1
|
Fan Y, Wang S, Song M, Zhou L, Liu C, Yang Y, Yu S, Yang M. Specific biomarker mining and rapid detection of Burkholderia cepacia complex by recombinase polymerase amplification. Front Microbiol 2023; 14:1270760. [PMID: 37779692 PMCID: PMC10539473 DOI: 10.3389/fmicb.2023.1270760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To mine specific proteins and their protein-coding genes as suitable molecular biomarkers for the Burkholderia cepacia Complex (BCC) bacteria detection based on mega analysis of microbial proteomic and genomic data comparisons and to develop a real-time recombinase polymerase amplification (rt-RPA) assay for rapid isothermal screening for pharmaceutical and personal care products. Methods We constructed an automatic screening framework based on Python to compare the microbial proteomes of 78 BCC strains and 263 non-BCC strains to identify BCC-specific protein sequences. In addition, the specific protein-coding gene and its core DNA sequence were validated in silico with a self-built genome database containing 158 thousand bacteria. The appropriate methodology for BCC detection using rt-RPA was evaluated by 58 strains in pure culture and 33 batches of artificially contaminated pharmaceutical and personal care products. Results We identified the protein SecY and its protein-coding gene secY through the automatic comparison framework. The virtual evaluation of the conserved region of the secY gene showed more than 99.8% specificity from the genome database, and it can distinguish all known BCC species from other bacteria by phylogenetic analysis. Furthermore, the detection limit of the rt-RPA assay targeting the secY gene was 5.6 × 102 CFU of BCC bacteria in pure culture or 1.2 pg of BCC bacteria genomic DNA within 30 min. It was validated to detect <1 CFU/portion of BCC bacteria from artificially contaminated samples after a pre-enrichment process. The relative trueness and sensitivity of the rt-RPA assay were 100% in practice compared to the reference methods. Conclusion The automatic comparison framework for molecular biomarker mining is straightforward, universal, applicable, and efficient. Based on recognizing the BCC-specific protein SecY and its gene, we successfully established the rt-RPA assay for rapid detection in pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Yiling Fan
- China State Institute of Pharmaceutical Industry, Shanghai, China
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shujuan Wang
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Minghui Song
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Liangliang Zhou
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Chengzhi Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Yan Yang
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shuijing Yu
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Meicheng Yang
- China State Institute of Pharmaceutical Industry, Shanghai, China
- Shanghai Food and Drug Packaging Material Control Center, Shanghai, China
| |
Collapse
|
2
|
Karthikeyan R, Agri H, Yadav A, Jayakumar V, Kiranmayee B, Karikalan M, Chandra M, Lyngdoh V, Ghatak S, Sinha DK, Singh BR. A study on the occurrence of Burkholderia cepacia complex in ultrasound gels used in different veterinary clinical settings in India. Vet Res Commun 2023; 47:1413-1425. [PMID: 36914918 DOI: 10.1007/s11259-023-10091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Burkholderia cepacia complex (Bcc) organisms are emerging multidrug-resistant pathogens. They are opportunistic and cause severe diseases in humans that may result in fatal outcomes. They are mainly reported as nosocomial pathogens, and transmission often occurs through contaminated pharmaceutical products. From 1993 to 2019, 14 Bcc outbreaks caused by contaminated ultrasound gels (USGs) have been reported in several countries, including India. We screened a total of 63 samples of USGs from various veterinary and human clinical care centers across 17 states of India and isolated 32 Bcc strains of Burkholderia cenocepacia (46.8%), B. cepacia (31.3%), B. pseudomultivorans (18.8%) and B. contaminans (3.1%) species. Some isolates were co-existent in a single ultrasound gel sample. The isolation from unopened gel bottles revealed the intrinsic contamination from manufacturing sites. The MALDI-TOF analysis to identify the Bcc at the species level was supported by the partial sequencing of the recA gene for accurate species identification. The phylogenetic analysis revealed that isolates shared clades with human clinical isolates, which is an important situation because of the possible infections of Bcc by USGs both in humans and animals. The pulsed field gel electrophoresis (PFGE) typing identified the genetic variation among the Bcc isolates present in the USGs. The findings indicated USGs as the potential source of Bcc species.
Collapse
Affiliation(s)
- Ravichandran Karthikeyan
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Himani Agri
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Akanksha Yadav
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Varsha Jayakumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhimavarapu Kiranmayee
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mathesh Karikalan
- Center for wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Dharmendra K Sinha
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhoj R Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
3
|
Rodríguez-Cisneros M, Morales-Ruíz LM, Salazar-Gómez A, Rojas-Rojas FU, Estrada-de los Santos P. Compilation of the Antimicrobial Compounds Produced by Burkholderia Sensu Stricto. Molecules 2023; 28:1646. [PMID: 36838633 PMCID: PMC9958762 DOI: 10.3390/molecules28041646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Due to the increase in multidrug-resistant microorganisms, the investigation of novel or more efficient antimicrobial compounds is essential. The World Health Organization issued a list of priority multidrug-resistant bacteria whose eradication will require new antibiotics. Among them, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae are in the "critical" (most urgent) category. As a result, major investigations are ongoing worldwide to discover new antimicrobial compounds. Burkholderia, specifically Burkholderia sensu stricto, is recognized as an antimicrobial-producing group of species. Highly dissimilar compounds are among the molecules produced by this genus, such as those that are unique to a particular strain (like compound CF66I produced by Burkholderia cepacia CF-66) or antimicrobials found in a number of species, e.g., phenazines or ornibactins. The compounds produced by Burkholderia include N-containing heterocycles, volatile organic compounds, polyenes, polyynes, siderophores, macrolides, bacteriocins, quinolones, and other not classified antimicrobials. Some of them might be candidates not only for antimicrobials for both bacteria and fungi, but also as anticancer or antitumor agents. Therefore, in this review, the wide range of antimicrobial compounds produced by Burkholderia is explored, focusing especially on those compounds that were tested in vitro for antimicrobial activity. In addition, information was gathered regarding novel compounds discovered by genome-guided approaches.
Collapse
Affiliation(s)
- Mariana Rodríguez-Cisneros
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Leslie Mariana Morales-Ruíz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| |
Collapse
|
4
|
Deng P, Jia J, Foxfire A, Baird SM, Smith LJ, Lu SE. A Polyketide Synthetase Gene Cluster Is Responsible for Antibacterial Activity of Burkholderia contaminans MS14. PHYTOPATHOLOGY 2023; 113:11-20. [PMID: 35913221 DOI: 10.1094/phyto-03-22-0106-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Burkholderia contaminans MS14, isolated from a soil sample in Mississippi, is known for producing the novel antifungal compound occidiofungin. In addition, MS14 exhibits a broad range of antibacterial activities against common plant pathogens. Random mutagenesis and gene complementation indicate that four genes are required for antibacterial activity of strain MS14 against the fire blight pathogen Erwinia amylovora. With the aim of finding the biosynthetic gene cluster for the unknown antibacterial compound, we used RNA-seq to analyze the transcriptome of MS14 wild type and mutants lacking antibacterial activity. The twofold lower expressed genes in all mutants were studied, and a polyketide synthase (PKS) gene cluster was predicted to be directly involved in MS14 antibacterial activities. The nptII-resistance cassette and CRISPR-Cas9 systems were used to mutate the PKS gene cluster. Plate bioassays showed that either insertion or frame-shifting one of the PKS genes resulted in a loss of antibacterial activity. Considering that the antibacterial-defective mutants maintain the same antifungal activities as the wild-type strain, the results suggest that this PKS gene cluster is highly likely to be involved in or directly responsible for the production of MS14 antibacterial activity. Purification efforts revealed that the antibacterial activity of the compound synthesized by the gene cluster is sensitive to UV radiation. Nevertheless, these findings have provided more insights to understand the antibacterial activity of strain MS14.
Collapse
Affiliation(s)
- Peng Deng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| | - Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| | - Adam Foxfire
- Department of Biology, Texas A&M University, TAMU 3258, College Station, TX 77843
| | - Sonya M Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| | - Leif J Smith
- Department of Biology, Texas A&M University, TAMU 3258, College Station, TX 77843
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| |
Collapse
|
5
|
Panis F, Rompel A. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11952-11968. [PMID: 35944157 PMCID: PMC9454253 DOI: 10.1021/acs.est.2c03770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 1015 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging. Bacterial tyrosinases are a subgroup of oxidoreductases that oxidatively remove phenolic compounds, coupled to the reduction of molecular oxygen to water. The biochemical properties of bacterial tyrosinases have been investigated thoroughly in vitro within recent decades, while investigations focused on carbon fluxes in wetlands on a macroscopic level have remained a thriving yet separated research area so far. In the wake of climate change, however, anoxic conditions in wetland soils are threatened by reduced rainfall and prolonged summer drought. This potentially allows tyrosinase enzymes to reduce the concentration of phenolic compounds, which in turn will increase the release of stored carbon back into the atmosphere. To offer compelling evidence for the novel concept that bacterial tyrosinases are among the key enzymes influencing carbon cycling in wetland ecosystems first, bacterial organisms indigenous to wetland ecosystems that harbor a TYR gene within their respective genome (tyr+) have been identified, which revealed a phylogenetically diverse community of tyr+ bacteria indigenous to wetlands based on genomic sequencing data. Bacterial TYR host organisms covering seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria) have been identified within various wetland ecosystems (peatlands, marshes, mangrove forests, bogs, and alkaline soda lakes) which cover a climatic continuum ranging from high arctic to tropic ecosystems. Second, it is demonstrated that (in vitro) bacterial TYR activity is commonly observed at pH values characteristic for wetland ecosystems (ranging from pH 3.5 in peatlands and freshwater swamps to pH 9.0 in soda lakes and freshwater marshes) and toward phenolic compounds naturally present within wetland environments (p-coumaric acid, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, catechin, and epicatechin). Third, analyzing the available data confirmed that bacterial host organisms tend to exhibit in vitro growth optima at pH values similar to their respective wetland habitats. Based on these findings, it is concluded that, following increased aeration of previously anoxic wetland soils due to climate change, TYRs are among the enzymes capable of reducing the concentration of phenolic compounds present within wetland ecosystems, which will potentially destabilize vast amounts of carbon stored in these ecosystems. Finally, promising approaches to mitigate the detrimental effects of increased TYR activity in wetland ecosystems and the requirement of future investigations of the abundance and activity of TYRs in an environmental setting are presented.
Collapse
|
6
|
Morales-Ruíz LM, Rodríguez-Cisneros M, Kerber-Díaz JC, Rojas-Rojas FU, Ibarra JA, Estrada-de Los Santos P. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch Microbiol 2022; 204:178. [PMID: 35174425 DOI: 10.1007/s00203-022-02778-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).
Collapse
Affiliation(s)
- Leslie-Mariana Morales-Ruíz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Mariana Rodríguez-Cisneros
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Jeniffer-Chris Kerber-Díaz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Fernando-Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.,Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - J Antonio Ibarra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Paulina Estrada-de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
| |
Collapse
|
7
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
8
|
Imran Firdaus Kamardan M, Atikah Binti Marsid E, Nadia Md Akhir F, Ali Muhammad Yuzir M, Othman N, Hara H. Isolation and characterization of Lignin-derived monomer degraders under acidic conditions from tropical peatland. J GEN APPL MICROBIOL 2022; 68:117-124. [DOI: 10.2323/jgam.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Muhammad Imran Firdaus Kamardan
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Ezzah Atikah Binti Marsid
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Muhamad Ali Muhammad Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nor’azizi Othman
- Department of Mechanical Precision Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Hirofumi Hara
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| |
Collapse
|
9
|
Biosynthesis of Ditropolonyl Sulfide, an Antibacterial Compound Produced by Burkholderia cepacia Complex Strain R-12632. Appl Environ Microbiol 2021; 87:e0116921. [PMID: 34524894 DOI: 10.1128/aem.01169-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cepacia complex strain R-12632 produces ditropolonyl sulfide, an unusual sulfur-containing tropone, via a yet-unknown biosynthetic pathway. Ditropolonyl sulfide purified from a culture of strain R-12632 inhibits the growth of various Gram-positive and Gram-negative resistant bacteria, with MIC values as low as 16 μg/ml. In the present study, we used a transposon mutagenesis approach combined with metabolite analyses to identify the genetic basis for antibacterial activity of strain R-12632 against Gram-negative bacterial pathogens. Fifteen of the 8304 transposon mutants investigated completely lost antibacterial activity against Klebsiella pneumoniae LMG 2095. In these loss-of-activity mutants, nine genes were interrupted. Four of those genes were involved in assimilatory sulfate reduction, two were involved in phenylacetic acid (PAA) catabolism, and one was involved in glutathione metabolism. Via semipreparative fractionation and metabolite identification, it was confirmed that inactivation of the PAA degradation pathway or glutathione metabolism led to loss of ditropolonyl sulfide production. Based on earlier studies on the biosynthesis of tropolone compounds, the requirement for a functional PAA catabolic pathway for antibacterial activity in strain R-12632 indicated that this pathway likely provides the tropolone backbone for ditropolonyl sulfide. Loss of activity observed in mutants defective in assimilatory sulfate reduction and glutathione biosynthesis suggested that cysteine and glutathione are potential sources of the sulfur atom linking the two tropolone moieties. The demonstrated antibacterial activity of the unusual antibacterial compound ditropolonyl sulfide warrants further studies into its biosynthesis and biological role. IMPORTANCE Burkholderia bacteria are historically known for their biocontrol properties and have been proposed as a promising and underexplored source of bioactive specialized metabolites. Burkholderia cepacia complex strain R-12632 inhibits various Gram-positive and Gram-negative resistant pathogens and produces numerous specialized metabolites, among which is ditropolonyl sulfide. This unusual antimicrobial has been poorly studied and its biosynthetic pathway remains unknown. In the present study, we performed transposon mutagenesis of strain R-12632 and performed genome and metabolite analyses of loss-of-activity mutants to study the genetic basis for antibacterial activity. Our results indicate that phenylacetic acid catabolism, assimilatory sulfate reduction, and glutathione metabolism are necessary for ditropolonyl sulfide production. These findings contribute to understanding of the biosynthesis and biological role of this unusual antimicrobial.
Collapse
|
10
|
Epidemiology of Burkholderia Infections in People with Cystic Fibrosis in Canada between 2000 and 2017. Ann Am Thorac Soc 2021; 17:1549-1557. [PMID: 32946281 DOI: 10.1513/annalsats.201906-443oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Infections by Burkholderia species bacteria in cystic fibrosis (CF) may be transmissible, necessitating infection control measures, and remain a serious cause of morbidity and mortality. The last major study of Burkholderia epidemiology in Canada included cases up until July 2000 and was marked by the dominance of a limited number of epidemic clones of Burkholderia cenocepacia.Objectives: Describe the nationwide epidemiology of Burkholderia species infections in people with cystic fibrosis in Canada over the 17-year period since 2000.Methods: Isolates were collected from across Canada between August 2000 and July 2017 and identified to the species and, for isolates between 2015 and 2017, strain level.Results: We analyzed 1,362 Burkholderia isolates from at least 396 people with CF. Forty-nine percent (n = 666) of all isolates and 47% (n = 179) of new incident infections were identified as B. multivorans. The incidence of Burkholderia infection in the Canadian CF population did not change between 2000 and 2017 at 6 cases per 1,000 annually. Multilocus sequence typing analysis suggested minimal sharing of clones in Canada.Conclusions: The epidemiology of Burkholderia in CF in Canada has shifted from limited numbers of epidemic strains of B. cenocepacia to largely nonclonal isolates of B. multivorans, B. cenocepacia, and other species. Despite widespread infection control, however, Burkholderia species bacteria continue to be acquired by people with CF at an unchanged rate, posing a continued hazard.
Collapse
|
11
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
12
|
Foxfire A, Buhrow AR, Orugunty RS, Smith L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin Drug Discov 2021; 16:807-822. [PMID: 33467922 PMCID: PMC9844120 DOI: 10.1080/17460441.2021.1877655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: The increasing threat of antibiotic-resistant pathogens makes it imperative that new antibiotics to combat them are discovered. Burkholderia is a genus of Gram-negative, non-sporulating bacteria. While ubiquitous and capable of growing within plants and groundwater, they are primarily soil-dwelling organisms. These include the more virulent forms of Burkholderia such as Burkholderia mallei, Burkholderia pseudomallei, and the Burkholderia cepacia complex (Bcc).Areas covered: This review provides a synopsis of current research on the natural products isolated from the genus Burkholderia. The authors also cover the research on the drug discovery efforts that have been performed on the natural products derived from Burkholderia.Expert opinion: Though Burkholderia has a small number of pathogenic species, the majority of the genus is avirulent and almost all members of the genus are capable of producing useful antimicrobial products that could potentially lead to the development of novel therapeutics against infectious diseases. The need for discovery of new antibiotics is urgent due to the ever-increasing prevalence of antibiotic-resistant pathogens, coupled with the decline in the discovery of new antibiotics.
Collapse
Affiliation(s)
- Adam Foxfire
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Andrew Riley Buhrow
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803
| | | | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803,Address correspondence to Leif Smith,
| |
Collapse
|
13
|
Meza-Radilla G, Larios-Serrato V, Hernández-Castro R, Ibarra JA, Estrada-de los Santos P. Burkholderia species in human infections in Mexico: Identification of B. cepacia, B. contaminans, B. multivorans, B. vietnamiensis,B. pseudomallei and a new Burkholderia species. PLoS Negl Trop Dis 2021; 15:e0009541. [PMID: 34185783 PMCID: PMC8274841 DOI: 10.1371/journal.pntd.0009541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/12/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Burkholderia sensu stricto is comprised mainly of opportunistic pathogens. This group is widely distributed in the environment but is especially important in clinical settings. In Mexico, few species have been correctly identified among patients, most often B. cepacia is described. METHODOLOGY/PRINCIPAL FINDINGS In this study, approximately 90 strains identified as B. cepacia with the VITEK2 system were isolated from two medical centers in Mexico City and analyzed by MLSA, BOX-PCR and genome analysis. The initial identification of B. cepacia was confirmed for many strains, but B. contaminans, B. multivorans and B. vietnamiensis were also identified among clinical strains for the first time in hospitals in Mexico. Additionally, the presence of B. pseudomallei was confirmed, and a novel species within the B. cepacia complex was documented. Several strains misidentified as B. cepacia actually belong to the genera Pseudomonas, Stenotrophomonas and Providencia. CONCLUSIONS/SIGNIFICANCE The presence of different Burkholderia species in Mexico was confirmed. Correct identification of Burkholderia species is important to provide accurate treatment for immunosuppressed patients.
Collapse
Affiliation(s)
- Georgina Meza-Radilla
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Ciudad de México, México
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Ciudad de México, México
| | | | - J. Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Ciudad de México, México
| | | |
Collapse
|
14
|
Prasad JK, Pandey P, Anand R, Raghuwanshi R. Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins. Front Microbiol 2021; 12:633036. [PMID: 33935993 PMCID: PMC8079638 DOI: 10.3389/fmicb.2021.633036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to explore the antimicrobial potentials of soil bacteria and identify the bioactive compounds and their likely targets through in silico studies. A total 53 bacterial isolates were screened for their antimicrobial potential of which the strain JRBHU6 showing highest antimicrobial activity was identified as Burkholderia seminalis (GenBank accession no. MK500868) based on 16S ribosomal RNA (rRNA) gene sequencing and phylogenetic analysis. B. seminalis JRBHU6 also produced hydrolytic enzymes chitinases and cellulase of significance in accrediting its antimicrobial nature. The bioactive metabolites produced by the isolate were extracted in different organic solvents among which methanolic extract showed best growth-suppressing activities toward multidrug resistant Staphylococcus aureus and fungal strains, viz Fusarium oxysporum, Aspergillus niger, Microsporum gypseum, Trichophyton mentagrophytes, and Trichoderma harzianum. The antimicrobial compounds were purified using silica gel thin layer chromatography and high-performance liquid chromatography (HPLC). On the basis of spectroscopic analysis, the bioactive metabolites were identified as pyrrolo(1,2-a)pyrazine-1,4-dione,hexahydro (PPDH) and pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3(2-methylpropyl) (PPDHMP). In silico molecular docking studies showed the bioactive compounds targeting fungal and bacterial proteins, among which PPDHMP was multitargeting in nature as reported for the first time through this study.
Collapse
Affiliation(s)
- Jay Kishor Prasad
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Richa Anand
- Department of Applied Science, Indian Institute of Information Technology-Allahabad, Prayagraj, India
| | - Richa Raghuwanshi
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
16
|
Ma Q, Gao X, Tu L, Han Q, Zhang X, Guo Y, Yan W, Shen Y, Wang M. Enhanced Chitin Deacetylase Production Ability of Rhodococcus equi CGMCC14861 by Co-culture Fermentation With Staphylococcus sp. MC7. Front Microbiol 2020; 11:592477. [PMID: 33362742 PMCID: PMC7758288 DOI: 10.3389/fmicb.2020.592477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chitin deacetylase (CDA) can hydrolyze the acetamido group of chitin polymers and its deacetylated derivatives to produce chitosan, an industrially important biopolymer. Compared with traditional chemical methods, biocatalysis by CDA is more environment-friendly and easy to control. However, most reported CDA-producing microbial strains show low CDA producing capabilities. Thus, the enhancement of CDA production has always been a challenge. In this study, we report co-culture fermentation to significantly promote the CDA production of Rhodococcus equi CGMCC14861 chitin deacetylase (ReCDA). Due to co-culture fermentation with Staphylococcus sp. MC7, ReCDA yield increased to 21.74 times that of pure culture of R. equi. Additionally, the enhancement was demonstrated to be cell-independent by adding cell-free extracts and the filtrate obtained by 10 kDa ultrafiltration of Staphylococcus sp. MC7. By preliminary characterization, we found extracellular, thermosensitive signal substances produced by Staphylococcus that were less than 10 kDa. We investigated the mechanism of promotion of ReCDA production by transcriptomic analysis. The data showed that 328 genes were upregulated and 1,258 genes were downregulated. The transcription level of the gene encoding ReCDA increased 2.3-fold. These findings provide new insights into the research of co-culture fermentation for the production of CDA and quorum sensing regulation.
Collapse
Affiliation(s)
- Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiuzhen Gao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Xing Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yabo Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqin Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
17
|
Hassan AA, dos Santos SC, Cooper VS, Sá-Correia I. Comparative Evolutionary Patterns of Burkholderia cenocepacia and B. multivorans During Chronic Co-infection of a Cystic Fibrosis Patient Lung. Front Microbiol 2020; 11:574626. [PMID: 33101250 PMCID: PMC7545829 DOI: 10.3389/fmicb.2020.574626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
During chronic respiratory infections of cystic fibrosis (CF) patients, bacteria adaptively evolve in response to the nutritional and immune environment as well as influence other infecting microbes. The present study was designed to gain insights into the genetic mechanisms underlying adaptation and diversification by the two most prevalent pathogenic species of the Burkholderia cepacia complex (Bcc), B. cenocepacia and B. multivorans. Herein, we study the evolution of both of these species during coinfection of a CF patient for 4.4 years using genome sequences of 9 B. multivorans and 11 B. cenocepacia. This co-infection spanned at least 3 years following initial infection by B. multivorans and ultimately ended in the patient's death by cepacia syndrome. Both species acquired several mutations with accumulation rates of 2.08 (B. cenocepacia) and 2.27 (B. multivorans) SNPs/year. Many of the mutated genes are associated with oxidative stress response, transition metal metabolism, defense mechanisms against antibiotics, and other metabolic alterations consistent with the idea that positive selection might be driven by the action of the host immune system, antibiotic therapy and low oxygen and iron concentrations. Two orthologous genes shared by B. cenocepacia and B. multivorans were found to be under strong selection and accumulated mutations associated with lineage diversification. One gene encodes a nucleotide sugar dehydratase involved in lipopolysaccharide O-antigen (OAg) biosynthesis (wbiI). The other gene encodes a putative two-component regulatory sensor kinase protein required to sense and adapt to oxidative- and heavy metal- inducing stresses. This study contributes to understanding of shared and species-specific evolutionary patterns of B. cenocepacia and B. multivorans evolving in the same CF lung environment.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Wong KSK, Dhaliwal S, Bilawka J, Srigley JA, Champagne S, Romney MG, Tilley P, Sadarangani M, Zlosnik JEA, Chilvers MA. Matrix-assisted laser desorption/ionization time-of-flight MS for the accurate identification of Burkholderia cepacia complex and Burkholderia gladioli in the clinical microbiology laboratory. J Med Microbiol 2020; 69:1105-1113. [PMID: 32597748 PMCID: PMC7642978 DOI: 10.1099/jmm.0.001223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction. Burkholderia cepacia complex (Bcc) bacteria, currently consisting of 23 closely related species, and Burkholderia gladioli, can cause serious and difficult-to-treat infections in people with cystic fibrosis. Identifying Burkholderia bacteria to the species level is considered important for understanding epidemiology and infection control, and predicting clinical outcomes. Matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF) is a rapid method recently introduced in clinical laboratories for bacterial species-level identification. However, reports on the ability of MALDI-TOF to accurately identify Bcc to the species level are mixed.Aim. The aim of this project was to evaluate the accuracy of MALDI-TOF using the Biotyper and VITEK MS systems in identifying isolates from 22 different Bcc species and B. gladioli compared to recA gene sequencing, which is considered the current gold standard for Bcc.Methodology. To capture maximum intra-species variation, phylogenetic trees were constructed from concatenated multi-locus sequence typing alleles and clustered with a novel k-medoids approach. One hundred isolates representing 22 Bcc species, plus B. gladioli, were assessed for bacterial identifications using the two MALDI-TOF systems.Results. At the genus level, 100 and 97.0 % of isolates were confidently identified as Burkholderia by the Biotyper and VITEK MS systems, respectively; moreover, 26.0 and 67.0 % of the isolates were correctly identified to the species level, respectively. In many, but not all, cases of species misidentification or failed identification, a representative library for that species was lacking.Conclusion. Currently available MALDI-TOF systems frequently do not accurately identify Bcc bacteria to the species level.
Collapse
Affiliation(s)
- Kendrew S. K. Wong
- Division of Respiratory Medicine, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Suk Dhaliwal
- Microbiology, BC Children’s Hospital, Vancouver, BC, Canada
| | - Jennifer Bilawka
- Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Jocelyn A. Srigley
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sylvie Champagne
- Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marc G. Romney
- Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter Tilley
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Centre, BC Children’s Hospital, Vancouver, BC, Canada
| | - James E. A. Zlosnik
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Chilvers
- Division of Respiratory Medicine, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Depoorter E, De Canck E, Peeters C, Wieme AD, Cnockaert M, Zlosnik JEA, LiPuma JJ, Coenye T, Vandamme P. Burkholderia cepacia Complex Taxon K: Where to Split? Front Microbiol 2020; 11:1594. [PMID: 32760373 PMCID: PMC7372133 DOI: 10.3389/fmicb.2020.01594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95-96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42°C and lysine decarboxylase activity.
Collapse
Affiliation(s)
- Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - James E A Zlosnik
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Burkholderia cepacia complex: 11 years of surveillance in patients with Cystic Fibrosis in Posadas, Argentina. Rev Argent Microbiol 2020; 52:176-182. [DOI: 10.1016/j.ram.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
|
21
|
Mahdiyah D, Farida H, Riwanto I, Mustofa M, Wahjono H, Laksana Nugroho T, Reki W. Screening of Indonesian peat soil bacteria producing antimicrobial compounds. Saudi J Biol Sci 2020; 27:2604-2611. [PMID: 32994717 PMCID: PMC7499089 DOI: 10.1016/j.sjbs.2020.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/02/2022] Open
Abstract
The development and world-wide spread of multidrug-resistant (MDR) bacteria have a high concern in the medicine, especially the extended-spectrum of beta-lactamase (ESBL) producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). There are currently very limited effective antibiotics to treat infections caused by MDR bacteria. Peat-soil is a unique environment in which bacteria have to compete each other to survive, for instance, by producing antimicrobial substances. This study aimed to isolate bacteria from peat soils from South Kalimantan Indonesia, which capable of inhibiting the growth of Gram-positive and Gram-negative bacteria. Isolates from peat soil were grown and identified phenotypically. The cell-free supernatant was obtained from broth culture by centrifugation and was tested by agar well-diffusion technique against non ESBL-producing E. coli ATCC 25922, ESBL-producing E. coli ATCC 35218, methicillin susceptible Staphylococcus aureus (MSSA) ATCC 29,213 and MRSA ATCC 43300. Putative antimicrobial compounds were separated using SDS-PAGE electrophoresis and purified using electroelution method. Antimicrobial properties of the purified compounds were confirmed by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In total 28 isolated colonies were recovered; three (25PS, 26PS, and 27PS) isolates produced proteins with strong antimicrobial activities against both reference strains. The substance of proteins from three isolates exerted strong antimicrobial activity against ESBL-producing E. coli ATCC 35,218 (MIC = 2,80 µg/mL (25PS), 3,76 µg/mL (26PS), and 2,41 µg/mL (27PS), and MRSA ATCC 43,300 (MIC = 4,20 µg/mL (25PS), 5,65 µg/mL (26PS), and 3,62 µg/mL (27PS), and also had the ability bactericidal properties against the reference strains. There were isolates from Indonesian peat which were potentials sources of new antimicrobials.
Collapse
Affiliation(s)
- Dede Mahdiyah
- Department of Pharmacy, Faculty of Health, Sari Mulia University, Banjarmasin, Indonesia.,Post Graduate Program, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Helmia Farida
- Department of Clinical Microbiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Ignatius Riwanto
- Department of Surgery, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Hendro Wahjono
- Department of Clinical Microbiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Tri Laksana Nugroho
- Department Pharmacology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Winarto Reki
- Department of Clinical Microbiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
22
|
Reddy GK, Leferink NGH, Umemura M, Ahmed ST, Breitling R, Scrutton NS, Takano E. Exploring novel bacterial terpene synthases. PLoS One 2020; 15:e0232220. [PMID: 32353014 PMCID: PMC7192455 DOI: 10.1371/journal.pone.0232220] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Terpenes are the largest class of natural products with extensive structural diversity and are widely used as pharmaceuticals, herbicides, flavourings, fragrances, and biofuels. While they have mostly been isolated from plants and fungi, the availability and analysis of bacterial genome sequence data indicates that bacteria also possess many putative terpene synthase genes. In this study, we further explore this potential for terpene synthase activity in bacteria. Twenty two potential class I terpene synthase genes (TSs) were selected to represent the full sequence diversity of bacterial synthase candidates and recombinantly expressed in E. coli. Terpene synthase activity was detected for 15 of these enzymes, and included mono-, sesqui- and diterpene synthase activities. A number of confirmed sesquiterpene synthases also exhibited promiscuous monoterpene synthase activity, suggesting that bacteria are potentially a richer source of monoterpene synthase activity then previously assumed. Several terpenoid products not previously detected in bacteria were identified, including aromandendrene, acora-3,7(14)-diene and longiborneol. Overall, we have identified promiscuous terpene synthases in bacteria and demonstrated that terpene synthases with substrate promiscuity are widely distributed in nature, forming a rich resource for engineering terpene biosynthetic pathways for biotechnology.
Collapse
Affiliation(s)
- Gajendar Komati Reddy
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tsukuba, Ibaraki, Japan
| | - Syed T. Ahmed
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin Microbiol Rev 2020; 33:33/3/e00139-19. [PMID: 32295766 DOI: 10.1128/cmr.00139-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Burkholderia cepacia (formerly Pseudomonas cepacia) was once thought to be a single bacterial species but has expanded to the Burkholderia cepacia complex (Bcc), comprising 24 closely related opportunistic pathogenic species. These bacteria have a widespread environmental distribution, an extraordinary metabolic versatility, a complex genome with three chromosomes, and a high capacity for rapid mutation and adaptation. Additionally, they present an inherent resistance to antibiotics and antiseptics, as well as the abilities to survive under nutrient-limited conditions and to metabolize the organic matter present in oligotrophic aquatic environments, even using certain antimicrobials as carbon sources. These traits constitute the reason that Bcc bacteria are considered feared contaminants of aqueous pharmaceutical and personal care products and the frequent reason behind nonsterile product recalls. Contamination with Bcc has caused numerous nosocomial outbreaks in health care facilities, presenting a health threat, particularly for patients with cystic fibrosis and chronic granulomatous disease and for immunocompromised individuals. This review addresses the role of Bcc bacteria as a potential public health problem, the mechanisms behind their success as contaminants of pharmaceutical products, particularly in the presence of biocides, the difficulties encountered in their detection, and the preventive measures applied during manufacturing processes to control contamination with these objectionable microorganisms. A summary of Bcc-related outbreaks in different clinical settings, due to contamination of diverse types of pharmaceutical products, is provided.
Collapse
|
24
|
Ma Q, Gao X, Bi X, Tu L, Xia M, Shen Y, Wang M. Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase. Sci Rep 2020; 10:4329. [PMID: 32152368 PMCID: PMC7062688 DOI: 10.1038/s41598-020-61349-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
Chitin deacetylase (CDA) can hydrolyse the acetamido group of chitin polymers to produce chitosans, which are used in various fields including the biomedical and pharmaceutical industries, food production, agriculture, and water treatment. CDA represents a more environmentally-friendly and easier to control alternative to the chemical methods currently utilised to produce chitosans from chitin; however, the majority of identified CDAs display activity toward low-molecular-weight oligomers and are essentially inactive toward polymeric chitin or chitosans. Therefore, it is important to identify novel CDAs with activity toward polymeric chitin and chitosans. In this study, we isolated the bacterium Rhodococcus equi F6 from a soil sample and showed that it expresses a novel CDA (ReCDA), whose activity toward 4-nitroacetanilide reached 19.20 U/mL/h during fermentation and was able to deacetylate polymeric chitin, colloidal chitin, glycol-chitin, and chitosan. Whole genome sequencing revealed that ReCDA is unique to the R. equi F6 genome, while phylogenetic analysis indicated that ReCDA is evolutionarily distant from other CDAs. In conclusion, ReCDA isolated from the R. equi F6 strain expands the known repertoire of CDAs and could be used to deacetylate polymeric chitosans and chitin in industrial applications.
Collapse
Affiliation(s)
- Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Xiuzhen Gao
- School of Life Science, Shandong University of Technology, Zibo, 255049, China
| | - Xinyu Bi
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| |
Collapse
|
25
|
Jin Y, Zhou J, Zhou J, Hu M, Zhang Q, Kong N, Ren H, Liang L, Yue J. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct 2020; 15:6. [PMID: 32131884 PMCID: PMC7057466 DOI: 10.1186/s13062-020-0258-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of different Burkholderia cepacia complex (BCC) species is essential for therapy, prognosis assessment and research. The taxonomic status of BCC remains problematic and an improved knowledge about the classification of BCC is in particular needed. Methods We compared phylogenetic trees of BCC based on 16S rRNA, recA, hisA and MLSA (multilocus sequence analysis). Using the available whole genome sequences of BCC, we inferred a species tree based on estimated single-copy orthologous genes and demarcated species of BCC using dDDH/ANI clustering. Results We showed that 16S rRNA, recA, hisA and MLSA have limited resolutions in the taxonomic study of closely related bacteria such as BCC. Our estimated species tree and dDDH/ANI clustering clearly separated 116 BCC strains into 36 clusters. With the appropriate reclassification of misidentified strains, these clusters corresponded to 22 known species as well as 14 putative novel species. Conclusions This is the first large-scale and systematic study of the taxonomic status of the BCC and could contribute to further insights into BCC taxonomy. Our study suggested that conjunctive use of core phylogeny based on single-copy orthologous genes, as well as pangenome-based dDDH/ANI clustering would provide a preferable framework for demarcating closely related species. Reviewer This article was reviewed by Dr. Xianwen Ren.
Collapse
Affiliation(s)
- Yuan Jin
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jianglin Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jing Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Mingda Hu
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Qi Zhang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Na Kong
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,Anhui University, Hefei, 230039, Anhui, China
| | - Hongguang Ren
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| | - Long Liang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,Anhui University, Hefei, 230039, Anhui, China.
| | - Junjie Yue
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| |
Collapse
|
26
|
Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, Razali R, Alzubaidy H, Shah KH, Siddique S, Bajic VB, Hirt H, Saad MM. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 2019; 9:18154. [PMID: 31796881 PMCID: PMC6890672 DOI: 10.1038/s41598-019-54685-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are known to increase plant tolerance to several abiotic stresses, specifically those from dry and salty environments. In this study, we examined the endophyte bacterial community of five plant species growing in the Thar desert of Pakistan. Among a total of 368 culturable isolates, 58 Bacillus strains were identified from which the 16 most divergent strains were characterized for salt and heat stress resilience as well as antimicrobial and plant growth-promoting (PGP) activities. When the 16 Bacillus strains were tested on the non-host plant Arabidopsis thaliana, B. cereus PK6-15, B. subtilis PK5-26 and B. circulans PK3-109 significantly enhanced plant growth under salt stress conditions, doubling fresh weight levels when compared to uninoculated plants. B. circulans PK3-15 and PK3-109 did not promote plant growth under normal conditions, but increased plant fresh weight by more than 50% when compared to uninoculated plants under salt stress conditions, suggesting that these salt tolerant Bacillus strains exhibit PGP traits only in the presence of salt. Our data indicate that the collection of 58 plant endophytic Bacillus strains represents an important genomic resource to decipher plant growth promotion at the molecular level.
Collapse
Affiliation(s)
- Ameerah Bokhari
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Zayed University, College of Natural and Health Sciences, Abu-Dhabi, 144534, United Arab Emirates
| | - Cristina Andres-Barrao
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rewaa Jalal
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,University of Jeddah, P-O-BOX No.80327, Jeddah, 21589, Saudi Arabia
| | - Soha Alamoudi
- King Abdulaziz University, Science and Arts College, Department of Biology, Rabigh, 21589, Kingdom of Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hanin Alzubaidy
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kausar H Shah
- Bahauddin Zakariya University, Institute of Pure and Applied Biology, Multan, 60800, Pakistan
| | - Shahid Siddique
- UC Davis, Department of Entomology and Nematology, One Shields Avenue, Davis, USA
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030, Vienna, Austria.
| | - Maged M Saad
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Oppy CC, Jebeli L, Kuba M, Oates CV, Strugnell R, Edgington-Mitchell LE, Valvano MA, Hartland EL, Newton HJ, Scott NE. Loss of O-Linked Protein Glycosylation in Burkholderia cenocepacia Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators. mSphere 2019; 4:e00660-19. [PMID: 31722994 PMCID: PMC6854043 DOI: 10.1128/msphere.00660-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.
Collapse
Affiliation(s)
- Cameron C Oppy
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura E Edgington-Mitchell
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
28
|
Ashitha A, Midhun S, Sunil M, Nithin T, Radhakrishnan E, Mathew J. Bacterial endophytes from Artemisia nilagirica (Clarke) Pamp., with antibacterial efficacy against human pathogens. Microb Pathog 2019; 135:103624. [DOI: 10.1016/j.micpath.2019.103624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
|
29
|
Hassan AA, Coutinho CP, Sá-Correia I. Burkholderia cepacia Complex Species Differ in the Frequency of Variation of the Lipopolysaccharide O-Antigen Expression During Cystic Fibrosis Chronic Respiratory Infection. Front Cell Infect Microbiol 2019; 9:273. [PMID: 31417878 PMCID: PMC6686744 DOI: 10.3389/fcimb.2019.00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria can adapt to the lung environment of cystic fibrosis (CF) patients resulting in the emergence of a very difficult to eradicate heterogeneous population leading to chronic infections associated with rapid lung function loss and increased mortality. Among the important phenotypic modifications is the variation of the lipopolysaccharide (LPS) structure at level of the O-antigen (OAg) presence, influencing adherence, colonization and the ability to evade the host defense mechanisms. The present study was performed to understand whether the loss of OAg expression during CF infection can be considered a general phenomenon in different Bcc species favoring its chronicity. In fact, it is still not clear why different Bcc species/strains differ in their ability to persist in the CF lung and pathogenic potential. The systematic two-decade-retrospective-longitudinal-screening conducted covered 357 isolates retrieved from 19 chronically infected patients receiving care at a central hospital in Lisbon. The study involved 21 Bcc strains of six/seven Bcc species/lineages, frequently or rarely isolated from CF patients worldwide. Different strains/clonal variants obtained during infection gave rise to characteristic OAg-banding patterns. The two most prevalent and feared species, B. cenocepacia and B. multivorans, showed a tendency to lose the OAg along chronic infection. B. cenocepacia recA lineage IIIA strains known to lead to particularly destructive infections exhibit the most frequent OAg loss, compared with lineage IIIB. The switch frequency increased with the duration of infection and the level of lung function deterioration. For the first time, it is shown that the rarely found B. cepacia and B. contaminans, whose representation in the cohort of patients examined is abnormally high, keep the OAg even during 10- or 15-year infections. Data from co-infections with different Bcc species reinforced these conclusions. Concerning the two other rarely found species examined, B. stabilis exhibited a stable OAg expression phenotype over the infection period while for the single clone of the more distantly related B. dolosa species, the OAg-chain was absent from the beginning of the 5.5-year infection until the patient dead. This work reinforces the relevance attributed to the OAg-expression switch suggesting marked differences in the various Bcc species.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Zhou C, Zhou H, Zhang H, Lu F. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microb Cell Fact 2019; 18:127. [PMID: 31345221 PMCID: PMC6657089 DOI: 10.1186/s12934-019-1174-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has constructed a Bacillus licheniformis strain that secretes alkaline protease (AprE) with excellent enzymatic properties. B. licheniformis is generally regarded as safe and has a high industrial exoenzyme secretion capacity, but the host retains some undomesticated characteristic that increase its competitiveness and survival, such as spore-formation, which increases the requirements and difficulties in industrial operations (e.g. sterilization and enzyme activity control). Furthermore, the influence of sporulation on alkaline protease production in B. licheniformis has not been elucidated in detail. RESULT A series of asporogenic variants of the parent strain were constructed by individually knocking out the master regulator genes (spo0A, sigF and sigE) involved in sporulation. Most of the variants formed abortively disporic cells characterized by asymmetric septa at the poles and unable to survive incubation at 75 °C for 10 min. Two of them (ΔsigF and ΔsigE) exhibited superior characteristics in protease production, especially improving the expression of the aprE gene. Under the currently used fermentation conditions, the vegetative production phase of ΔsigF can be prolonged to 72 h, and the highest protease production of ΔsigF reached 29,494 ± 1053 U/mL, which was about 19.7% higher than that of the wild-type strain. CONCLUSION We first constructed three key sporulation-deficient strain to investigate the effect of sporulation on alkaline protease synthesis. The sigF mutant retained important industrial properties such as facilitating the sterilization process, a prolonged stable phase of enzyme production and slower decreasing trend, which will be superior in energy conservation, simpler operations and target product controlling effect. In summary, the work provides a useful industrial host with preferable characteristics and a novel strategy to enhance the production of protease.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
31
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
32
|
Tagele SB, Kim SW, Lee HG, Lee YS. Potential of Novel Sequence Type of Burkholderia cenocepacia for Biological Control of Root Rot of Maize ( Zea mays L.) Caused by Fusarium temperatum. Int J Mol Sci 2019; 20:E1005. [PMID: 30813526 PMCID: PMC6429479 DOI: 10.3390/ijms20051005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, two Burkholderia strains, strain KNU17BI2 and strain KNU17BI3, were isolated from maize rhizospheric soil, South Korea. The 16S rRNA gene and multilocus sequence analysis and typing (MLSA-MLST) were used for the identification of the studied strains. Strain KNU17BI2, which belonged to Burkholderia cenocepacia, was of a novel sequence type (ST) designated ST-1538, while strain KNU17BI3 had a similar allelic profile with the seven loci of Burkholderia contaminans strain LMG 23361. The strains were evaluated in vitro for their specific plant growth promoting (PGP) traits, such as zinc solubilization, phosphate solubilization, ammonia production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid (IAA) production, siderophore, and hydrolytic enzyme activity. Interestingly, the strains exhibited a positive effect on all of the tested parameters. The strains also showed broad-spectrum antifungal activity against economically important phytopathogens in the dual culture assay. Furthermore, the strains were evaluated under greenhouse conditions for their in vivo effect to promote plant growth and to suppress the root rot of maize that is caused by Fusarium temperatum on four Korean maize cultivars. The results of the greenhouse study revealed that both of the strains were promising to significantly suppress fusarium root rot and enhance plant growth promotion on the four maize cultivars. This study, for the first time, reported in vitro antifungal potential of B. cenocepacia of novel ST against economically important plant pathogens viz., F. temperatum, Fusarium graminearum, Fusarium moniliforme, Fusarium oxysporum f.sp. melonis, Fusarium subglutinans, Phytophthora drechsleri, and Stemphylium lycopersici. This is also the first report of zinc solubilization by B. cenocepacia. Moreover, the present research work reports, for the first time, about the potential of B. cenocepacia and B. contaminans to control the root rot of maize that is caused by F. temperatum. Therefore, we recommend further studies to precisely identify the bioactive chemical compounds behind such activities that would be novel sources of natural products for biological control and plant growth promotion of different crops.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Sang Woo Kim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Hyun Gu Lee
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Youn Su Lee
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
33
|
Distinct Modes of Promoter Recognition by Two Iron Starvation σ Factors with Overlapping Promoter Specificities. J Bacteriol 2019; 201:JB.00507-18. [PMID: 30455278 DOI: 10.1128/jb.00507-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/06/2018] [Indexed: 01/28/2023] Open
Abstract
OrbS and PvdS are extracytoplasmic function (ECF) σ factors that regulate transcription of operons required for the biosynthesis of the siderophores ornibactin and pyoverdine in the Burkholderia cepacia complex and Pseudomonas spp., respectively. Here we show that promoter recognition by OrbS requires specific tetrameric -35 and -10 element sequences that are strikingly similar to those of the consensus PvdS-dependent promoter. However, whereas Pseudomonas aeruginosa PvdS can serve OrbS-dependent promoters, OrbS cannot utilize PvdS-dependent promoters. To identify features present at OrbS-dependent promoters that facilitate recognition by OrbS, we carried out a detailed analysis of the nucleotide sequence requirements for promoter recognition by both OrbS and PvdS. This revealed that DNA sequence features located outside the sigma binding elements are required for efficient promoter utilization by OrbS. In particular, the presence of an A-tract extending downstream from the -35 element at OrbS-dependent promoters was shown to be an important contributor to OrbS specificity. Our observations demonstrate that the nature of the spacer sequence can have a major impact on promoter recognition by some ECF σ factors through modulation of the local DNA architecture.IMPORTANCE ECF σ factors regulate subsets of bacterial genes in response to environmental stress signals by directing RNA polymerase to promoter sequences known as the -35 and -10 elements. In this work, we identify the -10 and -35 elements that are recognized by the ECF σ factor OrbS. Furthermore, we demonstrate that efficient promoter utilization by this σ factor also requires a polyadenine tract located downstream of the -35 region. We propose that the unique architecture of A-tract DNA imposes conformational features on the -35 element that facilitates efficient recognition by OrbS. Our results show that sequences located between the core promoter elements can make major contributions to promoter recognition by some ECF σ factors.
Collapse
|
34
|
Too CC, Keller A, Sickel W, Lee SM, Yule CM. Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth. Front Microbiol 2018; 9:2859. [PMID: 30564202 PMCID: PMC6288306 DOI: 10.3389/fmicb.2018.02859] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/06/2018] [Indexed: 02/01/2023] Open
Abstract
Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.
Collapse
Affiliation(s)
- Chin Chin Too
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Alexander Keller
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Wiebke Sickel
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Catherine M Yule
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
35
|
Gomes MC, Tasrini Y, Subramoni S, Agnoli K, Feliciano JR, Eberl L, Sokol P, O’Callaghan D, Vergunst AC. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathog 2018; 14:e1007473. [PMID: 30513124 PMCID: PMC6301696 DOI: 10.1371/journal.ppat.1007473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.
Collapse
Affiliation(s)
| | - Yara Tasrini
- VBMI, INSERM, Université de Montpellier, Nîmes, France
| | - Sujatha Subramoni
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Pamela Sokol
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
36
|
De Mol ML, Snoeck N, De Maeseneire SL, Soetaert WK. Hidden antibiotics: Where to uncover? Biotechnol Adv 2018; 36:2201-2218. [DOI: 10.1016/j.biotechadv.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023]
|
37
|
Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiol Res 2018; 214:8-18. [DOI: 10.1016/j.micres.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
|
38
|
Rojas-Rojas FU, Salazar-Gómez A, Vargas-Díaz ME, Vásquez-Murrieta MS, Hirsch AM, De Mot R, Ghequire MGK, Ibarra JA, Estrada-de los Santos P. Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology (Reading) 2018; 164:1072-1086. [DOI: 10.1099/mic.0.000675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Anuar Salazar-Gómez
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - María Elena Vargas-Díaz
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - María Soledad Vásquez-Murrieta
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Ann M. Hirsch
- 2Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- 3Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - René De Mot
- 4Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
| | - Maarten G. K. Ghequire
- 4Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
| | - J. Antonio Ibarra
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Paulina Estrada-de los Santos
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| |
Collapse
|
39
|
Draft Genome Sequence of Paraburkholderia sp. Strain C35, Isolated from a Malaysian Tropical Peat Swamp Forest. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00561-18. [PMID: 29930066 PMCID: PMC6013631 DOI: 10.1128/genomea.00561-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of a bacterial isolate, Paraburkholderia sp. strain C35, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated and are publicly available in the online databases.
Collapse
|
40
|
Postgenomic Approaches and Bioinformatics Tools to Advance the Development of Vaccines against Bacteria of the Burkholderia cepacia Complex. Vaccines (Basel) 2018; 6:vaccines6020034. [PMID: 29890657 PMCID: PMC6027386 DOI: 10.3390/vaccines6020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among patients suffering from cystic fibrosis. Eradication of these pathogens by antimicrobial therapy often fails, highlighting the need to develop novel strategies to eradicate infections. Vaccines are attractive since they can confer protection to particularly vulnerable patients, as is the case of cystic fibrosis patients. Several studies have identified specific virulence factors and proteins as potential subunit vaccine candidates. So far, no vaccine is available to protect from Bcc infections. In the present work, we review the most promising postgenomic approaches and selected web tools available to speed up the identification of immunogenic proteins with the potential of conferring protection against Bcc infections.
Collapse
|
41
|
Bach E, Sant'Anna FH, Magrich Dos Passos JF, Balsanelli E, de Baura VA, Pedrosa FDO, de Souza EM, Passaglia LMP. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov. Pathog Dis 2018; 75:3934654. [PMID: 28859310 DOI: 10.1093/femspd/ftx076] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database.
Collapse
Affiliation(s)
- Evelise Bach
- Laboratório de Microbiologia Agrícola, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Bento Goncalves 9500, Porto Alegre, RS 91501-970, Brazil
| | - Fernando Hayashi Sant'Anna
- Laboratório de Microbiologia Agrícola, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Bento Goncalves 9500, Porto Alegre, RS 91501-970, Brazil
| | | | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, Curitiba, PR 80060-000, Brazil
| | - Valter Antonio de Baura
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, Curitiba, PR 80060-000, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, Curitiba, PR 80060-000, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, Curitiba, PR 80060-000, Brazil
| | - Luciane Maria Pereira Passaglia
- Laboratório de Microbiologia Agrícola, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Bento Goncalves 9500, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
42
|
[The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens]. Rev Argent Microbiol 2018; 51:84-92. [PMID: 29691107 DOI: 10.1016/j.ram.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Collapse
|
43
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
44
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
45
|
Use of Synthetic Hybrid Strains To Determine the Role of Replicon 3 in Virulence of the Burkholderia cepacia Complex. Appl Environ Microbiol 2017; 83:AEM.00461-17. [PMID: 28432094 DOI: 10.1128/aem.00461-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) displays a wealth of metabolic diversity with great biotechnological potential, but the utilization of these bacteria is limited by their opportunistic pathogenicity to humans. The third replicon of the Bcc, megaplasmid pC3 (0.5 to 1.4 Mb, previously chromosome 3), is important for various phenotypes, including virulence, antifungal, and proteolytic activities and the utilization of certain substrates. Approximately half of plasmid pC3 is well conserved throughout sequenced Bcc members, while the other half is not. To better locate the regions responsible for the key phenotypes, pC3 mutant derivatives of Burkholderia cenocepacia H111 carrying large deletions (up to 0.58 Mb) were constructed with the aid of the FLP-FRT (FRT, flippase recognition target) recombination system from Saccharomyces cerevisiae The conserved region was shown to confer near-full virulence in both Caenorhabditis elegans and Galleria mellonella infection models. Antifungal activity was unexpectedly independent of the part of pC3 bearing a previously identified antifungal gene cluster, while proteolytic activity was dependent on the nonconserved part of pC3, which encodes the ZmpA protease. To investigate to what degree pC3-encoded functions are dependent on chromosomally encoded functions, we transferred pC3 from Burkholderia cenocepacia K56-2 and Burkholderia lata 383 into other pC3-cured Bcc members. We found that although pC3 is highly important for virulence, it was the genetic background of the recipient that determined the pathogenicity level of the hybrid strain. Furthermore, we found that important phenotypes, such as antifungal activity, proteolytic activity, and some substrate utilization capabilities, can be transferred between Bcc members using pC3.IMPORTANCE The Burkholderia cepacia complex (Bcc) is a group of closely related bacteria with great biotechnological potential. Some strains produce potent antifungal compounds and can promote plant growth or degrade environmental pollutants. However, their agricultural potential is limited by their opportunistic pathogenicity, particularly for cystic fibrosis patients. Despite much study, their virulence remains poorly understood. The third replicon, pC3, which is present in all Bcc isolates and is important for pathogenicity, stress resistance, and the production of antifungal compounds, has recently been reclassified from a chromosome to a megaplasmid. In this study, we identified regions on pC3 important for virulence and antifungal activity and investigated the role of the chromosomal background for the function of pC3 by exchanging the megaplasmid between different Bcc members. Our results may open a new avenue for the construction of antifungal but nonpathogenic Burkholderia hybrids. Such strains may have great potential as biocontrol strains for protecting fungus-borne diseases of plant crops.
Collapse
|
46
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Ong KS, Cheow YL, Lee SM. The role of reactive oxygen species in the antimicrobial activity of pyochelin. J Adv Res 2017; 8:393-398. [PMID: 28580180 PMCID: PMC5447373 DOI: 10.1016/j.jare.2017.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
The increase in prevalence of antimicrobial-resistant bacteria (ARB) is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values) of 3.13 µg/mL (6.26 µg/mL) and 6.26 µg/mL (25.00 µg/mL) against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain) in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS) over time, which subsequently caused a significant increase in malondialdehyde (MDA) production (a marker for lipid peroxidation) and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay). This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.
Collapse
Affiliation(s)
- Kuan Shion Ong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|