetic constitutions. Yet, when the safety of a given strain is assessed, genomic analysis on its own is not enough, and a polyphasic approach including additional physiological and functional tests is needed.
Collapse
Affiliation(s)
- Svetoslav G Dimov
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1504 Sofia, Bulgaria
| |
Collapse
|
17
|
Ben-Miled H, Semmar N, Castellanos MS, Ben-Mahrez K, Benoit-Biancamano MO, Réjiba S. Effect of honey bee forage plants in Tunisia on diversity and antibacterial potential of lactic acid bacteria and bifidobacteria from Apis mellifera intermissa and its products. Arch Microbiol 2023; 205:295. [PMID: 37480514 DOI: 10.1007/s00203-023-03630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Lactic acid bacteria and bifidobacteria (LAB and Bifido), isolated from the gastrointestinal tract of Apis mellifera intermissa (BGIT), honey (H), propolis (P) and bee bread (BB) of hives set in different vegetations (wildflowers, caraway, orange blossom, Marrubium vulgare, Eucalyptus and Erica cinerea), were subjected to analysis of their antibacterial potential. Isolates able to inhibit Staphylococcus aureus were selected and identified with MALDI-TOF MS leading to 154 strains representing 12 LAB and Bifido species. Lactiplantibacillus plantarum, Pediococcus pentosaceus and Enterococcus faecalis were predominantly found in all matrices. BGIT showed the highest LAB and Bifido diversity with exclusive occurrences of five species (including Bifidobacterium asteroides and Limosilactobacillus fermentum). Honey was the second origin harboring an important variety of LAB species of which Apilactobacillus kunkeei and Enterococcus mundtii were characteristic of both H and BGIT. Principal components analysis revealed associations between antibacterial activities of LAB and Bifido, matrices and honey bee forage plants. Inhibition trends of S. aureus and Citrobacter freundii were highlighted with: L. plantarum from BGIT, P, H of bees feeding on E. cinerea; Pediococcus pentosaceus from BGIT, P, BB associated with E. cinerea; and Bifidobacterium asteroides from BGIT/orange blossom system. However, Enterococcus faecium associated with BGIT/Eucalyptus system antagonized Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Our findings highlighted noteworthy effects of bee forage plants on the antibacterial activity of LAB and Bifido. Our approach could be useful to identify multiple conditions promoting antibacterial potency of LAB and Bifido under the combined effects of feeding plants and living matrices.
Collapse
Affiliation(s)
- Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nabil Semmar
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Miguel Sautié Castellanos
- Plateforme IA-Agrosanté, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Marie-Odile Benoit-Biancamano
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Samia Réjiba
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
- Higher Institute of Biotechnology, Biotechpole of Sidi Thabet, Sidi Thabet, BP-66, 2020, Ariana, Tunis, Tunisia.
- University of Manouba, 2010, Manouba, Tunis, Tunisia.
| |
Collapse
|
18
|
Bhatia R, Singh S, Maurya R, Bhadada SK, Bishnoi M, Chopra K, Joshi SR, Kondepudi KK. In vitro characterization of lactic acid bacterial strains isolated from fermented foods with anti-inflammatory and dipeptidyl peptidase-IV inhibition potential. Braz J Microbiol 2023; 54:293-309. [PMID: 36401067 PMCID: PMC9944167 DOI: 10.1007/s42770-022-00872-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known to stimulate, modulate, and regulate host immune response by regulating specific sets of genes and improve glucose homeostasis through regulating dipeptidyl peptidase (DPP-IV) activity, but the mechanism behind their protective role is not clearly understood. Therefore, the present study was designed to isolate indigenous lactic acid bacterial (LAB) strains from different fermented food samples, vegetables, and human infant feces exhibiting anti-inflammatory, antioxidant, and DPP-IV inhibitory activity. A total of thirty-six Gram-positive, catalase-negative, and rod-shaped bacteria were isolated and screened for their anti-inflammatory activity using lipopolysaccharide (LPS)-induced inflammation on the murine (RAW264.7) macrophages. Among all, sixteen strains exhibited more than 90% reduction in nitric oxide (NO) production by the LPS-treated RAW264.7 cells. Prioritized strains were characterized for their probiotic attributes as per the DBT-ICMR guidelines and showed desirable probiotic attributes in a species and strain-dependent manner. Accordingly, Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, Lactiplantibacillus plantarum LAB31, Pediococcus acidilactici LAB8, and Lactiplantibacillus plantarum LAB39 were prioritized. Furthermore, these strains when co-supplemented with LPS and treated on RAW264.7 cells inhibited the mitogen-activated protein kinases (MAPKs), i.e., p38 MAPK, ERK1/2, and SAPK/JNK, cyclooxygenase-2 (COX-2), relative to the LPS-alone-treated macrophages. LAB31 and LAB39 also showed 64 and 95% of DPP-IV inhibitory activity relative to the Lacticaseibacillus rhamnosus GG ATCC 53103, which was used as a reference strain in all the studies. Five prioritized strains ameliorated the LPS-induced inflammation by downregulating the JNK/MAPK pathway and could be employed as an alternative bio-therapeutic strategy in mitigating gut-associated inflammatory conditions. The potential mechanism of action of prioritized LAB strains in preventing the LPS-induced inflammation in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Shashank Singh
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Santa Ram Joshi
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Meghalaya, 793022, Shillong, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India.
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
- Regional Centre of Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
19
|
Fanelli F, Montemurro M, Verni M, Garbetta A, Bavaro AR, Chieffi D, Cho GS, Franz CMAP, Rizzello CG, Fusco V. Probiotic Potential and Safety Assessment of Type Strains of Weissella and Periweissella Species. Microbiol Spectr 2023; 11:e0304722. [PMID: 36847557 PMCID: PMC10100829 DOI: 10.1128/spectrum.03047-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Garbetta
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | | | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| |
Collapse
|
20
|
In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. Foods 2023; 12:foods12040861. [PMID: 36832935 PMCID: PMC9957526 DOI: 10.3390/foods12040861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida's growth in the coculture challenge up to 4.49 ± 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen's growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
Collapse
|
21
|
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, Dabert M. Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content. MICROBIAL ECOLOGY 2023; 85:247-263. [PMID: 34939130 PMCID: PMC9849180 DOI: 10.1007/s00248-021-01944-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
22
|
Qin L, Qi J, Shen G, Qin D, Wu J, Song Y, Cao Y, Zhao P, Xia Q. Effects of Microbial Transfer during Food-Gut-Feces Circulation on the Health of Bombyx mori. Microbiol Spectr 2022; 10:e0235722. [PMID: 36318051 PMCID: PMC9769633 DOI: 10.1128/spectrum.02357-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Change in habitual diet may negatively affect health. The domestic silkworm (Bombyx mori) is an economically important oligophagous insect that feeds on mulberry leaves. The growth, development, and immune-disease resistance of silkworms have declined under artificial dietary conditions. In this study, we used B. mori as a model insect to explore the relationship between changes in diet and balance of intestinal microbes due to its simpler guts compared with those of mammals. We found that artificial diets reduced the intestinal bacterial diversity in silkworms and resulted in a simple intestinal microbial structure. By analyzing the correlations among food, gut, and fecal microbial diversity, we found that an artificial diet was more easily fermented and enriched the lactic acid bacteria in the gut of the silkworms. This diet caused intestinal acidification and microbial imbalance (dysbiosis). When combined with the artificial diet, Enterococcus mundtii, a colonizing opportunistic pathogen, caused dysbiosis and allowed the frequent outbreak of bacterial diseases in the silkworms. This study provides further systematic indicators and technical references for future investigations of the relationship between diet-based environmental changes and intestinal microbial balance. IMPORTANCE The body often appears unwell after habitual dietary changes. The domestic silkworm (Bombyx mori) raised on artificial diets is a good model to explore the relationship between dietary changes and the balance of intestinal microbes. In this study, the food-gut-feces microbial model was established, and some potential key genera that could regulate the balance of intestinal microbiota were screened out. Our findings will provide a reference for future research to further our understanding of healthy silkworm development and may even be useful for similar research on other animals.
Collapse
Affiliation(s)
- Lijun Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Junpeng Qi
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Daoyuan Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuwei Song
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Styková E, Nemcová R, Maďar M, Bujňáková D, Mucha R, Gancarčíková S, Requena Domenech F. Antibiofilm Activity of Weissella spp. and Bacillus coagulans Isolated from Equine Skin against Staphylococcus aureus. Life (Basel) 2022; 12:2135. [PMID: 36556500 PMCID: PMC9787530 DOI: 10.3390/life12122135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to evaluate the antimicrobial and antibiofilm activity of Weissella cibaria, Weissella hellenica and Bacillus coagulans, isolated from equine skin, against biofilm-forming Staphylococcus aureus CCM 4223 and clinical isolate methicillin-resistant S. aureus (MRSA). Non-neutralized cell-free supernatants (nnCFS) of tested skin isolates completely inhibited the growth and biofilm formation of S. aureus strains and caused dispersion of the 24 h preformed biofilm in the range of 21-90%. The majority of the pH-neutralized cell-free supernatants (nCFS) of skin isolates inhibited the biofilm formation of both S. aureus strains in the range of 20-100%. The dispersion activity of B. coagulans nCFS ranged from 17 to 77% and was significantly lower than that of nnCFS, except for B. coagulans 3T27 against S. aureus CCM 4223. Changes in the growth of S. aureus CCM 4223 in the presence of catalase- or trypsin-treated W. hellenica 4/2D23 and W. cibaria 4/8D37 nCFS indicated the role of peroxides and/or bacteriocin in their antimicrobial activities. For the first time, the presence of the fenD gene, associated with biosurfactants production, was detected in B. coagulans. The results of this study showed that selected isolates may have the potential for the prevention and treatment of biofilm-forming S. aureus infections.
Collapse
Affiliation(s)
- Eva Styková
- Clinic of Horses, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Dobroslava Bujňáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia
| | - Rastislav Mucha
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia
| | - Soňa Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | | |
Collapse
|
24
|
Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
26
|
Functional and Safety Characterization of Weissella paramesenteroides Strains Isolated from Dairy Products through Whole-Genome Sequencing and Comparative Genomics. DAIRY 2022. [DOI: 10.3390/dairy3040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Strains belonging to the Weissella genus are frequently recovered from spontaneously fermented foods. Their functional, microbial-modulating, and probiotic traits enhance not only the sensorial properties but also the nutritional value, beneficial effects, and safety of fermented products. Sporadic cases of opportunistic pathogenicity and antibiotic resistance have deprived safety status from all Weissella species, which thus remain understudied. Our study increased the number of available high-quality and taxonomically accurate W. paramesenteroides genomes by 25% (9 genomes reported, leading to a total of 36 genomes). We conducted a phylogenetic and comparative genomic analysis of the most dominant Weissella species (W. cibaria, W. paramesenteroides, W. viridescens, W. soli, W. koreensis, W. hellenica and W. thailadensis). The phylogenetic tree corroborated species assignment but also revealed phylogenetic diversity within the Weissella species, which is likely related to the adaptation of Weissella in different niches. Using robust alignment criteria, we showed the overall absence of resistance and virulence genes in Weissella spp., except for one W. cibaria isolate carrying blaTEM-181. Enrichment analysis showed the association of Weissella species several CAZymes, which are essential for biotechnological applications. Additionally, the combination of CAZyme metabolites with probiotics can potentially lead to beneficial effects for hosts, such as the inhibition of inflammatory processes and the reduction of cholesterol levels. Bacteriocins and mobile genetic elements MGEs (Inc11 plasmid and ISS1N insertion sequence) were less abundant, however W. thailadensis and W. viridescens showed significant association with specific bacteriocin-encoding genes. Lastly, an analysis of phenotypic traits underlined the need to carefully evaluate W. cibaria strains before use as food additives and suggested the possibility of employing W. paramesenteroides and W. hellenica in the fermentation process of vegetable products. More studies providing high-resolution characterization of Weissella strains from various sources are necessary to elucidate the safety of Weissella spp. and exploit their beneficial characteristics.
Collapse
|
27
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
28
|
Maini ZA, Lopez CM. Transitions in bacterial communities across two fermentation-based virgin coconut oil (VCO) production processes. Heliyon 2022; 8:e10154. [PMID: 36042721 PMCID: PMC9420384 DOI: 10.1016/j.heliyon.2022.e10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Despite being one of the most used methods of virgin coconut oil (VCO) production, there is no metagenomic study that details the bacterial community shifts during fermentation-based VCO production. The identification and quantification of bacteria associated with coconut milk fermentation is useful for detecting the dominant microbial genera actively involved in VCO production which remains largely undescribed. Describing the constitutive microbial genera involved in this traditional fermentation practice can be used as a preliminary basis for improving industrial practices and developing better fermentation procedures. In this study, we utilized 16S rRNA metagenomic sequencing to trace the transitions in microbial community profiles as coconut milk is fermented to release VCO in two VCO production lines. The results show that difference in the microbiome composition between the different processing steps examined in this work was mainly due to the abundance of the Leuconostoc genus in the raw materials and its decline and transition into the lactic acid bacteria groups Weissella, Enterococcus, Lactobacillus, Lactococcus, and Streptococcus during the latter stages of fermentation. A total of 17 genera with relative abundances greater than 0.01% constitute the core microbiome of the two processing lines and account for 74%–97% of the microbial abundance in all coconut-derived samples. Significant correlations were shown through an analysis of the Spearman’s rank between and within the microbial composition and pH at the genus level. The results of the present study show that the dynamics of VCO fermentation rely on the shifts in abundances of various members of the Lactobacillales order.
Collapse
Affiliation(s)
- Zomesh A Maini
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| | - Crisanto M Lopez
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| |
Collapse
|
29
|
Cox LM, Calcagno N, Gauthier C, Madore C, Butovsky O, Weiner HL. The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. MICROBIOME 2022; 10:47. [PMID: 35272713 PMCID: PMC8915543 DOI: 10.1186/s40168-022-01232-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. RESULTS In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. CONCLUSIONS Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Narghes Calcagno
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Christian Gauthier
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
- Bordeaux University, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
31
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
32
|
Serag AM, Abdel-Sabour MS, El-Hadidi M, Maged M, Magdy M, Ramadan MF, Refaat MH. Comparative 16S Metabarcoding of Nile Tilapia Gut Microbiota from the Northern Lakes of Egypt. Appl Biochem Biotechnol 2022; 194:2168-2182. [PMID: 35048279 DOI: 10.1007/s12010-021-03750-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia, Oreochromis niloticus, is the principal fish bred in Egypt. A pilot study was designed to analyze the bacterial composition of the Nile tilapia fish guts from two saltwater lakes in Northern Egypt. Fish samples were obtained from two Delta lakes: Manzala (ML) and Borollus (BL). DNA was extracted, and the bacterial communities in the stomach content were classified (down to the species level) using the 16S rRNA-based analysis. From the two metagenomics libraries in this study, 1,426,740 reads of the amplicon sequence corresponding to 508 total taxonomic operational units were recorded. The most prevalent bacterial phyla were Proteobacteria, Firmicutes, Actinobacteria, and Synergistetes in all samples. Some of the strains identified belong to classes of pathogenic zoonotic bacteria. A notable difference was observed between gut bacteria of Nile tilapia fish obtained from BL and ML. There is a remarkable indication that Nile tilapia fish living in BL is heavily burdened with pathogenic microbes most remarkably those involved with methylation of mercury and its accumulation in fish organs. These pathogenic microbes could have clinical implications and correlated with many diseases. This result was also consistent with the metagenomic data's functional prediction that indicated that Nile tilapia species harboring these two Egyptian northern lakes may be exposed to numerous anthropogenic pollutants. The findings show that the host environment has a significant impact on the composition of its microbiota. The first step towards exploring the better management of this profit-making fish is recognizing the structure of the microbiome.
Collapse
Affiliation(s)
- Ahmed M Serag
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt. .,Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt.
| | - Mohamed S Abdel-Sabour
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Science (CIS), Nile University, Giza, Egypt
| | - Mohamad Maged
- School of Life and Medical Sciences, University of Hertfordshire, Hosted By Global Academic Foundation (GAF), New Administrative Capital, Egypt
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia. .,Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed H Refaat
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.,Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| |
Collapse
|
33
|
Dolan LC, Arceneaux BG, Do KH, Lee WK, Park GY, Kang MS, Choi KC. Toxicological and safety evaluations of Weissella cibaria strain CMU in animal toxicity and genotoxicity. Toxicol Res 2022; 38:293-310. [PMID: 35865276 PMCID: PMC9247120 DOI: 10.1007/s43188-021-00119-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
Weissella cibaria belongs to the Lactobacillaceae family and has been isolated from traditional fermented foods and saliva of children with good oral health. Previous investigations have shown that W. cibaria CMU (Chonnam Medical University) is expected to be safe based on results of in silico and in vitro analyses. However, there is a lack of studies assessing its safety in vivo. A toxicological safety evaluation of W. cibaria CMU was performed using an acute oral safety study in rats, a 14-day oral range finding study, a subsequent 13-week oral toxicity study in rats and a genetic toxicity battery (in vitro bacterial reverse mutation, in vitro chromosome aberration in Chinese Hamster Ovary cells and in vivo micronucleus study in mice). The results of the studies in rats showed that the acute lethal dose of W. cibaria CMU is > 5000 mg/kg body weight (bw)/day (1.8 × 109 CFU/kg bw/day) and the 14-day or 13-week no observed adverse effect level (NOAEL) is 5000 mg/kg bw/day (1.8 × 109 CFU/kg bw/day), the highest dose administered. W. cibaria CMU was non-mutagenic in the bacterial reverse mutation test and non-clastogenic or aneugenic in vitro and in vivo. In conclusion, the toxicological studies performed demonstrated W. cibaria CMU to be a safe strain to consume. This study is the first study examining the potential of a W. cibaria strain to cause genetic toxicity and subchronic toxicity in rats according to the Organization for Economic Cooperation and Development guidelines.
Collapse
Affiliation(s)
- Laurie C. Dolan
- GRAS Associates, LLC, 11810 Grand Park Avenue, Suite 500, North Bethesda, MD 20852 USA
| | - Benjamin G. Arceneaux
- Nutrasource Pharmaceutical and Nutraceutical Services, 120 Research Lane, Suite 101, Guelph, ON N1G 0B4 Canada
| | - Kyung-Hyo Do
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Wan-Kyu Lee
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Geun-Yeong Park
- R&D Center, OraPharm, Inc., 905-ho, 9-16, Yeonmujang-5-gil, Seongdong-gu, Seoul, 04782 Republic of Korea
| | - Mi-Sun Kang
- R&D Center, OraPharm, Inc., 905-ho, 9-16, Yeonmujang-5-gil, Seongdong-gu, Seoul, 04782 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
34
|
A rare case of Weissella confusa endocarditis. CLINICAL INFECTION IN PRACTICE 2021. [DOI: 10.1016/j.clinpr.2021.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal Cancer Stage-Specific Fecal Bacterial Community Fingerprinting of the Taiwanese Population and Underpinning of Potential Taxonomic Biomarkers. Microorganisms 2021; 9:microorganisms9081548. [PMID: 34442626 PMCID: PMC8401100 DOI: 10.3390/microorganisms9081548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in the characterization of colorectal cancer (CRC), it still faces a poor prognosis. There is growing evidence that gut microbiota and their metabolites potentially contribute to the development of CRC. Thus, microbial dysbiosis and their metabolites associated with CRC, based on stool samples, may be used to advantage to provide an excellent opportunity to find possible biomarkers for the screening, early detection, prevention, and treatment of CRC. Using 16S rRNA amplicon sequencing coupled with statistical analysis, this study analyzed the cause–effect shift of the microbial taxa and their metabolites that was associated with the fecal gut microbiota of 17 healthy controls, 21 polyps patients, and 21 cancer patients. The microbial taxonomic shift analysis revealed striking differences among the healthy control, polyps and cancer groups. At the phylum level, Synergistetes was reduced significantly in the polyps group compared to the healthy control and cancer group. Additionally, at the genus level and in association with the cancer group, a total of 12 genera were highly enriched in abundance. In contrast, only Oscillosprira was significantly higher in abundance in the healthy control group. Comparisons of the polyps and cancer groups showed a total of 18 significantly enriched genera. Among them, 78% of the genera associated with the cancer group were in higher abundance, whereas the remaining genera showed a higher abundance in the polyps group. Additionally, the comparison of healthy control and polyp groups showed six significantly abundant genera. More than 66% of these genera showed a reduced abundance in the polyps group than in healthy controls, whereas the remaining genera were highly abundant in the polyps group. Based on tumor presence and absence, the abundance of Olsenella and Lactobacillus at the genus level was significantly reduced in the patient group compared to healthy controls. The significant microbial function prediction revealed an increase in the abundance of metabolites in the polyps and cancer groups compared to healthy controls. A correlation analysis revealed a higher contribution of Dorea in the predicted functions. This study showed dysbiosis of gut microbiota at the taxonomic level and their metabolic functions among healthy subjects and in two stages of colorectal cancer, including adenoma and adenocarcinoma, which might serve as potential biomarkers for the early diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 621, Taiwan;
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
- Correspondence: ; Tel.: +886-52720411 (ext. 66218)
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
36
|
Bharanidharan R, Lee CH, Thirugnanasambantham K, Ibidhi R, Woo YW, Lee HG, Kim JG, Kim KH. Feeding Systems and Host Breeds Influence Ruminal Fermentation, Methane Production, Microbial Diversity and Metagenomic Gene Abundance. Front Microbiol 2021; 12:701081. [PMID: 34354694 PMCID: PMC8329423 DOI: 10.3389/fmicb.2021.701081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Our previous research revealed the advantages of separate feeding (SF) systems compared to total mixed ration (TMR) in terms of ruminal methane (CH4) production. The purpose of this experiment was to confirm the advantage of SF as a nutritional strategy for CH4 mitigation, and to determine the effects of different feeding systems (TMR and SF) on the rumen microbiome and associated metagenome of two different breeds and on CH4 emissions. We randomly allocated four Holstein (305 ± 29 kg) and four Hanwoo steers (292 ± 24 kg) to two groups; the steers were fed a commercial concentrate with tall fescue (75:25) as TMR or SF, in a crossover design (two successive 22-day periods). Neither feeding systems nor cattle breeds had an effect on the total tract digestibility of nutrients. The TMR feeding system and Hanwoo steers generated significantly more CH4 (P < 0.05) and had a higher yield [g/d and g/kg dry matter intake (DMI)] compared to the SF system and Holstein steers. A larger rumen acetate:propionate ratio was observed for the TMR than the SF diet (P < 0.05), and for Hanwoo than Holstein steers (P < 0.001), clearly reflecting a shift in the ruminal H2 sink toward CH4 production. The linear discriminant analysis (LDA) effect size (LEfSe) revealed a greater abundance (α < 0.05 and LDA > 2.0) of operational taxonomic units (OTUs) related to methanogenesis for Hanwoo steers compared to Holstein steers. Kendall’s correlation analysis revealed wide variation of microbial co-occurrence patterns between feeding systems, indicating differential H2 thermodynamics in the rumen. A metagenome analysis of rumen microbes revealed the presence of 430 differentially expressed genes, among which 17 and 27 genes exhibited positive and negative associations with CH4 production, respectively (P < 0.001). A strong interaction between feeding system and breed was observed for microbial and metagenomic abundance. Overall, these results suggest that the TMR feeding system produces more CH4, and that Hanwoo cattle are higher CH4 emitters than SF diet and Holstein cattle, respectively. Interestingly, host-associated microbial interactions differed within each breed depending on the feeding system, which indicated that breed-specific feeding systems should be taken into account for farm management.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang Hyun Lee
- Cargill Agri Purina Inc., Technology Application Center, Pyeongchang, South Korea
| | - Krishnaraj Thirugnanasambantham
- Department of Ecofriendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea.,Pondicherry Centre for Biological Science and Educational Trust, Tamil Nadu, India
| | - Ridha Ibidhi
- Department of Ecofriendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | | | - Hong-Gu Lee
- Department of Animal Science and Technology, SangHa Life Science College, Konkuk University, Seoul, South Korea
| | - Jong Geun Kim
- Department of Ecofriendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea.,Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Kyoung Hoon Kim
- Department of Ecofriendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea.,Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
37
|
Antibiotic susceptibility of human gut-derived facultative anaerobic bacteria is different under aerobic versus anaerobic test conditions. Microbes Infect 2021; 23:104847. [PMID: 34116163 DOI: 10.1016/j.micinf.2021.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022]
Abstract
Facultative anaerobes are the most common cause of infections in anoxic parts of the human body, including deep wound, vagina, periodontal pockets, gastrointestinal tract, genitourinary tract and lungs. Generally, antibiotic susceptibility tests (AST) for facultative anaerobes are performed under aerobic conditions due to ease of handling and rapid growth. However, variation in susceptibility of facultative anaerobes to antibiotics under aerobic and anaerobic conditions can lead to failure of antibiotic treatment. Our study evaluated the susceptibility of facultative anaerobic microorganisms to antibiotics during growth under anaerobic or aerobic conditions. We compared the resistance patterns of representatives from 15 bacterial genera isolated from the human-gastrointestinal tract against 22 different antibiotics from six classes under aerobic and anaerobic conditions. Preliminary results obtained by a disc diffusion method were verified using minimum inhibitory concentration (MIC) testing. The results demonstrated that 7-strains had a similar pattern of drug resistance under both conditions, while the remaining ten strains had significant differences in resistance patterns between aerobic and anaerobic conditions for at least one antibiotic. We conclude that successful antibiotic therapy for host-associated pathogens requires proper assessment of the oxygen condition of the growth environment and MIC testing of each pathogen under anaerobic and aerobic conditions.
Collapse
|
38
|
Tenea GN, Hurtado P. Next-Generation Sequencing for Whole-Genome Characterization of Weissella cibaria UTNGt21O Strain Originated From Wild Solanum quitoense Lam. Fruits: An Atlas of Metabolites With Biotechnological Significance. Front Microbiol 2021; 12:675002. [PMID: 34163450 PMCID: PMC8215347 DOI: 10.3389/fmicb.2021.675002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The whole genome of Weissella cibaria strain UTNGt21O isolated from wild fruits of Solanum quitoense (naranjilla) shrub was sequenced and annotated. The similarity proportions based on the genus level, as a result of the best hits for the entire contig, were 54.84% with Weissella, 6.45% with Leuconostoc, 3.23% with Lactococcus, and 35.48% no match. The closest genome was W. cibaria SP7 (GCF_004521965.1) with 86.21% average nucleotide identity (ANI) and 3.2% alignment coverage. The genome contains 1,867 protein-coding genes, among which 1,620 were assigned with the EggNOG database. On the basis of the results, 438 proteins were classified with unknown function from which 247 new hypothetical proteins have no match in the nucleotide Basic Local Alignment Search Tool (BLASTN) database. It also contains 78 tRNAs, six copies of 5S rRNA, one copy of 16S rRNA, one copy of 23S rRNA, and one copy of tmRNA. The W. cibaria UTNGt21O strain harbors several genes responsible for carbohydrate metabolism, cellular process, general stress responses, cofactors, and vitamins, conferring probiotic features. A pangenome analysis indicated the presence of various strain-specific genes encoded for proteins responsible for the defense mechanisms as well as gene encoded for enzymes with biotechnological value, such as penicillin acylase and folates; thus, W. cibaria exhibited high genetic diversity. The genome characterization indicated the presence of a putative CRISPR-Cas array and five prophage regions and the absence of acquired antibiotic resistance genes, virulence, and pathogenic factors; thus, UTNGt21O might be considered a safe strain. Besides, the interaction between the peptide extracts from UTNGt21O and Staphylococcus aureus results in cell death caused by the target cell integrity loss and the release of aromatic molecules from the cytoplasm. The results indicated that W. cibaria UTNGt21O can be considered a beneficial strain to be further exploited for developing novel antimicrobials and probiotic products with improved technological characteristics.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - Pamela Hurtado
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
39
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
40
|
Wu WY, Chou PL, Yang JC, Chien CT. Silicon-containing water intake confers antioxidant effect, gastrointestinal protection, and gut microbiota modulation in the rodents. PLoS One 2021; 16:e0248508. [PMID: 33788857 PMCID: PMC8011764 DOI: 10.1371/journal.pone.0248508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
We explored the effects of silicon-containing water (BT) intake on gastrointestinal function and gut microbiota. BT was obtained by pressuring tap water through silicon minerals (mullite, Al6Si2O13) column. BT decreased H2O2 chemiluminescence counts, indicating its antioxidant activity. Four weeks of BT drinking increased H2O2 scavenging activity and glutathione peroxidase activity of plasma. BT drinking did not affect the body weight but significantly reduced the weight of feces and gastrointestinal motility. BT drinking significantly suppressed pylorus ligation enhanced gastric juice secretion, gastric reactive oxygen species amount, erythrocyte extravasation, IL-1β production by infiltrating leukocyte, and lipid peroxidation within gastric mucosa. Data from 16S rRNA sequencing revealed BT drinking significantly increased beneficial flora including Ruminococcaceae UCG-005, Prevotellaceae NK3B31, Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus murinus and decreased harmful flora including Mucispirillum, Rodentibacter, and Staphylococcus aureus. This study pioneerly provided scientific evidences for the potential effects of water-soluble forms of silicon intake on antioxidant activity, gastrointestinal function, and gut microbiota modulation.
Collapse
Affiliation(s)
- Wei-Yi Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Li Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| |
Collapse
|
41
|
Draft Genome Sequence of Weissella paramesenteroides STCH-BD1, Isolated from Ensiled Sorghum bicolor. Microbiol Resour Announc 2021; 10:10/7/e01328-20. [PMID: 33602733 PMCID: PMC7892666 DOI: 10.1128/mra.01328-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Weissella paramesenteroides has potential as an industrial biocatalyst due to its ability to produce lactic acid. A novel strain of W. paramesenteroides was isolated from ensiled sorghum. The genome was sequenced using a hybrid assembly of Oxford Nanopore and Illumina data to produce a 2-Mbp genome and 22-kbp plasmid sequence. Weissella paramesenteroides has potential as an industrial biocatalyst due to its ability to produce lactic acid. A novel strain of W. paramesenteroides was isolated from ensiled sorghum. The genome was sequenced using a hybrid assembly of Oxford Nanopore and Illumina data to produce a 2-Mbp genome and 22-kbp plasmid sequence.
Collapse
|
42
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
43
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Stamps BW, Lyon WJ, Irvin AP, Kelley-Loughnane N, Goodson MS. A Pilot Study of the Effect of Deployment on the Gut Microbiome and Traveler's Diarrhea Susceptibility. Front Cell Infect Microbiol 2020; 10:589297. [PMID: 33384968 PMCID: PMC7770225 DOI: 10.3389/fcimb.2020.589297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Traveler's diarrhea (TD) is a recurrent and significant issue for many travelers including the military. While many known enteric pathogens exist that are causative agents of diarrhea, our gut microbiome may also play a role in TD susceptibility. To this end, we conducted a pilot study of the microbiome of warfighters prior to- and after deployment overseas to identify marker taxa relevant to TD. This initial study utilized full-length 16S rRNA gene sequencing to provide additional taxonomic resolution toward identifying predictive taxa.16S rRNA analyses of pre- and post-deployment fecal samples identified multiple marker taxa as significantly differentially abundant in subjects that reported diarrhea, including Weissella, Butyrivibrio, Corynebacterium, uncultivated Erysipelotrichaceae, Jeotgallibaca, unclassified Ktedonobacteriaceae, Leptolinea, and uncultivated Ruminiococcaceae. The ability to identify TD risk prior to travel will inform prevention and mitigation strategies to influence diarrhea susceptibility while traveling.
Collapse
Affiliation(s)
- Blake W. Stamps
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Integrative Health and Performance Sciences Division, UES Inc., Dayton, OH, United States
| | - Wanda J. Lyon
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Adam P. Irvin
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Michael S. Goodson
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| |
Collapse
|
45
|
Rocha-Arriaga C, Espinal-Centeno A, Martinez-Sánchez S, Caballero-Pérez J, Alcaraz LD, Cruz-Ramírez A. Deep microbial community profiling along the fermentation process of pulque, a biocultural resource of Mexico. Microbiol Res 2020; 241:126593. [DOI: 10.1016/j.micres.2020.126593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
|
46
|
Figueroa LM, Ramírez-Jiménez AK, Senés-Guerrero C, Santacruz A, Pacheco A, Gutiérrez-Uribe JA. Assessment of the bacterial diversity of agave sap concentrate, resistance to in vitro gastrointestinal conditions and short-chain fatty acids production. Food Res Int 2020; 140:109862. [PMID: 33648180 DOI: 10.1016/j.foodres.2020.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Low bacterial diversity in the gut has been associated with the development of several diseases. Agave sap concentrate (ASC) is obtained from the thermal treatment of the fresh sap called "aguamiel", an artisanal Mexican food. In this study, we assessed the microbial diversity from three different ASC producing regions in Mexico using high-throughput sequencing of the 16S rRNA gene and evaluated their resistance to an in vitro gastrointestinal process as well as their ability to produce short-chain fatty acids (SCFA). Seven phyla and 120 genera were detected in ASC samples; Firmicutes had the highest relative read abundance at the phylum level, whereas Bacillus was the most abundant genus. Bacterial diversity at phylum and genus levels was highly dependent on the region where ASC was produced. The microbiota from a selected sample was resistant to low pH conditions, bile salts and intestinal enzymes. Moreover, bacteria were able to survive and grow in the colonic environment. SCFA production was comparable with that observed for a well-known probiotic, Lactobacillus plantarum 299v, that was used as control. These findings demonstrate that ASC contains a bacterial ecosystem with potential probiotic benefits.
Collapse
Affiliation(s)
- Luis M Figueroa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo León, Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo León, Mexico
| | - Arlette Santacruz
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo León, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo León, Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo León, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Vía Atlixcayotl 5718, C.P. 72453 Puebla, Puebla, Mexico.
| |
Collapse
|
47
|
Yeong MS, Hee MS, Choon CH. Characterization of High-Ornithine-Producing Weissella koreensis DB1 Isolated from Kimchi and Its Application in Rice Bran Fermentation as a Starter Culture. Foods 2020; 9:E1545. [PMID: 33114563 PMCID: PMC7693252 DOI: 10.3390/foods9111545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
High-ornithine-producing Weissella koreensis DB1 were isolated from kimchi. Ornithine is produced from arginine via the intracellular arginine deiminase pathway in microorganisms; thus, high cell growth is important for producing ornithine in large quantities. In this study, excellent W. koreensis DB1 growth (A600: 5.15-5.39) was achieved in de Man, Rogosa, and Sharpe (MRS) medium supplemented with 1.0-3.0% arginine (pH 5.0) over 24-48 h at 30 °C, and the highest ornithine (15,059.65 mg/L) yield was obtained by culture in MRS containing 3.0% arginine for 48 h. W. koreensis DB1 was further investigated as a functional starter culture for rice bran fermentation. After 48 h of fermentation at 30 °C, the fermented rice bran was freeze-dried and ground. The prepared fermented rice bran contained 43,074.13 mg/kg of ornithine and 27,336.37 mg/kg of citrulline, which are used as healthcare supplements due to their beneficial effects. Furthermore, the organoleptic quality of the fermented rice bran was significantly improved, and the fermented product contained viable cells (8.65 log CFU/mL) and abundant dietary fiber. In addition, an investigation of its safety status showed that it has no harmful characteristics. These results indicate that the fermented rice bran product produced is a promising functional food candidate.
Collapse
Affiliation(s)
| | | | - Chang Hae Choon
- Kimchi Research Center, Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (M.S.Y.); (M.S.H.)
| |
Collapse
|
48
|
Patrone V, Al-Surrayai T, Romaniello F, Fontana A, Milani G, Sagheddu V, Puglisi E, Callegari ML, Al-Mansour H, Kishk MW, Morelli L. Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics Antimicrob Proteins 2020; 13:809-823. [PMID: 33085038 PMCID: PMC8203532 DOI: 10.1007/s12602-020-09715-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.
Collapse
Affiliation(s)
- Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | | | - Francesco Romaniello
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Giovanni Milani
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Valeria Sagheddu
- AAT - Advanced Analytical Technologies Srl, Via P. Majavacca 12, 29107, Fiorenzuola d'Arda (Piacenza), Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Maria Luisa Callegari
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy.
| | | | | | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
49
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
50
|
Pini F, Aquilani C, Giovannetti L, Viti C, Pugliese C. Characterization of the microbial community composition in Italian Cinta Senese sausages dry-fermented with natural extracts as alternatives to sodium nitrite. Food Microbiol 2020; 89:103417. [DOI: 10.1016/j.fm.2020.103417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
|