1
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2025; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
2
|
Lee CE, Messer LF, Wattiez R, Matallana-Surget S. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Proteomics 2025:e202400208. [PMID: 39760247 DOI: 10.1002/pmic.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
3
|
Chamley A, Baley C, Matabos M, Vannier P, Sarradin PM, Freyermouth F, Davies P. Polymer material biodegradation in the deep sea. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177637. [PMID: 39579889 DOI: 10.1016/j.scitotenv.2024.177637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The phenomenon of marine plastic pollution is now well-established, with documented impacts on marine biodiversity and biogeochemical cycles. In order to mitigate this environmental impact, a significant amount of research has been conducted in recent years with the objective of developing biodegradable alternatives to conventional polymers and their composites in marine environments. The findings of this research significantly enhanced our understanding of biodegradation mechanisms and identified promising candidates. However, the majority of these studies have been conducted in coastal marine environments, which represent a minor component of the marine ecosystem. Recent models on the transport of plastic debris in the oceans indicate that deep-sea environments are likely to be the ultimate sink for a significant proportion of plastics entering the oceans. The aim of this review is to provide an overview of the processes of biodegradation of polymers in these deep-sea environments. The diversity and specific characteristics of these environments with respect to degradation mechanisms are discussed. While the majority of deep-sea conditions are not conducive to biodegradation, studies on organic falls (wood and whale carcasses) and a few investigations into materials previously shown to be biodegradable in coastal marine environments demonstrate mechanisms that are similar to those observed in shallow waters. Nevertheless, further research is necessary to reach definitive conclusions. It is essential to extend these studies to a broader range of deep-sea environments. Additionally, new methodologies that integrate microbiology and polymer science are required to accurately assess the process of assimilation of these materials in these environments.
Collapse
Affiliation(s)
- Alexandre Chamley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France; Thales DMS, Brest, France; Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France.
| | - Christophe Baley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France
| | - Marjolaine Matabos
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | - Pauline Vannier
- Laboratoire MAPIEM, E.A.4323, Université de Toulon, CS 60584, 83041 Cedex 9 Toulon, France
| | - Pierre Marie Sarradin
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | | | - Peter Davies
- Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France
| |
Collapse
|
4
|
Philip L, Chapron L, Barbe V, Burgaud G, Calvès I, Paul-Pont I, Thiébeauld O, Sperandio B, Navarro L, Ter Halle A, Eyheraguibel B, Ludwig W, Palazot M, Kedzierski M, Meistertzheim AL, Ghiglione JF. A Pan-European study of the bacterial plastisphere diversity along river-to-sea continuums. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35658-9. [PMID: 39638896 DOI: 10.1007/s11356-024-35658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Microplastics provide a persistent substrate that can facilitate microbial transport across ecosystems. Since most marine plastic debris originates from land and reaches the ocean through rivers, the potential dispersal of freshwater bacteria into the sea represents a significant concern. To address this question, we explored the plastisphere on microplastic debris (MPs) and on pristine microplastics (pMPs) as well as the bacteria living in surrounding waters, along the river-sea continuum in nine major European rivers sampled during the 7 months of the Tara Microplastics mission. In both marine and riverine waters, we found a clear niche partitioning among MPs and pMPs plastispheres when compared to the bacteria living in the surrounding waters. Across this large dataset, we found that bacterial community structure varied along the river salinity gradient, with plastisphere communities exhibiting almost complete segregation between freshwater and marine ecosystems. We also described for the first time a virulent human pathogenic bacterium (Shewanella putrefaciens), capable of infecting human intestinal epithelial cells, detected exclusively on MPs in riverine environments. Our findings indicate that salinity is the main driver of plastisphere communities along the river-to-sea continuum, helping to mitigate the risk of pathogens transfer between freshwater and marine systems.
Collapse
Affiliation(s)
- Léna Philip
- Laboratoire d'Océanographie Microbienne LOMIC, UMR 7621, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France
- SAS Plastic At Sea, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France
| | - Leila Chapron
- SAS Plastic At Sea, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France
| | - Valérie Barbe
- UMR8030, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Génomique Métabolique, GenoscopeEvry, France
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne LUBEM, Univiversté de Brest, INRAE, 3882, Plouzané, UR, France
| | - Isabelle Calvès
- SAS Plastic At Sea, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France
| | - Ika Paul-Pont
- Laboratoire Des Sciences de L'environnement Marin LEMAR, UMR 6539, Université de Brest, CNRS, IFREMER, Plouzané, IRD, France
| | | | - Brice Sperandio
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), UMR8197, Institut National de La Santé Et de La Recherche Médicale, CNRS, Paris, France
| | - Lionel Navarro
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), UMR8197, Institut National de La Santé Et de La Recherche Médicale, CNRS, Paris, France
| | - Alexandra Ter Halle
- Laboratoire Chimie Des Colloïdes, Polymères Et Assemblages Complexes SOFTMAT, UMR 5623, Université de Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Boris Eyheraguibel
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Wolfgang Ludwig
- Centre de Recherche Et de Formation Sur Les Environnements Méditerranéens CEFREM, UMR 5110, University of Perpignan, CNRS, Perpignan, France
| | - Maialen Palazot
- Institut de Recherche Dupuy de Lôme IRDL, UMR 6027, Université Bretagne Sud, CNRS, Lorient, France
| | - Mikael Kedzierski
- Institut de Recherche Dupuy de Lôme IRDL, UMR 6027, Université Bretagne Sud, CNRS, Lorient, France
| | | | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne LOMIC, UMR 7621, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution Tara GOSEE, CNRS, R2022, Paris, France.
| |
Collapse
|
5
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi UK, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
6
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Litchfield SG, Schulz KG, Kelaher BP. Decomposition of Sargassum detritus varies with exposure to different plastic types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64534-64544. [PMID: 39542991 DOI: 10.1007/s11356-024-35505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Plastic pollution and ocean warming threaten crucial ecosystem processes, including detrital decomposition. We carried out a manipulative experiment using 20 outdoor raceways to test hypotheses about the influence of macroplastics (polyvinyl chloride (PVC), polyethylene terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and biodegradable (BIO)) and ocean warming (as 3 °C above ambient sea surface temperatures) on the decomposition of Sargassum vestitum. All types of plastic significantly decreased rates of S. vestitum decomposition compared to controls. LDPE was associated with the greatest decrease in detrital decomposition (41%), followed closely by BIO (28%), whilst HDPE had the least influence (12%) during our 40-day experiment. Treatments with LDPE and PET retained more carbon (%) in S. vestitum than the control treatment. However, plastics neither affected nitrogen (%), nor C/N ratio of the decomposing detritus. Ocean warming significantly increased the decomposition of S. vestitum, but did not affect relative carbon or nitrogen, nor C/N of the remaining detritus, nor did temperature interact with plastic treatments. As detrital decomposition significantly contributes to marine biogeochemical cycling, food-web connectivity, and secondary production, our multiple stressor experiment demonstrates the value of management strategies that simultaneously address the impacts of ocean warming and plastic pollution in nearshore environments.
Collapse
Affiliation(s)
- Sebastian G Litchfield
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia.
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry and School of Environment, Science and Engineering, Southern Cross University, PO Box 157, East Lismore, NSW, 2480, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
8
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
9
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Teiba II, El-Bilawy EH, Abouelsaad IA, Shehata AI, Alhoshy M, Habib YJ, Abu-Elala NM, El-Khateeb N, Belal EB, Hussain WAM. The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64419-64452. [PMID: 39547992 DOI: 10.1007/s11356-024-35520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Bacteria assume a pivotal role in mitigating environmental issues associated with heavy metals, microplastics, and pesticides. Within the domain of heavy metals, bacteria exhibit a wide range of processes for bioremediation, encompassing biosorption, bioaccumulation, and biotransformation. Toxigenic metal ions can be effectively sequestered, transformed, and immobilized, hence reducing their adverse environmental effects. Furthermore, bacteria are increasingly recognized as significant contributors to the process of biodegradation of microplastics, which are becoming increasingly prevalent as contaminants in marine environments. These microbial communities play a crucial role in the colonization, depolymerization, and assimilation processes of microplastic polymers, hence contributing to their eventual mineralization. In the realm of pesticides, bacteria play a significant role in the advancement of environmentally sustainable biopesticides and the biodegradation of synthetic pesticides, thereby mitigating their environmentally persistent nature and associated detrimental effects. Gaining a comprehensive understanding of the intricate dynamics between bacteria and anthropogenic contaminants is of paramount importance in the pursuit of technologically advanced and environmentally sustainable management approaches.
Collapse
Affiliation(s)
- Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
| | - Emad H El-Bilawy
- King Salman International University, South Sinai City, 46618, Egypt
| | | | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nermeen M Abu-Elala
- King Salman International University, South Sinai City, 46618, Egypt
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Elsayed B Belal
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Warda A M Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
11
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares-Vázquez V, Misteli B, Mori-Bazzano L, Moser V, Rotta F, Schmid-Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2024. [PMID: 39542439 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Jaffer Y Dar
- ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Vanessa De Santis
- Water Research Institute, National Research Council, Corso Tonolli 50, Verbania-Pallanza, Verbania, 28922, Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology Group, University of Vic - Central University of Catalonia, Carrer de la Laura 13, Catalonia, 08500 Vic, Spain
| | - Julia Pasqualini
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, Magdeburg, 39114, Germany
| | - Oloyede A Adekolurejo
- Ecology and Evolution, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biology, Adeyemi Federal University of Education, Ondo City, Ondo, PMB 520, Nigeria
| | - Bryan Burri
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Marco J Cabrerizo
- Department of Ecology & Institute of Water Research, University of Granada, Campus Fuentenueva s/n, Granada, 18071, Spain
- Estación de Fotobiología Playa Unión, casilla de correos 15, Rawson, Chubut, 9103, Argentina
| | - Teofana Chonova
- Department Environmental Chemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Annemieke M Drost
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - Aida Figler
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, Budapest, 1094, Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, 0803, Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Daniel R Harvey
- Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Víctor Manzanares-Vázquez
- Department of Research and Development, Coccosphere Environmental Analysis, C/Cruz 39, 29120 Alhaurín el Grande, Málaga, Spain
| | - Benjamin Misteli
- WasserCluster Lunz - Biologische Station, Dr Carl Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Laureen Mori-Bazzano
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH-8600, Switzerland
| | - Federica Rotta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia, 27100, Italy
- Institute of Earth Science, University of Applied Science and Arts of Southern Switzerland, Via Flora Ruchat-Roncati 15, Mendrisio, CH-6850, Switzerland
| | - Bianca Schmid-Paech
- University Weihenstephan-Triesdorf of Applied Science, Am Hofgarten 4, Freising, 85354, Germany
| | - Camille M Touchet
- Université Claude Bernard - Lyon 1, "LEHNA UMR 5023, CNRS, ENTPE, 3-6, rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| |
Collapse
|
12
|
Zhao S, Zhang Q, Huang Q, Zhang C, Li H, Siddique KHM. Polyvinyl chloride microplastics disseminate antibiotic resistance genes in Chinese soil: A metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135727. [PMID: 39244980 DOI: 10.1016/j.jhazmat.2024.135727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.
Collapse
Affiliation(s)
- Shuwen Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qilan Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuchen Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
13
|
Montoya D, Rastelli E, Casotti R, Manna V, Trano AC, Balestra C, Santinelli C, Saggiomo M, Sansone C, Corinaldesi C, Montoya JM, Brunet C. Microplastics alter the functioning of marine microbial ecosystems. Ecol Evol 2024; 14:e70041. [PMID: 39554881 PMCID: PMC11564128 DOI: 10.1002/ece3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 11/19/2024] Open
Abstract
Microplastics pervade ocean ecosystems. Despite their effects on individuals or populations are well documented, the consequences of microplastics on ecosystem functioning are still largely unknown. Here, we show how microplastics alter the structure and functioning of pelagic microbial ecosystems. Using experimental pelagic mesocosms, we found that microplastics indirectly affect marine productivity by changing the bacterial and phytoplankton assemblages. Specifically, the addition of microplastics increased phytoplankton biomass and shifted bacterial assemblages' composition. Such changes altered the interactions between heterotrophic and autotrophic microbes and the cycling of ammonia in the water column, which ultimately benefited photosynthetic efficiency. The effects of microplastics on marine productivity were consistent for different microplastic types. This study demonstrates that microplastics affect bacteria and phytoplankton communities and influence marine productivity, which ultimately alters the functioning of the whole ocean ecosystem.
Collapse
Affiliation(s)
- Daniel Montoya
- Basque Centre for Climate Change (BC3)LeioaSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Theoretical and Experimental Ecology Station, CNRSMoulisFrance
| | | | | | - Vincenzo Manna
- Stazione Zoologica “Anton Dohrn”NaplesItaly
- National Institute of Oceanography and Applied Geophysics—OGSTriesteItaly
| | | | - Cecilia Balestra
- Stazione Zoologica “Anton Dohrn”NaplesItaly
- National Institute of Oceanography and Applied Geophysics—OGSTriesteItaly
| | - Chiara Santinelli
- Istituto di Biofisica Consiglio Nazionale Delle Ricerche SezionePisaItaly
| | | | | | - Cinzia Corinaldesi
- Università Politecnica Delle Marche, Dipartimento di Scienze e Ingegneria Della Materia, dell'Ambiente Ed UrbanisticaAnconaItaly
| | - Jose M. Montoya
- Theoretical and Experimental Ecology Station, CNRSMoulisFrance
| | | |
Collapse
|
14
|
Monràs-Riera P, Avila C, Ballesté E. Plastisphere in an Antarctic environment: A microcosm approach. MARINE POLLUTION BULLETIN 2024; 208:116961. [PMID: 39293370 DOI: 10.1016/j.marpolbul.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Pere Monràs-Riera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Zeghal E, Vaksmaa A, van Bleijswijk J, Niemann H. Environmental factors control microbial colonization of plastics in the North Sea. MARINE POLLUTION BULLETIN 2024; 208:116964. [PMID: 39342912 DOI: 10.1016/j.marpolbul.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Large quantities of plastic enter the oceans each year providing extensive attachment surfaces for marine microbes yet understanding their interactions and colonization of plastic debris remains limited. We investigated microbial colonization of various plastic types (polyethylene, polystyrene, polyethylene-terephthalate, and nylon) in ex-situ incubation experiments. Plastic films, both UV-pretreated and untreated, were exposed to seawater from a coastal and an offshore location in the North Sea. 16S rRNA amplicon sequencing was employed to assess microbial community structures after 5, 10, 30, and 45 days of incubation. Our findings show the significant influence of time, seawater origin and plastic type on microbial community succession. We also identified several genera associated with hydrocarbon or plastic degradation potential as well as genera selecting for specific plastics such as Ketobacter and Microbacterium. Our results highlight potential role of microorganisms in plastic biodegradation and support the idea that microbial colonizers on marine plastics debris seemingly select distinct substrate types.
Collapse
Affiliation(s)
- Emna Zeghal
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands.
| | - Annika Vaksmaa
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Judith van Bleijswijk
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Helge Niemann
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands; Faculty of Geosciences, Utrecht University, the Netherlands
| |
Collapse
|
16
|
Pang R, Wang X, Zhang L, Lei L, Han Z, Xie B, Su Y. Genome-Centric Metagenomics Insights into the Plastisphere-Driven Natural Degradation Characteristics and Mechanism of Biodegradable Plastics in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18915-18927. [PMID: 39380403 DOI: 10.1021/acs.est.4c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
18
|
Yuan F, Zou X, Liao Q, Wang T, Zhang H, Xue Y, Chen H, Ding Y, Lu M, Song Y, Fu G. Insight into the bacterial community composition of the plastisphere in diverse environments of a coastal salt marsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124465. [PMID: 38942280 DOI: 10.1016/j.envpol.2024.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China.
| | - Hexi Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yue Xue
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ming Lu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yuyang Song
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Eyheraguibel B, Diémé B, Lagrée M, Durand S, Barbe V, Meistertzheim AL, Ter Halle A, Burgaud G, Ghiglione JF. Untargeted metabolomic insights into plastisphere communities in European rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34214-9. [PMID: 39090296 DOI: 10.1007/s11356-024-34214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
Every year, rivers introduce a staggering amount of hundred kilotons of plastic into the Oceans. This plastic is inhabited by microorganisms known as the plastisphere, which can be transferred between different ecosystems through the transport of microplastics. Here, we simulated the microbial colonization of polyethylene-based plastic pellets that are classically used to manufacture large-scale plastic products. The pellets were immersed for 1 month in four to five sampling stations along the river-to-sea continuum of nine of the major European rivers. This study presents the first untargeted metabolomics analysis of the plastisphere, by using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The plastisphere metabolomes were similar in the Rhine and Rhone rivers, while being different from the Tiber and Loire rivers, which showed greater similarity to the Thames and Seine rivers. Interestingly, we found a clear distinction between plastisphere metabolomes from freshwater and marine water in most of the river-to-sea continuum, thus suggesting a complete segregation in plastisphere metabolites that is not consistent with a major transfer of microorganisms between the two contrasted ecosystems. Putative annotations of 189 discriminating metabolites suggested that lipid metabolism was significantly modulated. These results enlightened the relevance of using environmental metabolomic as complementary analysis to the current OMICs analysis.
Collapse
Affiliation(s)
- Boris Eyheraguibel
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Binta Diémé
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagrée
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Stéphanie Durand
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Alexandra Ter Halle
- Laboratoire Softmat, Université de Toulouse, Université Toulouse III - Paul Sabatier, CNRS UMR 5623, Toulouse, France
| | - Gaétan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Univ Brest, INRAE, Plouzané, France
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, UMR 7621, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| |
Collapse
|
20
|
Weng Y, Han X, Sun H, Wang J, Wang Y, Zhao X. Effects of polymerization types on plastics ingestion and biodegradation by Zophobas atratus larvae, and successions of both gut bacterial and fungal microbiomes. ENVIRONMENTAL RESEARCH 2024; 251:118677. [PMID: 38508358 DOI: 10.1016/j.envres.2024.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jiaming Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
21
|
de Vogel FA, Goudriaan M, Zettler ER, Niemann H, Eich A, Weber M, Lott C, Amaral-Zettler LA. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172288. [PMID: 38599394 DOI: 10.1016/j.scitotenv.2024.172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.
Collapse
Affiliation(s)
- Fons A de Vogel
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Ballesté E, Liang H, Migliorato L, Sala‐Comorera L, Méndez J, Garcia‐Aljaro C. Exploring plastic biofilm formation and Escherichia coli colonisation in marine environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13308. [PMID: 38924372 PMCID: PMC11196126 DOI: 10.1111/1758-2229.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Microorganisms, including potential pathogens, can colonise plastic surfaces in aquatic environments. This study investigates the colonisation of plastic pellets by Escherichia coli (E. coli) as a proxy for faecal pathogens in aquatic environments. Plastic pellets from a polluted beach were placed in seawater aquaria spiked with E. coli. Diverse bacteria, primarily from the Proteobacteria phylum, rapidly colonised the pellets within 24 h, with notable species known for plastic or hydrocarbon degradation. Over 26 days, biofilms formed on the plastic surfaces, reaching bacterial populations of up to 6.8·105 gene copies (gc) of the 16S rRNA mm-2. E. coli, was detected in the pellets for up to 7 days using culture methods, exhibiting varying attachment densities regardless of source or environmental factors. The study highlights plastic biofilms as reservoirs for E. coli, contributing to the survival and persistence of faecal bacteria in aquatic systems. These findings deepen our understanding of the risks associated with plastic pollution in marine settings, offering insights into the behaviour of faecal indicators and their implications for water quality assessments, while providing valuable information on potential pathogen dissemination within plastic-associated microbial communities.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Hongxia Liang
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Municipal Ecological and Environmental Monitoring CenterBeijingChina
| | - Laura Migliorato
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Laura Sala‐Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Javier Méndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Cristina Garcia‐Aljaro
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
23
|
Zapata-Peñasco I, Avelino-Jiménez I, Mendoza-Pérez J, Vázquez Guevara M, Gutiérrez-Ladrón de Guevara M, Valadez- Martínez M, Hernández-Maya L, Garibay-Febles V, Fregoso-Aguilar T, Fonseca-Campos J. Environmental stressor assessment of hydrocarbonoclastic bacteria biofilms from a marine oil spill. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00834. [PMID: 38948351 PMCID: PMC11211098 DOI: 10.1016/j.btre.2024.e00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 07/02/2024]
Abstract
The environmental and economic impact of an oil spill can be significant. Biotechnologies applied during a marine oil spill involve bioaugmentation with immobilised or encapsulated indigenous hydrocarbonoclastic species selected under laboratory conditions to improve degradation rates. The environmental factors that act as stressors and impact the effectiveness of hydrocarbon removal are one of the challenges associated with these applications. Understanding how native microbes react to environmental stresses is necessary for effective bioaugmentation. Herein, Micrococcus luteus and M. yunnanensis isolated from a marine oil spill mooring system showed hydrocarbonoclastic activity on Maya crude oil in a short time by means of total petroleum hydrocarbons (TPH) at 144 h: M. luteus up to 98.79 % and M. yunnanensis 97.77 % removal. The assessment of Micrococcus biofilms at different temperature (30 °C and 50 °C), pH (5, 6, 7, 8, 9), salinity (30, 50, 60, 70, 80 g/L), and crude oil concentration (1, 5, 15, 25, 35 %) showed different response to the stressors depending on the strain. According to response surface analysis, the main effect was temperature > salinity > hydrocarbon concentration. The hydrocarbonoclastic biofilm architecture was characterised using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Subtle but significant differences were observed: pili in M. luteus by SEM and the topographical differences measured by AFM Power Spectral Density (PSD) analysis, roughness was higher in M. luteus than in M. yunnanensis. In all three domains of life, the Universal Stress Protein (Usp) is crucial for stress adaptation. Herein, the uspA gene expression was analysed in Micrococcus biofilm under environmental stressors. The uspA expression increased up to 2.5-fold in M. luteus biofilms at 30 °C, and 1.3-fold at 50 °C. The highest uspA expression was recorded in M. yunnanensis biofilms at 50 °C with 2.5 and 3-fold with salinities of 50, 60, and 80 g/L at hydrocarbon concentrations of 15, 25, and 35 %. M. yunnanensis biofilms showed greater resilience than M. luteus biofilms when exposed to harsh environmental stressors. M. yunnanensis biofilms were thicker than M. luteus biofilms. Both biofilm responses to environmental stressors through uspA gene expression were consistent with the behaviours observed in the response surface analyses. The uspA gene is a suitable biomarker for assessing environmental stressors of potential microorganisms for bioremediation of marine oil spills and for biosensing the ecophysiological status of native microbiota in a marine petroleum environment.
Collapse
Affiliation(s)
- I. Zapata-Peñasco
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - I.A. Avelino-Jiménez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - J. Mendoza-Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Vázquez Guevara
- Facultad de Química, Universidad de Guanajuato, Noria Alta, Guanajuato, 36050, Mexico
| | - M. Gutiérrez-Ladrón de Guevara
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Valadez- Martínez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - L. Hernández-Maya
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - V. Garibay-Febles
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - T. Fregoso-Aguilar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - J. Fonseca-Campos
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av Instituto Politécnico Nacional, Gustavo A. Madero, 07340, Mexico
| |
Collapse
|
24
|
Di Cesare A, Sathicq MB, Sbaffi T, Sabatino R, Manca D, Breider F, Coudret S, Pinnell LJ, Turner JW, Corno G. Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. MARINE POLLUTION BULLETIN 2024; 203:116495. [PMID: 38759465 DOI: 10.1016/j.marpolbul.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Maria Belen Sathicq
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) CONICET-UNLP, Bv. 120 y 62 n1437, La Plata, Buenos Aires, Argentina
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Dario Manca
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Sylvain Coudret
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
25
|
Jacquin J, Budinich M, Chaffron S, Barbe V, Lombard F, Pedrotti ML, Gorsky G, Ter Halle A, Bruzaud S, Kedzierski M, Ghiglione JF. Niche partitioning and plastisphere core microbiomes in the two most plastic polluted zones of the world ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41118-41136. [PMID: 38844633 DOI: 10.1007/s11356-024-33847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e., the North Pacific gyre and the Mediterranean Sea. The 16S rRNA gene sequencing analysis confirmed that PMD are a new anthropogenic ocean habitat for marine microbes at the ocean-basin-scale, with clear niche partitioning compared to FL and PA lifestyles. At an ocean-basin-scale, the composition of the plastisphere communities was mainly driven by environmental selection, rather than polymer types or dispersal effect. A plastisphere "core microbiome" could be identified, mainly dominated by Rhodobacteraceae and Cyanobacteria. Predicted functions indicated the dominance of carbon, nitrogen and sulfur metabolisms on PMD that open new questions on the role of the plastisphere in a large number of important ecological processes in the marine ecosystem.
Collapse
Affiliation(s)
- Justine Jacquin
- UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, 1 Avenue Fabre, 66650, Banyuls Sur Mer, France
| | - Marko Budinich
- Laboratoire Adaptation Et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
- École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes Université, F-44000, Nantes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Fabien Lombard
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Maria-Luiza Pedrotti
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Gabriel Gorsky
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Alexandra Ter Halle
- Laboratoire SOFMAT, CNRS, Université de Toulouse III-Paul Sabatier, UMR 5623, Toulouse, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Mikaël Kedzierski
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Jean-François Ghiglione
- UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, 1 Avenue Fabre, 66650, Banyuls Sur Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
| |
Collapse
|
26
|
Forero-López AD, Poza AM, Colombo CV, Morales-Pontet NG, Rimondino GN, Toniolo MA, Malanca FE, Botté SE. Chemical analysis of marine microdebris pollution in macroalgae from the coastal areas of Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171390. [PMID: 38438044 DOI: 10.1016/j.scitotenv.2024.171390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Marine microdebris (MDs, <5 mm) and mesodebris (MesDs, 5-25 mm), consist of various components, including microplastics (MPs), antifouling or anticorrosive paint particles (APPs), and metallic particles (Mmps), among others. The accumulation of these anthropogenic particles in macroalgae could have significant implications within coastal ecosystems because of the role of macroalgae as primary producers and their subsequent transfer within the trophic chain. Therefore, the objectives of this study were to determine the abundance of MDs and MesDs pollution in different species of macroalgae (P. morrowii, C. rubrum, Ulva spp., and B. minima) and in surface waters from the Southwest Atlantic coast of Argentina to evaluate the ecological damage. MDs and MesDs were chemically characterized using μ-FTIR and SEM/EDX to identify, and assess their environmental impact based on their composition and degree of pollution by MPs, calculating the Polymer Hazard Index (PHI). The prevalence of MDs was higher in foliose species, followed by filamentous and tubular ones, ranging from 0 to 1.22 items/g w.w. for MPs and 0 to 0.85 items/g w.w. for APPs. It was found that macroalgae accumulate a higher proportion of high-density polymers like PAN and PES, as well as APPs based on alkyd, PMMA, and PE resins, whereas a predominance of CE was observed in surrounding waters. Potentially toxic elements, such as Cr, Cu, and Ti, were detected in APPs and MPs, along with the presence of epiplastic communities on the surface of APPs. According to PHI, the presence of high hazard score polymers, such as PAN and PA, increased the overall risk of MP pollution in macroalgae compared to surrounding waters. This study provided a baseline for MDs and MesDs abundance in macroalgae as well as understanding the environmental impact of this debris and their bioaccumulation in the primary link of the coastal trophic chain.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina.
| | - A M Poza
- Centro i∼mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile.
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - N G Morales-Pontet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M A Toniolo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Geología, Universidad Nacional del Sur (UNS), San Juan 670, B8000CPB Bahía Blanca, Argentina
| | - F E Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - S E Botté
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Argentina
| |
Collapse
|
27
|
Barbe V, Jacquin J, Bouzon M, Wolinski A, Derippe G, Cheng J, Cruaud C, Roche D, Fouteau S, Petit JL, Conan P, Pujo-Pay M, Bruzaud S, Ghiglione JF. Bioplastic degradation and assimilation processes by a novel bacterium isolated from the marine plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133573. [PMID: 38306834 DOI: 10.1016/j.jhazmat.2024.133573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source. The likely entire metabolic pathway specifically expressed by this bacterium grown on PHBV matrices was shown by further genomic and transcriptomic analysis. In addition to a gene coding for a probable secreted depolymerase, a gene cluster was located that encodes characteristic enzymes involved in the complete depolymerization of PHBV, the transport of oligomers, and in the conversion of the monomers into intermediates of central carbon metabolism. The transcriptomic experiments showed the activation of the glyoxylate shunt during PHBV degradation, setting the isocitrate dehydrogenase activity as regulated branching point of the carbon flow entering the tricarboxylic acid cycle. Our study also shows the potential of exploring the natural plastisphere to discover new bacteria with promising metabolic capabilities.
Collapse
Affiliation(s)
- Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Justine Jacquin
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Adèle Wolinski
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Gabrielle Derippe
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France; Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, UMR CNRS 6027, Rue Saint Maudé, Lorient, France
| | - Jingguang Cheng
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pascal Conan
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Mireille Pujo-Pay
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, UMR CNRS 6027, Rue Saint Maudé, Lorient, France
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France.
| |
Collapse
|
28
|
Kim H, Yoo K. Marine plastisphere selectively enriches microbial assemblages and antibiotic resistance genes during long-term cultivation periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123450. [PMID: 38280464 DOI: 10.1016/j.envpol.2024.123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Several studies have focused on identifying and quantifying suspended plastics in surface and subsurface seawater. Microplastics (MPs) have attracted attention as carriers of antibiotic resistance genes (ARGs) in the marine environment. Plastispheres, specific biofilms on MP, can provide an ideal niche to spread more widely through horizontal gene transfer (HGT), thereby increasing risks to ecosystems and human health. However, the microbial communities formed on different plastic types and ARG abundances during exposure time in natural marine environments remain unclear. Four types of commonly used MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) were periodically cultured (46, 63, and 102 d) in a field-based marine environment to study the co-selection of ARGs and microbial communities in marine plastispheres. After the first 63 d of incubation (p < 0.05), the initial 16S rRNA gene abundance of microorganisms in the plastisphere increased significantly, and the biomass subsequently decreased. These results suggest that MPs can serve as vehicles for various microorganisms to travel to different environments and eventually provide a niche for a variety of microorganisms. Additionally, the qPCR results showed that MPs selectively enriched ARGs. In particular, tetA, tetQ, sul1, and qnrS were selectively enriched in the PVC-MPs. The abundances of intl1, a mobile genetic element, was measured in all MP types for 46 d (5.22 × 10-5 ± 8.21 × 10-6 copies/16s rRNA gene copies), 63 d (5.90 × 10-5 ± 2.49 × 10-6 copies/16s rRNA gene copies), and 102 d (4.00 × 10-5 ± 5.11 × 10-6 copies/16s rRNA gene copies). Network analysis indicated that ARG profiles co-occurred with key biofilm-forming bacteria. This study suggests that the selection of ARGs and their co-occurring bacteria in MPs could potentially accelerate their transmission through HGT in natural marine plastics.
Collapse
Affiliation(s)
- Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
29
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
30
|
Ou D, Ni Y, Li W, He W, Wang L, Huang H, Pan Z. Psychrobacter species enrichment as potential microplastic degrader and the putative biodegradation mechanism in Shenzhen Bay sediment, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132971. [PMID: 37956562 DOI: 10.1016/j.jhazmat.2023.132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental concern due to its ubiquity and longevity. Biodegradation of MPs has garnered significant attention in combatting global MP contamination. This study focused on MPs within sediments near the sewage outlet of Shenzhen Bay. The objective was to elucidate the microbial communities in sediments with varying MPs, particularly those with high MP loads, and to identify microorganisms associated with MP degradation. The results revealed varying MP abundance, ranging from 211 to 4140 items kg-1 dry weight (d. w.), with the highest concentration observed near the outfall. Metagenomic analysis confirmed the enrichment of Psychrobacter species in sediments with high MP content. Psychrobacter accounted for ∼16.71% of the total bacterial community and 41.71% of hydrocarbon degrading bacteria at the S3 site, exhibiting a higher abundance than at other sampling sites. Psychrobacter contributed significantly to bacterial function at S3, as evidenced by the Kyoto Encyclopedia of Genes and Genomes pathway and enzyme analysis. Notably, 28 enzymes involved in MP biodegradation were identified, predominantly comprising oxidoreductases, hydrolases, transferases, ligases, lyases, and isomerases. We propose a putative mechanism for MP biodegradation, involving the breakdown of long-chain plastic polymers and subsequent oxidation of short-chain oligomers, ultimately leading to thorough mineralization.
Collapse
Affiliation(s)
- Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, PR China
| | - Yue Ni
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Institute for Advanced Studies, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603 Kuala Lumpur, Malaysia
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.
| |
Collapse
|
31
|
Wu Z, Sun J, Xu L, Zhou H, Cheng H, Chen Z, Wang Y, Yang J. Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132921. [PMID: 37944228 DOI: 10.1016/j.jhazmat.2023.132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Microplastics have become one of the hot concerns of global marine pollution. In recent years, diversity and abiotic influence factors of plastisphere microbial communities were well documented, but our knowledge of their assembly mechanisms and co-occurrence patterns remains unclear, especially the effects of depth on them. Here, we collected microorganisms on microplastics to investigate how ocean depth affects on microbial diversity, community composition, assembly processes and co-occurrence patterns. Our results indicated that there were similar microbial richness and community compositions but microbial evenness and unique microbes were obviously different in different ocean layers. Our findings also demonstrated that deterministic processes played dominant roles in the assembly of the mesopelagic plastisphere microbial communities, while the bathypelagic microbial community assembly was mainly shaped by stochastic processes. In addition, the co-occurrence networks suggested that the relationships between microorganisms in the mesopelagic layer were more complex and stable than those in the bathypelagic layer. Simultaneously, we also found that Proteobacteria and Actinobacteriota were the most abundant keystones which played important roles in microbial co-occurrence networks at both layers. This study enhanced our understanding of microbial diversity, assembly mechanism, and co-occurrence pattern on plastisphere surfaces, and provided useful insights into microorganisms capable of degrading plastics and microbial remediation.
Collapse
Affiliation(s)
- Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Liting Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| |
Collapse
|
32
|
Derippe G, Philip L, Lemechko P, Eyheraguibel B, Meistertzheim AL, Pujo-Pay M, Conan P, Barbe V, Bruzaud S, Ghiglione JF. Marine biodegradation of tailor-made polyhydroxyalkanoates (PHA) influenced by the chemical structure and associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132782. [PMID: 37856958 DOI: 10.1016/j.jhazmat.2023.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Over recent years, biodegradable polymers have been proposed to reduce environmental impacts of plastics for specific applications. The production of polyhydroxyalkanoates (PHA) by using diverse carbon sources provides further benefits for the sustainable development of biodegradable plastics. Here, we present the first study evaluating the impact of physical, chemical and biological factors driving the biodegradability of various tailor-made PHAs in the marine environment. Our multidisciplinary approach demonstrated that the chemical structure of the polymer (i.e. the side chain size for short- vs. medium-chain PHA) which was intrinsically correlated to the physico-chemical properties, together with the specificity of the biofilm growing on plastic films (i.e., the associated 'plastisphere') were the main drivers of the PHA biodegradation in the marine environment.
Collapse
Affiliation(s)
- Gabrielle Derippe
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Léna Philip
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France
| | - Pierre Lemechko
- Institut Régional des Matériaux Avancés (IRMA), 2 all. Copernic, 56270 Ploemeur, France
| | - Boris Eyheraguibel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), Clermont- Ferrand, France
| | | | - Mireille Pujo-Pay
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Pascal Conan
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France.
| |
Collapse
|
33
|
Zhang W, Liang S, Grossart HP, Christie-Oleza JA, Gadd GM, Yang Y. Convergence effect during spatiotemporal succession of lacustrine plastisphere: loss of priority effects and turnover of microbial species. ISME COMMUNICATIONS 2024; 4:ycae056. [PMID: 38711932 PMCID: PMC11073396 DOI: 10.1093/ismeco/ycae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Succession is a fundamental aspect of ecological theory, but studies on temporal succession trajectories and ecological driving mechanisms of plastisphere microbial communities across diverse colonization environments remain scarce and poorly understood. To fill this knowledge gap, we assessed the primary colonizers, succession trajectories, assembly, and turnover mechanisms of plastisphere prokaryotes and eukaryotes from four freshwater lakes. Our results show that differences in microbial composition similarity, temporal turnover rate, and assembly processes in the plastisphere do not exclusively occur at the kingdom level (prokaryotes and eukaryotes), but also depend on environmental conditions and colonization time. Thereby, the time of plastisphere colonization has a stronger impact on community composition and assembly of prokaryotes than eukaryotes, whereas for environmental conditions, the opposite pattern holds true. Across all lakes, deterministic processes shaped the assembly of the prokaryotes, but stochastic processes influenced that of the eukaryotes. Yet, they share similar assembly processes throughout the temporal succession: species turnover over time causes the loss of any priority effect, which leads to a convergent succession of plastisphere microbial communities. The increase and loss of microbial diversity in different kingdoms during succession in the plastisphere potentially impact the stability of entire microbial communities and related biogeochemical cycles. Therefore, research needs to integrate temporal dynamics along with spatial turnovers of the plastisphere microbiome. Taking the heterogeneity of global lakes and the diversity of global climate patterns into account, we highlight the urgency to investigate the spatiotemporal succession mechanism of plastisphere prokaryotes and eukaryotes in more lakes around the world.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Hans-Peter Grossart
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany
- Institute for Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | | | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
34
|
Taipale SJ, Vesamäki J, Kautonen P, Kukkonen JVK, Biasi C, Nissinen R, Tiirola M. Biodegradation of microplastic in freshwaters: A long-lasting process affected by the lake microbiome. Environ Microbiol 2023; 25:2669-2680. [PMID: 36054230 DOI: 10.1111/1462-2920.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Plastics have been produced for over a century, but definitive evidence of complete plastic biodegradation in different habitats, particularly freshwater ecosystems, is still missing. Using 13 C-labelled polyethylene microplastics (PE-MP) and stable isotope analysis of produced gas and microbial membrane lipids, we determined the biodegradation rate and fate of carbon in PE-MP in different freshwater types. The biodegradation rate in the humic-lake waters was much higher (0.45% ± 0.21% per year) than in the clear-lake waters (0.07% ± 0.06% per year) or the artificial freshwater medium (0.02% ± 0.02% per year). Complete biodegradation of PE-MP was calculated to last 100-200 years in humic-lake waters, 300-4000 years in clear-lake waters, and 2000-20,000 years in the artificial freshwater medium. The concentration of 18:1ω7, characteristic phospholipid fatty acid in Alpha- and Gammaproteobacteria, was a predictor of faster biodegradation of PE. Uncultured Acetobacteraceae and Comamonadaceae among Alpha- and Gammaproteobacteria, respectively, were major bacteria related to the biodegradation of PE-MP. Overall, it appears that microorganisms in humic lakes with naturally occurring refractory polymers are more adept at decomposing PE than those in other waters.
Collapse
Affiliation(s)
- Sami J Taipale
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi Vesamäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Petra Kautonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi V K Kukkonen
- Department of Environmental and Biological Science, University of Eastern Finland, Finland
| | - Christina Biasi
- Department of Environmental and Biological Science, University of Eastern Finland, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
35
|
He Z, Li Q, Xu Y, Zhang D, Pan X. Production of extracellular superoxide radical in microorganisms and its environmental implications: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122563. [PMID: 37717891 DOI: 10.1016/j.envpol.2023.122563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
36
|
Dudek KL, Neuer S. Environmental exposure more than plastic composition shapes marine microplastic-associated bacterial communities in Pacific versus Caribbean field incubations. Environ Microbiol 2023; 25:2807-2821. [PMID: 37899673 DOI: 10.1111/1462-2920.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Microplastics have arisen as a global threat to marine ecosystems. In this study, we explored the role that plastic polymer type, incubation time and geographic location have on shaping the microbial community adhered to the microplastics, termed the plastisphere. We performed detailed bacterial plastisphere community analyses on microplastics of six different household plastic polymers, serving as proxies of secondary microplastics, incubated for 6 weeks in coastal Pacific waters. These bacterial communities were compared to the plastisphere communities grown on identical microplastic particles incubated in the coastal Caribbean Sea at Bocas del Toro, Panama. Ribosomal gene sequencing analyses revealed that bacterial community composition did not exhibit a significant preference for plastic type at either site but was instead driven by the incubation time and geographic location. We identified a 'core plastisphere' composed of 57 amplicon sequence variants common to all plastic types, incubation times and locations, with possible synergies between taxa. This study contributes to our understanding of the importance of geography in addition to exposure time, in the composition of the plastisphere.
Collapse
Affiliation(s)
- Kassandra L Dudek
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Susanne Neuer
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
- School of Ocean Futures, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
37
|
Yang Y, Suyamud B, Liang S, Liang X, Wan W, Zhang W. Distinct spatiotemporal succession of bacterial generalists and specialists in the lacustrine plastisphere. Environ Microbiol 2023; 25:2746-2760. [PMID: 37190986 DOI: 10.1111/1462-2920.16400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.
Collapse
Affiliation(s)
- Yuyi Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Bongkotrat Suyamud
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Science, Tibet University, Lhasa, China
| | - Xinjin Liang
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
38
|
Ibrahim IA, Rawindran H, Alam MM, Leong WH, Sahrin NT, Ng HS, Chan YJ, Abdelfattah EA, Lim JW, Aliyu US, Khoo KS. Mitigating persistent organic pollutants from marine plastics through enhanced recycling: A review. ENVIRONMENTAL RESEARCH 2023; 240:117533. [PMID: 39491103 DOI: 10.1016/j.envres.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
The escalating crisis of marine plastic waste pose threats to the marine ecosystems. Statistics revealed that a staggering 8 MMT of plastic inundates the marine atmosphere annually. This review delves into a pivotal aspect of this issue, examining the release of additives like brominated flame retardants, phthalates, and bisphenol A from plastic into the environment. It also underscores the concealed chemical hazards plastic introduces to the marine ecosystem's air, water, and sediment. As plastic degrades and breaks down, it generates microplastics and nanoplastics, exacerbating the widespread detrimental effects on marine life and even affecting terrestrial ecosystems, imperiling the overall health and stability of various organisms. While mechanical recycling, chemical recycling, and dissolution-reprecipitation demonstrated potential in addressing marine plastic debris, further research and development are needed to surmount associated challenges to increase the efficiency of current recycling method. This comprehensive review elaborates on the current fate and consequences associated with plastic pollution in marine environments. It emphasizes the urgent need for initiatives to confront this imminent ecological crisis, accentuating the necessity of protecting the marine environment and their delicate ecosystems from the pervasive threat of plastic waste.
Collapse
Affiliation(s)
- Ily Asilah Ibrahim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Wai Hong Leong
- Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eman Alaaeldin Abdelfattah
- Assistant Professor at Entomology Department, Faculty of Science, Cairo University, Manager of Industrial Entomology Project, Egypt
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Umar Sa'ad Aliyu
- Department of Physics, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
39
|
Zheng Z, Huang Y, Liu L, Wang L, Tang J. Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132099. [PMID: 37517232 DOI: 10.1016/j.jhazmat.2023.132099] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
40
|
Singleton SL, Davis EW, Arnold HK, Daniels AMY, Brander SM, Parsons RJ, Sharpton TJ, Giovannoni SJ. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front Microbiol 2023; 14:1259014. [PMID: 37869676 PMCID: PMC10585116 DOI: 10.3389/fmicb.2023.1259014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Plastic waste accumulation in marine environments has complex, unintended impacts on ecology that cross levels of community organization. To measure succession in polyolefin-colonizing marine bacterial communities, an in situ time-series experiment was conducted in the oligotrophic coastal waters of the Bermuda Platform. Our goals were to identify polyolefin colonizing taxa and isolate bacterial cultures for future studies of the biochemistry of microbe-plastic interactions. HDPE, LDPE, PP, and glass coupons were incubated in surface seawater for 11 weeks and sampled at two-week intervals. 16S rDNA sequencing and ATR-FTIR/HIM were used to assess biofilm community structure and chemical changes in polymer surfaces. The dominant colonizing taxa were previously reported cosmopolitan colonizers of surfaces in marine environments, which were highly similar among the different plastic types. However, significant differences in rare community composition were observed between plastic types, potentially indicating specific interactions based on surface chemistry. Unexpectedly, a major transition in community composition occurred in all material treatments between days 42 and 56 (p < 0.01). Before the transition, Alteromonadaceae, Marinomonadaceae, Saccharospirillaceae, Vibrionaceae, Thalassospiraceae, and Flavobacteriaceae were the dominant colonizers. Following the transition, the relative abundance of these taxa declined, while Hyphomonadaceae, Rhodobacteraceae and Saprospiraceae increased. Over the course of the incubation, 8,641 colonizing taxa were observed, of which 25 were significantly enriched on specific polyolefins. Seven enriched taxa from families known to include hydrocarbon degraders (Hyphomonadaceae, Parvularculaceae and Rhodobacteraceae) and one n-alkane degrader (Ketobacter sp.). The ASVs that exhibited associations with specific polyolefins are targets of ongoing investigations aimed at retrieving plastic-degrading microbes in culture.
Collapse
Affiliation(s)
| | - Edward W. Davis
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Holly K. Arnold
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, United States
| | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
41
|
Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, Nelson K, Majumder ELW, Huber GW. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem Rev 2023; 123:9915-9939. [PMID: 37470246 DOI: 10.1021/acs.chemrev.2c00876] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Zheng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Microbiology Doctoral Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Klier
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kevin Nelson
- Amcor, Neenah Innovation Center, Neenah, Wisconsin 54956, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Yokoyama D, Takamura A, Tsuboi Y, Kikuchi J. Large-scale omics dataset of polymer degradation provides robust interpretation for microbial niche and succession on different plastisphere. ISME COMMUNICATIONS 2023; 3:67. [PMID: 37400632 PMCID: PMC10317964 DOI: 10.1038/s43705-023-00275-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
While biodegradable polymers have received increased attention due to the recent marine plastic problem, few studies have compared microbiomes and their degradation processes among biodegradable polymers. In this study, we set up prompt evaluation systems for polymer degradation, allowing us to collect 418 microbiome and 125 metabolome samples to clarify the microbiome and metabolome differences according to degradation progress and polymer material (polycaprolactone [PCL], polybutylene succinate-co-adipate [PBSA], polybutylene succinate [PBS], polybutylene adipate-co-terephthalate [PBAT], and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [PHBH]). The microbial community compositions were converged to each polymer material, and the largest differences were observed between PHBH and other polymers. Such gaps were probably formed primarily by the presence of specific hydrolase genes (i.e., 3HB depolymerase, lipase, and cutinase) in the microorganisms. Time-series sampling suggested several steps for microbial succession: (1) initial microbes decrease abruptly after incubation starts; (2) microbes, including polymer degraders, increase soon after the start of incubation and show an intermediate peak; (3) microbes, including biofilm constructers, increase their abundance gradually. Metagenome prediction showed functional changes, where free-swimming microbes with flagella adhered stochastically onto the polymer, and certain microbes started to construct a biofilm. Our large-dataset-based results provide robust interpretations for biodegradable polymer degradation.
Collapse
Affiliation(s)
- Daiki Yokoyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayari Takamura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-0810, Japan.
| |
Collapse
|
43
|
Chen B, Zhang Z, Wang T, Hu H, Qin G, Lu T, Hong W, Hu J, Penuelas J, Qian H. Global distribution of marine microplastics and potential for biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131198. [PMID: 36921415 DOI: 10.1016/j.jhazmat.2023.131198] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are a growing marine environmental concern globally due to their high abundance and persistent degradation. We created a global map for predicting marine microplastic pollution using a machine-learning model based on 9445 samples and found that microplastics converged in zones of accumulation in subtropical gyres and near polar seas. The predicted global potential for the biodegradation of microplastics in 1112 metagenome-assembled genomes from 485 marine metagenomes indicated high potential in areas of high microplastic pollution, such as the northern Atlantic Ocean and the Mediterranean Sea. However, the limited number of samples hindered our prediction, a priority issue that needs to be addressed in the future. We further identified hosts with microplastic degradation genes (MDGs) and found that Proteobacteria accounted for a high proportion of MDG hosts, mainly Alphaproteobacteria and Gammaproteobacteria, with host-specific patterns. Our study is essential for raising awareness, identifying areas with microplastic pollution, providing a prediction method of machine learning to prioritize surveillance, and identifying the global potential of marine microbiomes to degrade microplastics, providing a reference for selecting bacteria that have the potential to degrade microplastics for further applied research.
Collapse
Affiliation(s)
- Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenjie Hong
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China
| | - Jun Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
44
|
Bitalac JMS, Lantican NB, Gomez NCF, Onda DFL. Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131124. [PMID: 36871466 DOI: 10.1016/j.jhazmat.2023.131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plastics released in the environment become suitable matrices for microbial attachment and colonization. Plastics-associated microbial communities interact with each other and are metabolically distinct from the surrounding environment. However, pioneer colonizing species and their interaction with the plastic during initial colonization are less described. Marine sediment bacteria from sites in Manila Bay were isolated via a double selective enrichment method using sterilized low-density polyethylene (LDPE) sheets as the sole carbon source. Ten isolates were identified to belong to the genera Halomonas, Bacillus, Alteromonas, Photobacterium, and Aliishimia based on 16S rRNA gene phylogeny, and majority of the taxa found exhibit a surface-associated lifestyle. Isolates were then tested for their ability to colonize polyethylene (PE) through co-incubation with LDPE sheets for 60 days. Growth of colonies in crevices, formation of cell-shaped pits, and increased roughness of the surface indicate physical deterioration. Fourier-transform infrared (FT-IR) spectroscopy revealed significant changes in the functional groups and bond indices on LDPE sheets separately co-incubated with the isolates, demonstrating that different species potentially target different substrates of the photo-oxidized polymer backbone. Understanding the activity of primo-colonizing bacteria on the plastic surface can provide insights on the possible mechanisms used to make plastic more bioavailable for other species, and their implications on the fate of plastics in the marine environment.
Collapse
Affiliation(s)
- Justine Marey S Bitalac
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines; Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Nacita B Lantican
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Norchel Corcia F Gomez
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines; Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Deo Florence L Onda
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines.
| |
Collapse
|
45
|
Marín A, Feijoo P, de Llanos R, Carbonetto B, González-Torres P, Tena-Medialdea J, García-March JR, Gámez-Pérez J, Cabedo L. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison between PHBV and PLA. Microorganisms 2023; 11:1461. [PMID: 37374962 DOI: 10.3390/microorganisms11061461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biodegradable polymers offer a potential solution to marine pollution caused by plastic waste. The marine biofilms that formed on the surfaces of poly(lactide acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied. Bioplastics were exposed for 6 months to marine conditions in the Mediterranean Sea, and the biofilms that formed on their surfaces were assessed. The presence of specific PLA and PHBV degraders was also studied. PHBV showed extensive areas with microbial accumulations and this led to higher microbial surface densities than PLA (4.75 vs. 5.16 log CFU/cm2). Both polymers' surfaces showed a wide variety of microbial structures, including bacteria, fungi, unicellular algae and choanoflagellates. A high bacterial diversity was observed, with differences between the two polymers, particularly at the phylum level, with over 70% of bacteria affiliated to three phyla. Differences in metagenome functions were also detected, revealing a higher presence of proteins involved in PHBV biodegradation in PHBV biofilms. Four bacterial isolates belonging to the Proteobacteria class were identified as PHBV degraders, demonstrating the presence of species involved in the biodegradation of this polymer in seawater. No PLA degraders were detected, confirming its low biodegradability in marine environments. This was a pilot study to establish a baseline for further studies aimed at comprehending the marine biodegradation of biopolymers.
Collapse
Affiliation(s)
- Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Patricia Feijoo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Rosa de Llanos
- MicroBIO, Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Belén Carbonetto
- Microomics Systems S.L., IIB Sant Pau, C/Sant Quintí, 77-79, 08041 Barcelona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José R García-March
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| |
Collapse
|
46
|
Sérvulo T, Taylor JD, Proietti MC, Rodrigues LDS, Puertas IP, Barutot RA, Lacerda ALDF. Plastisphere composition in a subtropical estuary: Influence of season, incubation time and polymer type on plastic biofouling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121873. [PMID: 37244532 DOI: 10.1016/j.envpol.2023.121873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Plastics are abundant artificial substrates in aquatic systems that host a wide variety of organisms (the plastisphere), including potential pathogens and invasive species. Plastisphere communities have many complex, but not well-understood ecological interactions. It is pivotal to investigate how these communities are influenced by the natural fluctuations in aquatic ecosystems, especially in transitional environments such as estuaries. Further study is needed in sub-tropical regions in the Southern Hemisphere, where plastic pollution is ever increasing. Here we applied DNA-metabarcoding (16S, 18S and ITS-2) as well Scanning Electron Microscopy (SEM) to assess the diversity of the plastisphere in the Patos Lagoon estuary (PLE), South Brazil. Through a one-year in situ colonization experiment, polyethylene (PE) and polypropylene (PP) plates were placed in shallow waters, and sampled after 30 and 90 days within each season. Over 50 taxa including bacteria, fungi and other eukaryotes were found through DNA analysis. Overall, the polymer type did not influence the plastisphere community composition. However, seasonality significantly affected community composition for bacteria, fungi and general eukaryotes. Among the microbiota, we found Acinetobacter sp., Bacillus sp., and Wallemia mellicola that are putative pathogens of aquatic organisms, such as algae, shrimp and fish, including commercial species. In addition, we identified organisms within genera that can potentially degrade hydrocarbons (e.g. Pseudomonas and Cladosporium spp). This study is the first to assess the full diversity and variation of the plastisphere on different polymers within a sub-tropical southern hemisphere estuary, significantly expanding knowledge on plastic pollution and the plastisphere in estuarine regions.
Collapse
Affiliation(s)
- Tobias Sérvulo
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.
| | - Joe D Taylor
- UK Centre for Ecology and Hydrology, Wallingford, UK
| | - Maíra C Proietti
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Lucas D S Rodrigues
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Igor P Puertas
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Roberta A Barutot
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Ana L D F Lacerda
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
47
|
Zhou Q, Zhang J, Fang Q, Zhang M, Wang X, Zhang D, Pan X. Microplastic biodegradability dependent responses of plastisphere antibiotic resistance to simulated freshwater-seawater shift in onshore marine aquaculture zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121828. [PMID: 37187278 DOI: 10.1016/j.envpol.2023.121828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
MPs carrying ARGs can travel between freshwater and seawater due to intensive land-sea interaction in onshore marine aquaculture zones (OMAZ). However, the response of ARGs in plastisphere with different biodegradability to freshwater-seawater shift is still unknown. In this study, ARG dynamics and associated microbiota on biodegradable poly (butyleneadipate-co-terephthalate) (PBAT) and non-biodegradable polyethylene terephthalate (PET) MPs were investigated through a simulated freshwater-seawater shift. The results exhibited that freshwater-seawater shift significantly influenced ARG abundance in plastisphere. The relative abundance of most studied ARGs decreased rapidly in plastisphere after they entered seawater from freshwater but increased on PBAT after MPs entered freshwater from seawater. Besides, the high relative abundance of multi-drug resistance (MDR) genes occurred in plastisphere, and the co-change between most ARGs and mobile genetic elements indicated the role of horizontal gene transfer on ARG regulation. Proteobacteria was dominant phylum in plastisphere and the dominant genera, such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Afipia, Gemmobacter and Enhydrobacter, were significantly associated with qnrS, tet and MDR genes in plastisphere. Moreover, after MPs entered new water environment, the ARGs and microbiota genera in plastisphere changed significantly and tended to converge with those in receiving water. These results indicated that MP biodegradability and freshwater-seawater interaction influenced potential hosts and distributions of ARGs, of which biodegradable PBAT posed a high risk in ARG dissemination. This study would be helpful for understanding the impact of biodegradable MP pollution on spread of antibiotic resistance in OMAZ.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
48
|
Ghiglione JF, Barbe V, Bruzaud S, Burgaud G, Cachot J, Eyheraguibel B, Lartaud F, Ludwig W, Meistertzheim AL, Paul-Pont I, Pesant S, Ter Halle A, Thiebeauld O. Mission Tara Microplastics: a holistic set of protocols and data resources for the field investigation of plastic pollution along the land-sea continuum in Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26883-9. [PMID: 37140856 DOI: 10.1007/s11356-023-26883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.
Collapse
Affiliation(s)
- Jean-François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC)/UMR 7621, Observatoire Océanologique de Banyuls, Laboratoire d'Océanographie Microbienne, 1 Avenue Fabre, F-66650, Banyuls sur mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France.
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, IRDL, Université Bretagne Sud, 56100, Lorient, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, 29280, Plouzané, France
| | - Jérôme Cachot
- Université Bordeaux, EPOC CNRS, EPHE, Université de Bordeaux, UMR 5805, 33600, Pessac, France
| | - Boris Eyheraguibel
- CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, Clermont-Ferrand, France
| | - Franck Lartaud
- CNRS, Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB)/UMR 8222, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Wolfgang Ludwig
- CEFREM, UMR 5110, University of Perpignan - CNRS, 66860, Perpignan Cedex, France
| | | | - Ika Paul-Pont
- Ifremer, CNRS, IRD, LEMAR, Univ Brest, F-29280, Plouzané, France
| | - Stéphane Pesant
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alexandra Ter Halle
- CNRS, Laboratoire des InteractionsMoléculaires EtRéactivité Chimique Et Photochimique (IMRCP), UMR 5623, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
49
|
Sciscione F, Hailes HC, Miodownik M. The performance and environmental impact of pro-oxidant additive containing plastics in the open unmanaged environment-a review of the evidence. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230089. [PMID: 37181792 PMCID: PMC10170345 DOI: 10.1098/rsos.230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Pro-oxidant additive containing (PAC) plastics is a term that describes a growing number of plastics which are designed to degrade in the unmanaged natural environment (open-air, soil, aquatic) through oxidation and other processes. It is a category that includes 'oxo-degradable' plastics, 'oxo-biodegradable' plastics and those containing 'biotransformation' additives. There is evidence that a new standard PAS 9017 : 2020 is relevant to predicting the timescale for abiotic degradation of PAC plastic in hot dry climates under ideal conditions (data reviewed for South of France and Florida). There are no reliable data to date to show that the PAS 9017 : 2020 predicts the timescale for abiotic degradation of PAC plastics in cool or wet climatic regions such as the UK or under less ideal conditions (soil burial, surface soiling etc.). Most PAC plastics studied in the literature showed biodegradability values in the range 5-60% and would not pass the criteria for biodegradability set in the new PAS 9017 : 2020. Possible formation of microplastics and cross-linking have been highlighted both by field studies and laboratory studies. Systematic eco-toxicity studies are needed to assess the possible effect of PAC additives and microplastics on the environment and biological organisms.
Collapse
Affiliation(s)
- Fabiola Sciscione
- UCL Plastic Waste Innovation Hub, University College London, London, UK
- Department of Chemistry, University College London, 20 Gordon Street, London, UK
| | - Helen C. Hailes
- UCL Plastic Waste Innovation Hub, University College London, London, UK
- Department of Chemistry, University College London, 20 Gordon Street, London, UK
| | - Mark Miodownik
- UCL Plastic Waste Innovation Hub, University College London, London, UK
- Mechanical Engineering Department, University College London, London, UK
| |
Collapse
|
50
|
Citterich F, Lo Giudice A, Azzaro M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth's poles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161847. [PMID: 36709890 DOI: 10.1016/j.scitotenv.2023.161847] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is of great environmental concern. MPs have been found all over the Earth, including in the poles, which is indicative for the important threat they constitute. Yet, while the ocean is object of major interest, the data available in the literature about MP pollution in the freshwaters of the Earth's poles are still limited. Here, we review the current knowledge of MP pollution in the freshwaters of the Arctic, Antarctica and Third Pole, and we assess its ecological implications. This review highlights the presence of MPs in the lakes, rivers, snow, and glaciers of the investigated sites, questions the transport patterns through which MPs reach these remote areas, and illustrates that MP pollution is a real problem not only in marine systems, but also in the freshwater environments of the Earth's poles. MPs can indeed be ingested by animals and can physically damage their digestive tracts, as well as escalate the trophic levels. MPs can also alter microbial communities by serving as surfaces onto which microbes can grow and develop, and can enhance ice melting when trapped in glaciers. Hence, considered the limited data available, we encourage more research on the theme.
Collapse
Affiliation(s)
- Federico Citterich
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maurizio Azzaro
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| |
Collapse
|