1
|
Pitart C, Piquet M, Burgwinkel T, Arazo Del Pino R, Rubio M, Aguilar M, De Gea S, Pulgarín A, Campo I, Torralbo B, Parejo R, Valls S, Fortes I, Santana G, Rubio E, Vilella A, Del Río A, Martínez JA, Miró E, Navarro F, Espasa M, Casals-Pascual C, Vila J, Higgins PG, Roca I. Early identification of the nosocomial spread of vancomycin-resistant Enterococcus faecium by Fourier-transform infrared spectroscopy and performance comparison with PFGE and WGS. Emerg Microbes Infect 2024; 13:2392659. [PMID: 39137261 PMCID: PMC11346335 DOI: 10.1080/22221751.2024.2392659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Early detection of disseminating vancomycin-resistant Enterococcus faecium (VREfm) in ICU wards is crucial for outbreak identification and the implementation of prompt infection control measures. Genotypic methods like pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) are costly and time-consuming, hindering rapid response due to batch dependency. Fourier-transform infrared spectroscopy (FT-IR) offers the potential for real-time outbreak detection and reliable strain typing. We utilized FT-IR to identify clonal VREfm dissemination and compared its performance to PFGE and WGS. Between February through October 2023, an unusually high number of VREfm were recovered at a tertiary hospital in Barcelona. Isolates were examined for antimicrobial susceptibility, carriage of vanA/vanB genes and clonality was also studied using FT-IR, PFGE, and WGS. Routine FT-IR inspections revealed recurring VREfm clustering during the outbreak's initial weeks. In total, 104 isolates were recovered from 75 patients and from multiple wards. However, only one isolate was recovered from an environmental sample, suggesting the absence of environmental reservoirs. An ST80 vancomycin-resistant (vanA) E. faecium strain was the main strain responsible for the outbreak, although a few additional VREfm strains were also identified, all belonging to CC17. PFGE and cgMLST (WGS) yielded identical clustering results to FT-IR, and WGS confirmed vanA/vanB gene carriage in all VREfm isolates. Infection control measures led to a rapid decline in VREfm isolates, with no isolates detected in November. FT-IR spectroscopy offers rapid turnaround times, sensitivity, and reproducibility, comparable to standard typing methods. It proved as an effective tool for monitoring VREfm dissemination and early outbreak detection.
Collapse
Affiliation(s)
- Cristina Pitart
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Maria Piquet
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Tessa Burgwinkel
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner site Bonn–Cologne, Cologne, Germany
| | - Rocío Arazo Del Pino
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner site Bonn–Cologne, Cologne, Germany
| | - Marc Rubio
- Department of Microbiology, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mireia Aguilar
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Sergi De Gea
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Andrea Pulgarín
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Irene Campo
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Blanca Torralbo
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Romina Parejo
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Silvia Valls
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Isabel Fortes
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Gemina Santana
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Elisa Rubio
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- Molecular Core Facility, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Anna Vilella
- Department of Preventive Medicine and Epidemiology, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Ana Del Río
- Department of Infectious Diseases, Hospital Clínic–IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clínic–IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Elisenda Miró
- Department of Microbiology, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Navarro
- Department of Microbiology, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mateu Espasa
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Climent Casals-Pascual
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Vila
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner site Bonn–Cologne, Cologne, Germany
| | - Ignasi Roca
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
3
|
Ashraf D, Shaaban MI, Hassan R, El-Aziz AMA. Polidocanol inhibits Enterococcus faecalis virulence factors by targeting fsr quorum sensing system. BMC Microbiol 2024; 24:411. [PMID: 39415105 PMCID: PMC11481293 DOI: 10.1186/s12866-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The wide spread of antimicrobial resistance in Enterococcus faecalis is a critical global concern, leading to increasingly limited treatment options. The fsr quorum sensing (QS) plays a critical role in the pathogenicity of E. faecalis, allowing bacteria to coordinate gene expression and regulate many virulence factors. Therefore, fsr QS of E. faecalis represents a potential therapeutic target that provides an effective strategy to treat antibiotic-resistant infections induced by E. faecalis. METHODS In this study, distribution of different virulence factors including, gelatinase, protease, cell surface hydrophobicity and biofilm formation in sixty clinical isolates of Enterococcus faecalis was investigated. Sixty-six compounds were tested for their activity against fsr QS. The minimal inhibitory concentration of the tested compounds was evaluated using the microbroth dilution method. The effect of sub-inhibitory concentrations of the tested compounds on fsr QS was investigated using the gelatinase assay method. Additionally, the effect of potential QS inhibitor on the virulence factors was estimated. Quantitative real-time PCR was used to investigate the effect of the potential inhibitor on fsr QS related genes (fsrB-fsrC) and (gelE-sprE) and virulence associated genes including, asa1 and epbA. RESULTS The assessment of polidocanol activity against the fsr QS system was demonstrated by studying its effect on gelatinase production in E. faecalis clinical isolates. Sub-lethal concentrations of polidocanol showed a significant reduction in gelatinase and protease production by 54% to 70% and 64% to 85%, respectively. Additionally, it significantly reduced biofilm formation (P < 0.01) and interrupted mature biofilm at concentrations of ½, 1 × and 2 × MIC. Furthermore, polidocanol significantly decreased cell surface hydrophobicity (P < 0.01). Polidocanol at ½ MIC showed a significant reduction in the expression of QS genes including fsrB, fsrC, gelE and sprE by 57% to 97% without affecting bacterial viability. Moreover, it reduced the expression of virulence associated genes (asa1 and epbA) (P < 0.01). CONCLUSION Polidocanol appears to be a promising option for treating of E. faecalis infections by targeting the fsr QS system and exhibiting anti-biofilm activity.
Collapse
Affiliation(s)
- Dina Ashraf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Lee J, Baek E, Ahn H, Bae J, Kim S, Kim S, Lee S, Kim S. Development of a One-Step Multiplex qPCR Assay for Detection of Methicillin and Vancomycin Drug Resistance Genes in Antibiotic-Resistant Bacteria. Pathogens 2024; 13:853. [PMID: 39452724 PMCID: PMC11509969 DOI: 10.3390/pathogens13100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The most common antibiotic-resistant bacteria in Korea are methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Pathogen identification in clinical laboratories can be divided into traditional phenotype- and genotype-based methods, both of which are complementary to each other. The genotype-based method using multiplex real-time polymerase chain reaction (PCR) is a rapid and accurate technique that analyzes material at the genetic level by targeting genes simultaneously. Accordingly, we aimed to develop a rapid method for studying the genetic characteristics of antibiotic-resistant bacteria and to provide an experimental guide for the efficient antibiotic resistance gene analysis of mecA detection for MRSA and vanA or vanB detection for VRE using a one-step multiplex qPCR assay at an early stage of infection. As a result, the sensitivity and specificity of the mecA gene for clinical S. aureus isolates, including MRSA and methicillin-susceptible S. aureus, were 97.44% (95% CI, 86.82-99.87%) and 96.15% (95% CI, 87.02-99.32%), respectively. The receiver operating characteristic area under the curve for the diagnosis of MRSA was 0.9798 (*** p < 0.0001). Therefore, the molecular diagnostic method using this newly developed one-step multiplex qPCR assay can provide accurate and rapid results for the treatment of patients with MRSA and VRE infections.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Research & Development, DreamDX Inc., C001, 57, Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea; (J.L.); (E.B.)
| | - Eunyoung Baek
- Department of Research & Development, DreamDX Inc., C001, 57, Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea; (J.L.); (E.B.)
| | - Hyesun Ahn
- Joint & Arthritis Research Center, Himchan Hospital, 120, Sinmok-ro, Yangcheon-gu, Seoul 07999, Republic of Korea;
| | - Jinyoung Bae
- Department of Nano-Bio Convergence Division, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea;
| | - Sangha Kim
- Department of Laboratory Medicine, Konyang University Hospital, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea;
| | - Sohyeong Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea;
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Suchan Lee
- Joint & Arthritis Research Center, Himchan Hospital, 120, Sinmok-ro, Yangcheon-gu, Seoul 07999, Republic of Korea;
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea;
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
5
|
Archambaud C, Nunez N, da Silva RAG, Kline KA, Serror P. Enterococcus faecalis: an overlooked cell invader. Microbiol Mol Biol Rev 2024; 88:e0006924. [PMID: 39239986 PMCID: PMC11426025 DOI: 10.1128/mmbr.00069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
SUMMARYEnterococcus faecalis and Enterococcus faecium are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of E. faecium appears to benefit from its antimicrobial resistance, E. faecalis is recognized for its higher pathogenic potential. E. faecalis has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of E. faecalis to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of E. faecalis to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that E. faecalis internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, E. faecalis can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by E. faecalis are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where E. faecalis can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of E. faecalis-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.
Collapse
Affiliation(s)
- Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Natalia Nunez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Ronni A G da Silva
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Lopes J, de Lencastre H, Conceição T. Genomic analysis of Enterococcus faecium from non-clinical settings: antimicrobial resistance, virulence, and clonal population in livestock and the urban environment. Front Microbiol 2024; 15:1466990. [PMID: 39323892 PMCID: PMC11422121 DOI: 10.3389/fmicb.2024.1466990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Enterococci are commensals of the gastrointestinal tract of humans and animals that evolved into opportunistic pathogens with high antimicrobial resistance and virulence. Multidrug-resistant Enterococcus is a major cause of hospital-acquired infections worldwide. For this reason, the characterization of non-clinical reservoirs of Enterococci and their epidemiological link to resistant hospital isolates is crucial for controlling their spread. Methods A total of 295 samples collected from livestock (pigs and cows, n = 135) and environment (public buses, passengers hands, and urban environments, n = 160) were screened for Enterococcus spp. E. faecium antimicrobial resistance profiles, virulence potential, and clonal population were further characterized. Results Enterococci were detected in 90.5% (n = 267) of the samples, with a higher prevalence in livestock (100%) than the environment (82.5%, p < 0.0001), but none of the isolates exhibited vancomycin resistance. E. faecalis was the most prevalent species (51.7%), predominantly found in livestock (62.2%), while E. faecium was more common in the environment. Of the 59 E. faecium isolates, 78% showed resistance to ≥3 antibiotic classes and contained associated resistance genes, namely tetracyclines (tetM and tetL), beta-lactams (mutations in pbp5), and high-level resistance to aminoglycosides (ant(6)-Ia and aac(6')-aph(2″)). A wide array of virulence factors was detected among E. faecium, associated with adherence, biofilm formation, and adaptation to host response, while hospital-associated virulence markers, such as IS16, were less frequent, probably due to the non-clinical nature of the isolates. Clonal population analysis revealed a diverse E. faecium population. Although no direct epidemiological link could be traced between our isolates and specific clinical isolates, infection-associated genetic backgrounds were identified in non-clinical isolates: one isolate from pigs belonged to CC17 (ST32), while four isolates belonged to CC94, including one recovered from pigs (ST296), one from cows (ST2206), one from the urban environment (ST1205), and other from buses (ST800). Discussion This study underscores a high prevalence of clinically relevant Enterococcus species among healthy livestock and the environment. Despite the absence of vancomycin resistance and limited hospital infection-associated clonal lineages, the presence of E. faecium with significant virulence potential and resistance to critical antibiotics in human and veterinary medicine highlights the need for continuing surveillance of non-clinical reservoirs.
Collapse
Affiliation(s)
- Jéssica Lopes
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Teresa Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
7
|
Raddaoui A, Chebbi Y, Frigui S, Latorre J, Ammeri RW, Abdejlil NB, Torres C, Abbassi MS, Achour W. Genetic characterization of vancomycin-resistant Enterococcus faecium isolates from neutropenic patients in Tunisia: spread of the pandemic CC17 clone associated with high genetic diversity in Tn1546-like structures. J Appl Microbiol 2024; 135:lxae225. [PMID: 39210508 DOI: 10.1093/jambio/lxae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
AIMS In Tunisia, limited research has focused on characterizing clinical vancomycin-resistant Enterococcus faecium (VREfm). This study aimed to bridge this knowledge gap by molecular characterization of antimicrobial resistance, determining the genetic elements mediating vancomycin-resistance, and whole-genome sequencing of one representative VREfm isolate. METHODS AND RESULTS Over 6 years (2011-2016), a total of eighty VREfm isolates responsible for infection or colonization were identified from hospitalized patients, with the incidence rate increasing from 2% in 2011 to 27% in 2016. All of these strains harbored the vanA gene. The screening for antimicrobial resistance genes revealed the predominance of ermB, tetM, and aac(6')-Ie-aph(2'')-Ia genes and 81.2% of strains harbored the Tn1545. Pulsed-field gel electrophoresis identified seven clusters, with two major clusters (belonging to ST117 and ST80) persisting throughout the study period. Seven Tn1546 types were detected, with type VI (truncated transposon) being the most prevalent (57.5%). Whole-genome sequencing revealed a 3 028 373 bp chromosome and five plasmids. Mobile genetic elements and a type I CRISPR-cas locus were identified. Notably, the vanA gene was carried by the classic Tn1546 transposon with ISL3 insertion on a rep17pRUM plasmid. CONCLUSION A concerning trend in the prevalence of VREfm essentially attributed to CC17 persistence and to horizontal transfer of multiple genetic variants of truncated vanA-Tn1546.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Javier Latorre
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Rim Werhani Ammeri
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Nour Ben Abdejlil
- Department of hematology and transplantationtion, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, Tunis 1006, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis1006, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
8
|
Kavanagh NL, Kinnevey PM, Egan SA, McManus BA, O'Connell B, Brennan GI, Coleman DC. Protracted transmission and persistence of ST80 vancomycin-resistant Enterococcus faecium clonal complex types CT2933, CT2932 and CT1916 in a large Irish hospital: a 39-month whole-genome sequencing study. J Hosp Infect 2024; 151:11-20. [PMID: 38944282 DOI: 10.1016/j.jhin.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus faecium (VREfm) are significant nosocomial pathogens. Sequence type (ST) 80 vanA-encoding VREfm predominate in Irish hospitals, but their transmission is poorly understood. AIMS To investigate transmission and persistence of predominant complex type (CT) VREfm in two wards of an Irish hospital (H1) using whole-genome sequencing, and their intra- and inter-hospital dissemination. METHODS Rectal screening (N = 330, September 2019 to December 2022) and environmental (N = 48, November 2022 to December 2022) E. faecium were investigated. Isolate relatedness was assessed by core-genome multi-locus sequence typing (cgMLST) and core-genome single nucleotide polymorphism (cgSNP) analysis. Likely transmission chains were identified using SeqTrack (https://graphsnp.fordelab.com/graphsnp) using cgSNP data and recovery location. Well-characterized E. faecium (N = 908) from seven Irish hospitals including H1 (June 2017 to July 2022) were also investigated. FINDINGS Conventional MLST assigned isolates to nine STs (ST80, 82%). cgMLST identified three predominant ST80 CTs (CT2933, CT2932 and CT1916) (55% of isolates) of related isolates (≤20 allelic differences). cgSNP analysis differentiated these CTs into multiple distinct closely related genomic clusters (≤10 cgSNPs). Parisimonious network construction identified 55 likely inter- and intra-ward transmissions with epidemiological support between patients ≤30 days involving 73 isolates (≤10 cgSNPs) from seven genomic clusters. Numerous other likely transmissions over longer time periods without evident epidemiological links were identified, suggesting persistence and unidentified reservoirs contribute to dissemination. The three CTs predominated among E. faecium (N = 1286) in seven hospitals, highlighting inter-hospital spread without known epidemiological links. CONCLUSION This study revealed the long-term intra- and inter-hospital dominance of three major CT ST80 VREfm lineages, widespread transmission and persistence, implicating unidentified reservoirs.
Collapse
Affiliation(s)
- N L Kavanagh
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - P M Kinnevey
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - S A Egan
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B A McManus
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B O'Connell
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - G I Brennan
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - D C Coleman
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Akineden A, ÇiÇek C, TÜrkel S, Khan IU, Abdulmawjood A. Pheno- and Genotypic Epidemiological Characterization of Vancomycin-Resistant Enterococcus faecium Isolates from Intensive Care Unit Patients in Central Türkiye. Pol J Microbiol 2024; 73:403-410. [PMID: 39268956 PMCID: PMC11395416 DOI: 10.33073/pjm-2024-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 09/15/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) has been detected in Türkiye. Only limited information is available on its dissemination in the central regions of the country. This study describes the first epidemiological characterization of VRE clinical isolates detected in patients in a hospital in the province of Aksaray. In this one-year study conducted between 2021 and 2022, stool samples from intensive care unit patients were screened for VRE using the phenotypic E-test method, and the antibiotic sensitivity test was analyzed by using the VITEK® 2 system. A molecular assay for confirmation of species level was carried out by 16S rRNA gene-based sequencing and testing for antibiotic resistance (vanA or vanB) and virulence factor-encoding genes (esp, asa1, and hyl). Further, genotypic characterization was determined by macro-restriction fragment pattern analysis (MRFPA) of genomic DNA digested with SmaI restriction enzyme. Of the total 350 Enterococcus positive patients from different hospital intensive care units, 22 (6.3%) were positive for VRE using the phenotypic E-test method. All isolates showed resistance to ampicillin, ciprofloxacin, vancomycin, and teicoplanin and positive amplification for the vanA gene. However, none of the isolates was positive for the vanB gene. The most prevalent virulence gene was esp. The results indicate that the isolates are persistent in the hospital environment and subsequently transmitted to hospitalized patients, thus representing challenges to an outbreak and infection control. These study results would also help formulate more effective strategies to reduce the transmission and propagation of VRE contamination in various hospital settings.
Collapse
Affiliation(s)
- Altan Akineden
- Department of Clinical Microbiology, Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Cemal ÇiÇek
- Education and Research Hospital Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - SelÇuk TÜrkel
- Education and Research Hospital Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Izhar U.H. Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
10
|
Cabal A, Hörtenhuber A, Halabi M, Kerschner H, Salaheddin Y, Ruppitsch W. First detection of the emerging vancomycin-resistant Enterococcus faecium vanA-ST1299-CT1903 in Austria. Clin Microbiol Infect 2024:S1198-743X(24)00396-3. [PMID: 39163916 DOI: 10.1016/j.cmi.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Adriana Cabal
- Division for Public Health, Austrian Agency for Health and Food Safety, Institute for Medical Microbiology & Hygiene, Vienna, Austria.
| | - Anna Hörtenhuber
- Pyhrn-Eisenwurzen Clinical Centre Kirchdorf Steyr, Institute of Pathology, Upper Austrian Health Holding GmbH, Steyr, Austria
| | - Milo Halabi
- Department for Clinical Pathology, Microbiology and Molecular Diagnostics, Barmherzige Schwestern Ried Hospital, Ried, Austria
| | - Heidrun Kerschner
- Ordensklinikum Linz Elisabethinen-Linz, National Reference Center for Antimicrobial Resistance, Institute for Hygiene, Microbiology and Tropical Medicine, Linz, Austria
| | - Yarub Salaheddin
- Pyhrn-Eisenwurzen Clinical Centre Kirchdorf Steyr, Institute of Pathology, Upper Austrian Health Holding GmbH, Steyr, Austria
| | - Werner Ruppitsch
- Division for Public Health, Austrian Agency for Health and Food Safety, Institute for Medical Microbiology & Hygiene, Vienna, Austria
| |
Collapse
|
11
|
Norwood JS, Davis JL, Salamaga B, Moss CE, Johnston SA, Elks PM, Kiss-Toth E, Mesnage S. Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis. Mol Microbiol 2024; 122:230-242. [PMID: 38994873 DOI: 10.1111/mmi.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.
Collapse
Affiliation(s)
| | - Jessica L Davis
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Charlotte E Moss
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Philip M Elks
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
12
|
Fujii A, Kawada-Matsuo M, Nguyen-Tra Le M, Masuda K, Tadera K, Suzuki Y, Nishihama S, Hisatsune J, Sugawara Y, Kashiyama S, Shiba H, Aikawa T, Ohge H, Sugai M, Komatsuzawa H. Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan. Microbiol Immunol 2024; 68:254-266. [PMID: 38873884 DOI: 10.1111/1348-0421.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant Enterococcus (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including Enterococcus faecium (41 isolates), Enterococcus faecalis (80 isolates), Enterococcus raffinosus (11 isolates), Enterococcus casseliflavus (nine isolates), Enterococcus avium (12 isolates), Enterococcus lactis (eight isolates), Enterococcus gallinarum (two isolates), and Enterococcus malodoratus (one isolate), were analyzed. We found one vanA-positive E. faecium, which was already informed when the patient was transferred to the hospital, nine vanC-positive E. casseliflavus, and two vanC-positive E. gallinarum. E. faecium isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and E. faecalis isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant E. faecium had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. E. raffinosus showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and E. lactis showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes optrA and cfr(B) were found only in one isolate of E. faecalis and E. raffinosus, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.
Collapse
Affiliation(s)
- Ayumi Fujii
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kanako Masuda
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kayoko Tadera
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujin Suzuki
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saki Nishihama
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Seiya Kashiyama
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Nappi F. Native Infective Endocarditis: A State-of-the-Art-Review. Microorganisms 2024; 12:1481. [PMID: 39065249 PMCID: PMC11278776 DOI: 10.3390/microorganisms12071481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Native valve infective endocarditis (NVE) is a global phenomenon, defined by infection of a native heart valve and involving the endocardial surface. The causes and epidemiology of the disease have evolved in recent decades, with a doubling of the average patient age. A higher incidence was observed in patients with implanted cardiac devices that can result in right-sided infection of the tricuspid valve. The microbiology of the disease has also changed. Previously, staphylococci, which are most often associated with health-care contact and invasive procedures, were the most common cause of the disease. This has now been superseded by streptococci. While innovative diagnostic and therapeutic strategies have emerged, mortality rates have not improved and remain at 30%, which is higher than that for many cancer diagnoses. The lack of randomized trials and logistical constraints impede clinical management, and long-standing controversies such as the use of antibiotic prophylaxis persist. This state of the art review addresses clinical practice, controversies, and strategies to combat this potentially devastating disease. A multidisciplinary team will be established to provide care for patients with presumptive NVE. The composition of the team will include specialists in cardiology, cardiovascular surgery, and infectious disease. The prompt administration of combination antimicrobial therapy is essential for effective NVE treatment. Additionally, a meticulous evaluation of each patient is necessary in order to identify any indications for immediate valve surgery. With the intention of promoting a more comprehensive understanding of the procedural management of native infective endocarditis and to furnish clinicians with a reference, the current evidence for the utilization of distinct strategies for the diagnosis and treatment of NVE are presented.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
14
|
Pan P, Sun L, Shi X, Huang X, Yin Y, Pan B, Hu L, Shen Q. Analysis of molecular epidemiological characteristics and antimicrobial susceptibility of vancomycin-resistant and linezolid-resistant Enterococcus in China. BMC Med Genomics 2024; 17:174. [PMID: 38951840 PMCID: PMC11218351 DOI: 10.1186/s12920-024-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND This study investigates the distribution and characteristics of linezolid and vancomycin susceptibilities among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and explores the underlying resistance mechanisms. METHODS A total of 2842 Enterococcus clinical isolates from patients were retrospectively collected, and their clinical data were further analyzed. The minimum inhibitory concentrations (MICs) of vancomycin and linezolid were validated by broth dilution method. The resistance genes optrA, cfr, vanA, vanB and vanM were investigated using polymerase chain reaction (PCR). Housekeeping genes and resistance genes were obtianed through whole-genome sequencing (WGS). RESULTS Of the 2842 Enterococcus isolates, 88.5% (2516) originated from urine, with E. faecium accounted for 60.1% of these. The vanA gene was identified in 27/28 vancomycin resistant Enterococcus (VRE) isolates, 4 of which carried both vanA and vanM genes. The remaining strain was vanM positive. The optrA gene was identified in all E. faecalis isolates among linezolid resistant Enterococcus (LRE). E. faecium showed a higher multiple antibiotic resistance index (MAR index) compared to E. faecalis. The multi-locus sequence typing (MLST) showed the sequence type of E. faecium mainly belongs to clonal complex (CC) 17, nearly E. faecalis isolates analyzed were differentiated into 7 characteristics of sequence types (STs), among which ST16 of CC16 were the major lineage. CONCLUSION Urine was the primary source of VRE and LRE isolates in this study. E. faecium showed higher levels of resistance compared to E. faecalis. OptrA gene was detected in 91.6% of LRE, which could explain linezolid resistance, and van genes were detected in all vancomycin resistant Enterococcus strains, while vanA was a key resistance mechanism in VRE identified in this study.
Collapse
Affiliation(s)
- Ping Pan
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Xinyan Shi
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Xian Huang
- Respiratory department, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China
| | - Yiping Yin
- Department of Hospital-acquired infection control, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China
| | - Beilei Pan
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Lihua Hu
- Department of Critical Care Medicine, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China.
| | - Qiang Shen
- Hangzhou xixi Hospital, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
15
|
Pereira AP, Antunes P, Peixe L, Freitas AR, Novais C. Current insights into the effects of cationic biocides exposure on Enterococcus spp. Front Microbiol 2024; 15:1392018. [PMID: 39006755 PMCID: PMC11242571 DOI: 10.3389/fmicb.2024.1392018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.
Collapse
Affiliation(s)
- Ana P Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Cebeci T. Species prevalence, virulence genes, and antibiotic resistance of enterococci from food-producing animals at a slaughterhouse in Turkey. Sci Rep 2024; 14:13191. [PMID: 38851786 PMCID: PMC11162463 DOI: 10.1038/s41598-024-63984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
Healthy cattle, sheep, and goats can be reservoirs for gastrointestinal pathogenic fecal enterococci, some of which could be multidrug-resistant to antimicrobials. The objective of this study was to determine the prevalence and diversity of Enterococcus species in healthy sheep, goat, and cattle carcasses, as well as to analyze the antimicrobial resistance phenotype/genotype and the virulence gene content. During 2019-2020, carcass surface samples were collected from 150 ruminants in a slaughterhouse. A total of 90 enterococci, comprising five species, were obtained. The overall prevalence of enterococci was found to be 60%, out of which 37.7% were identified as Enterococcus (E.) hirae, 33.3% as E. casseliflavus, 15.5% as E. faecium, 12.2% as E. faecalis, and 1.1% as E. gallinarum. Virulence-associated genes of efaA (12.2%) were commonly observed in the Enterococcus isolates, followed by gelE (3.3%), asaI (3.3%), and ace (2.2%). High resistance to quinupristin-dalfopristin (28.8%), tetracycline (21.1%), ampicillin (20%), and rifampin (15.5%) was found in two, four, four, and five of the Enterococcus species group, respectively. The resistance of Enterococcus isolates to 11 antibiotic groups was determined and multidrug resistant (MDR) strains were found in 18.8% of Enterococcus isolates. Characteristic resistance genes were identified by PCR with an incidence of 6.6%, 2.2%, 1.1%, 1.1%, 1.1%, and 1.1% for the tetM, ermB, ermA, aac(6')Ie-aph(2")-la, VanC1, and VanC2 genes in Enterococcus isolates, respectively. Efflux pump genes causing multidrug resistance were detected in Enterococcus isolates (34.4%). The results showed that there were enterococci in the slaughterhouse with a number of genes linked to virulence that could be harmful to human health.
Collapse
Affiliation(s)
- Tugba Cebeci
- Department of Medical Services and Techniques, Espiye Vocational School, Giresun University, Giresun, Turkey.
| |
Collapse
|
17
|
Getahun Strobel A, Prasad P, Prasad V, Naidu R, Young-Sharma T, Suka A, Richards M, Cameron D, Lane CR, Buising K, Howden BP, Autar S. The epidemiology of enterococci in a tertiary hospital and primary healthcare facilities in Fiji (2019-2022). J Glob Antimicrob Resist 2024; 37:102-107. [PMID: 38565419 DOI: 10.1016/j.jgar.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES We analysed 4 y of laboratory data to characterise the species and determine the antimicrobial susceptibility profiles of enterococci as human pathogens in Fiji. The study also investigated the molecular epidemiology amongst the subset of vancomycin-resistant enterococci (VRE). METHODS This retrospective study reviewed bacteriological data from Colonial War Memorial Hospital (CWMH) and other healthcare facilities in the Central and Eastern divisions of Fiji. Phenotypic, antimicrobial susceptibility and vanA and vanB PCR testing were performed using locally approved protocols. The first clinical isolates per patient with antimicrobial susceptibility testing results in a single year were included in the analysis. Data was analysed using WHONET software and Microsoft Excel. RESULTS A total of 1817 enterococcal isolates were reported, 1415 from CWMH and 402 from other healthcare facilities. The majority of isolates, 75% (n = 1362) were reported as undifferentiated Enterococcus spp., 17.8% (n = 324) were specifically identified as Enterococcus faecalis and 6.7% (n = 122) as E. faecium. Overall, 10% of the enterococci isolates were from blood cultures. Among isolates from CWMH, <15% of E. faecium were susceptible to ampicillin, and 17.2% were vancomycin resistant. Overall, 874 enterococcal isolates (including the undifferentiated species) were tested against vancomycin, of which 4.8% (n = 42) were resistance. All of the VRE isolates tested (n = 15) expressed vanA genes. CONCLUSIONS This study demonstrates the clinical importance of VRE, particularly van A E. faecium in the national referral hospital in Fiji. Enhanced phenotypic and molecular surveillance data are needed to better understand enterococci epidemiology and help guide specific infection prevention and control measures and antibiotic prescribing guidelines.
Collapse
Affiliation(s)
- Aneley Getahun Strobel
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Prinika Prasad
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| | - Vinita Prasad
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| | - Ravi Naidu
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| | - Tracey Young-Sharma
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| | - Ana Suka
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| | - Matthew Richards
- Infection Prevention and Surveillance Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - Donna Cameron
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at Peter Doherty Institute for infection and Immunity, Melbourne, Australia
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at Peter Doherty Institute for infection and Immunity, Melbourne, Australia
| | - Kirsty Buising
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; The Royal Melbourne Hospital, Melbourne, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at Peter Doherty Institute for infection and Immunity, Melbourne, Australia.
| | - Sanjeshni Autar
- Ministry of Health and Medical Services, Colonial War Memorial Hospital, Suva, Fiji
| |
Collapse
|
18
|
Li Y, Lu H, Liao C, Liu X. Oxidized konjac glucomannan: A safe dietary fiber influencing mouse gut microbiota. Food Chem X 2024; 21:101089. [PMID: 38259509 PMCID: PMC10801215 DOI: 10.1016/j.fochx.2023.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
In this 13-week study, the potential effects of oxidized konjac glucomannan (OKGM) on ICR mice's metabolic health and gut microbiota were investigated and contrasted with enzyme-hydrolyzed KGM (EKGM) at a same molecular weight. Mice were fed diets containing 0 %, 2.5 %, 5.0 %, and 7.5 % of OKGM for 13 weeks. Results indicated that OKGM induced no adverse effects, with overall health, body weight gain, food consumption, and clinical pathology parameters being comparable to the control group. The no-observed-adverse-effect-level for OKGM was determined at 7.5 % in the diet, corresponding to 10.21 and 12.01 g/kg/day for male and female mice, respectively. OKGM intake positively regulated gut microbiota, characterized by a reduction in the relative abundance of Firmicutes, an increase in Bacteroidetes, and an enhanced presence of Lactobacillus, particularly Lactobacillus reuteri. In comparison, EKGM differently modulated the microbiota, notably increasing Muribaculaceae. These findings suggest that OKGM has the potential to be a functional food additive.
Collapse
Affiliation(s)
- Yao Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjia Lu
- College of Landscape Architecture and Life Science, Chongqing University Of Arts and Sciences, Chongqing 402160, China
| | - Chao Liao
- College of Food Science, Southwest University, Chongqing 400715, China
- Quality Supervision Center of Wuliangye Co. Ltd., Sichuan 644000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
20
|
Roer L, Kaya H, Tedim AP, Novais C, Coque TM, Aarestrup FM, Peixe L, Hasman H, Hammerum AM, Freitas AR. VirulenceFinder for Enterococcus faecium and Enterococcus lactis: an enhanced database for detection of putative virulence markers by using whole-genome sequencing data. Microbiol Spectr 2024; 12:e0372423. [PMID: 38329344 PMCID: PMC10913372 DOI: 10.1128/spectrum.03724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Enterococcus faecium (Efm) is a leading cause of hospital-associated (HA) infections, often enriched in putative virulence markers (PVMs). Recently, the Efm clade B was assigned as Enterococcus lactis (Elts), which usually lack HA-Efm infection markers. Available databases for extracting PVM are incomplete and/or present an intermix of genes from Efm and Enterococcus faecalis, with distinct virulence profiles. In this study, we constructed a new database containing 27 PVMs [acm, scm, sgrA, ecbA, fnm, sagA, hylEfm, ptsD, orf1481, fms15, fms21-fms20 (pili gene cluster 1, PGC-1), fms14-fms17-fms13 (PGC-2), empA-empB-empC (PGC-3), fms11-fms19-fms16 (PGC-4), ccpA, bepA, gls20-glsB1, and gls33-glsB] from nine reference genomes (seven Efm + two Elts). The database was validated against these reference genomes and further evaluated using a collection of well-characterized Efm (n = 43) and Elts (n = 7) control strains, by assessing PVM presence/absence and its variants together with a genomic phylogeny constructed as single-nucleotide polymorphisms. We found a high concordance between the phylogeny and in silico findings of the PVM, with Elts clustering separately and mostly carrying Elts-specific PVM gene variants. Based on our validation results, we recommend using the database with raw reads instead of assemblies to avoid missing gene variants. This newly constructed database of 27 PVMs will enable a more comprehensive characterization of Efm and Elts based on WGS data. The developed database exhibits scalability and boasts a range of applications in public health, including diagnostics, outbreak investigations, and epidemiological studies. It can be further used in risk assessment for distinguishing between safe and unsafe enterococci.IMPORTANCEThe newly constructed database, consisting of 27 putative virulence markers, is highly scalable and serves as a valuable resource for the comprehensive characterization of these closely related species using WGS data. It holds significant potential for various public health applications, including hospital outbreak investigations, surveillance, and risk assessment for probiotics and feed additives.
Collapse
Affiliation(s)
- Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hülya Kaya
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ana P. Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Carla Novais
- UCIBIO, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Associate Laboratory i4HB, Faculty of Pharmacy, University of Porto, Institute for Health and Bioeconomy, Porto, Portugal
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Network Research Centre for Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Luísa Peixe
- UCIBIO, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Associate Laboratory i4HB, Faculty of Pharmacy, University of Porto, Institute for Health and Bioeconomy, Porto, Portugal
| | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anette M. Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ana R. Freitas
- UCIBIO, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Associate Laboratory i4HB, Faculty of Pharmacy, University of Porto, Institute for Health and Bioeconomy, Porto, Portugal
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - On behalf of the ESCMID Study Group for Epidemiological Markers (ESGEM)
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
- UCIBIO, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Associate Laboratory i4HB, Faculty of Pharmacy, University of Porto, Institute for Health and Bioeconomy, Porto, Portugal
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Network Research Centre for Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Research Group for Genomic Epidemiology, Technical University of Denmark, National Food Institute, Lyngby, Denmark
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
21
|
Rath A, Kieninger B, Caplunik-Pratsch A, Fritsch J, Mirzaliyeva N, Holzmann T, Bender JK, Werner G, Schneider-Brachert W. Concerning emergence of a new vancomycin-resistant Enterococcus faecium strain ST1299/CT1903/vanA at a tertiary university centre in South Germany. J Hosp Infect 2024; 143:25-32. [PMID: 37852539 DOI: 10.1016/j.jhin.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND vanB-carrying vancomycin-resistant Enterococcus faecium (VREfm) of the sequence types 80 (ST80) and ST117 have dominated Germany in the past. In 2020, our hospital witnessed a sharp increase in the proportion of vanA-positive VREfm. AIM To attempt to understand these dynamics through whole-genome sequencing (WGS) and analysis of nosocomial transmissions. METHODS At our hospital, the first VREfm isolate per patient, treated during 2020, was analysed retrospectively using specific vanA/vanB PCR, WGS, multi-locus sequence typing (MLST), and core-genome (cg) MLST. Epidemiologic links between VRE-positive patients were assessed using hospital occupancy data. FINDINGS Isolates from 319 out of 356 VREfm patients were available for WGS, of which 181 (56.7%) fulfilled the ECDC definition for nosocomial transmission. The high load of nosocomial cases is reflected in the overall high clonality rate with only three dominating sequence (ST) and complex types (CT), respectively: the new emerging strain ST1299 (100% vanA, 77.4% CT1903), and the well-known ST80 (90.0% vanB, 81.0% CT1065) and ST117 (78.0% vanB, 65.0% CT71). The ST1299 isolates overall, and the subtype CT1903 in particular, showed high isolate clonality, which demonstrates impressively high spreading potential. Overall, 152 out of 319 isolates had an allelic cgMLST difference of ≤3 to another, including 91 (59.6%) ST1299. Occupancy data identified shared rooms (3.7%), shared departments (6.2%), and VRE-colonized prior room occupants (0.6%) within 30 days before diagnosis as solid epidemiological links. CONCLUSION A new emerging VREfm clone, ST1299/CT1903/vanA, dominated our institution in 2020 and has been an important driver of the increasing VREfm rates.
Collapse
Affiliation(s)
- A Rath
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany.
| | - B Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - A Caplunik-Pratsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - J Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - N Mirzaliyeva
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - T Holzmann
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - J K Bender
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - G Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Sacramento AG, Fuga B, Fontana H, Cardoso B, Esposito F, Vivas R, Malta JAO, Sellera FP, Lincopan N. Successful expansion of hospital-associated clone of vanA-positive vancomycin-resistant Enterococcus faecalis ST9 to an anthropogenically polluted mangrove in Brazil. MARINE POLLUTION BULLETIN 2024; 198:115844. [PMID: 38056291 DOI: 10.1016/j.marpolbul.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.
Collapse
Affiliation(s)
- Andrey G Sacramento
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Roberto Vivas
- Microbiology Laboratory, Sergipe Urgent Care Hospital (HUSE), Aracaju, Brazil
| | - Judson A O Malta
- Postgraduate Program in Development and Environment (PRODEMA), Federal University of Sergipe, São Cristóvão, Brazil
| | - Fábio P Sellera
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Xiang Y, Wang S, Huang H, Li X, Li H, Tu Y, Wei Y, Song F, Ji X. A novel holin from an Enterococcus faecalis phage and application in vitro and in vivo. Microb Pathog 2024; 186:106471. [PMID: 38048838 DOI: 10.1016/j.micpath.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Enterococcus faecalis, a conditional pathogenic bacterium, is prevalent in the intestinal, oral, and reproductive tracts of humans and animals, causing a variety of infectious diseases. E. faecalis is the main species detected in secondary persistent infection from root canal therapy failure. Due to the abuse of antibacterial agents, E. faecalis has evolved its resistant ability. Therefore, it is difficult to treat clinical diseases infected by E. faecalis. Exploring new alternative drugs for treating E. faecalis infection is urgent. We cloned and expressed the gene of phage holin, purified the recombinant protein, and analyzed the antibacterial activity, lysis profile, and ability to remove bacterial biofilm. It showed that the crude enzyme of phage holin pEF191 exhibited superior bacterial inhibiting activity and a broader lysis host range compared to the parent phage PEf771. In addition, pEF191 demonstrated high efficacy in eliminating E. faecalis biofilm. The therapeutic results of the Sprague-Dawley (SD) rats model infected showed that pEf191 did not affect SD rats, indicating that pEF191 provided greater protection against E. faecalis infection in SD rats. Based on the 16 S rDNA data of SD rats intestinal microorganism population, holin pEF191 exhibited no impact on the diversity of intestinal microorganisms at the phylum and genus levels and improved the relative abundance of favorable bacteria. Thus, pEF191 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Suping Wang
- Facculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Huang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Xuelin Li
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yungui Tu
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, China
| | - Yunlin Wei
- Facculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fei Song
- Department of Minimally invasive intervention, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China.
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
24
|
Chaguza C, Pöntinen AK, Top J, Arredondo-Alonso S, Freitas AR, Novais C, Torres C, Bentley SD, Peixe L, Coque TM, Willems RJL, Corander J. The population-level impact of Enterococcus faecalis genetics on intestinal colonization and extraintestinal infection. Microbiol Spectr 2023; 11:e0020123. [PMID: 37811975 PMCID: PMC10714801 DOI: 10.1128/spectrum.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Anna K. Pöntinen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Torres
- Department of Food and Agriculture, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Tomita H, Lu JJ, Ike Y. High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan. Antibiotics (Basel) 2023; 12:1668. [PMID: 38136702 PMCID: PMC10740520 DOI: 10.3390/antibiotics12121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
A total of seventy VanA-type vancomycin-resistant enterococci (VRE) isolates obtained in Taiwan in the early 2000s were retrospectively characterized. Forty isolates were obtained from human patients and thirty from livestock. Of these VRE isolates, twenty-three (57.5%) of the human VRE and thirty (100%) of the livestock VRE were Enterococcus faecalis, and the remaining seventeen (42.5%) of the human VRE were E. faecium. Of the 53 E. faecalis isolates, twenty-two (96%) of the human VRE and thirty (100%) of the livestock VRE exhibited a high level of resistance to vancomycin and sensitivity to teicoplanin. They also had three amino acid substitutions in the N-terminal region of the deduced VanS sequence. The vancomycin resistance of all of the 22 human isolates, and 20 of the 30 livestock isolates, transferred to E. faecalis FA2-2 at a frequency of 10-5 to 10-3 per donor cell in broth. Each of the transconjugants responded to E. faecalis pheromone (i.e., E. faecalis FA2-2 culture filtrate), indicating that the conjugative plasmids were pheromone-responsive plasmids. Three of the conjugative plasmids originated from human isolates, and five plasmids from livestock isolates were corresponded and classified as type A plasmid. Two plasmids originated from human isolates and six plasmids from livestock isolates were corresponded and classified as type B plasmid. E. faecalis FA2-2 containing either the type A or type B plasmid responded to the synthetic pheromone cAD1. The type A and type B plasmids transferred between E. faecalis FA2-2 and JH2SS at a frequency of about 10-2 per donor cell and conferred vancomycin, bacitracin, and erythromycin resistances. The complete DNA sequence of the representative type A plasmid pTW9 (85,068 bp) showed that the plasmid carried a Tn1546-like element encoding vanA-type resistance, erythromycin resistance (ermB), and bacitracin resistance (bcrABDR). The plasmid contained the regulatory region found in the pheromone-responsive plasmid and encoded the genes traA, traD and iad1, which are the key negative regulatory elements, and traE1, a key positive regulator of plasmid pAD1, indicating that plasmid pTW9 was pAD1-type pheromone-responsive plasmid. PFGE analysis of SmaI-digested chromosomal DNAs showed that several E. faecalis strains harboring an identical type A pheromone-responsive plasmid were indistinguishable, and that these were identified both in human and livestock isolates, indicating the transmissions of the VRE strains between livestock and humans. These data showed that the multiple-drug-resistant pheromone-responsive conjugative plasmids have been widely spread in both human and livestock VRE, and there was high potential for transfers of VRE from food animals to humans in Taiwan in the early 2000s.
Collapse
Affiliation(s)
- Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yasuyoshi Ike
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
26
|
Thomsen J, Abdulrazzak NM, AlRand H, Menezes GA, Moubareck CA, Everett DB, Senok A, Podbielski A. Epidemiology of vancomycin-resistant enterococci in the United Arab Emirates: a retrospective analysis of 12 years of national AMR surveillance data. Front Public Health 2023; 11:1275778. [PMID: 38089023 PMCID: PMC10715431 DOI: 10.3389/fpubh.2023.1275778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Enterococci are usually low pathogenic, but can cause invasive disease under certain circumstances, including urinary tract infections, bacteremia, endocarditis, and meningitis, and are associated with peritonitis and intra-abdominal abscesses. Increasing resistance of enterococci to glycopeptides and fluoroquinolones, and high-level resistance to aminoglycosides is a concern. National antimicrobial resistance (AMR) surveillance data for enterococci from the Middle East and North Africa (MENA) and the Gulf region is scarce. Methods A retrospective 12-year analysis of N = 37,909 non-duplicate diagnostic Enterococcus spp. isolates from the United Arab Emirates (UAE) was conducted. Data was generated by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National AMR Surveillance program. Data analysis was conducted with WHONET. Results Enterococcus faecalis was the most commonly reported species (81.5%), followed by Enterococcus faecium (8.5%), and other enterococci species (4.8%). Phenotypically vancomycin-resistant enterococci (VRE) were found in 1.8% of Enterococcus spp. isolates. Prevalence of VRE (%VRE) was highest for E. faecium (8.1%), followed by E. faecalis (0.9%). A significant level of resistance to glycopeptides (%VRE) for these two species has been observed in the majority of observed years [E. faecalis (0-2.2%), 2010: 0%, 2021: 0.6%] and E. faecium (0-14.2%, 2010: 0%, 2021: 5.8%). Resistance to fluoroquinolones was between 17 and 29% (E. faecalis) and was higher for E. faecium (between 42 and 83%). VRE were associated with higher patient mortality (RR: 2.97), admission to intensive care units (RR: 2.25), and increased length of stay (six excess inpatient days per VRE case), as compared to vancomycin-susceptible Enterococcus spp. Discussion Published data on Enterococcus infections, in particular VRE-infections, in the UAE and MENA region is scarce. Our data demonstrates that VRE-enterococci are relatively rare in the UAE, however showing an increasing resistance trend for several clinically important antibiotic classes, causing a concern for the treatment of serious infections caused by enterococci. This study also demonstrates that VRE were associated with higher mortality, increased intensive care unit admission rates, and longer hospitalization, thus poorer clinical outcome and higher associated costs in the UAE. We recommend the expansion of current surveillance techniques (e.g., local VRE screening), stricter infection prevention and control strategies, and better stewardship interventions. Further studies on the molecular epidemiology of enterococci are needed.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Environmental and Occupational Health and Safety, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Najiba M. Abdulrazzak
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment (EHS), Dubai, United Arab Emirates
| | - Hussain AlRand
- Public Health Sector, Ministry of Health and Prevention, Dubai, United Arab Emirates
| | | | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Carole A. Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine, Rostock, Germany
| |
Collapse
|
27
|
Rebelo A, Duarte B, Freitas AR, Almeida A, Azevedo R, Pinto E, Peixe L, Antunes P, Novais C. Uncovering the effects of copper feed supplementation on the selection of copper-tolerant and antibiotic-resistant Enterococcus in poultry production for sustainable environmental practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165769. [PMID: 37506909 DOI: 10.1016/j.scitotenv.2023.165769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 μg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Avenida Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
28
|
Xu J, Kong X, Li J, Mao H, Zhu Y, Zhu X, Xu Y. Pediatric intensive care unit treatment alters the diversity and composition of the gut microbiota and antimicrobial resistance gene expression in critically ill children. Front Microbiol 2023; 14:1237993. [PMID: 38029168 PMCID: PMC10679412 DOI: 10.3389/fmicb.2023.1237993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Common critical illnesses are a growing economic burden on healthcare worldwide. However, therapies targeting the gut microbiota for critical illnesses have not been developed on a large scale. This study aimed to investigate the changes in the characteristics of the gut microbiota in critically ill children after short-term pediatric intensive care unit (PICU) treatments. Methods Anal swab samples were prospectively collected from March 2021 to March 2022 from children admitted to the PICU of Xinhua Hospital who received broad-spectrum antibiotics on days 1 (the D1 group) and 7 (the D7 group) of the PICU treatment. The structural and functional characteristics of the gut microbiota of critically ill children were explored using metagenomic next-generation sequencing (mNGS) technology, and a comparative analysis of samples from D1 and D7 was conducted. Results After 7 days of PICU admission, a significant decrease was noted in the richness of the gut microbiota in critically ill children, while the bacterial diversity and the community structure between groups remained stable to some extent. The relative abundance of Bacilli and Lactobacillales was significantly higher, and that of Campylobacter hominis was significantly lower in the D7 group than in the D1 group. The random forest model revealed that Prevotella coporis and Enterobacter cloacae were bacterial biomarkers between groups. LEfSe revealed that two Gene Ontology entries, GO:0071555 (cell wall organization) and GO:005508 (transmembrane transport), changed significantly after the short-term treatment in the PICU. In addition, 30 KEGG pathways were mainly related to the activity of enzymes and proteins during the processes of metabolism, DNA catabolism and repair, and substance transport. Finally, 31 antimicrobial resistance genes had significantly different levels between the D7 and D1 groups. The top 10 up-regulated genes were Erm(A), ErmX, LptD, eptB, SAT-4, tetO, adeJ, adeF, APH(3')-IIIa, and tetM. Conclusion The composition, gene function, and resistance genes of gut microbiota of critically ill children can change significantly after short PICU treatments. Our findings provide a substantial basis for a better understanding of the structure and function of gut microbiota and their role in critical illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaya Xu
- Department of Pediatric Intensive Care Medicine, Xinhua Hospital, Affiliated to the Medical School, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Nappi F, Avtaar Singh SS, Jitendra V, Fiore A. Bridging Molecular and Clinical Sciences to Achieve the Best Treatment of Enterococcus faecalis Endocarditis. Microorganisms 2023; 11:2604. [PMID: 37894262 PMCID: PMC10609379 DOI: 10.3390/microorganisms11102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a commensal bacterium that causes various infections in surgical sites, the urinary tract, and blood. The bacterium is becoming a significant concern because it tends to affect the elderly population, which has a high prevalence of undiagnosed degenerative valvular disease and is often subjected to invasive procedures and implanted medical devices. The bacterium's actions are influenced by specific characteristics like pili activity and biofilm formation. This resistance significantly impedes the effectiveness of numerous antibiotic therapies, particularly in cases of endocarditis. While current guidelines recommend antimicrobial therapy, the emergence of resistant strains has introduced complexity in managing these patients, especially with the increasing use of transcatheter therapies for those who are not suitable for surgery. Presentations of the condition are often varied and associated with generalised symptoms, which may pose a diagnostic challenge. We share our encounter with a case study that concerns an octogenarian who had a TAVI valve and developed endocarditis. We also conducted a literature review to identify the essential treatment algorithms for such cases.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Antonio Fiore
- Department of Cardiac Surgery, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Creteil, France;
| |
Collapse
|
30
|
Pereira AP, Antunes P, Bierge P, Willems RJL, Corander J, Coque TM, Pich OQ, Peixe L, Freitas AR, Novais C. Unraveling Enterococcus susceptibility to quaternary ammonium compounds: genes, phenotypes, and the impact of environmental conditions. Microbiol Spectr 2023; 11:e0232423. [PMID: 37737589 PMCID: PMC10581157 DOI: 10.1128/spectrum.02324-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Quaternary ammonium compounds (QACs) have been extensively used in the community, healthcare facilities, and food chain, in concentrations between 20 and 30,000 mg/L. Enterococcus faecalis and Enterococcus faecium are ubiquitous in these settings and are recognized as nosocomial pathogens worldwide, but QACs' activity against strains from diverse epidemiological and genomic backgrounds remained largely unexplored. We evaluated the role of Enterococcus isolates from different sources, years, and clonal lineages as hosts of QACs tolerance genes and their susceptibility to QACs in optimal, single-stress and cross-stress growth conditions. Only 1% of the Enterococcus isolates included in this study and 0.5% of publicly available Enterococcus genomes carried qacA/B, qacC, qacG, qacJ, qacZ, qrg, bcrABC or oqxAB genes, shared with >60 species of Bacillota, Pseudomonadota, Actinomycetota, or Spirochaetota. These genes were generally found within close proximity of antibiotics and/or metals resistance genes. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BC) and didecyldimethylammonium chloride ranged between 0.5 and 4 mg/L (microdilution: 37°C/20 h/pH = 7/aerobiosis) for 210 E. faecalis and E. faecium isolates (two isolates carrying qacZ). Modified growth conditions (e.g., 22°C/pH = 5) increased MICBC/MBCBC (maximum of eightfold and MBCBC = 16 mg/L) and changed bacterial growth kinetics under BC toward later stationary phases in both species, including in isolates without QACs tolerance genes. In conclusion, Enterococcus are susceptible to in-use QACs concentrations and rarely carry QACs tolerance genes. However, their potential gene exchange with different microbiota, the decreased susceptibility to QACs under specific environmental conditions, and the presence of subinhibitory QACs concentrations in various settings may contribute to the selection of particular strains and, thus, require a One Health strategy to maintain QACs effectiveness. IMPORTANCE Despite the increasing use of quaternary ammonium compounds (QACs), the susceptibility of pathogens to these antimicrobials remains largely unknown. Enterococcus faecium and Enterococcus faecalis are susceptible to in-use QACs concentrations and are not main hosts of QACs tolerance genes but participate in gene transfer pathways with diverse bacterial taxa exposed to these biocides. Moreover, QACs tolerance genes often share the same genetic contexts with antibiotics and/or metals resistance genes, raising concerns about potential co-selection events. E. faecium and E. faecalis showed increased tolerance to benzalkonium chloride under specific environmental conditions (22°C, pH = 5), suggesting that strains might be selected in settings where they occur along with subinhibitory QACs concentrations. Transcriptomic studies investigating the cellular mechanisms of Enterococcus adaptation to QACs tolerance, along with longitudinal metadata analysis of tolerant populations dynamics under the influence of diverse environmental factors, are essential and should be prioritized within a One Health strategy.
Collapse
Affiliation(s)
- Ana P. Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Teresa M. Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| |
Collapse
|
31
|
Robertson EB, Willett JLE. Streptococcus mutans inhibits the growth of Enterococcus via the non-ribosomal cyclic peptide mutanobactin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557362. [PMID: 37745448 PMCID: PMC10515869 DOI: 10.1101/2023.09.12.557362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium in the gastrointestinal tract and an opportunistic pathogen. Enterococci are a leading cause of nosocomial infections, treatment of which is complicated by intrinsic and acquired antibiotic resistance mechanisms. Additionally, E. faecalis has been associated with various oral diseases, and it is frequently implicated in the failure of endodontic treatment. For establishment and persistence in a microbial community, E. faecalis must successfully compete against other bacteria. Streptococcal species play an important role in the establishment of the oral microbiome and co-exist with Enterococcus in the small intestine, yet the nature of interactions between E. faecalis and oral streptococci remains unclear. Here, we describe a mechanism by which Streptococcus mutans inhibits the growth of E. faecalis and other Gram-positive pathogens through the production of mutanobactin, a cyclic lipopeptide. Mutanobactin is produced by a polyketide synthase-nonribosomal peptide synthetase hybrid system encoded by the mub locus. Mutanobactin-producing S. mutans inhibits planktonic and biofilm growth of E. faecalis and is also active against other Enterococcus species and Staphylococcus aureus. Mutanobactin damages the cell envelope of E. faecalis, similar to other lipopeptide antibiotics like daptomycin. E. faecalis resistance to mutanobactin is mediated by the virulence factor gelatinase, a secreted metalloprotease. Our results highlight the anti-biofilm potential of the microbial natural product mutanobactin, provide insight into how E. faecalis interacts with other organisms in the human microbiome, and demonstrate the importance of studying E. faecalis dynamics within polymicrobial communities.
Collapse
Affiliation(s)
- Ethan B. Robertson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
32
|
Hunashal Y, Kumar GS, Choy MS, D'Andréa ÉD, Da Silva Santiago A, Schoenle MV, Desbonnet C, Arthur M, Rice LB, Page R, Peti W. Molecular basis of β-lactam antibiotic resistance of ESKAPE bacterium E. faecium Penicillin Binding Protein PBP5. Nat Commun 2023; 14:4268. [PMID: 37460557 DOI: 10.1038/s41467-023-39966-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are essential for the formation of the bacterial cell wall. They are also the targets of β-lactam antibiotics. In Enterococcus faecium, high levels of resistance to β-lactams are associated with the expression of PBP5, with higher levels of resistance associated with distinct PBP5 variants. To define the molecular mechanism of PBP5-mediated resistance we leveraged biomolecular NMR spectroscopy of PBP5 - due to its size (>70 kDa) a challenging NMR target. Our data show that resistant PBP5 variants show significantly increased dynamics either alone or upon formation of the acyl-enzyme inhibitor complex. Furthermore, these variants also exhibit increased acyl-enzyme hydrolysis. Thus, reducing sidechain bulkiness and expanding surface loops results in increased dynamics that facilitates acyl-enzyme hydrolysis and, via increased β-lactam antibiotic turnover, facilitates β-lactam resistance. Together, these data provide the molecular basis of resistance of clinical E. faecium PBP5 variants, results that are likely applicable to the PBP family.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Ganesan Senthil Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
- National Institute of Immunology, New Delhi, India
| | - Meng S Choy
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Éverton D D'Andréa
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Marta V Schoenle
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Charlene Desbonnet
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Michel Arthur
- INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
33
|
Udaondo Z, Abram K, Kothari A, Jun SR. Top-Down Genomic Surveillance Approach To Investigate the Genomic Epidemiology and Antibiotic Resistance Patterns of Enterococcus faecium Detected in Cancer Patients in Arkansas. Microbiol Spectr 2023; 11:e0490122. [PMID: 36995227 PMCID: PMC10269635 DOI: 10.1128/spectrum.04901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Control of hospital-associated Enterococcus faecium infection is a strenuous task due to the difficulty of identifying transmission routes and the persistence of this nosocomial pathogen despite the implementation of infection control measures that have been successful with other important nosocomial pathogens. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from 66 cancer patients at the University of Arkansas for Medical Sciences (UAMS) between June 2018 and May 2019. In the top-down approach used in this study, we employed, in addition to the 106 E. faecium UAMS isolates, a filtered set of 2,167 E. faecium strains from the GenBank database to assess the current population structure of E. faecium species and, consequently, to identify the lineages associated with our clinical isolates. We then evaluated the antibiotic resistance and virulence profiles of hospital-associated strains from the species pool, focusing on antibiotics of last resort, to establish an updated classification of high-risk and multidrug-resistant nosocomial clones. Further investigation of the clinical isolates collected from UAMS patients using whole-genome sequencing analytical methodologies (core genome multilocus sequence typing [cgMLST], core single nucleotide polymorphism [coreSNP] analysis, and phylogenomics), with the addition of patient epidemiological data, revealed a polyclonal outbreak of three sequence types occurring simultaneously in different patient wards. The integration of genomic and epidemiological data collected from the patients increased our understanding of the relationships and transmission dynamics of the E. faecium isolates. Our study provides new insights into genomic surveillance of E. faecium to assist in monitoring and further limiting the spread of multidrug-resistant E. faecium. IMPORTANCE Enterococcus faecium is a member of the gastrointestinal microbiota. Although its virulence is low in healthy, immunocompetent individuals, E. faecium has become the third leading cause of health care-associated infections in the United States. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from cancer patients at the University of Arkansas for Medical Sciences (UAMS). We employed a top-down analytical approach (from population genomics to molecular biology) to classify our clinical isolates into their genetic lineages and thoroughly evaluate their antibiotic resistance and virulence profiles. The addition of patient epidemiological data to the whole-genome sequencing analytical methodologies performed in the study allowed us to increase our understanding of the relationships and transmission dynamics of the E. faecium isolates. This study provides new insights into genomic surveillance of E. faecium to help monitor and further limit the spread of multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
34
|
Vaccaro E, Ciccotelli V, Oliveri P, Battistini R, Capelli C, Lottici S, Melchiorre N, Smirnova E, Ferro M, Costa E, Betti B, Vivaldi B, Masotti C, Serracca L, Iacona F, Orlandi M, Ercolini C. Shellfish sanitation monitoring in La Spezia gulf: Chemometric evaluation of data from 2015 to 2021. Heliyon 2023; 9:e17032. [PMID: 37383211 PMCID: PMC10293677 DOI: 10.1016/j.heliyon.2023.e17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Shellfish sanitary controls are very important to guarantee consumer health because bivalve molluscs (BVM) are filter-feeders so they can accumulate pathogens, environmental contaminants and biotoxins produced by some algae, causing infections and food poisoning in humans after ingestion. The purpose of this work was to analyse with chemometric methods the historical data relating to routine analyses carried out by the competent authority (Liguria Local Health Unit, National Health Service) on the BVM reared in a shellfish farm located in the Gulf of La Spezia (Italy). Chemometric analysis was aimed at identifying any correlations between the variables, as well as any seasonal trends and similarities between the stations, in order to be able to provide further material for a more accurate risk assessment and to improve the monitoring organization for example by reducing sampling stations and/or sampling frequency. The dataset used included 31 variables classified as biotoxicological, microbiological and chemical variables, measured twice a week, monthly or half yearly respectively, for a total of 6 years (from 2015 to 2021), on samples of Mytilus galloprovincialis coming from 7 monitoring stations. The results obtained by the application of principal component analysis have shown positive alga-biotoxin correlations, as well as seasonal trends linked to algae growth, with a greater algal biomass and their toxins during the spring months. In addition, periods characterised by low rainfall were found to affect algal development, promoting especially species such as Dinophysis spp. Considering the microbiological and biotoxicological variables, significant differences between the monitoring stations were not found. However, stations could be distinguished on the basis of the nature of the predominant chemical pollutants.
Collapse
Affiliation(s)
- Erica Vaccaro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Valentina Ciccotelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Paolo Oliveri
- Dipartimento di Farmacia (DIFAR), Università degli Studi di, Genova, Italy
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | | | | | | | | | - Erica Costa
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Barbara Betti
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Barbara Vivaldi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Iacona
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Mino Orlandi
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
35
|
Mosonik GC, Kombich JJ. Profiling of antibiotic resistance among uropathogens isolated from patients attending Kericho County Referral Hospital. Pan Afr Med J 2023; 45:19. [PMID: 37426467 PMCID: PMC10323814 DOI: 10.11604/pamj.2023.45.19.19585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 07/11/2023] Open
Abstract
Introduction urinary tract infection (UTI) comes second after respiratory infections in most communities and hospital settings, affecting people of all ages. Frequent use of antibiotics to manage UTI has resulted in development of resistance, calling upon policymakers to fast-track and enforce policies that guide the use of antibiotics in the country. This study intended to determine the current antibiotic resistance to uropathogens among patients attending Kericho County Referral Hospital. Methods three hundred urine samples from eligible participants were cultured and bacteria colonies identified using biochemical tests. Antibiotic sensitivity was done using Kirby Bauer disk diffusion method on Mueller Hinton Agar. Results: the aetiological agents of UTI were Staphylococcus aureus, Enterococci faecalis, E. coli, Proteus spp and Klebsiella pneumonia. Antibiotic resistance was observed among these uropathogens to commonly used antibiotics namely; ampicillin (84.3%), azithromycin (71.9%) and augmentin (69.8%). However, there were some bacteria that were susceptible to all or some commonly used antibiotics. There was moderate resistance to norfloxacin (43%) except in Staphylococcus aureus which showed 64% resistance. The isolates showed less resistance to cefoxitine (13.2%), gentamycin (11.6%) and ciprofloxacin (10%). While most bacteria showed multiple resistance to 3 drugs, some showed resistance to at most 5 drugs tested in the study. Conclusion: this study found Staphylococcus aureus to be the predominant aetiological agent of UTI. Cefoxitine, gentamycin and ciprofloxacin are good therapeutic choices for confirmed recurrent UTI when culture results are unavailable. There is need to have regular screening of aetiological agents of UTI and their resistance to antimicrobials.
Collapse
|
36
|
Zhang H, Zhang X, Liang S, Wang J, Zhu Y, Zhang W, Liu S, Schwarz S, Xie F. Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms. NPJ Biofilms Microbiomes 2023; 9:16. [PMID: 37024490 PMCID: PMC10078070 DOI: 10.1038/s41522-023-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.
Collapse
Affiliation(s)
- Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany.
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
37
|
Vancomycin-Resistant Enterococcus faecium and the emergence of new Sequence Types associated with Hospital Infection. Res Microbiol 2023; 174:104046. [PMID: 36858192 DOI: 10.1016/j.resmic.2023.104046] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Enterococcus faecium is a major cause of vancomycin-resistant enterococcal (VRE) infection. New variants of the pathogen have emerged and become dominant in healthcare settings. Two such examples, vanB ST796 and vanA ST1421 sequence types, originally arose in Australia and proceeded to cause VRE outbreaks in other countries. Of concern is the detection of a vancomycin variable enterococcal (VVE) variant of ST1421 in Europe that exhibits a vancomycin-susceptible phenotype but which can revert to resistant in the presence of vancomycin. The recent application of genome sequencing for increasing our understanding of the evolution and spread of VRE is also explored here.
Collapse
|
38
|
Tilahun M, Gedefie A, Sahle Z. Asymptomatic Carriage Rate, Multidrug Resistance Level, and Associated Risk Factors of Enterococcus in Clinical Samples among HIV-Positive Patients Attending at Debre Birhan Comprehensive Specialized Hospital, North Showa, Ethiopia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7310856. [PMID: 36794255 PMCID: PMC9925250 DOI: 10.1155/2023/7310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/06/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Background Enterococci are facultative anaerobic, Gram-positive bacteria found in pairs and short chains that exist as normal microflora both human and animal. Enterococci have become a substantial source of nosocomial infections in immunocompromised patients, such as urinary tract infection (UTI), bacteremia, endocarditis, and wound infection. Earlier antibiotic therapy, length of hospital stays, and length of earlier vancomycin treatment, surgical wards, or intensive care units are all risk factors. Additionally, the presence of coinfections such as diabetes and renal failure and the presence of a urinary catheter were aggravated factors to develop infections. Data on the prevalence, antimicrobial susceptibility patterns, and associated factors of enterococcal infection among HIV-positive patients are scarce in Ethiopia. Objective To determine the asymptomatic carriage rate, multidrug resistance pattern, and risk factors of enterococci in clinical samples among HIV-positive patients attending at Debre Birhan Comprehensive Specialized Hospital, North Showa, Ethiopia. Methods A hospital-based cross-sectional study was conducted from May to August 2021, at Debre Birhan Comprehensive Specialized Hospital. To obtain sociodemographic data and possible associated factors of enterococcal infections, a pretested structured questionnaire was utilized. During the study period, clinical samples such as urine, blood, swabs, and other bodily fluids from participants sent to the bacteriology section for cultures were included. The study comprised a total of 384 HIV-positive patients. Enterococci were identified and confirmed using bile esculin azide agar (BEAA), Gram stain, catalase response, growth in broth containing 6.5% NaCl, and growth in BHI broth at 45°C. Data were entered and analyzed using SPSS version 25. P values < 0.05 with 95% confidence interval were considered statistically significant. Result The overall asymptomatic carriage rate of enterococcal infection was 8.85% (34/384). Urinary tract infections were the most common, followed by wounds and blood. The vast majority of the isolate was found in urine, blood, and wound and fecal, 11 (32.4%), 6 (17.6%), and 5 (14.7%), respectively. Overall, 28 (82.35%) bacterial isolates were resistant to three and more than three antimicrobial agents. Duration of hospital associated with >48-hour hospital stays (AOR = 5.23, 95% C.I: 3.42-24.6), previous history of catheterization (AOR = 3.5, 95% C.I: 5.12-44.31), WHO clinical, stage IV (AOR = 1.65, 95% C.I: 1.23-3.61), andCD4 count < 350(AOR = 3.5, 95% C.I: 5.12-44.31) (P < 0.05). All were associated with higher level of enterococcal infection than their respective groups. Conclusion and Recommendation. Patients with UTIs, sepsis, and wound infection had a greater rate of enterococcal infection than the rest of the patients. Clinical samples in the research area yielded multidrug-resistant enterococci, including VRE. The presence of VRE suggests that multidrug-resistant Gram-positive bacteria have fewer antibiotic treatment options.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Zenawork Sahle
- Department of Medical Laboratory Science, Debre Birhan Health Science College, North Showa, Ethiopia
| |
Collapse
|
39
|
Teethaisong Y, Chueakwon P, Poolpol K, Ayamuang IO, Suknasang S, Apinundecha C, Eumkeb G. Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium. Saudi J Biol Sci 2023; 30:103557. [PMID: 36712182 PMCID: PMC9876979 DOI: 10.1016/j.sjbs.2023.103557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Increasing antibiotic resistance in enterococci is among the most serious public health problems worldwide. The new naturally occurring antibacterial agents were explored. This study, therefore, investigated the antibacterial potential of Stephania suberosa extract (SSE) and its synergism with ampicillin (AMP) or vancomycin (VAN) against AMP- and VAN-resistant Enterococcus faecium. Disc diffusion assay revealed that SSE inhibited E. faecium DMST 12829, 12852, 12970, and a reference strain of Enterococcus faecalis ATCC 29,212 in a dose-dependent manner. The minimum inhibitory concentration (MIC) of SSE against all E. faecium isolates was 0.5 mg/mL. E. faecium DMST 12,829 and 12,852 were highly resistant to AMP, as indicated by high MIC values, and E. faecium DMST 12,829 and 12,970 were resistant to VAN. Enterococcus spp. were killed by SSE at the minimum bactericidal concentrations (MBCs) ranging from 0.5 to 4 mg/mL. Checkerboard determination showed that SSE plus AMP and SSE plus VAN combinations exhibited synergistic interaction against E. faecium isolates. The killing curve assay of E. faecium isolates confirmed the antibacterial and synergistic activities of combined agents by dramatically reducing the viable counts compared to a single agent. Scanning electron microscope elucidated the cell damage and abnormal cell division. Enterococcal proteases were also inhibited by SSE. These findings support that SSE could reverse the activity of AMP and VAN. Moreover, it can synergistically inhibit AMP- and VAN-resistant E. faecium. Our combined agents could be attractive candidates for developing new combinatorial agents to resurrect the efficacy of antibiotics for treating AMP- and VAN-resistant E. faecium infections.
Collapse
Affiliation(s)
- Yothin Teethaisong
- Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chon Buri 20131, Thailand,Research Unit for Sensor Innovation (RUSI), Burapha University, Chon Buri 20131, Thailand
| | - Piyasiri Chueakwon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kulwara Poolpol
- Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chon Buri 20131, Thailand
| | - Intu-orn Ayamuang
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Siriporn Suknasang
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chittadech Apinundecha
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,Corresponding author.
| |
Collapse
|
40
|
Medeiros MAA, Alves MS, Santos B, Silva EVA, Araújo FSM, Bezerra MMSL, Silva POA, Rêgo VGS, Pessôa HLF, Oliveira Filho AA. Evaluation of the antibacterial activity of trans-anethole against Enterococcus cloacae and Enterococcus faecalis strains of food origin. BRAZ J BIOL 2023; 83:e269245. [PMID: 36629625 DOI: 10.1590/1519-6984.269245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
The present study sought to evaluate the antibacterial activity of trans-anethole against food-borne strains of Enterobacter cloacae and Enterococcus faecalis. The study was performed using Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) methods, in addition, disc diffusion technique was used to evaluate the association of trans-anethole with synthetic antimicrobials. Minimum Inhibitory Concentration for Adherence (MICA) testing was also performed. The results revealed that trans-anethole presents no antibacterial activity at any of the concentrations used against the E. cloacae strains tested. However, trans-anethole presented antibacterial effect against five of the six E. faecalis bacterial strains tested, with MIC values ranging from 500 μg/mL to 1000 μg/mL. Further, when analyzing the MBC results against E. faecalis, it was observed that the compound presented values ranging from 500 μg/mL to 1000 μg/mL. As for the associations, it was observed that trans-anethole when combined with the antimicrobials ampicillin, gentamicin, ciprofloxacin, and ceftriaxone presented synergistic effect against most strains of E. faecalis. However, both trans-anethole and the control chlorhexidine (0.12%) presented no antibiofilm effects against strains of E. faecalis. In short, trans-anethole presented potential antibacterial against E. faecalis strains of food origin, and may upon further study, it may be used alone or in association with synthetic antimicrobials to combat infections caused by this bacterium.
Collapse
Affiliation(s)
- M A A Medeiros
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - M S Alves
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - B Santos
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - E V A Silva
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - F S M Araújo
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - M M S L Bezerra
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - P O A Silva
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - V G S Rêgo
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - H L F Pessôa
- Universidade Federal da Paraíba - UFPB, João Pessoa, PB, Brasil
| | | |
Collapse
|
41
|
Fernández-Cuenca F, López-Hernández I, Cercenado E, Conejo MC, Tormo N, Gimeno C, Pascual A. Reporting antimicrobial susceptibilities and phenotypes of resistance to vancomycin in vancomycin-resistant Enterococcus spp. clinical isolates: A nationwide proficiency study. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023:S2529-993X(22)00310-0. [PMID: 36610833 DOI: 10.1016/j.eimce.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The ability of Spanish microbiology laboratories to (a) determine antimicrobial susceptibility (AS), and (b) correctly detect the vancomycin resistance (VR) phenotype in vancomycin-resistant Enterococcus spp. (VRE) was evaluated. METHODS Three VRE isolates representing the VanA (E. faecium), VanB (E. faecium) and VanC (E. gallinarum) VR phenotypes were sent to 52 laboratories, which were asked for: (a) AS method used; (b) MICs of ampicillin, imipenem, vancomycin, teicoplanin, linezolid, daptomycin, ciprofloxacin, levofloxacin and quinupristin-dalfopristin, and high-level resistance to gentamicin and streptomycin; (c) VR phenotype. RESULTS (a) The most frequently used system was MicroScan; (b) according to the system, the highest percentage of discrepant MICs was found with gradient strips (21.3%). By antimicrobial, the highest rates of discrepant MICs ranged 16.7% (imipenem) to 0.7% (linezolid). No discrepant MICs were obtained with daptomycin or levofloxacin. Mayor errors (MEs) occurred with linezolid (1.1%/EUCAST) and ciprofloxacin (5.0%/CLSI), and very major errors (VMEs) with vancomycin (27.1%/EUCAST and 33.3%/CLSI) and teicoplanin (5.7%/EUCAST and 2.3%/CLSI). For linezolid, ciprofloxacin, and vancomycin, discrepant MICs were responsible for these errors, while for teicoplanin, errors were due to a misassignment of the clinical category. An unacceptable high percentage of VMEs was obtained using gradient strips (14.8%), especially with vancomycin, teicoplanin and daptomycin; (c) 86.4% of the centers identified VanA and VanB phenotypes correctly, and 95.0% the VanC phenotype. CONCLUSION Most Spanish microbiology laboratories can reliably determine AS in VRE, but there is a significant percentage of inadequate interpretations (warning of false susceptibility) for teicoplanin in isolates with the VanB phenotype.
Collapse
Affiliation(s)
- Felipe Fernández-Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Inmaculada López-Hernández
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Servicio de Microbiología y Enfermedades Infecciosas. Hospital General Universitario Gregorio Marañón, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain; CIBERES, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, CB06/06/0058, Madrid, Spain
| | | | - Nuria Tormo
- Servicio de Microbiología, Hospital General de Valencia, Valencia, Spain; Quality Control Programme (CCS), Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC), Valencia, Spain
| | - Concepción Gimeno
- Servicio de Microbiología, Hospital General de Valencia, Valencia, Spain; Quality Control Programme (CCS), Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC), Valencia, Spain
| | - Alvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
42
|
Aktas G. Activity of vancomycin combined with linezolid against clinical vancomycin-resistant Enterococcus strains. Arch Med Sci 2023; 19:189-193. [PMID: 36817687 PMCID: PMC9897105 DOI: 10.5114/aoms.2020.96400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Because multi-drug-resistant Gram-positive bacteria have been isolated frequently worldwide and are difficult to treat, alternative treatment choices are required. Combination antibiotherapies have a distinct advantage over monotherapies in terms of their broad spectrum and synergistic effect. In the present study, it was aimed to investigate the in vitro activity of vancomycin combined with linezolid against clinical vancomycin-resistant enterococci (VRE) strains with high-level aminoglycoside resistance. MATERIAL AND METHODS A total of 30 randomly selected clinical VRE strains were studied. Susceptibility to agents tested was investigated using broth microdilution assay. The inoculum of strain was adjusted to approximately 5 × 105 CFU/ml in the wells. The results were interpreted in accordance with Clinical and Laboratory Standards Institute guidelines. In vitro activities of antibiotics in combination were assessed using the broth microcheckerboard technique. The fractional inhibitory concentration indexes (FICIs) were interpreted as follows: synergism, FICI ≤ 0.5; additive/indifference, FICI ≤ 0.5 - ≤ 4; antagonism, FICI > 4. RESULTS All strains were resistant to vancomycin and susceptible to linezolid. The MIC50,90 and MICrange values of antimicrobials were 512, 512, and 512-1024 μg/ml for vancomycin; 2, 2, and 2-4 μg/ml for linezolid. The rate of synergy was found to be 46.6% (14/30) for linezolid combined with vancomycin. No antagonism was observed. CONCLUSIONS The results of the study suggest that this combination may contribute to the treatment of VRE infections for their synergistic effect and because no antagonism was observed.
Collapse
Affiliation(s)
- Gulseren Aktas
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
43
|
Rebelo A, Duarte B, Ferreira C, Mourão J, Ribeiro S, Freitas AR, Coque TM, Willems R, Corander J, Peixe L, Antunes P, Novais C. Enterococcus spp. from chicken meat collected 20 years apart overcome multiple stresses occurring in the poultry production chain: Antibiotics, copper and acids. Int J Food Microbiol 2023; 384:109981. [DOI: 10.1016/j.ijfoodmicro.2022.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
44
|
Rani V, Prakash A, Mannan MAU, Das P, Haridas H, Gaindaa R. Emergence of OptrA Gene Mediated Linezolid Resistance among Enterococcus Faecium: A Pilot Study from a Tertiary Care Hospital, India. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:242-256. [PMID: 38751656 PMCID: PMC11092898 DOI: 10.22088/ijmcm.bums.12.3.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
E. faecium is the third most common cause of nosocomial infections. Linezolid (LNZ) is a reserve antibiotic recommended for infections caused by vancomycin resistant E. faecium (VREfm). The aim of the present study was to investigate the prevalence of optrA gene among linezolid resistant E. faecium (LREfm) and to study the molecular epidemiology using pulse field gel electrophoresis (PFGE). Clinically significant LREfm were identified and antimicrobial susceptibility was performed by disc diffusion. Minimum inhibitory concentration (MIC) of linezolid, vancomycin, daptomycin and quinupristin/dalfopristin was determined by E-test. PCR and PCR-RFPL were performed for the detection of optrA/cfr gene and G2576T mutation respectively. Molecular epidemiology was studied by PFGE. A total of 1081 clinically significant Enterococci species were isolated which included E. faecium 63.5% (n=687) and E. faecalis 36.5% (n=394). LREfm (30/687) were further studied. Multidrug resistance and vancomycin resistance was 100% and 80%, respectively. Linezolid MIC range was 8-256µg/ml and the most common mechanism of resistance was optrA gene (83.3%) followed by G2576T mutation (33.3%). PFGE analysis demonstrated 4 major clones. The optrA gene mediated linezolid resistance was high and PFGE suggests resistance was emerging in the different background strains irrespective of resistance mechanism. Studies are required to investigate factors driving the emergence of linezolid resistance. The review suggests that this is the first report of optrA-mediated resistance in E. faecium from India.
Collapse
Affiliation(s)
- Vandana Rani
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Mohammad Amin-ul Mannan
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
- Division of Infectious Disease, The Lundquist Institute, UCLA Harbor Medical Center, Los Angeles, California 90502, USA.
| | - Priyanka Das
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Hitha Haridas
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Rajni Gaindaa
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
45
|
Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, Pruden A, Harwood VJ. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. WATER RESEARCH X 2022; 17:100161. [PMID: 36466738 PMCID: PMC9712764 DOI: 10.1016/j.wroa.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Jeannette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Krista Liguori
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Erin Milligan
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| |
Collapse
|
46
|
Cinthi M, Coccitto SN, Morroni G, D’Achille G, Brenciani A, Giovanetti E. Detection of an Enterococcus faecium Carrying a Double Copy of the PoxtA Gene from Freshwater River, Italy. Antibiotics (Basel) 2022; 11:1618. [PMID: 36421262 PMCID: PMC9686737 DOI: 10.3390/antibiotics11111618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 08/02/2023] Open
Abstract
Oxazolidinones are valuable antimicrobials that are used to treat severe infections due to multidrug-resistant (MDR) Gram-positive bacteria. However, in recent years, a significant spread of clinically relevant linezolid-resistant human bacteria that is also present in animal and environmental settings has been detected and is a cause for concern. This study aimed to investigate the presence, genetic environments, and transferability of oxazolidinone resistance genes in enterococci from freshwater samples. A total of 10 samples were collected from a river in Central Italy. Florfenicol-resistant enterococci were screened for the presence of oxazolidinone resistance genes by PCR. Enterococcus faecium M1 was positive for the poxtA gene. The poxtA transfer (filter mating and aquaria microcosm assays), localization (S1-PFGE/hybridization), genetic context, and clonality of the isolate (WGS) were analyzed. Two poxtA copies were located on the 30,877-bp pEfM1, showing high-level identity and synteny to the pEfm-Ef3 from an E. faecium collected from an Italian coastal area. The isolate was able to transfer the poxtA to enterococcal recipients both in filter mating and aquaria microcosm assays. This is-to the best of our knowledge-the first detection of an enterococcus carrying a linezolid resistance gene from freshwater in Italy.
Collapse
Affiliation(s)
- Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Gloria D’Achille
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| |
Collapse
|
47
|
Rapid Detection of vanA Resistance Gene from E. faecalis Clinical Isolates Using Duplex Loop-Mediated Isothermal Amplification and Triplex PCR Assay. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4384196. [PMID: 36177055 PMCID: PMC9514927 DOI: 10.1155/2022/4384196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Today, the spread of vancomycin-resistant strains isolated from Enterococcus faecalis (E. faecalis) has become a major health concern worldwide. Therefore, it is essential to provide a rapid and sensitive assay for identifying vanA gene for timely and appropriate antimicrobial control of resistant enterococcal infections. For this purpose, a cross-sectional study was performed on different clinical specimens of enterococci from Imam Reza hospital, Kermanshah, Iran. The antimicrobial susceptibility testing was determined by disk diffusion and MIC methods. Triplex-PCR and duplex-LAMP assays were also used to identify vanA E. faecalis resistance gene isolates. The results of this study shown that out of 108 Enterococcus isolates, 86, 18, 2, 1, and one isolates of E. faecalis, E. faecium, E. avium, E. psudoavium, and E. raffinosus were identified, respectively. On the other hand, E. faecalis was confirmed in 87 and 88 isolates using duplex-LAMP and triplex PCR, respectively. The LAMP primer set designed in this study can reliably identify seven distinct regions of the vanA gene, and finally the sensitivity, specificity, and the positive and negative predictive values of LAMP assay were shown to be 94.19%, 72.73%, 76.19%, and 93.10%, respectively. In general, sample processing, isothermal reaction and result reporting were completed using the LAMP assay in 75 minutes. Our findings suggest that LAMP assay has been approved as an alternative to the vancomycin resistance Enterococcus genotype (vanA and vanB) compared to other methods and has the advantage of being rapid, time-consuming, and easy for diagnosis.
Collapse
|
48
|
Farkas A, Coman C, Szekeres E, Teban-Man A, Carpa R, Butiuc-Keul A. Molecular Typing Reveals Environmental Dispersion of Antibiotic-Resistant Enterococci under Anthropogenic Pressure. Antibiotics (Basel) 2022; 11:antibiotics11091213. [PMID: 36139992 PMCID: PMC9494986 DOI: 10.3390/antibiotics11091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9–94.4%), hospital effluents (73.9%), surface waters (8.2–55.3%) and groundwater (35.1–59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6′)-Ie-aph(2″), aac(6′)-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Adela Teban-Man
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
49
|
Sanderson H, Gray KL, Manuele A, Maguire F, Khan A, Liu C, Navanekere Rudrappa C, Nash JHE, Robertson J, Bessonov K, Oloni M, Alcock BP, Raphenya AR, McAllister TA, Peacock SJ, Raven KE, Gouliouris T, McArthur AG, Brinkman FSL, Fink RC, Zaheer R, Beiko RG. Exploring the mobilome and resistome of Enterococcus faecium in a One Health context across two continents. Microb Genom 2022; 8. [PMID: 36129737 DOI: 10.1099/mgen.0.000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterococcus faecium is a ubiquitous opportunistic pathogen that is exhibiting increasing levels of antimicrobial resistance (AMR). Many of the genes that confer resistance and pathogenic functions are localized on mobile genetic elements (MGEs), which facilitate their transfer between lineages. Here, features including resistance determinants, virulence factors and MGEs were profiled in a set of 1273 E. faecium genomes from two disparate geographic locations (in the UK and Canada) from a range of agricultural, clinical and associated habitats. Neither lineages of E. faecium, type A and B, nor MGEs are constrained by geographic proximity, but our results show evidence of a strong association of many profiled genes and MGEs with habitat. Many features were associated with a group of clinical and municipal wastewater genomes that are likely forming a new human-associated ecotype within type A. The evolutionary dynamics of E. faecium make it a highly versatile emerging pathogen, and its ability to acquire, transmit and lose features presents a high risk for the emergence of new pathogenic variants and novel resistance combinations. This study provides a workflow for MGE-centric surveillance of AMR in Enterococcus that can be adapted to other pathogens.
Collapse
Affiliation(s)
- Haley Sanderson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Kristen L Gray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Alexander Manuele
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amjad Khan
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chaoyue Liu
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chandana Navanekere Rudrappa
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - Martins Oloni
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian P Alcock
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Amogelang R Raphenya
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | | | - Kathy E Raven
- Department of Medicine, Cambridge University, Cambridge, UK
| | | | - Andrew G McArthur
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Ryan C Fink
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
50
|
Bizot E, Truong J, Mariani-Kurkdjian P, Bonacorsi S, Faye A, Caseris M. Pediatric Enterococcal Bacteremia: A 12-Year Retrospective Study in a French Pediatric Center. Pediatr Infect Dis J 2022; 41:e346-e350. [PMID: 35830518 DOI: 10.1097/inf.0000000000003631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Enterococcal bloodstream infections (EBSIs) are rare infections in children associated with 5%-10% of mortality in previous studies. The recent evolution of antimicrobial resistance and therapies require updated data. METHODS We conducted an observational retrospective study between January 2008 and December 2019 describing the characteristics of children with EBSI in a French pediatric hospital. All positive Enterococcus spp. blood cultures associated with sepsis symptoms were analyzed. We also compared characteristics of healthcare-associated infections (HAIs) and community-acquired infections (CAIs) and described antimicrobial resistance evolution during this period. RESULTS In total 74 EBSI were included. Enterococcus faecalis was the most common pathogen (n = 60/74, 81%) followed by Enterococcus faecium (n = 18, 24%), including 4 enterococcal coinfections. EBSIs were mainly associated with central-line associated infection (38%), surgical site infection (14%) or urinary tract infection (11%). An underlying disease was present in 95.9%. However, 4 patients died in the month following the EBSI resulting in a 5.4%, 30-day mortality. All were HAI. HAI (84% of EBSI) was associated with longer bacteremia [31% persistent bacteremia (more than 3 days) versus 0% for CAI; P = 0.029] and more antimicrobial resistance. Amoxicillin resistance is increasing since 2013 in E. faecium (63% in 2013-2019), although high-level gentamicin resistance is stable (19%). Only 1 EBSI due to vancomycin-resistant Enterococcus was described in our cohort, who died. CONCLUSIONS EBSIs are rare infections in children mostly described in children with underlying disease. Healthcare-associated bacteremia is associated with higher rates of resistance and poorer prognosis, requiring the involvement of pediatric infectious disease specialists to improve management.
Collapse
Affiliation(s)
- Etienne Bizot
- Pediatric infectious disease unit, Robert Debré Hospital, Paris, France
- Microbiology unit, Robert Debré Hospital, Paris, France
| | - Jeanne Truong
- Pediatric infectious disease unit, Robert Debré Hospital, Paris, France
| | | | - Stephane Bonacorsi
- Microbiology unit, Robert Debré Hospital, Paris, France
- Université de Paris, IAME UMR1137, INSERM, Paris, Île-de-France, France
| | - Albert Faye
- Pediatric infectious disease unit, Robert Debré Hospital, Paris, France
| | - Marion Caseris
- Pediatric infectious disease unit, Robert Debré Hospital, Paris, France
| |
Collapse
|