1
|
Liu B, Fei P, Xu N, Chang Y, Qiao M, Li Z, Jiang Y, Guo L, Forsythe SJ, Tong X. Occurrence, molecular characterization and tolerance of Cronobacter spp. isolated from fermented corn products in China. Food Microbiol 2025; 128:104736. [PMID: 39952740 DOI: 10.1016/j.fm.2025.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/29/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Cronobacter spp. is an opportunistic pathogen that cause serious infections in all age groups. The organism has frequently been isolated from plant-based foods, especially cereals. Therefore, this study determined the occurrence, molecular characterization and tolerance of Cronobacter in fermented corn products (FCP) in China. Isolates were speciated and genotyped according to multilocus sequence typing (MLST), which included the pathogenicity associated allele ompA, as well as serotyping. Twenty-two strains of Cronobacter (20 C. sakazakii and 2 C. muytjensii) were isolated from 216 FCP samples, such as fermented corn noodles, fermented corn doughs, fermented corn vermicelli, fermented corn flour paste, fermented corn beverage, and fermented corn bread. All Cronobacter isolates were divided into 8 sequence types (STs), 4 serotypes and 4 ompA genotypes. The dominant type (10/22) was C. sakzakii ST8, C. sakazakii serotypes O:2, and ompA5, mainly in fermented corn noodle and fermented corn dough. Of all the strains, Cronobacter strains with ST770 had a stronger ability to tolerate acid, osmotic stress and cold, while Cronobacter strains with ST8 had a weaker tolerance to acid, osmotic stress and cold. Eight isolates exhibited strong biofilm-forming ability (OD595 > 1), among which the ST770, ST771, and ST556 strains showed more pronounced abilities. All Cronobacter isolates were sensitive to amoxicillin/clavulanic acid, ceftazidime, aztreonam, meropenem, tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole, polymyxin B, and chloramphenicol, while 77.27% of isolates were resistant to cefotaxime. This study supports the concern of Cronobacter transmission through plant-based foods, and provides a theoretical basis for the prevention and control of this pathogen in FCP.
Collapse
Affiliation(s)
- Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, 473000, China
| | - Nuo Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yajing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mingwei Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhe Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin, 150030, China; Food Laboratory of Zhongyuan, Luohe, 462300, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin, 150030, China; Food Laboratory of Zhongyuan, Luohe, 462300, China.
| | | | - Xiaofang Tong
- Heilongjiang Quality Supervision and Inspection Institute, Harbin, 150028, China.
| |
Collapse
|
2
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Sannathimmappa MB, Nambiar V, Al-Alawi OMSA, Al-Fragi MMS, Al Mani IMA, Madan ZMAHA, Al-Maqbali S, Aravindakshan R. Clinical Profile and Antibiotic Susceptibility Patterns of Cronobacter sakazakii in the Northern Region of Oman. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2025; 13:32-38. [PMID: 39935995 PMCID: PMC11809751 DOI: 10.4103/sjmms.sjmms_136_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 02/13/2025]
Abstract
Background Cronobacter sakazakii is an opportunistic pathogen that mostly affects neonates, infants, and elderly people with weakened immune systems. No study has reported the frequency and antibiotic susceptibility patterns of C. sakazakii from Oman, and thus this study was conducted to fill this gap in the literature. Materials and Methods This single-center retrospective study included C. sakazakii isolates identified from different clinical samples of patients treated at Sohar Hospital, Oman, between January 2017 and December 2023. Bacterial identification and antibiotic susceptibility testing were done using the VITEK II automated microbiological system in accordance with the Clinical Laboratory Standards Institute (CLSI) guidelines. Results A total of 185 C. sakazakii isolates were included, most commonly from patients aged >60 years (42.7%) and <1 year (11.4%). C. sakazakii strains had high susceptibility (>80%) to most of the tested antibiotics; however, for beta-lactam antibiotics, it ranged from 0% to 50%. Approximately 26.5% of the strains were multidrug resistant. Independent risk factors for increased frequency of multidrug-resistant strains were urinary catheterization (P = 0.002), surgery (P = 0.021), previous antibiotic therapy (P = 0.047), and critical care unit admission (P = 0.048). About one-fifth of the patients experienced life-threatening C. sakazakii infections such as septicemia (15%) and pneumonia (4.7%). All deaths due to septicemia occurred in the >60 years (n = 12) and <1 year (n = 4) age groups. Conclusions Cronobacter sakazakii isolates from the North Batinah region of Oman were most frequently isolated from elderly and infant patients and had high antibiotic susceptibility; however, the significant resistance against beta-lactams suggests their low effectiveness. The high number of multidrug-resistant strains coupled with the independent risk factors suggests the need for following stricter antibiotic stewardship protocols and infection control practices.
Collapse
Affiliation(s)
- Mohan Bilikallahalli Sannathimmappa
- Department of Microbiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Oman
| | - Vinod Nambiar
- Department of Microbiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Oman
| | | | | | - Isra Mohammed Ali Al Mani
- College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Oman
| | | | | | - Rajeev Aravindakshan
- Department of Community Medicine, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| |
Collapse
|
4
|
Tong W, Yang D, Qiu S, Tian S, Ye Z, Yang S, Yan L, Li W, Li N, Pei X, Sun Z, Liu C, Peng S, Li Y, Wang Q, Peng Z. Relevance of genetic causes and environmental adaptation of Cronobacter spp. isolated from infant and follow-up formula production factories and retailed products in China: A 7-year period of continuous surveillance based on genome-wide analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174368. [PMID: 38955273 DOI: 10.1016/j.scitotenv.2024.174368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.
Collapse
Affiliation(s)
- Wei Tong
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Zehong Ye
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; School of Public Health, Shandong Second Medical University, Weifang City, Shandong Province, PR China
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Weiwei Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Xiaoyan Pei
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Zhongqing Sun
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao City, Shandong Province, PR China
| | - Chengwei Liu
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Silu Peng
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China.
| | - Qi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China.
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; Department of Nutrition and Food Safety, Peking Union Medical College; Research Unit of Food Safety, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
5
|
Liu S, Song D, Liu B, Dong K, Jiang Y, Man C, Yang X, Zhao F. Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. Foods 2024; 13:2786. [PMID: 39272551 PMCID: PMC11394748 DOI: 10.3390/foods13172786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Biqi Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Kai Dong
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xinyan Yang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Feng Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| |
Collapse
|
6
|
Ahammad I, Bushra Lamisa A, Sharmin S, Bhattacharjee A, Mahmud Chowdhury Z, Ahamed T, Uzzal Hossain M, Chandra Das K, Salimullah M, Ara Keya C. Subtractive genomics study for the identification of therapeutic targets against Cronobacter sakazakii: A threat to infants. Heliyon 2024; 10:e30332. [PMID: 38707387 PMCID: PMC11066692 DOI: 10.1016/j.heliyon.2024.e30332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that has been associated with severe infection in neonates such as necrotizing enterocolitis (NEC), neonatal meningitis, and bacteremia. This pathogen can survive in a relatively dry environment, especially in powdered infant formula (PIF). Unfortunately, conventional drugs that were once effective against C. sakazakii are gradually losing their efficacy due to rising antibiotic resistance. In this study, a subtractive genomic approach was followed in order to identify potential therapeutic targets in the pathogen. The whole proteome of the pathogen was filtered through a step-by-step process, which involved removing paralogous proteins, human homologs, sequences that are less essential for survival, proteins with shared metabolic pathways, and proteins that are located in cells other than the cytoplasmic membrane. As a result, nine novel drug targets were identified. Further, the analysis also unveiled that the FDA-approved drug Terbinafine can be repurposed against the Glutathione/l-cysteine transport system ATP-binding/permease protein CydC of C. sakazakii. Moreover, molecular docking and dynamics studies of Terbinafine and CydC suggested that this drug can be used to treat C. sakazakii infection in neonates. However, for clinical purposes further in vitro and in vivo studies are necessary.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Anika Bushra Lamisa
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Sadia Sharmin
- Department of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Tanvir Ahamed
- Department of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
7
|
Wang XY, Li P, Du XJ, Wang S. Effect of glutathione-transport-related gene gsiD on desiccation tolerance of Cronobacter sakazakii and its related regulatory mechanism. Appl Environ Microbiol 2024; 90:e0156223. [PMID: 38289135 PMCID: PMC10880603 DOI: 10.1128/aem.01562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024] Open
Abstract
The outstanding desiccation tolerance of Cronobacter sakazakii (C. sakazakii) enables long-term persistence in food products with low-water activity to increase the infection risk, especially in low-birth-weight, immuno-compromised neonates, and infants less than 4 weeks of age. In our previous study, the disruption of glutathione transport-related gene gsiD by transposon was found to significantly increase its inactivation rate under drying stress challenges. However, the mechanism underlying the association between glutathione transport and desiccation tolerance of C. sakazakii remains to be clarified. In this study, the mechanism underlying their association was investigated in detail by constructing the gsiD gene deletion mutant. gsiD gene deletion was found to cause the dysfunction of the glutathione transport system GsiABCD and the limitation of glutathione import. The resulting decrease in intracellular glutathione caused the decreased potassium ions uptake and increased potassium ions efflux, inhibited the proline synthesis process, limited extracellular glutathione utilization, increased oxidant stress, reduced biofilm formation, and increased outer membrane permeability, which may be the main reasons for the significant reduction of the desiccation tolerance of C. sakazakii.IMPORTANCEContributing to its superior environmental adaptability, Cronobacter sakazakii can survive under many abiotic stress conditions. The outstanding desiccation tolerance makes this species persist in low-water activity foods, which increases harm to humans. For decades, many studies have focused on the desiccation tolerance of C. sakazakii, but the existing research is still insufficient. Our study found that gsiD gene deletion inhibited glutathione uptake and further decreased intracellular glutathione content, causing a decrease in desiccation tolerance and biofilm formation and an increase in outer membrane permeability. Moreover, the expression level of relative genes verified that gsiD gene deletion made the mutant not conducive to surviving in dry conditions due to restricting potassium ions uptake and efflux, inhibiting the conversion of glutamate to compatible solute proline, and increasing the oxidative stress of C. sakazakii. The above results enrich our knowledge of the desiccation tolerance mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Xiao-yi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin-jun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Song D, Qi X, Huang Y, Jia A, Liang Y, Man C, Yang X, Jiang Y. Comparative proteomics reveals the antibiotic resistance and virulence of Cronobacter isolated from powdered infant formula and its processing environment. Int J Food Microbiol 2023; 407:110374. [PMID: 37678039 DOI: 10.1016/j.ijfoodmicro.2023.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Cronobacter species are opportunistic foodborne pathogens that can cause neonatal meningitis, sepsis, and necrotizing enterocolitis. In this genus, certain level strains have high mortality to infant (Cronobacter sakazakii and Cronobacter malonaticus) and antibiotic tolerance. Cronobacter has strong environmental tolerance (acid resistance, high temperature resistance, UV resistance, antibiotic resistance, etc.) and can survive in a variety of environments. It has been isolated in various production environments and products in several countries. However, the relationships between Cronobacter antibiotic tolerance and virulence remain unclear, especially at the molecular level. In this study, 96 strains of Cronobacter were isolated from powdered infant formula and its processing environment and screened for antibiotic tolerance, and proteomic maps of the representative strains of Cronobacter with antibiotic tolerance were generated by analyzing proteomics data using multiple techniques to identify protein that are implicated in Cronobacter virulence and antibiotic resistance. The increase in antibiotic tolerance of Cronobacter had a certain increase in the production of enterotoxin and hemolysin. Only triple tolerated Cronobacter sakazakii decreased the utilization of sialic acid. A total of 16,131 intracellular proteins were detected in eight representative strains, and different proteomes were present in strains with different antibiotic tolerance, including 56 virulence-related proteins. Multiple virulence proteins regulated by unknown genes were also found in the eight isolated representative strains.
Collapse
Affiliation(s)
- Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xuehe Qi
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yan Huang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Ai Jia
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yaqi Liang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| |
Collapse
|
9
|
Garbowska M, Berthold-Pluta A, Stasiak-Różańska L, Pluta A, Forsythe S, Stefańska I. The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland. Foods 2023; 12:3873. [PMID: 37893766 PMCID: PMC10606190 DOI: 10.3390/foods12203873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The present study aimed to determine the genotyping diversity and hemolytic properties of 24 strains of Cronobacter spp. (15 Cronobacter sakazakii, 6 Cronobacter malonaticus, 2 Cronobacter turicensis, and 1 Cronobacter condimenti) isolated from commercial ready-to-eat leaf vegetables, sprouts, nuts, and dried fruits. The multilocus sequence typing (MLST) method was used to determine the sequence types (ST) and clonal complexes (CC) of these strains. The study demonstrated the high genotypic diversity of the Cronobacter genus bacteria isolated from plant-based foods. Five novel sequence types (804, 805, 806, 807, and 808) and the presence of novel alleles in the ppsA, gltB, gyrB, and infB loci were detected. In total, 16 of the 24 strains were assigned to the sequence types ST99, ST258, ST17, ST648, ST21, ST494, and ST98. One C. sakazakii strain (s12) isolated from alfalfa sprouts was assigned to the clonal complex CC4, which encompasses strains often associated with severe infections leading to meningitis in infants. In addition, 87.5% and 16.7% of the Cronobacter spp. strains showed β-hemolysis of equine and sheep red blood cells, respectively. The presence of the pathogenic species C. sakazakii, C. malonaticus, and C. turicensis in ready-to-eat plant-derived food products shows they are potential sources of infection, especially to those with compromised immunity, which substantiates their further multi-faceted characterization. The significance of this study may prove useful not only in epidemiological investigations, but also in assessing the risk of infections caused by the presence of Cronobacter.
Collapse
Affiliation(s)
- Monika Garbowska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.B.-P.); (L.S.-R.); (A.P.)
| | - Anna Berthold-Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.B.-P.); (L.S.-R.); (A.P.)
| | - Lidia Stasiak-Różańska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.B.-P.); (L.S.-R.); (A.P.)
| | - Antoni Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.B.-P.); (L.S.-R.); (A.P.)
| | | | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| |
Collapse
|
10
|
Zou G, Ndayishimiye L, Xin L, Cai M, Zhang L, Li J, Song Z, Wu R, Zhou Y, Shi Y, Ye Y, Zhou R, Li J. Application of a novel phage LPCS28 for biological control of Cronobacter sakazakii in milk and reconstituted powdered infant formula. Food Res Int 2023; 172:113214. [PMID: 37689848 DOI: 10.1016/j.foodres.2023.113214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Contamination of infant formula with Cronobacter sakazakii (C. sakazakii) can cause fatal infections in neonates. Phages have emerged as promising antibacterial agents for food safety, but their effectiveness may be limited by thermal processing. In this study, we isolated 27 C. sakazakii phages from environmental water samples and selected LPCS28 due to its broad lysis spectrum. The titer of LPCS28 will not be significantly affected by heating at a temperature of 60 °C for one hour. In both reconstituted powdered infant formula (RPIF) and liquid milk, the pre-added LPCS28, after the thermal processing at 63 °C for 30 min, significantly inhibited the post-contaminated C. sakazakii (103 CFU/mL) and eventually reduced the number of C. sakazakii to below the limit of detection (<10 CFU/mL) within 9 h at 37 °C and significantly delayed the increase of bacterial concentration in the samples at 23 °C. The phylogenetic analysis revealed that LPCS28 belonged to a new genus, we proposed as Nanhuvirus, under the family Straboviridae. These findings suggest that phage LPCS28 is a promising biological control agent for pathogenic C. sakazakii in the dairy industry.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Libère Ndayishimiye
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingxiang Xin
- China Institute of Veterinary Drug Control, Beijing 100086, China
| | - Manshan Cai
- Institute of Animal Science, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Longjian Zhang
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Renwei Wu
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Anhui, Hefei 230009, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY 10065, USA.
| |
Collapse
|
11
|
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023; 11:1379. [PMID: 37374881 DOI: 10.3390/microorganisms11061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The powdered formula market is large and growing, with sales and manufacturing increasing by 120% between 2012 and 2021. With this growing market, there must come an increasing emphasis on maintaining a high standard of hygiene to ensure a safe product. In particular, Cronobacter species pose a risk to public health through their potential to cause severe illness in susceptible infants who consume contaminated powdered infant formula (PIF). Assessment of this risk is dependent on determining prevalence in PIF-producing factories, which can be challenging to measure with the heterogeneity observed in the design of built process facilities. There is also a potential risk of bacterial growth occurring during rehydration, given the observed persistence of Cronobacter in desiccated conditions. In addition, novel detection methods are emerging to effectively track and monitor Cronobacter species across the food chain. This review will explore the different vehicles that lead to Cronobacter species' environmental persistence in the food production environment, as well as their pathogenicity, detection methods and the regulatory framework surrounding PIF manufacturing that ensures a safe product for the global consumer.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh Mousavi
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran
| | - Kevin Hunt
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Francis Butler
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
12
|
Holý O, Parra-Flores J, Bzdil J, Cabal-Rosel A, Daza-Prieto B, Cruz-Córdova A, Xicohtencatl-Cortes J, Rodríguez-Martínez R, Acuña S, Forsythe S, Ruppitsch W. Screening of Antibiotic and Virulence Genes from Whole Genome Sequenced Cronobacter sakazakii Isolated from Food and Milk-Producing Environments. Antibiotics (Basel) 2023; 12:antibiotics12050851. [PMID: 37237754 DOI: 10.3390/antibiotics12050851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to use whole-genome sequencing (WGS) to screen for genes encoding for antibiotic resistance, fitness and virulence in Cronobacter sakazakii strains that had been isolated from food and powdered-milk-producing environments. Virulence (VGs) and antibiotic-resistance genes (ARGs) were detected with the Comprehensive Antibiotic Resistance Database (CARD) platform, ResFinder and PlasmidFinder tools. Susceptibility testing was performed using disk diffusion. Fifteen presumptive strains of Cronobacter spp. were identified by MALDI-TOF MS and ribosomal-MLST. Nine C. sakazakii strains were found in the meningitic pathovar ST4: two were ST83 and one was ST1. The C. sakazakii ST4 strains were further distinguished using core genome MLST based on 3678 loci. Almost all (93%) strains were resistant to cephalotin and 33% were resistant to ampicillin. In addition, 20 ARGs, mainly involved in regulatory and efflux antibiotics, were detected. Ninety-nine VGs were detected that encoded for OmpA, siderophores and genes involved in metabolism and stress. The IncFIB (pCTU3) plasmid was detected, and the prevalent mobile genetic elements (MGEs) were ISEsa1, ISEc52 and ISEhe3. The C. sakazakii isolates analyzed in this study harbored ARGs and VGs, which could have contributed to their persistence in powdered-milk-producing environments, and increase the risk of infection in susceptible population groups.
Collapse
Affiliation(s)
- Ondrej Holý
- Science and Research Center, Faculty of Health Sciences, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile
| | - Jaroslav Bzdil
- Ptacy s.r.o., Valasska Bystrice 194, 75627 Valasska Bystrice, Czech Republic
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Beatriz Daza-Prieto
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Ricardo Rodríguez-Martínez
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile
| | - Stephen Forsythe
- FoodMicrobe.com Ltd., Adams Hill, Keyworth, Nottinghamshire NG12 5GY, UK
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| |
Collapse
|
13
|
Wang H, Li Y, Li Z, Ma R, Bai X, Zhan X, Luo K, Su R, Li X, Xia X, Shi C. Inhibition of Cronobacter sakazakii by Litsea cubeba Essential Oil and the Antibacterial Mechanism. Foods 2022; 11:foods11233900. [PMID: 36496708 PMCID: PMC9736361 DOI: 10.3390/foods11233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Litsea cubeba essential oil (LC-EO) has anti-insecticidal, antioxidant, and anticancer proper-ties; however, its antimicrobial activity toward Cronobacter sakazakii has not yet been researched extensively. The objective of this study was to investigate the antimicrobial and antibiofilm effects of LC-EO toward C. sakazakii, along with the underlying mechanisms. The minimum inhibitory concentrations of LC-EO toward eight different C. sakazakii strains ranged from 1.5 to 4.0 μL/mL, and LC-EO exposure showed a longer lag phase and lower specific growth compared to untreated bacteria. LC-EO increased reactive oxygen species production, decreased the integrity of the cell membrane, caused cell membrane depolarization, and decreased the ATP concentration in the cell, showing that LC-EO caused cellular damage associated with membrane permeability. LC-EO induced morphological changes in the cells. LC-EO inhibited C. sakazakii in reconstituted infant milk formula at 50 °C, and showed effective inactivation of C. sakazakii biofilms on stainless steel surfaces. Confocal laser scanning and attenuated total reflection-Fourier-transform infrared spectrometry indicated that the biofilms were disrupted by LC-EO. These findings suggest a potential for applying LC-EO in the prevention and control of C. sakazakii in the dairy industry as a natural antimicrobial and antibiofilm agent.
Collapse
Affiliation(s)
- Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| |
Collapse
|
14
|
Gan X, Li M, Xu J, Yan S, Wang W, Li F. Emerging of Multidrug-Resistant Cronobacter sakazakii Isolated from Infant Supplementary Food in China. Microbiol Spectr 2022; 10:e0119722. [PMID: 36173309 PMCID: PMC9603571 DOI: 10.1128/spectrum.01197-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
Cronobacter is a foodborne pathogen associated with severe infections in restricted populations and particularly with high mortality in neonates and infants. The prevalence and antimicrobial resistance (AMR) phenotype of Cronobacter cultured from powdered infant formula and supplementary food were studied. The virulence factors, AMR genes, and genomic environments of the multidrug-resistant isolates were further studied. A total of 1,055 Cronobacter isolates were recovered from 12,105 samples of powdered infant formula and supplementary food collected from 29 provinces between 2018 and 2019 in China. Among these, 1,048 isolates were from infant supplementary food and 7 were from powdered infant formula. Regarding antimicrobial resistance susceptibility, 11 (1.0%) isolates were resistant and two showed resistance to four antimicrobials (ampicillin [AMP], tetracycline [TET], sulfamethoxazole-trimethoprim [SXT], and chloramphenicol [CHL]), defined as MDR. These two MDR isolates were subsequently identified as Cronobacter sakazakii sequence type 4 (ST4) (C. sakazakii Crono-589) and ST40 (C. sakazakii Crono-684). Both MDR isolates contain 11 types of virulence genes and 7 AMR genes on their genomes. Meanwhile, the IncFIB plasmids of both MDR C. sakazakii isolates also harbored 2 types of virulence genes. Results of the genomic comparative analysis indicated that food-associated C. sakazakii could acquire antimicrobial resistance determinants through horizontal gene transfer (HGT). IMPORTANCE As a foodborne pathogen, Cronobacter can cause serious infections in restricted populations and lead to death or chronic sequelae. Although a number of investigations showed that Cronobacter isolates are susceptible to most antimicrobial agents, MDR Cronobacter isolates, isolated mainly from clinical cases but occasionally from foods, have been reported in recent years. In this study, we successfully identified two MDR Cronobacter sakazakii isolates from infant foods based on nationwide surveillance and genome sequencing in China. Genomic analysis revealed that these two MDR C. sakazakii strains acquired resistance genes from other species via different evolution and transmission routes. It is important to monitor MDR C. sakazakii isolates in infant foods, and appropriate control measures should be taken to reduce the contamination with and transmission of this MDR bacterium.
Collapse
Affiliation(s)
- Xin Gan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Shaofei Yan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Jaradat ZW, Al-Mousa WA, Elbetieha AM, Ababneh QO, Al-Nabulsi AA, Jang H, Gangiredla J, Patel IR, Gopinath GR, Tall BD. Virulence, antimicrobial susceptibility, and phylogenetic analysis of Cronobacter sakazakii isolates of food origins from Jordan. J Appl Microbiol 2022; 133:2528-2546. [PMID: 35858752 DOI: 10.1111/jam.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize a collection of Cronobacter sakazakii isolates collected from various origins in Jordan. METHODS AND RESULTS the isolates were characterized using 16S rRNA sequencing, DNA microarray, multi-locus sequence typing (MLST), O-serotyping, virulence gene identification, and antibiotic susceptibility testing. The identities and phylogenetic relatedness revealed that C. sakazakii sequence type 4 (ST4) and Csak O:1 serotype was the most prevalent STs and serovars among these C. sakazakii strains. PCR screening of putative virulence genes showed that the siderophore-interacting protein gene (sip) and iron acquisition gene clusters (eitCBAD and iucABCD/iutA) were the most detected genes with noticeable variability in the type 6 secretion system (T6SS) and filamentous hemagglutinin/adhesion (FHA) gene loci. The antibiotic resistance profiles revealed that the majority of the isolates were susceptible to all antibiotics used despite harboring a class C β-lactamase resistance gene. CONCLUSIONS the results described in this report provide additional insights about the considerable genotypic and phenotypic heterogeneity within C. sakazakii. SIGNIFICANCE AND IMPACT OF THE STUDY the information reported in this study might be of great value in understanding the origins of C. sakazakii isolates, in addition to their diversity and variability, which might be helpful in preventing future outbreaks of this pathogen.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Waseem A Al-Mousa
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Ahmed M Elbetieha
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Qutaiba O Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P. O Box 3030, 22110, Irbid, Jordan
| | - Hyein Jang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Jayanthi Gangiredla
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Isha R Patel
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Gopal R Gopinath
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Ben D Tall
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| |
Collapse
|
16
|
Jiang H, Xiang Y, He X, Li C, Lin F, Shao J, Li Y. Identification and antibiotic resistance of Cronobacter spp. isolated from dried edible mushrooms. J Food Sci 2022; 87:3588-3598. [PMID: 35836296 DOI: 10.1111/1750-3841.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Cronobacter spp. is an important foodborne pathogen that can cause life-threatening diseases in infants and immunocompromised adults. The present study was carried out to understand the prevalence and characterization of Cronobacter spp. in dried edible mushrooms in Jiangsu province, China. Cronobacter isolates were identified and genotyped by multilocus sequence typing (MLST); the antimicrobial susceptibility of Cronobacter strains was determined by the disk diffusion method; the biofilm formation ability of Cronobacter spp. was assessed using the microtiter plate method. The overall prevalence of Cronobacter spp. in dried edible mushrooms was 14.8%, with the highest contamination rate of after 37.2% found in Auricularia auricular. The Cronobacter isolates were identified as C. sakazakii (n = 26), C. malonaticus (n = 2), C. dublinensis (n = 2) and C. turicensis (n = 1). The MLST scheme produced 20 sequence types (STs), two of which were newly identified. ST148 was the most prevalent ST (n = 5), followed by ST4 (n = 3), ST17 (n = 3), ST64 (n = 3), and ST540 (n = 2). One (3.2%) and 15 (48.4%) Cronobacter isolates were resistant to tetracycline and meropenem, respectively. In contrast, all of the tested isolates were susceptible to the remaining 14 antibiotics. Moreover, 20 (64.5%) Cronobacter isolates showed weak ability to produce biofilm, but no isolates showed strong or moderate biofilm-forming ability. PRACTICAL APPLICATION: Our findings revealed a high genetic diversity of Cronobacter spp. in dried edible mushrooms and provided new epidemiological evidence for the widespread existence of Cronobacter spp. in such products. The presence of Cronobacter spp. in dried edible mushrooms may pose potential risks to human health and enhancing the hygiene of such products are necessary to ensure food safety.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Xiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiaojuan He
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Chencheng Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Fei P, Jing H, Ma Y, Dong G, Chang Y, Meng Z, Jiang S, Xie Q, Li S, Chen X, Yang W. Cronobacter spp. in Commercial Powdered Infant Formula Collected From Nine Provinces in China: Prevalence, Genotype, Biofilm Formation, and Antibiotic Susceptibility. Front Microbiol 2022; 13:900690. [PMID: 35711752 PMCID: PMC9197194 DOI: 10.3389/fmicb.2022.900690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the prevalence of Cronobacter spp. in commercial powdered infant formula (PIF) from nine provinces in China from March 2018 to September 2020, and to reveal the genotype, biofilm-forming ability, and antibiotic susceptibility of these isolates. A total of 27 Cronobacter strains, consisting of 22 Cronobacter sakazakii strains, 3 Cronobacter malonaticus strains, 1 Cronobacter turicensis strain, and 1 Cronobacter dublinensis strain, were isolated from 3,600 commercial PIF samples with a prevalence rate of 0.75%. Compared with the other 8 provinces, PIF from Shaanxi province had a higher prevalence rate (1.25%) of Cronobacter spp. These isolates were divided into 14 sequence types (STs), and 6 Cronobacter serotypes. The main Cronobacter STs were ST4, ST1, and ST64, and the dominant Cronobacter serotype was C. sakazakii serotype O2. Approximately 88.89% of Cronobacter isolates had a strong ability (OD595 > 1) to form biofilms on tinplate, among which the strains with ST4 were more dominant. All isolates were susceptible to ampicillin-sulbactam, ceftriaxone, cefotaxime, sulfadiazine, sulfadoxine, trimethoprim-sulfamethoxazole, gentamicin, tetracycline, ciprofloxacin, and colistin, while 55.56 and 96.30% isolates were resistant to cephalothin and vancomycin, respectively. Taken together, our findings highlighted the contamination status and characterization of Cronobacter spp. in commercial PIF from nine provinces of China, and provided guidance for the effective prevention and control of this pathogen in the production of PIF.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - He Jing
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yan Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Gege Dong
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Zhaoxu Meng
- Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd. R&D Center, Hohhot, China
| | | | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agriculrural Sciences, Guiyang, China
| | - Weiwei Yang
- The Department of Food Science, Shenyang Medical College, Shenyang Medical College, Shenyang, China
| |
Collapse
|
18
|
Fei P, Xing M, Feng Y, Liu S, Chang Y, Wang Y, Yu Y, Shi E, Zhang Y, Bian X, Chen J. Occurrence, Molecular Characterization, and Antibiotic Resistance of Cronobacter sakazakii in Goat Milk-Based Infant Formula from Shaanxi Province, China. Foodborne Pathog Dis 2022; 19:304-310. [PMID: 35447050 DOI: 10.1089/fpd.2021.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate the prevalence of Cronobacter sakazakii in goat milk-based infant formula (GIF) collected from Shaanxi Province, China, and reveal the molecular characterization and antibiotic resistance profile of these isolates. A total of 750 GIF samples were collected from the retail markets in 5 cities in Shaanxi Province from February 2019 to February 2021. Molecular characterization was investigated using multilocus sequence typing and O-antigen serotyping. Antibiotic resistance of C. sakazakii isolates was assessed using antimicrobial susceptibility testing. Thirty-two strains of C. sakazakii were isolated from GIF samples with a prevalence rate of 4.27% and were divided into 16 sequence types (STs); among them, ST4 (6/32, 18.75%) and ST21 (5/32, 15.63%) were dominant. Five C. sakazakii serotypes (O2, O1, O7, O4, and O3) were detected, and C. sakazakii serotype O2 (15/32, 46.88%) was the main. Of the 21 antimicrobials, isolates showed higher resistance against cephalothin (87.5%), amoxicillin (25%), azithromycin (18.75%), oxytetracycline (18.75%), ampicillin (12.5%), and streptomycin (12.5%). In addition, three isolates were found to be resistant to three antimicrobials. These findings revealed the potential epidemiological risk and characterization of C. sakazakii in GIF from Shaanxi Province, China, and provided reference data for the effective prevention and control of C. sakazakii in powdered infant formula.
Collapse
Affiliation(s)
- Peng Fei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China.,School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China.,College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yage Feng
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Shun Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yajing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yaping Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Encong Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yaqing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Csorba C, Pajić M, Blagojević B, Forsythe S, Radinović M, Velebit B. Prevalence, characterization, and antibiotic susceptibility of Cronobacter spp. in a milk powder processing environment: The first reported case in Serbia. Food Sci Nutr 2022; 10:554-563. [PMID: 35154691 PMCID: PMC8825717 DOI: 10.1002/fsn3.2681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 02/01/2023] Open
Abstract
Cronobacter spp. are opportunistic foodborne pathogens that most often infect neonates and infants through contaminated powdered infant formula. No reports have been published in Serbia on the prevalence of Cronobacter spp. in powdered milk production environments. Consequently, this study aimed to determine the prevalence, molecular characterization, antimicrobial susceptibility, and biofilm-forming ability of Cronobacter spp. isolated from a milk powder plant. Hundred samples were collected from the production facility. Fifteen Cronobacter sakazakii strains were isolated and identified, giving a contamination rate of 15%. Using multi-locus sequence typing, the isolates were divided into five sequence types (STs). Cronobacter sakazakii ST4 (50%), ST1 (16.67%), and ST83 (16.67%) were the dominant STs isolated. A novel sequence type (ST759) was identified and registered in the Cronobacter MLST database. The results of the antibiotic susceptibility testing indicated that C. sakazakii strains were susceptible to piperacillin/tazobactam, ampicillin/sulbactam, and amoxicillin/clavulanate, especially to meropenem and cefotaxime. Most of the ST4 showed moderate-to-strong biofilm-forming ability. The presence of clinically relevant isolates (ST4, ST1, ST83, and ST8) revealed that the production plant is likely a potential concern for public health. Finally, finding new sequence types like the one detected in this study (ST759) underlines evolving genetic changes in C. sakazakii.
Collapse
Affiliation(s)
- Csaba Csorba
- Department of Veterinary MedicineFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | - Marija Pajić
- Department of Veterinary MedicineFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | - Bojan Blagojević
- Department of Veterinary MedicineFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | | | - Miodrag Radinović
- Department of Veterinary MedicineFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | - Branko Velebit
- Department of Microbiology and Molecular BiologyInstitute of Meat Hygiene and TechnologyBelgradeSerbia
| |
Collapse
|
20
|
Gan X, Li M, Yan S, Wang X, Wang W, Li F. Genomic Landscape and Phenotypic Assessment of Cronobacter sakazakii Isolated From Raw Material, Environment, and Production Facilities in Powdered Infant Formula Factories in China. Front Microbiol 2021; 12:686189. [PMID: 34354686 PMCID: PMC8329244 DOI: 10.3389/fmicb.2021.686189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Cronobacter is a foodborne pathogen associated with severe infections and high mortality in neonates. The bacterium may also cause gastroenteritis, septicemia, and urinary tract and wound infectious in adults. A total of 15 Cronobacter isolates collected from 617 raw materials and environment samples from Powdered Infant Formula manufacturing factories during 2016 in Shaanxi, China, were analyzed for antimicrobial susceptibilities, species identification, biofilm formation, and whole-genome sequencing. The results showed that all 15 isolates were Cronobacter sakazakii, while the antimicrobial susceptibility test showed that all 15 C. sakazakii were pan susceptible. Most isolates were able to produce a weak biofilm, and two isolates from soil samples produced a strong biofilm formation. All isolates were classified into seven STs including ST4, ST40, ST64, ST93, ST148, ST256, and ST494, with ST64 (4/15, 26.7%) being dominant, and most were clinically related. The isolates harbored at least 11 virulence genes and two plasmids, with one isolate being positive for all virulence genes. Phylogenetic and ANI analysis showed strong clustering by sequence types and isolates from different sources or regions with a similar genomic background. The fact that isolates were obtained from raw materials and environment samples of PIF facilities shared a close phylogeny with one another suggests that cross-contamination events may have occurred between the processing room and external environments, which may give rise to a recurring risk of a continuous contamination during production.
Collapse
Affiliation(s)
- Xin Gan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaofei Yan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaofei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
21
|
Song MW, Kim KT, Paik HD. Probiotics as a Functional Health Supplement in Infant Formulas for the Improvement of Intestinal Microflora and Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Costa PV, Vasconcellos L, Forsythe SJ, Brandão MLL. Diversity of Cronobacter genus isolated between 1970 and 2019 on the American continent and genotyped using multi-locus sequence typing. FEMS Microbiol Lett 2021; 368:6156629. [PMID: 33677554 DOI: 10.1093/femsle/fnab027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate the Cronobacter spp. strains isolated on the American continent and characterized using multi-locus sequence typing (MLST) available in the PubMLST database and current literature. From 465 Cronobacter spp. strains, the majority (n = 267, 57.4%) was from North America, mainly from USA (n = 234) and 198 (42.6%) were from South America, mainly from Brazil (n = 196). A total of 232 (49.9%) were isolated from foods, 102 (21.9%) from environmental, 87 (18.7%) from clinical, 27 (5.8%) from PIF, one from water (0.2%) and 16 (3.5%) from unknown sources. A total of five species were represented: Cronobacter sakazakii (374, 80.4%), Cronobacter malonaticus (41, 8.8%), Cronobacter dublinensis (29, 6.2%), Cronobacter turicensis (16, 3.5%) and Cronobacter muytjensii (5, 1.1%). The strains with complete MLST profile (n = 345) were assigned to 98 STs, a ratio of 3.5 strain by ST found and the calculated Simpson`s index was 0.93. The strains showed a high diversity and after eBURST analysis, 30 STs (n = 189) formed 12 single and/or double-locus variant clonal complexes (CC). A total of 38 STs (38.7%) were associated with clinical cases of infection, including well established C. sakazakii CC 1, 4, 8 and 83; C. malonaticus ST60, 307, 394 and 440; and C. sakazakii ST 12 and 494.
Collapse
Affiliation(s)
| | - Luiza Vasconcellos
- Department of Quality Control, Bio-Manguinhos/Fiocruz, Avenida Brasil n.º 4365, Brazil
| | | | | |
Collapse
|
23
|
Ling N, Jiang Y, Zeng H, Ding Y, Forsythe S. Advances in our understanding and distribution of the Cronobacter genus in China. J Food Sci 2021; 86:276-283. [PMID: 33438222 DOI: 10.1111/1750-3841.15577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
This review considers how research in China has progressed our understanding and subsequent improved control of Cronobacter. This emergent bacterial pathogen is associated with neonatal infections through the ingestion of contaminated prepared feed. The review includes large-scale surveys of various sources of the organism, including infant formula production facilities. The analysis of over 20,000 samples is presented. Over 10,000 being from powdered infant formula and other infant foods as well as environmental sampling of production facilities, the remaining being from food, food ingredients, and human carriage. A major advance in China was adopting DNA-sequence-based methods (that is, multilocus sequence typing, clustered regularly interspaced short palindromic repeats-cas array profiling, and single-nucleotide polymorphism analysis) for the identification and genotyping of the organism. These methods have considerably advanced our understanding of the taxonomy, ecology, and virulence of this organism. In turn, this has improved source tracking of the organism both in infant formula production facilities and epidemiological investigations. Furthermore, whole-genome sequencing has revealed a range of virulence and persistence mechanisms as well as plasmid-borne multidrug resistance traits. China now has reliable and robust methods for accurate microbial source tracking of Cronobacter for use both in the food production environment and epidemiological analysis.
Collapse
Affiliation(s)
- Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Guangdong Institute of Microbiology & Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China & Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangzhou, 510070, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology & Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China & Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangzhou, 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | | |
Collapse
|
24
|
Ke A, Parreira VR, Goodridge L, Farber JM. Current and Future Perspectives on the Role of Probiotics, Prebiotics, and Synbiotics in Controlling Pathogenic Cronobacter Spp. in Infants. Front Microbiol 2021; 12:755083. [PMID: 34745060 PMCID: PMC8567173 DOI: 10.3389/fmicb.2021.755083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cronobacter species, in particular C. sakazakii, is an opportunistic bacterial pathogen implicated in the development of potentially debilitating illnesses in infants (<12months old). The combination of a poorly developed immune system and gut microbiota put infants at a higher risk of infection compared to other age groups. Probiotics and prebiotics are incorporated in powdered infant formula and, in addition to strengthening gut physiology and stimulating the growth of commensal gut microbiota, have proven antimicrobial capabilities. Postbiotics in the cell-free supernatant of a microbial culture are derived from probiotics and can also exert health benefits. Synbiotics, a mixture of probiotics and prebiotics, may provide further advantages as probiotics and gut commensals degrade prebiotics into short-chain fatty acids that can provide benefits to the host. Cell-culture and animal models have been widely used to study foodborne pathogens, but sophisticated gut models have been recently developed to better mimic the gut conditions, thus giving a more accurate representation of how various treatments can affect the survival and pathogenicity of foodborne pathogens. This review aims to summarize the current understanding on the connection between Cronobacter infections and infants, as well as highlight the potential efficacy of probiotics, prebiotics, and synbiotics in reducing invasive Cronobacter infections during early infancy.
Collapse
|
25
|
Pakbin B, Mahmoudi R, Mousavi S, Allahyari S, Amani Z, Peymani A, Qajarbeygi P, Hoseinabadi Z. Genotypic and antimicrobial resistance characterizations of Cronobacter sakazakii isolated from powdered milk infant formula: A comparison between domestic and imported products. Food Sci Nutr 2020; 8:6708-6717. [PMID: 33312554 PMCID: PMC7723180 DOI: 10.1002/fsn3.1965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 09/26/2020] [Indexed: 01/23/2023] Open
Abstract
Cronobacter sakazakii, an opportunistic foodborne pathogen and a main cause of meningitis in neonates, is usually isolated from powdered milk infant formula (PMIF). At the present study, C. sakazakii were isolated from imported and domestically produced PMIF samples and identified by detection of ompA gene using real-time PCR SYBR green melting curve following the evaluation of antimicrobial susceptibility and genotyping of the isolates employing BOX-PCR and RAPD methods. We detected totally 5% contamination rate and a significantly higher prevalence of C. sakazakii in bulky imported domestically packaged PMIF samples. Also, our isolates were recognized as multidrug-resistant pathogen completely resistant to ampicillin and amoxicillin; and intermediately resistant to ciprofloxacin and tetracycline antimicrobials. Genotype clustering patterns of bulky imported and imported product isolates were identical by both genotyping methods. Far genetic relatedness of domestic isolate to other isolates and the reference strain indicated higher genetic diversity of the domestic isolate genome. Multidrug resistance and diverse population genetic make complicated situation for determination of strategies for infectious disease prevention.
Collapse
Affiliation(s)
- Babak Pakbin
- Department of Food Hygiene and Quality of ControlFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Razzagh Mahmoudi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Shaghayegh Mousavi
- Faculty of Medical SciencesDepartment of Molecular MedicineQazvin University of Medical SciencesQazvinIran
| | - Samaneh Allahyari
- Department of Food Hygiene and SafetySchool of HealthQazvin University of Medical sciencesQazvinIran
| | - Zahra Amani
- Department of Food Hygiene and Quality of ControlFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Amir Peymani
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Peyman Qajarbeygi
- Health Products Safety Research CenterQazvin University of Medical sciencesQazvinIran
| | - Zahra Hoseinabadi
- Department of Food Hygiene and SafetySchool of HealthQazvin University of Medical sciencesQazvinIran
| |
Collapse
|
26
|
Costa PV, de Siqueira RM, Rosa Guimarães AC, Vasconcellos L, Midlej V, Silva da Conceição GM, Forsythe SJ, Lima Brandão ML. Cytotoxicity profile of Cronobacter species isolated from food and clinical specimens in Brazil. J Appl Microbiol 2020; 130:1758-1769. [PMID: 33090617 DOI: 10.1111/jam.14890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/31/2022]
Abstract
AIMS The objective of this study was to evaluate the cytotoxic activity of Cronobacter strains isolated from foods (n = 50) and clinical samples (n = 6) in Brazil and genotype selected strains (n = 18) using multi-locus sequence typing (MLST) METHODS AND RESULTS: The cytotoxic activity of C. sakazakii (n = 29), C. dublinensis (n = 13), C. malonaticus (n = 6), C. turicensis (n = 6) and C. muytjensii (n = 2) was screened using Vero, RK13, Hep2c, NCTC clone 929 and BHK-21 cell lines. Selected Cronobacter strains were assigned to C. sakazakii ST 21, C. turicensis ST 252, C. sakazakii ST 647, and three newly assigned STs: C. turicensis STs 738-740. The maximum death caused by non-heat-treated filtrates was 20·4, 86·2, 47·0 and 84·0%, in Vero, RK13, Hep2c and NCTC clone 929 cells, respectively. These were caused by C. sakazakii strains C291 and C292 (ST 494) which had been isolated during neonatal Cronobacter meningitis infection, and C110 (ST 395) isolated from flaxseed flour. Thermal treatment (100°C/20 min) significantly reduced the cytotoxicity activity in NCTC clone 929 and Vero cells (P ≤ 2 × 10-6 ), but not in RK13 (P = 0·12) and Hep2c (P = 0·85), indicating the cytotoxin(s) were probably proteinaceous. Electron microscopy revealed that cytotoxic compounds from C. sakazakii induced several cell death characteristics, including loss of cell-cell contact, microvilli reduction and cellular lysis. Autophagic vacuoles and mitochondrial damage were the most common ultrastructural features observed. CONCLUSIONS It was concluded that Cronobacter strains, especially C. sakazakii, could produce heat-labile cytotoxic compounds in cell filtrates. SIGNIFICANCE AND IMPACT OF THE STUDY This study providing insights into the pathogenesis of the Cronobacter genus. Cytotoxins were identified in excreted filtrates of C. sakazakii strains isolated from food and clinical specimens. The presence of Cronobacter strains that can produce cytotoxins in foods can be a potential threat to human health and highlight the need for high levels of hygiene.
Collapse
Affiliation(s)
- P V Costa
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - R M de Siqueira
- Laboratory of Viral Vaccines, Biopharmaceutics, and Cell Culture, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - A C Rosa Guimarães
- Laboratory of Viral Vaccines, Biopharmaceutics, and Cell Culture, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - L Vasconcellos
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - V Midlej
- Laboratory of Cellular Ultrastructure, IOC/Fiocruz, Rio de Janeiro, Brazil
| | | | - S J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottinghamshire, UK
| | - M L Lima Brandão
- Laboratory of Microbiology Control, Biomanguinhos/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Parra-Flores J, Maury-Sintjago E, Rodriguez-Fernández A, Acuña S, Cerda F, Aguirre J, Holy O. Microbiological Quality of Powdered Infant Formula in Latin America. J Food Prot 2020; 83:534-541. [PMID: 32078682 DOI: 10.4315/0362-028x.jfp-19-399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
ABSTRACT Cronobacter is a bacterial genus that includes seven species, and the species Cronobacter sakazakii is most related to meningitis and septicemia in infants associated with powdered infant formula (PIF). The objectives of this study were to evaluate the presence of C. sakazakii and to determine the microbiological quality of PIF for infant consumption. To do this, a total of 128 PIF samples were analyzed in four brands and countries (Chile, Mexico, Holland, and Brazil), considering three types of PIF: premature (PIF1), infant (PIF2), and follow-up (PIF3). Aerobic plate counts (APC) and Enterobacteriaceae (ENT) were assessed in accordance with Chilean official standards. The outer membrane protein A (ompA) gene was amplified to detect Cronobacter spp. and the fusA gene was amplified to identify C. sakazakii by using the PubMLST Web site and BLAST (NCBI). The antibiotic resistance profile was performed according to the Clinical and Laboratory Standards Institute standards. The pathogen was quantified by the most probable number (MPN). The results showed that APC median values for PIF1, PIF2, and PIF3 were 3.2, 4.9, and 4.8 log CFU g-1, respectively. The APC were higher in PIF2 (P < 0.01) from Holland (P < 0.01) in the commercial brand 4 (P < 0.01). The ENT median values in PIF1, PIF2, and PIF3 were 1.8, 1.5, and 1.7 log CFU g-1, respectively. Five strains of C. sakazakii and one strain of Cronobacter malonaticus were identified as having values between 0.023 and 2.3 MPN/g. All strains (100%) harbored the ompA, plasminogen activator (cpa), and hemolysin (hly) virulence genes. To conclude, C. sakazakii was found in four PIF samples from four Chilean products and one from Mexico, which is distributed throughout America. C. sakazakii strains exhibit virulence factors and resistance to ampicillin, thus posing a risk when PIFs are consumed by infants. HIGHLIGHTS
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Alejandra Rodriguez-Fernández
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Fabiola Cerda
- Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Avenida Santa Rosa 11315, 8820000, Santiago, Chile
| | - Ondrej Holy
- Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515, Olomouc, Czech Republic
| |
Collapse
|
28
|
Ngaiganam EP, Pagnier I, Chaalal W, Leangapichart T, Chabou S, Rolain JM, Diene SM. Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France. Acta Vet Scand 2019; 61:51. [PMID: 31672159 PMCID: PMC6822345 DOI: 10.1186/s13028-019-0486-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.
Collapse
|
29
|
Fei P, Yuan X, Zhao S, Yang T, Xiang J, Chen X, Zhou L, Ji M. Prevalence and Genetic Diversity of Bacillus cereus Isolated from Raw Milk and Cattle Farm Environments. Curr Microbiol 2019; 76:1355-1360. [PMID: 31324956 DOI: 10.1007/s00284-019-01741-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Bacillus cereus not only has adverse effects on the nutrition and shelf life of dairy products but also seriously endanger people's health. This study was conducted to reveal the prevalence and genetic diversity of B. cereus strains isolated from raw milk and cattle farm environments. A total 56 of B. cereus strains were detected from 300 environmental samples (soil, water, fodder, air, milk pails, milking machines, cowsheds, bedding, excrement, cow surfaces, udders, overalls, soles, and staff hand samples) and 50 raw milk samples, and divided into 18 sequence types (STs) using multilocus sequence typing method. These STs included ST27, ST61, ST92, ST142, ST168, ST208, ST378, ST427, ST766, ST 857, ST1098, ST1140, ST1194, ST1236, ST1336, ST1339, ST1341, and ST1348, among them, ST857 (7/56, 12.5%) was the dominant ST, and were detected from air, cowsheds, bedding, excrement, and raw milk samples. Our findings could reveal the distribution and genetic diversity of B. cereus strains in raw milk and cattle farm environments, and provide a theoretical basis for controlling the potential harm of this pathogenic bacteria in dairy products.
Collapse
Affiliation(s)
- Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xiujuan Yuan
- Anda Department of Animal Husbandry and Veterinary, Anda, 151400, China
| | - Shengjuan Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Tongxiang Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinle Xiang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xi Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lianxin Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengdi Ji
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
30
|
Li C, Zeng H, Zhang J, He W, Ling N, Chen M, Wu S, Lei T, Wu H, Ye Y, Ding Y, Wang J, Wei X, Zhang Y, Wu Q. Prevalence, Antibiotic Susceptibility, and Molecular Characterization of Cronobacter spp. Isolated From Edible Mushrooms in China. Front Microbiol 2019; 10:283. [PMID: 30863374 PMCID: PMC6399401 DOI: 10.3389/fmicb.2019.00283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cronobacter spp. are foodborne pathogens that can infect and cause life-threatening diseases in all age groups, particularly in infants and immunocompromised elderly. This study aimed to investigate the prevalence, antibiotic susceptibility, and molecular characteristics of Cronobacter spp. isolates in edible mushrooms collected from 44 cities in China. In total, 668 edible mushrooms were collected from traditional retail markets and supermarkets and were analyzed by quantitative methods, PCR-based serotyping, multilocus sequence typing (MLST), and antibiotic susceptibility testing. Among the 668 samples tested, 89 (13.32%) were positive for Cronobacter spp., and the contamination levels exceeded the 110 most probable number (MPN)/g in 13.48% (12/89) of the samples. Flammulina velutipes samples had the highest contamination rate of 17.54% (37/211), whereas Hypsizygus marmoreus samples had the lowest contamination rate of 3.28% (2/61). Ten serotypes were identified among 115 isolates, of which the C. sakazakii serogroup O1 (n = 32) was the primary serotype. MLST indicated that there was quite high genetic diversity in Cronobacter spp. and 72 sequence types were identified, 17 of which were new. Notably, C. sakazakii ST148 (n = 10) was the most prevalent, followed by C. malonaticus ST7 (n = 5). Antibiotic susceptibility testing revealed that the majority of Cronobacter spp. strains were susceptible to the 16 antibiotics tested. However, a portion of isolates exhibited relatively high resistance to cephalothin, with resistance and intermediate rates of 93.91 and 6.09%, respectively. One isolate (cro300A) was multidrug-resistant, with resistance to five antibiotics. Overall, this large-scale study revealed the relatively high prevalence and high genetic diversity of Cronobacter spp. on edible mushrooms in China, indicating a potential public health concern. To our knowledge, this is the first large-scale and systematic study on the prevalence of Cronobacter spp. on edible mushrooms in China, and the findings can provide valuable information that can guide the establishment of effective measures for the control and precaution of Cronobacter spp on edible mushrooms during production processes.
Collapse
Affiliation(s)
- Chengsi Li
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wenjing He
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
31
|
Bai Y, Yu H, Guo D, Fei S, Shi C. Survival and Environmental Stress Resistance of Cronobacter sakazakii Exposed to Vacuum or Air Packaging and Stored at Different Temperatures. Front Microbiol 2019; 10:303. [PMID: 30842765 PMCID: PMC6391331 DOI: 10.3389/fmicb.2019.00303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the survival of Cronobacter sakazakii exposed to vacuum or air packaging, then stored at 4, 10, or 25°C, and the environmental stress resistance of vacuum-packaged or air-packaged bacterial cells were determined by subjecting the cells to reconstituted infant formula at 50°C, in acid (simulated gastric fluid, pH = 3.5), and in bile salt [bile salt solution, 5% (wt/vol)]. A cocktail culture of C. sakazakii desiccated on the bottom of sterile petri plates was air-packaged or vacuum-packaged and then stored at 4, 10, or 25°C for 10 days. The viable cell populations during storage were examined, and the vacuum-packaged and air-packaged cells (stored at 10°C for 4 days) were subsequently exposed to heat, acid, or bile salt. The results show that the populations of vacuum-packaged and air-packaged C. sakazakii were reduced by 1.6 and 0.9 log colony-forming units (CFU)/ml at 4°C and by 1.6 and 1.3 log CFU/ml at 25°C, respectively, in 10 days. At 10°C, significant reductions of 3.1 and 2.4 log CFU/ml were observed for vacuum-packaged and air-packaged cells, respectively. Vacuum packaging followed by storage at 10°C for 4 days caused significant decreases in the resistance of C. sakazakii to heat, acid, and bile salt conditions compared with air packaging. These results suggest that the application of vacuum packaging for powdered infant formula could be useful to minimize the risk of C. sakazakii.
Collapse
Affiliation(s)
| | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Pei X, Li Y, Zhang H, Zhan L, Yu X, Lan G, Jia H, Li N, Yang D, Mei L. Surveillance and characterisation of Cronobacter in powdered infant formula processing factories. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Wang Q, Forsythe SJ, Zhao XJ, Wang ZW, Li D, Ma D, Cao JY, Zeng J. Species identification and molecular characterization of Cronobacter spp. isolated from food imported over nine years into Beijing, China. Food Microbiol 2019; 82:11-19. [PMID: 31027763 DOI: 10.1016/j.fm.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Cronobacter spp. are associated with serious infections in neonates with the clinical presentations of necrotizing enterocolitis, bacteraemia and meningitis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify 203 Cronobacter isolates from imported food during 2006-2015 with an optimized in-house database. The isolates were predominantly C. sakazakii (88.18%), followed by C. malonaticus (8.37%), C. muytjensii (1.48%), C. turicensis (0.99%) and C. dublinensis (0.99%). The result was totally consistent with that of fusA allele sequencing. 12.32% (25/203) of isolates gave inconsistent spectra following separate protein extractions. Sixty C. sakazakii isolates and 24 isolates from the other four species were chosen for multi-locus sequence type analyses (MLST) and PCR-serotyping. Thirty-one sequence types were identified. The common sequence types were ST1 (19/60) and ST4 (13/60) for C. sakazakii and ST7 (12/17) for C. malonaticus. The primary serotypes were Csak O:1 (30/60), Csak O:2 (25/60) and Cmal O:2 (16/17) for C. sakazakii and C. malonaticus isolates, respectively. In conclusion, appropriate in-house database could make MALDI-TOF MS method identifying Cronobacter spp. isolates to the species level. But the spectra data were not sufficiently consistent for subtyping, unlike MLST. The Cronobacter spp. isolates have a high diversity including recognized pathovars.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | | | - Xiao-Juan Zhao
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | - Zi-Wei Wang
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | - Dan Li
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | - Dan Ma
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | - Jia-Yue Cao
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| | - Jing Zeng
- Beijing Customs, Tianshuiyuan Street 6, Beijing, 100026, China.
| |
Collapse
|
34
|
Rodrigues VCDC, de Oliveira IP, Bezerra RMN, Antunes AEC. Riscos microbiológicos de fórmulas para lactentes. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo desse trabalho foi discorrer sobre os principais perigos biológicos encontrados em fórmulas infantis a partir dos relatos da literatura, especialmente de registros de surtos. Este estudo é de cunho exploratório por meio de revisão bibliográfica, sendo utilizados como fontes de dados sites de busca científica. Dentre os principais micro-organismos causadores de doenças ligadas à ingestão de fórmulas infantis estão o Cronobacter sakazakii e a Salmonella enterica, porém outras bactérias, como Clostridium botulinum, Klebsiella pneumoniae, Staphylococcus aureus e Bacillus cereus, podem ser responsáveis por contaminações destas fórmulas. Visto que lactentes apresentam os sistemas imunológico e metabólico ainda em desenvolvimento, estes representam um público mais vulnerável a contaminantes, fazendo-se fundamental o oferecimento de alimentos seguros desde o processamento na indústria até a administração nas residências e unidades hospitalares.
Collapse
|
35
|
Fei P, Ali MA, Gong S, Sun Q, Bi X, Liu S, Guo L. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Sun L, Jiang Y, Pan R, Li M, Wang R, Chen S, Fu S, Man C. A novel, simple and low-cost paper-based analytical device for colorimetric detection of Cronobacter spp. Anal Chim Acta 2018; 1036:80-88. [DOI: 10.1016/j.aca.2018.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/17/2018] [Accepted: 05/22/2018] [Indexed: 02/01/2023]
|
37
|
Du XJ, Wang XY, Dong X, Li P, Wang S. Characterization of the Desiccation Tolerance of Cronobacter sakazakii Strains. Front Microbiol 2018; 9:2867. [PMID: 30542333 PMCID: PMC6278591 DOI: 10.3389/fmicb.2018.02867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
Strong desiccation tolerance is an outstanding feature of Cronobacter sakazakii and can enable the bacterium to survive in a dry food matrix (such as milk powder) for a long time. Therefore, contamination of food possessing low water activity with C. sakazakii can increase the risk of infection in human beings, particularly in neonates and infants. However, the mechanism underlying the desiccation tolerance property of C. sakazakii is largely unknown. In this study, the desiccation tolerance characteristics of 42 C. sakazakii strains were analyzed. Simultaneously, the sequence types and biofilm formation abilities of the strains were investigated, and their correlations with desiccation tolerance were analyzed. The results showed no significant correlation between desiccation tolerance and sequence type. However, there was a positive correlation between biofilm formation ability and desiccation tolerance. Raman spectroscopy was employed to investigate the biofilm formed by strains with distinct desiccation tolerance levels, and the results showed that the levels of polysaccharide, proteins and carotenoid might play important roles in the resistance to dry environments. In addition, 10 genes involved in osmoprotectant synthesis or transport were selected, and their differential expression in strains with diverse desiccation tolerance levels was compared to investigate whether these genes were responsible for cytoprotection in the dry environment. The results revealed a great difference in gene expression among strains with different desiccation tolerance levels, suggesting that these genes play a regulatory role in the resistance of C. sakazakii to dry environments. Our study provides a useful reference for follow-up studies investigating the mechanism of desiccation tolerance in C. sakazakii.
Collapse
Affiliation(s)
- Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao-Yi Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|