1
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Zuber J, Leon J, Déchanet-Merville J, Kaminski H. Belatacept-related cytomegalovirus infection: Advocacy for tailored immunosuppression based on individual assessment of immune fitness. Am J Transplant 2024:S1600-6135(24)00627-0. [PMID: 39370115 DOI: 10.1016/j.ajt.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Belatacept, a fusion protein combining cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the Fc region of human IgG1, is increasingly used as a calcineurin inhibitor-sparing regimen in patients with chronic graft dysfunction. Older kidney transplant recipients, particularly from expanded criteria donors, may be switched to belatacept due to poor renal recovery. However, late-onset cytomegalovirus (CMV) reactivation is increasingly reported with this treatment, especially in older patients with graft dysfunction. This suggests a progressive loss of CMV-specific T cell response, potentially driven by T cell exhaustion. Contributing factors include preexisting T cell dysfunction, increased viral antigen exposure, and interference in the PD-L1/PD-1 pathway by belatacept. mTOR inhibitors have shown efficacy in preventing CMV reactivation by reinvigorating CMV-specific T cells. These findings support combining belatacept with mTOR inhibitors in high-risk CMV-seropositive recipients and emphasize the need for personalized immune assessments to guide immunosuppressive strategies.
Collapse
Affiliation(s)
- Julien Zuber
- Département des Maladies du Rein et du Métabolisme, Transplantation et Immunologie Clinique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR_S1163, Institut Hospitalo-Universitaire IMAGINE, Université Paris Cité, Paris, France.
| | - Juliette Leon
- Département des Maladies du Rein et du Métabolisme, Transplantation et Immunologie Clinique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR_S1163, Institut Hospitalo-Universitaire IMAGINE, Université Paris Cité, Paris, France
| | - Julie Déchanet-Merville
- Université de Bordeaux, CNRS, ImmunoConcEpT UMR_5164, INSERM ERL U1303, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Bordeaux, France
| | - Hannah Kaminski
- Université de Bordeaux, CNRS, ImmunoConcEpT UMR_5164, INSERM ERL U1303, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Bordeaux, France; Département de Néphrologie, Transplantation, Dialyse et Aphérèse, Hôpital Pellegrin, Bordeaux, France.
| |
Collapse
|
3
|
Chen D, Deng X, Jia Y, Sun X, Duan X, Yan S, Huang J. Allostatic load in rat model: An efficient tool for evaluating and understanding aging. Geriatr Gerontol Int 2024; 24:1077-1084. [PMID: 39227186 DOI: 10.1111/ggi.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
AIM Aging and age-related diseases are an ever-increasing social and public health problem. Allostatic load (AL) shows great potential as an interdisciplinary tool for assessing the aging of human beings but as yet lacks investigation in animal models which is our study focus at. METHODS Here a continuous study of AL was conducted on naturally aging rats. Blood samples were collected from the rats at ages of 5, 8, 14, 18, and 21 months. Dozens of blood biochemical indicators, including serum corticosterone, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, interleukin-6, 25-hydroxyvitamin D, free fatty acid, CD3+ T cell count, CD4+/CD3+ T cell ratio, CD8+/CD3+ T cell ratio, and CD3/4/8+ T cell apoptosis, were determined. RESULTS AL was scored from those indicators, and we found that AL score gradually increased with age. CONCLUSIONS AL can reliably reveal the cumulative and systemic changes in aging. Geriatr Gerontol Int 2024; 24: 1077-1084.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Jia
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Duan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
5
|
Ohman MS, Albright ER, Gelbmann CB, Kalejta RF. The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections. Proc Natl Acad Sci U S A 2024; 121:e2408078121. [PMID: 39292744 PMCID: PMC11441559 DOI: 10.1073/pnas.2408078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Collapse
Affiliation(s)
- Michael S Ohman
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Emily R Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Christopher B Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Yuan Q, Fan Z, Huang W, Huo X, Yang X, Ran Y, Chen J, Li H. Human cytomegalovirus UL23 exploits PD-L1 inhibitory signaling pathway to evade T cell-mediated cytotoxicity. mBio 2024; 15:e0119124. [PMID: 38829126 PMCID: PMC11253622 DOI: 10.1128/mbio.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Human cytomegalovirus (HCMV), a widely prevalent human beta-herpesvirus, establishes lifelong persistence in the host following primary infection. In healthy individuals, the virus is effectively controlled by HCMV-specific T cells and typically exhibits asymptomatic. The T cell immune response plays a pivotal role in combating HCMV infection, while HCMV employs various strategies to counteract it within the host. Previously, we reported that UL23, a tegument protein of HCMV, facilitates viral immune evasion from interferon-gamma (IFN-γ) responses, and it is well known that IFN-γ is mainly derived from T cells. However, the involvement of UL23 in viral immune evasion from T cell-mediated immunity remains unclear. Herein, we present compelling evidence that UL23 significantly enhances viral resistance against T cell-mediated cytotoxicity during HCMV infection from the co-culture assays of HCMV-infected cells with T cells. We found that IFN-γ plays a major role in regulating T cell cytotoxicity mediated by UL23. More interestingly, we demonstrated that UL23 not only regulates the IFN-γ downstream responses but also modulates the IFN-γ secretion by regulating T cell activities. Further experiments indicate that UL23 upregulates the expression and signaling of programmed death ligand 1 (PD-L1), which is responsible for inhibiting multiple aspects of T cell activities, including activation, apoptosis, and IFN-γ secretion, as determined through RNA-seq analysis and inhibitor-blocking experiments, ultimately facilitating viral replication and spread. Our findings highlight the potential role of UL23 as an alternative antagonist in suppressing T cell cytotoxicity and unveil a novel strategy for HCMV to evade T cell immunity. IMPORTANCE T cell immunity is pivotal in controlling primary human cytomegalovirus (HCMV) infection, restricting periodic reactivation, and preventing HCMV-associated diseases. Despite inducing a robust T cell immune response, HCMV has developed sophisticated immune evasion mechanisms that specifically target T cell responses. Although numerous studies have been conducted on HCMV-specific T cells, the primary focus has been on the impact of HCMV on T cell recognition via major histocompatibility complex molecules. Our studies show for the first time that HCMV exploits the programmed death ligand 1 (PD-L1) inhibitory signaling pathway to evade T cell immunity by modulating the activities of T cells and thereby blocking the secretion of IFN-γ, which is directly mediated by HCMV-encoded tegument protein UL23. While PD-L1 has been extensively studied in the context of tumors and viruses, its involvement in HCMV infection and viral immune evasion is rarely reported. We observed an upregulation of PD-L1 in normal cells during HCMV infection and provided strong evidence supporting its critical role in UL23-induced inhibition of T cell-mediated cytotoxicity. The novel strategy employed by HCMV to manipulate the inhibitory signaling pathway of T cell immune activation for viral evasion through its encoded protein offers valuable insights for the understanding of HCMV-mediated T cell immunomodulation and developing innovative antiviral treatment strategies.
Collapse
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaosong Fan
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenqiang Huang
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Huo
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Yang
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanhong Ran
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Hongjian Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
8
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
9
|
Nikkels AF, Schoevaerdts D, Kauffmann F, Strubbe F, Bensemmane S. Herpes zoster in Belgium: a new solution to an old problem. Acta Clin Belg 2024; 79:205-216. [PMID: 38781037 DOI: 10.1080/17843286.2024.2350258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Herpes zoster (HZ) is caused by reactivation of the varicella-zoster virus. The life-time risk of developing HZ is ~ 30%. Management of HZ can be challenging due to limited efficacy of oral antivirals on pain control, and neuropathic pain that may require aggressive management. Post-herpetic neuralgia (PHN) can cause substantial pain and occurs in up to one-quarter of patients with HZ. Up to 48,000 HZ cases are estimated to occur annually in Belgium, estimated to cost almost 7 million euros in treatment. The recombinant zoster vaccine (RZV, Shingrix, GSK) was approved in Europe in 2017. In 2022, the Belgian Superior Health Council recommended vaccination with RZV for immunocompetent adults aged ≥ 60 years, and immunocompromised patients aged ≥ 16 years, including those receiving immunosuppressive therapy, in particular Janus kinase inhibitors. RZV showed high age-independent efficacy in preventing HZ infection and in clinical trials that has since been confirmed in real-world effectiveness studies. In clinical trials, protection was sustained for at least 10 years after vaccination. As of 1 November 2023, RZV is reimbursed for three immunocompromised patient groups aged ≥ 18 years: malignancy treated in the past 5 years, HIV infection, and organ or haematological stem cell transplantation or are a transplant candidate. HZ is vaccine-preventable and RZV provides a highly effective tool for HZ prevention. While reimbursement for some at-risk groups is welcomed, reimbursement currently falls well short of Superior Health Council recommendations. Adult immunisation strategies should be promoted to achieve high vaccination coverage against HZ, contributing to healthy aging in Belgium.
Collapse
|
10
|
Bhide M, Singh O, Nasa P, Juneja D. Cytomegalovirus infection in non-immunocompromised critically ill patients: A management perspective. World J Virol 2024; 13:89135. [PMID: 38616856 PMCID: PMC11008403 DOI: 10.5501/wjv.v13.i1.89135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/11/2024] Open
Abstract
Critically ill patients are a vulnerable group at high risk of developing secondary infections. High disease severity, prolonged intensive care unit (ICU) stay, sepsis, and multiple drugs with immunosuppressive activity make these patients prone to immuneparesis and increase the risk of various opportunistic infections, including cytomegalovirus (CMV). CMV seroconversion has been reported in up to 33% of ICU patients, but its impact on patient outcomes remains a matter of debate. Even though there are guidelines regarding the management of CMV infection in immunosuppressive patients with human immunodeficiency virus/ acquired immuno deficiency syndrome, the need for treatment and therapeutic approaches in immunocompetent critically ill patients is still ambiguous. Even the diagnosis of CMV infection may be challenging in such patients due to non-specific symptoms and multiorgan involvement. Hence, a better understanding of the symptomatology, diagnostics, and treatment options may aid intensive care physicians in ensuring accurate diagnoses and instituting therapeutic interventions.
Collapse
Affiliation(s)
- Madhura Bhide
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Omender Singh
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Prashant Nasa
- Department of Critical Care Medicine, NMC Specialty Hospital, Dubai 7832, United Arab Emirates
| | - Deven Juneja
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| |
Collapse
|
11
|
Jallah BP, Kuypers DRJ. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 2024; 41:219-238. [PMID: 38386164 DOI: 10.1007/s40266-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.
Collapse
Affiliation(s)
- Borefore P Jallah
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
13
|
Luo C, Chen W, Cai J, He Y. The mechanisms of milder clinical symptoms of COVID-19 in children compared to adults. Ital J Pediatr 2024; 50:28. [PMID: 38355623 PMCID: PMC10865718 DOI: 10.1186/s13052-024-01587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
In stark contrast to adult patients, children who contract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) typically manifest milder symptoms or remain asymptomatic. However, the precise underlying mechanisms of this pathogenesis remain elusive. In this review, we primarily retrospect the clinical characteristics of SARS-CoV-2 infection in children, and explore the factors that may contribute to the typically milder clinical presentation in pediatric Coronavirus Disease 2019 (COVID-19) patients compare with adults patients with COVID-19. The pathophysiological mechanisms that mitigate lung injury in children are as follows: the expression level of ACE2 receptor in children is lower; the binding affinity between ACE2 receptors and viral spike proteins in children was weaker; children have strong pre-activated innate immune response and appropriate adaptive immune response; children have more natural lymphocytes; children with COVID-19 can produce higher levels of IgM, IgG and interferon; children infected with SARS-CoV-2 can produce lower levels of IL-6 and IL-10; children have fewer underlying diseases and the lower risk of worsening COVID-19; children are usually exposed to other respiratory viruses and have an enhanced cross-reactive immunity. Comprehending the relative contributions of these processes to the protective phenotype in the developing lungs can help in the diagnosis, treatment and research pertaining to children with COVID-19.
Collapse
Affiliation(s)
- Caiyin Luo
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Wanwen Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Junying Cai
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Yuwen He
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China.
| |
Collapse
|
14
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
15
|
Hou C, Wang Z, Lu X. Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors. CANCER PATHOGENESIS AND THERAPY 2024; 2:24-30. [PMID: 38328711 PMCID: PMC10846300 DOI: 10.1016/j.cpt.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 02/09/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are employed in immunotherapeutic applications for patients with weakened immune systems and can improve the ability of T cells to kill cancer cells. Although ICIs can potentially treat different types of cancers in various groups of patients, their effectiveness may differ among older individuals. The reason ICIs are less effective in older adults is not yet clearly understood, but age-related changes in the immune system, such as immunosenescence and inflammation, may play a role. Therefore, this review focuses on recent advances in understanding the effects of immunosenescence and inflammation on the efficacy of ICIs.
Collapse
Affiliation(s)
- Chuandong Hou
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zining Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
16
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
17
|
Mehra V, Chhetri JB, Ali S, Roddie C. The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics. BIOLOGY 2023; 12:1419. [PMID: 37998018 PMCID: PMC10669440 DOI: 10.3390/biology12111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.
Collapse
Affiliation(s)
| | | | | | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, Paul O’Gorman Building, London WCIE 6DD, UK
| |
Collapse
|
18
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
19
|
Mehra V, Agliardi G, Dias Alves Pinto J, Shafat MS, Garai AC, Green L, Hotblack A, Arce Vargas F, Peggs KS, van der Waart AB, Dolstra H, Pule MA, Roddie C. AKT inhibition generates potent polyfunctional clinical grade AUTO1 CAR T-cells, enhancing function and survival. J Immunother Cancer 2023; 11:e007002. [PMID: 37709295 PMCID: PMC10503365 DOI: 10.1136/jitc-2023-007002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND AUTO1 is a fast off-rate CD19-targeting chimeric antigen receptor (CAR), which has been successfully tested in adult lymphoblastic leukemia. Tscm/Tcm-enriched CAR-T populations confer the best expansion and persistence, but Tscm/Tcm numbers are poor in heavily pretreated adult patients. To improve this, we evaluate the use of AKT inhibitor (VIII) with the aim of uncoupling T-cell expansion from differentiation, to enrich Tscm/Tcm subsets. METHODS VIII was incorporated into the AUTO1 manufacturing process based on the semiautomated the CliniMACS Prodigy platform at both small and cGMP scale. RESULTS AUTO1 manufactured with VIII showed Tscm/Tcm enrichment, improved expansion and cytotoxicity in vitro and superior antitumor activity in vivo. Further, VIII induced AUTO1 Th1/Th17 skewing, increased polyfunctionality, and conferred a unique metabolic profile and a novel signature for autophagy to support enhanced expansion and cytotoxicity. We show that VIII-cultured AUTO1 products from B-ALL patients on the ALLCAR19 study possess superior phenotype, metabolism, and function than parallel control products and that VIII-based manufacture is scalable to cGMP. CONCLUSION Ultimately, AUTO1 generated with VIII may begin to overcome the product specific factors contributing to CD19+relapse.
Collapse
Affiliation(s)
- Vedika Mehra
- Research Department of Haematology, University College London, London, UK
| | - Giulia Agliardi
- Research Department of Haematology, University College London, London, UK
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, UK
| | - Juliana Dias Alves Pinto
- Research Department of Haematology, University College London, London, UK
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, UK
| | - Manar S Shafat
- Research Department of Haematology, University College London, London, UK
| | | | - Louisa Green
- Research Department of Haematology, University College London, London, UK
| | - Alastair Hotblack
- Research Department of Haematology, University College London, London, UK
| | | | - Karl S Peggs
- Research Department of Haematology, University College London, London, UK
| | - Anniek B van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Martin A Pule
- Research Department of Haematology, University College London, London, UK
- Autolus Ltd, London, UK
| | - Claire Roddie
- Research Department of Haematology, University College London, London, UK
| |
Collapse
|
20
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Rengo C, Valletta A, Liccardo D, Spagnuolo G, Corbi G, De Luca F, Lauria MR, Perrotta A, Rengo G, Ferrara N, Rengo S, Valletta R, Cannavo A. Healthy aging: when periodontal health matters. JOURNAL OF GERONTOLOGY AND GERIATRICS 2023. [DOI: 10.36150/2499-6564-n580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
22
|
Souquette A, Allen EK, Oshansky CM, Tang L, Wong SS, Jeevan T, Shi L, Pounds S, Elias G, Kuan G, Balmaseda A, Zapata R, Shaw-Saliba K, Damme PV, Tendeloo VV, Dib JC, Ogunjimi B, Webby R, Schultz-Cherry S, Pekosz A, Rothman R, Gordon A, Thomas PG. Integrated Drivers of Basal and Acute Immunity in Diverse Human Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534227. [PMID: 36993205 PMCID: PMC10055315 DOI: 10.1101/2023.03.25.534227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.
Collapse
|
23
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Depression, aging, and immunity: implications for COVID-19 vaccine immunogenicity. Immun Ageing 2022; 19:32. [PMID: 35836263 PMCID: PMC9281075 DOI: 10.1186/s12979-022-00288-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
The aging process can have detrimental effects on the immune system rendering the elderly more susceptible to infectious disease and less responsive to vaccination. Major depressive disorder (MDD) has been hypothesized to show characteristics of accelerated biological aging. This raises the possibility that depressed individuals will show some overlap with elderly populations with respect to their immune response to infection and vaccination. Here we provide an umbrella review of this literature in the context of the SARS CoV-2 pandemic. On balance, the available data do indeed suggest that depression is a risk factor for both adverse outcomes following COVID-19 infection and for reduced COVID-19 vaccine immunogenicity. We conclude that MDD (and other major psychiatric disorders) should be recognized as vulnerable populations that receive priority for vaccination along with other at-risk groups.
Collapse
|
25
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
26
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
28
|
Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol 2022; 77:102185. [DOI: 10.1016/j.coi.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
29
|
Keegan AP, Joshi U, Abdullah L, Paris D, Darcey T, Niedospial D, Davis LA, Crawford F, Mullan M. Characterization of immune profile in an aging multiple sclerosis clinic population. Mult Scler Relat Disord 2022; 63:103818. [DOI: 10.1016/j.msard.2022.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/19/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
|
30
|
Pickering H, Schaenman J, Rossetti M, Ahn R, Sunga G, Liang EC, Bunnapradist S, Reed EF. T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Hum Immunol 2022; 83:273-280. [PMID: 35190203 PMCID: PMC9462879 DOI: 10.1016/j.humimm.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
Older kidney transplant recipients demonstrate increased rates of infection, and lower rates of rejection, compared with younger kidney transplant recipients. However, the mechanism behind this observation remains unknown. To develop a multifaceted view of age-associated immune dysfunction, we determined the function and phenotype of T cells predisposing to vulnerability to infection on a molecular level. Overlapping peptide pools representing the dominant CMV antigens were used to stimulate PBMC collected from 51 kidney transplant recipients, using cytokine secretion to determine specificity and intensity of response. Staphylococcal endotoxin B (SEB) was analyzed in parallel. To define immune cell subsets, we used single cell RNA sequencing (scRNAseq) to evaluate cellular surface markers and gene expression. We found increased frequency of SEB- and CMV-specific T cells was associated with freedom from infection, especially in older patients. Spatialized t-SNE analysis revealed decreased frequency of naïve T cells, increased frequency of TEMRA cells, and decreased frequency of IFNγ secreting T cells in patients with infection. Application of scRNAseq analysis revealed increased frequency of terminally differentiated T cells expressing NK-associated receptors and inhibitory markers. These findings offer unique insight into the mechanism behind vulnerability to infection in the kidney transplant recipient, revealing a specific T cell subtype of impaired antigen response and terminal effector phenotype as markers of T cell senescence.
Collapse
Affiliation(s)
| | | | | | - Richard Ahn
- Quantitative and Computational Biosciences, USA
| | | | | | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
31
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
32
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
33
|
Møller SH, Hsueh PC, Yu YR, Zhang L, Ho PC. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab 2022; 34:378-395. [PMID: 35235773 DOI: 10.1016/j.cmet.2022.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Productive T cell responses to infection and cancer rely on coordinated metabolic reprogramming and epigenetic remodeling among the immune cells. In particular, T cell effector and memory differentiation, exhaustion, and senescence/aging are tightly regulated by the metabolism-epigenetics axis. In this review, we summarize recent advances of how metabolic circuits combined with epigenetic changes dictate T cell fate decisions and shape their functional states. We also discuss how the metabolic-epigenetic axis orchestrates T cell exhaustion and explore how physiological factors, such as diet, gut microbiota, and the circadian clock, are integrated in shaping T cell epigenetic modifications and functionality. Furthermore, we summarize key features of the senescent/aged T cells and discuss how to ameliorate vaccination- and COVID-induced T cell dysfunctions by metabolic modulations. An in-depth understanding of the unexplored links between cellular metabolism and epigenetic modifications in various physiological or pathological contexts has the potential to uncover novel therapeutic strategies for fine-tuning T cell immunity.
Collapse
Affiliation(s)
- Sofie Hedlund Møller
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
34
|
Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers (Basel) 2022; 14:cancers14051148. [PMID: 35267456 PMCID: PMC8909033 DOI: 10.3390/cancers14051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Human cytomegalovirus (HCMV) infects 40–70% of adult populations in developed countries and this is thought to be involved in breast cancer progression; however, reports of detection of the viral genome in breast tumors ranges from 0–100%. We optimized a method that is both sensitive and specific to detect HCMV DNA in tissues from Canadian breast cancer patients. Only ~42% of HCMV-seropositive patients expressed viral DNA in their breast tumors. Viral transcription was not detected in any HCMV-infected breast tumors, indicating a latent infection; however, HCMV seropositivity and the presence of latent infections in breast tumors were independently, and in combination, associated with increased metastasis. HCMV DNA-positive tumors were also associated with lower relapse-free survival. Therefore, HCMV infection status should be accounted for during the monitoring and treatment of breast cancer patients. Prevention or reducing the effects of HCMV infection could decrease morbidity and mortality from metastatic disease. Abstract Human cytomegalovirus (HCMV) infects 40–70% of adults in developed countries. Detection of HCMV DNA and/or proteins in breast tumors varies considerably, ranging from 0–100%. In this study, nested PCR to detect HCMV glycoprotein B (gB) DNA in breast tumors was shown to be sensitive and specific in contrast to the detection of DNA for immediate early genes. HCMV gB DNA was detected in 18.4% of 136 breast tumors while 62.8% of 94 breast cancer patients were seropositive for HCMV. mRNA for the HCMV immediate early gene was not detected in any sample, suggesting viral latency in breast tumors. HCMV seropositivity was positively correlated with age, body mass index and menopause. Patients who were HCMV seropositive or had HCMV DNA in their tumors were 5.61 (CI 1.77–15.67, p = 0.003) or 5.27 (CI 1.09–28.75, p = 0.039) times more likely to develop Stage IV metastatic tumors, respectively. Patients with HCMV DNA in tumors experienced reduced relapse-free survival (p = 0.042). Being both seropositive with HCMV DNA-positive tumors was associated with vascular involvement and metastasis. We conclude that determining the seropositivity for HCMV and detection of HCMV gB DNA in the breast tumors could identify breast cancer patients more likely to develop metastatic cancer and warrant special treatment.
Collapse
|
35
|
Immunology of SARS-CoV-2 infection in children. Nat Immunol 2022; 23:177-185. [PMID: 35105983 DOI: 10.1038/s41590-021-01123-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.
Collapse
|
36
|
Poloni C, Szyf M, Cheishvili D, Tsoukas CM. Are the Healthy Vulnerable? Cytomegalovirus Seropositivity in Healthy Adults Is Associated With Accelerated Epigenetic Age and Immune Dysregulation. J Infect Dis 2022; 225:443-452. [PMID: 34255838 PMCID: PMC8344607 DOI: 10.1093/infdis/jiab365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Evaluating age as a risk factor for susceptibility to infectious diseases, particularly coronavirus disease 2019 (COVID-19), is critical. Cytomegalovirus (CMV) serologic prevalence increases with age and associates with inflammatory-mediated diseases in the elderly. However, little is known regarding the subclinical impact of CMV and risk it poses to healthy older adults. Prior to the COVID-19 pandemic we conducted a study to determine the association of CMV to biologic age and immune dysregulation. METHODS Community-dwelling, healthy adults older than 60 years were evaluated using DNA methylation assays to define epigenetic age (EpiAge) and T-cell immunophenotyping to assess immune dysregulation. RESULTS All subjects were healthy and asymptomatic. Those CMV seropositive had more lymphocytes, CD8 T cells, CD28- T cells, decreased CD4:CD8 cell ratios, and had higher average EpiAge (65.34 years) than those CMV seronegative (59.53 years). Decreased percent CD4 (P = .003) and numbers of CD4 T cells (P = .0199) correlated with increased EpiAge. CONCLUSIONS Our novel findings distinguish altered immunity in the elderly based on CMV status. Chronic CMV infection in healthy, older adults is associated with indicators of immune dysregulation, both of which correlate to differences in EpiAge.
Collapse
Affiliation(s)
- Chad Poloni
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | - Christos M Tsoukas
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Allergy and Clinical Immunology, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Sánchez‐Ponce Y, Fuentes‐Pananá EM. Molecular and immune interactions between β‐ and γ‐herpesviruses in the immunocompromised host. J Leukoc Biol 2022; 112:79-95. [DOI: 10.1002/jlb.4mr1221-452r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yessica Sánchez‐Ponce
- Research Unit in Virology and Cancer Children's Hospital of Mexico Federico Gómez Mexico City Mexico
- Postgraduate Program in Biological Science National Autonomous University of Mexico Mexico City Mexico
| | | |
Collapse
|
38
|
Oh HJ, Jin H, Nah SY, Lee BY. Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20- to 24-month-old C57BL/6J mice. J Ginseng Res 2021; 45:744-753. [PMID: 34764729 PMCID: PMC8570963 DOI: 10.1016/j.jgr.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background Gintonin-enriched fraction (GEF) is a new non-saponin component glycolipoprotein isolated from ginseng root. This study examined the effect of GEF on age-related sarcopenia in old C57BL/6J mice. Methods Young (3–6 months) and old (20–24 months) C57BL/6J mice received oral GEF (50 mg/kg/day or 150 mg/kg/day) daily for 5 weeks. During the oral administration period, body weight and grip strength were measured weekly. After sacrifice, muscles from the hindlimb were excised and used for hematoxylin and eosin staining and western blotting to determine the effects of GEF on sarcopenia. The thymus was photographed to compare size, and flow cytometry was performed to examine the effect of GEF on immune homeostasis in the thymus and spleen. Blood samples were collected, and the concentrations of pro-inflammatory cytokines and IGF-1 were measured. Results GEF caused a significant increase in muscle strength, mass, and fiber size in old mice. GEF restored age-related disruption of immune homeostasis by maintaining T cell compartments and regulating inflammatory biomarkers. Thus, GEF reduced common low-grade chronic inflammatory parameters, which are the main cause of muscle loss. Conclusion GEF maintained immune homeostasis and inhibited markers of chronic inflammation, resulting in anti-sarcopenia effects in aged C57BL/6J mice. Thus, GEF is a potential therapeutic agent that slows sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| |
Collapse
|
39
|
Lee GC, Restrepo MI, Harper N, Manoharan MS, Smith AM, Meunier JA, Sanchez-Reilly S, Ehsan A, Branum AP, Winter C, Winter L, Jimenez F, Pandranki L, Carrillo A, Perez GL, Anzueto A, Trinh H, Lee M, Hecht JM, Martinez-Vargas C, Sehgal RT, Cadena J, Walter EA, Oakman K, Benavides R, Pugh JA, Letendre S, Steri M, Orrù V, Fiorillo E, Cucca F, Moreira AG, Zhang N, Leadbetter E, Agan BK, Richman DD, He W, Clark RA, Okulicz JF, Ahuja SK. Immunologic resilience and COVID-19 survival advantage. J Allergy Clin Immunol 2021; 148:1176-1191. [PMID: 34508765 PMCID: PMC8425719 DOI: 10.1016/j.jaci.2021.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The risk of severe coronavirus disease 2019 (COVID-19) varies significantly among persons of similar age and is higher in males. Age-independent, sex-biased differences in susceptibility to severe COVID-19 may be ascribable to deficits in a sexually dimorphic protective attribute that we termed immunologic resilience (IR). OBJECTIVE We sought to examine whether deficits in IR that antedate or are induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection independently predict COVID-19 mortality. METHODS IR levels were quantified with 2 novel metrics: immune health grades (IHG-I [best] to IHG-IV) to gauge CD8+ and CD4+ T-cell count equilibrium, and blood gene expression signatures. IR metrics were examined in a prospective COVID-19 cohort (n = 522); primary outcome was 30-day mortality. Associations of IR metrics with outcomes in non-COVID-19 cohorts (n = 13,461) provided the framework for linking pre-COVID-19 IR status to IR during COVID-19, as well as to COVID-19 outcomes. RESULTS IHG-I, tracking high-grade equilibrium between CD8+ and CD4+ T-cell counts, was the most common grade (73%) among healthy adults, particularly in females. SARS-CoV-2 infection was associated with underrepresentation of IHG-I (21%) versus overrepresentation (77%) of IHG-II or IHG-IV, especially in males versus females (P < .01). Presentation with IHG-I was associated with 88% lower mortality, after controlling for age and sex; reduced risk of hospitalization and respiratory failure; lower plasma IL-6 levels; rapid clearance of nasopharyngeal SARS-CoV-2 burden; and gene expression signatures correlating with survival that signify immunocompetence and controlled inflammation. In non-COVID-19 cohorts, IR-preserving metrics were associated with resistance to progressive influenza or HIV infection, as well as lower 9-year mortality in the Framingham Heart Study, especially in females. CONCLUSIONS Preservation of immunocompetence with controlled inflammation during antigenic challenges is a hallmark of IR and associates with longevity and AIDS resistance. Independent of age, a male-biased proclivity to degrade IR before and/or during SARS-CoV-2 infection predisposes to severe COVID-19.
Collapse
Affiliation(s)
- Grace C Lee
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex; College of Pharmacy, The University of Texas at Austin, Austin, Tex
| | - Marcos I Restrepo
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Nathan Harper
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Muthu Saravanan Manoharan
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Alisha M Smith
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex; Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Justin A Meunier
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Aamir Ehsan
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Anne P Branum
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Caitlyn Winter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Lauryn Winter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Fabio Jimenez
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Lavanya Pandranki
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Andrew Carrillo
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Graciela L Perez
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Monica Lee
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | | | - Raj T Sehgal
- South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Jose Cadena
- South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Elizabeth A Walter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | | | - Raymond Benavides
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex; College of Pharmacy, The University of Texas at Austin, Austin, Tex
| | - Jacqueline A Pugh
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, Calif; HIV Neurobehavioral Research Center Antiviral Research Center, University of California, San Diego, Calif
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alvaro G Moreira
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Nu Zhang
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Elizabeth Leadbetter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Md; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Md
| | | | - Weijing He
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; The Foundation for Advancing Veterans' Health Research, San Antonio, Tex
| | - Robert A Clark
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Jason F Okulicz
- Infectious Disease Service, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Tex
| | - Sunil K Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex; South Texas Veterans Health Care System, San Antonio, Tex; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex; Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex.
| |
Collapse
|
40
|
Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 2021; 71:101422. [PMID: 34391943 DOI: 10.1016/j.arr.2021.101422] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.
Collapse
|
41
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
42
|
Fedulkina VA, Vatazin AV, Kildyushevskiy AV, Zulkarnayev AB, Gubina DV, Fedulkina MP. Immunosenescence as a reason of individualizing immunosuppressive therapy in kidney transplantation. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2021. [DOI: 10.15825/1995-1191-2021-3-171-179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplantation in elderly patients is obviously more challenging due to existing underlying diseases, changes in pharmacokinetics of immunosuppressive drugs, polypragmasy, and transformation of immunoreactivity (immunosenescence). Our review presents data on modification of adaptive and innate immunity during aging. It also considers the possibility of both reduced and adapted immunosuppressive therapy in elderly renal transplant recipients in achieving an optimal balance between efficacy and complications.
Collapse
Affiliation(s)
| | - A. V. Vatazin
- Vladimirsky Moscow Regional Research Clinical Institute
| | | | | | - D. V. Gubina
- Vladimirsky Moscow Regional Research Clinical Institute
| | | |
Collapse
|
43
|
Ligotti ME, Aiello A, Accardi G, Aprile S, Bonura F, Bulati M, Gervasi F, Giammanco GM, Pojero F, Zareian N, Caruso C, Farzaneh F, Candore G. Analysis of T and NK cell subsets in the Sicilian population from young to supercentenarian: The role of age and gender. Clin Exp Immunol 2021; 205:198-212. [PMID: 33866541 PMCID: PMC8274165 DOI: 10.1111/cei.13606] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/07/2023] Open
Abstract
Ageing dramatically affects number and function of both innate and adaptive arms of immune system, particularly T cell subsets, contributing to reduced vaccination efficacy, decreased resistance to infections and increased prevalence of cancer in older people. In the present paper, we analysed the age-related changes in the absolute number of lymphocytes in 214 Sicilian subjects, and in the percentages of T and natural killer (NK) cells in a subcohort of donors. We compared these results with the immunophenotype of the oldest living Italian supercentenarian (aged 111 years). The results were also sorted by gender. The correlation between number/percentage of cells and age in all individuals. and separately in males and females, was examined using a simple linear regression analysis. We did not record the increase in the rate of inversion of the CD4/CD8 ratio, frequently reported as being associated with ageing in literature. Our observation was the direct consequence of a flat average trend of CD4+ and CD8+ T cell percentages in ageing donors, even when gender differences were included. Our results also suggest that CD4+ and CD8+ subsets are not affected equally by age comparing females with males, and we speculated that gender may affect the response to cytomegalovirus (CMV) infection. The supercentenarian showed a unique immunophenotypic signature regarding the relative percentages of her T cell subsets, with CD4+ and CD8+ T cell percentages and CD4+ naive T cell values in line with those recorded for the octogenarian subjects. This suggests that the supercentenarian has a naive 'younger' T cell profile comparable to that of a >80-year-old female.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- School of Cancer and Pharmaceutical SciencesKing’s College LondonThe Rayne InstituteLondonUK
| | - Anna Aiello
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Giulia Accardi
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Stefano Aprile
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- Unit of Transfusion MedicineSan Giovanni di Dio HospitalAgrigentoItaly
| | - Floriana Bonura
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialties, Microbiology SectionUniversity of PalermoPalermoItaly
| | - Matteo Bulati
- Research DepartmentMediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT)PalermoItaly
| | - Francesco Gervasi
- Specialistic Oncology Laboratory UnitARNAS Hospitals CivicoDi Cristina e BenfratelliPalermoItaly
| | - Giovanni M. Giammanco
- Department of Health Promotion, Mother and Child CareInternal Medicine and Medical Specialties, Microbiology SectionUniversity of PalermoPalermoItaly
| | - Fanny Pojero
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Nahid Zareian
- School of Cancer and Pharmaceutical SciencesKing’s College LondonThe Rayne InstituteLondonUK
| | - Calogero Caruso
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Farzin Farzaneh
- School of Cancer and Pharmaceutical SciencesKing’s College LondonThe Rayne InstituteLondonUK
| | - Giuseppina Candore
- Laboratory of Immunopathology and ImmunosenescenceDepartment of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| |
Collapse
|
44
|
García-Torre A, Bueno-García E, López-Martínez R, Rioseras B, Moro-García MA, Alonso-Alvarez S, Lluna-González A, Sousa-Fernández A, Fernández-Gudin M, Campos-Riopedre L, Castro-Del Cueto C, Pérez-Fernéndez AB, Alonso-Rodríguez A, Menéndez-Peña C, Menéndez-Peña L, García-Arnaldo N, Feito-Díaz E, Fernández-Lorences A, Fraile-Manzano A, Fernández-Iglesias C, Rivera JA, Pérez-Fonseca C, Urdiales-Ruano E, Debán-Fernández M, Mendes-Moreira H, Herrero-Puente P, Alonso-Arias R. Surviving older patients show preserved cellular and humoral immunological memory several months after SARS-CoV-2 infection. J Gerontol A Biol Sci Med Sci 2021; 77:33-40. [PMID: 34252180 PMCID: PMC8406858 DOI: 10.1093/gerona/glab206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
Understanding how older people respond to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is critical if we are to confront the coronavirus
disease 2019 (COVID-19) pandemic and establish effective vaccination strategies.
Immunosenescence reduces the ability to respond to neoantigens and may
compromise the life of infected individuals. Here, we analyzed the immunological
memory to SARS-CoV-2 in 102 recovered patients aged over 60 years several months
after the infection had been resolved. Specific memory T lymphocytes against the
virus were measured by interferon-γ (IFN-γ) and granzyme B release by
ELISpot; memory B-lymphocyte responses were quantified by detection of anti-S
IgG1 producer cells by ELISpot and anti-S and anti-N antibodies were determined
by enzyme-linked immunosorbent assay (ELISA). Memory T lymphocytes were found in
peripheral blood of most of the studied donors, more than 7 months after the
infection in some of them. Fewer patients maintained memory B lymphocytes, but
antibodies, mainly anti-S, were highly durable and positively correlated with T
responses. More robust humoral responses were found in patients who had more
severe symptoms and had been admitted to hospital. We concluded that specific
immunity against SARS-CoV-2 is effectively preserved regardless of age, despite
the great heterogeneity of their immune responses, and that memory T lymphocytes
and anti-S IgG might be more durable than memory B cells and anti-N IgG.
Collapse
Affiliation(s)
- Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain
| | - Rocío López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain
| | - Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Medicine Laboratory Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Sara Alonso-Alvarez
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Alba Lluna-González
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Alejandra Sousa-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Marta Fernández-Gudin
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Laura Campos-Riopedre
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Corina Castro-Del Cueto
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Ana Belén Pérez-Fernéndez
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Ana Alonso-Rodríguez
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Carla Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Lara Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Noelia García-Arnaldo
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Estefanía Feito-Díaz
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Adriana Fernández-Lorences
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Agustín Fraile-Manzano
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Carolina Fernández-Iglesias
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - José Arturo Rivera
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Carmen Pérez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Estibaliz Urdiales-Ruano
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - María Debán-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Hugo Mendes-Moreira
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Pablo Herrero-Puente
- Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain.,Emergency Department, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011-Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), 33011-Oviedo, Spain
| |
Collapse
|
45
|
Picón C, Tejeda-Velarde A, Fernández-Velasco JI, Comabella M, Álvarez-Lafuente R, Quintana E, Sainz de la Maza S, Monreal E, Villarrubia N, Álvarez-Cermeño JC, Domínguez-Mozo MI, Ramió-Torrentà L, Rodríguez-Martín E, Roldán E, Aladro Y, Medina S, Espiño M, Masjuan J, Matute-Blanch C, Muñoz-San Martín M, Espejo C, Guaza C, Muriel A, Costa-Frossard L, Villar LM. Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Front Immunol 2021; 12:685139. [PMID: 34322119 PMCID: PMC8311928 DOI: 10.3389/fimmu.2021.685139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Patients with multiple sclerosis (MS) suffer with age an early immunosenescence process, which influence the treatment response and increase the risk of infections. We explored whether lipid-specific oligoclonal IgM bands (LS-OCMB) associated with highly inflammatory MS modify the immunological profile induced by age in MS. This cross-sectional study included 263 MS patients who were classified according to the presence (M+, n=72) and absence (M-, n=191) of LS-OCMB. CSF cellular subsets and molecules implicated in immunosenescence were explored. In M- patients, aging induced remarkable decreases in absolute CSF counts of CD4+ and CD8+ T lymphocytes, including Th1 and Th17 cells, and of B cells, including those secreting TNF-alpha. It also increased serum anti-CMV IgG antibody titers (indicative of immunosenescence) and CSF CHI3L1 levels (related to astrocyte activation). In contrast, M+ patients showed an age-associated increase of TIM-3 (a biomarker of T cell exhaustion) and increased values of CHI3L1, independently of age. Finally, in both groups, age induced an increase in CSF levels of PD-L1 (an inductor of T cell tolerance) and activin A (part of the senescence-associated secretome and related to inflammaging). These changes were independent of the disease duration. Finally, this resulted in augmented disability. In summary, all MS patients experience with age a modest induction of T-cell tolerance and an activation of the innate immunity, resulting in increased disability. Additionally, M- patients show clear decreases in CSF lymphocyte numbers, which could increase the risk of infections. Thus, age and immunological status are important for tailoring effective therapies in MS.
Collapse
Affiliation(s)
- Carmen Picón
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Department of Brain Science, Imperial College London, London, United Kingdom
| | - Amalia Tejeda-Velarde
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - José Ignacio Fernández-Velasco
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Álvarez-Lafuente
- Department of Neurology, Hospital Clínico San Carlos, Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), REEM, Madrid, Spain
| | - Ester Quintana
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | | | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, REEM, Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | | | - María Inmaculada Domínguez-Mozo
- Department of Neurology, Hospital Clínico San Carlos, Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), REEM, Madrid, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | - Eulalia Rodríguez-Martín
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Ernesto Roldán
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Yolanda Aladro
- Department of Neurology, Hospital Universitario de Getafe, REEM, Madrid, Spain
| | - Silvia Medina
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Mercedes Espiño
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, REEM, Madrid, Spain
| | - Clara Matute-Blanch
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - Alfonso Muriel
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Nursing Department, Universidad de Alcalá, Madrid, Spain
| | | | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| |
Collapse
|
46
|
Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, Gayathri M, Kumar Das A, Cheong SK. The potential role of mesenchymal stem cells in modulating antiageing process. Cell Biol Int 2021; 45:1999-2016. [PMID: 34245637 DOI: 10.1002/cbin.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
Collapse
Affiliation(s)
- Vijayendran Govindasamy
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Abilashini Rajendran
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Zhi-Xin Lee
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia.,Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Khong-Lek Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Merilynn Gayathri
- Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Anjan Kumar Das
- Deparment of Surgery, IQ City Medical College, Durgapur, West Bengal, India
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Kajang, Selangor, Malaysia
| |
Collapse
|
47
|
Abbas AA, Akbar AN. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. FRONTIERS IN AGING 2021; 2:714239. [PMID: 35821998 PMCID: PMC9261416 DOI: 10.3389/fragi.2021.714239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.
Collapse
|
48
|
Chen M, Yuan Y, Zhou Y, Deng Z, Zhao J, Feng F, Zou H, Sun C. Safety of SARS-CoV-2 vaccines: a systematic review and meta-analysis of randomized controlled trials. Infect Dis Poverty 2021. [PMID: 34225791 DOI: 10.1186/s40249-021-00878-5.pmid:34225791;pmcid:pmc8256217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Various modalities of vaccines against coronavirus disease 2019 (COVID-19), based on different platforms and immunization procedures, have been successively approved for marketing worldwide. A comprehensive review for clinical trials assessing the safety of COVID-19 vaccines is urgently needed to make an accurate judgment for mass vaccination. MAIN TEXT A systematic review and meta-analysis was conducted to determine the safety of COVID-19 vaccine candidates in randomized controlled trials (RCTs). Data search was performed in PubMed, Embase, Cochrane library, Scopus, Web of Science, and MedRxiv. Included articles were limited to RCTs on COVID-19 vaccines. A total of 73,633 subjects from 14 articles were included to compare the risks of adverse events following immunization (AEFI) after vaccinating different COVID-19 vaccines. Pooled risk ratios (RR) of total AEFI for inactivated vaccine, viral-vectored vaccine, and mRNA vaccine were 1.34 [95% confidence interval (CI) 1.11-1.61, P < 0.001], 1.65 (95% CI 1.31-2.07, P < 0.001), and 2.01 (95% CI 1.78-2.26, P < 0.001), respectively. No significant differences on local and systemic AEFI were found between the first dose and second dose. In addition, people aged ≤ 55 years were at significantly higher risk of AEFI than people aged ≥ 56 years, with a pooled RR of 1.25 (95% CI 1.15-1.35, P < 0.001). CONCLUSIONS The safety and tolerance of current COVID-19 vaccine candidates are acceptable for mass vaccination, with inactivated COVID-19 vaccines candidates having the lowest reported AEFI. Long-term surveillance of vaccine safety is required, especially among elderly people with underlying medical conditions.
Collapse
Affiliation(s)
- Musha Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiguo Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhaomin Deng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Fengling Feng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
49
|
Chen M, Yuan Y, Zhou Y, Deng Z, Zhao J, Feng F, Zou H, Sun C. Safety of SARS-CoV-2 vaccines: a systematic review and meta-analysis of randomized controlled trials. Infect Dis Poverty 2021; 10:94. [PMID: 34225791 PMCID: PMC8256217 DOI: 10.1186/s40249-021-00878-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Various modalities of vaccines against coronavirus disease 2019 (COVID-19), based on different platforms and immunization procedures, have been successively approved for marketing worldwide. A comprehensive review for clinical trials assessing the safety of COVID-19 vaccines is urgently needed to make an accurate judgment for mass vaccination. Main text A systematic review and meta-analysis was conducted to determine the safety of COVID-19 vaccine candidates in randomized controlled trials (RCTs). Data search was performed in PubMed, Embase, Cochrane library, Scopus, Web of Science, and MedRxiv. Included articles were limited to RCTs on COVID-19 vaccines. A total of 73,633 subjects from 14 articles were included to compare the risks of adverse events following immunization (AEFI) after vaccinating different COVID-19 vaccines. Pooled risk ratios (RR) of total AEFI for inactivated vaccine, viral-vectored vaccine, and mRNA vaccine were 1.34 [95% confidence interval (CI) 1.11–1.61, P < 0.001], 1.65 (95% CI 1.31–2.07, P < 0.001), and 2.01 (95% CI 1.78–2.26, P < 0.001), respectively. No significant differences on local and systemic AEFI were found between the first dose and second dose. In addition, people aged ≤ 55 years were at significantly higher risk of AEFI than people aged ≥ 56 years, with a pooled RR of 1.25 (95% CI 1.15–1.35, P < 0.001). Conclusions The safety and tolerance of current COVID-19 vaccine candidates are acceptable for mass vaccination, with inactivated COVID-19 vaccines candidates having the lowest reported AEFI. Long-term surveillance of vaccine safety is required, especially among elderly people with underlying medical conditions. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-021-00878-5.
Collapse
Affiliation(s)
- Musha Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiguo Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhaomin Deng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Fengling Feng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
50
|
Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, Maecker HT, Goronzy J, Maltzman JS. Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Front Immunol 2021; 12:661551. [PMID: 34122420 PMCID: PMC8190404 DOI: 10.3389/fimmu.2021.661551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV–) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV– recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States
| | - Claire E Gustafson
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Palo Alto, CA, United States.,Department of Medicine/Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States.,Department of Microbiology & Immunology, Stanford University, Palo Alto, CA, United States
| | - Jorg Goronzy
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|