1
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. eLife 2025; 13:RP98409. [PMID: 39819645 PMCID: PMC11741522 DOI: 10.7554/elife.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| | - Scot P Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| |
Collapse
|
2
|
Karlsson PA, Wänn M, Wang H, Falk L, Herrmann B. Highly viable gastrointestinal Chlamydia trachomatis in women abstaining from receptive anal intercourse. Sci Rep 2025; 15:1641. [PMID: 39794438 PMCID: PMC11724036 DOI: 10.1038/s41598-025-85297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Chlamydia trachomatis (CT) may employ persistence to evade antimicrobial clearance, possibly residing in the gastrointestinal tract. This study assessed the reliability of droplet digital PCR (ddPCR) in CT detection, its functionality in viability assessment, and predictions on CT transmission dynamics by combining viability PCR (vPCR) and clinical data from 52 infected women. The ddPCR showed 94% positive and 100% negative agreement with Abbott Alinity STI-M for endocervical samples, and 92% positive and 87% negative agreement in rectal samples. Viability was higher in endocervical samples (89.1%) than in rectal samples (69.4%). Samples from participants not engaging in anal intercourse, and with non-concordant multi-locus sequence typing between rectum and endocervix, had on average the highest viability in rectum, indicating a persistent population residing in the gastrointestinal tract. This study demonstrates the effectiveness of ddPCR in detecting CT, especially in samples with high inhibition or low bacterial load, suggesting its superiority over quantitative real-time PCR. These findings support that rectal CT infection can occur independently of anal intercourse, possibly through vaginorectal contamination or oral routes. High rectal CT viability, independent of endocervical infection, indicates potential gastrointestinal establishment. Understanding CT dynamics in various infection sites can provide insights into the epidemiology and pathogenesis of CT.
Collapse
Affiliation(s)
- Philip A Karlsson
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Infections and Immunity, Uppsala University, Uppsala, Sweden
| | - Mimmi Wänn
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Infections and Immunity, Uppsala University, Uppsala, Sweden
| | - Lars Falk
- Department of Dermatology and Venereology, Linköping University Hospital, Linköping, Sweden
| | - Björn Herrmann
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Jensen AA, Firdous S, Lei L, Fisher DJ, Ouellette SP. Overexpressing the ClpC AAA+ unfoldase accelerates developmental cycle progression in Chlamydia trachomatis. mBio 2025; 16:e0287024. [PMID: 39576108 PMCID: PMC11708050 DOI: 10.1128/mbio.02870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Chlamydia is an obligate intracellular bacterium that undergoes a complex biphasic developmental cycle, alternating between the smaller, infectious, non-dividing elementary body (EB) and the larger, non-infectious but dividing reticulate body. Due to the differences between these functionally and morphologically distinct forms, we hypothesize protein degradation is essential to chlamydial differentiation. The bacterial Clp system, consisting of an ATPase unfoldase (e.g., ClpX or ClpC) and a proteolytic component (e.g., ClpP), is critical for the physiology of bacteria through its recognition, and usually degradation, of specific substrates. We observed by transmission electron microscopy that overexpression of wild-type ClpC, but not an ATPase mutant isoform, in Chlamydia increased glycogen accumulation within the vacuolar niche of the bacteria earlier in the developmental cycle than typically observed. This suggested ClpC activity may increase the expression of EB-associated genes. Consistent with this, targeted RT-qPCR analyses demonstrated a significant increase in several EB-associated gene transcripts earlier in development. These effects were not observed with overexpression of the ATPase mutant of ClpC, providing strong evidence that the activity of ClpC drives secondary differentiation. By analyzing the global transcriptional response to ClpC overexpression using RNA sequencing, we observed a shift to earlier expression of canonical late developmental cycle genes and other EB-associated genes. Finally, we directly linked overexpression of ClpC with earlier production of infectious chlamydiae. Conversely, disrupting normal ClpC function with an ATPase mutant caused a delay in developmental cycle progression. Overall, these findings provide the first mechanistic insight for initiation of secondary differentiation in Chlamydia.IMPORTANCEChlamydia species are obligate intracellular bacteria that require a host cell in which to complete their unique developmental cycle. Chlamydia differentiates between an infectious but non-replicating form, the elementary body, and a non-infectious but replicating form, the reticulate body. The signals that drive differentiation events are not characterized. We hypothesize that proteases are essential for mediating differentiation by allowing remodeling of the proteome as the organism transitions from one functional form to another. We previously reported that the Caseinolytic protease (Clp) system is essential for chlamydial growth. Here, we reveal a surprising function for ClpC, an unfoldase, in driving production of infectious chlamydiae during the chlamydial developmental cycle.
Collapse
Affiliation(s)
- Aaron A. Jensen
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saba Firdous
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei Lei
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Derek J. Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Huynh DT, Nolfi E, Medfai L, van Ulsen P, Jong WSP, Sijts AJAM, Luirink J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum Vaccin Immunother 2024; 20:2330768. [PMID: 38517203 PMCID: PMC10962599 DOI: 10.1080/21645515.2024.2330768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.
Collapse
Affiliation(s)
- Dung T. Huynh
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joen Luirink
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ehses J, Wang K, Densi A, Ramirez C, Tan M, Sütterlin C. Development of an sRNA-mediated conditional knockdown system for Chlamydia trachomatis. mBio 2024:e0254524. [PMID: 39670716 DOI: 10.1128/mbio.02545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024] Open
Abstract
We describe a new Chlamydia trachomatis protein depletion method that uses an engineered small RNA (sRNA) to inhibit translation of a target gene. In proof-of-principle experiments, we induced functional knockdown of IncA, a fusion-mediating inclusion membrane protein, as shown with Western blots, loss of IncA staining at the inclusion membrane, and production of multiple chlamydial inclusions within an infected cell. These effects were titratable and reversible. To test for polar effects, we separately targeted the inclusion membrane proteins IncE and IncG, which are expressed from the incDEFG operon. Knockdown of IncE caused loss of IncE and its interacting host protein SNX6 at the inclusion membrane, without affecting IncG protein levels. Similarly, IncG knockdown significantly reduced IncG levels and prevented recruitment of its interacting host protein 14-3-3β, without altering IncE protein levels. These data provide the first genetic evidence that IncE and IncG are necessary for the recruitment of SNX6 and 14-3-3β, respectively, demonstrating the value of this knockdown approach. We also successfully depleted the major chlamydial surface protein, major outer membrane protein (MOMP), which is encoded by a likely essential gene that has not been previously disrupted or knocked down. MOMP knockdown caused severe defects in bacterial morphology and progeny production. Thus, our sRNA-based approach has broad potential as a conditional knockdown method for studying the function of C. trachomatis genes, including essential genes and genes in an operon.IMPORTANCEWe describe a new method to reduce protein levels of a selected gene in the pathogenic bacterium Chlamydia trachomatis. This approach utilizes an engineered small RNA (sRNA) to inhibit translation of the mRNA for a target gene and produced inducible and reversible protein knockdown. Our method successfully knocked down four proteins, including a likely essential gene and individual genes in an operon, without altering protein levels of a neighboring gene. This conditional knockdown method will be useful for studying the function of genes in Chlamydia. It also has the potential to be applied to other obligate intracellular bacteria, including Rickettsia and Coxiella.
Collapse
Affiliation(s)
- Janina Ehses
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Kevin Wang
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Asha Densi
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Cuper Ramirez
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
- Department of Medicine, University of California, Irvine, California, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Wang J, Wang B, Xiao J, Chen Y, Wang C. Chlamydia psittaci: A zoonotic pathogen causing avian chlamydiosis and psittacosis. Virulence 2024; 15:2428411. [PMID: 39541409 PMCID: PMC11622591 DOI: 10.1080/21505594.2024.2428411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia psittaci is an obligate intracellular gram-negative bacterium with a unique biphasic developmental cycle. It is a zoonotic pathogen with a wide range of hosts and can cause avian chlamydiosis in birds and psittacosis in humans. The pathogen is transmitted mainly through horizontal transmission between birds. Cross-species transmission sometimes occurs and human-to-human transmission has recently been confirmed. This review provides an updated overview of C. psittaci from the perspective of both avian chlamydiosis and psittacosis. We include the aspects of genotype, host-pathogen interaction, transmission, epidemiology, detection and diagnosis, clinical manifestation, management, and prevention, aiming to provide a basic understanding of C. psittaci and offer fresh insights focused on zoonosis and cross-species transmission.
Collapse
Affiliation(s)
- Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Institute of Cell and Genetics, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Buwei Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqing Chen
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| |
Collapse
|
7
|
Huynh DT, Nolfi E, Guleed S, Medfai L, Wolf N, Uijen RF, de Jonge MI, van Ulsen P, Dietrich J, Luirink J, Sijts AJAM, Jong WSP. Intradermal administration of novel particulate Chlamydia trachomatis vaccine candidates drives protective immune responses. Biomed Pharmacother 2024; 180:117563. [PMID: 39405914 DOI: 10.1016/j.biopha.2024.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Chlamydia trachomatis causes the most prevalent bacterial sexually transmitted infection worldwide. Its complex lifecycle and the lack of appropriate antigen delivery vehicles make it difficult to develop an effective C. trachomatis vaccine. Recently, bacterial protein bodies (PBs) have emerged as promising bioparticles for vaccine antigen delivery. By developing a PB-tag for translational fusion, we were able to induce the aggregation of recombinant antigens expressed in Escherichia coli into PBs. Here, we investigated the immunogenicity and efficacy of PBs containing either the C. trachomatis MOMP-derived CTH522-SP or HtrA antigen in mice. Intradermal administration of c-di-AMP-adjuvanted PB-CTH522-SP and PB-HtrA vaccines, produced in an LPS-detoxified E. coli strain, induced antigen-specific cellular immunity, as measured by significant release of IFN-γ and IL17a in draining cervical lymph node and splenic cell cultures. Moreover, significant induction of HtrA-specific IFN-γ expressing CD4+ and CD8+ T cells was detected in the spleens. While immunization with the two PB vaccines led to prominent levels of specific antibodies in both serum and vaginal compartments, only antiserum against PB-CTH522-SP exhibited C. trachomatis-specific neutralization activity. Importantly, intradermal immunization with PB-CTH522-SP significantly reduced bacterial counts following C. trachomatis genital challenge. These data highlight the potential of the PB-based platform for the development of C. trachomatis vaccines.
Collapse
Affiliation(s)
- Dung T Huynh
- Abera Bioscience AB, Uppsala, Sweden; Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, the Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Safia Guleed
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Rienke F Uijen
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, the Netherlands
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Joen Luirink
- Abera Bioscience AB, Uppsala, Sweden; Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, the Netherlands
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | |
Collapse
|
8
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
9
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Chen J, Long J, Zhou H, Huang C, Zhu Y, Wang R, Zhang H, Qin Y, Ouyang K, Wei Z, Huang W, Chen Y. Isolation and characterization of Chlamydia felis and its pathogenesis in cats. Vet Microbiol 2024; 295:110128. [PMID: 38851154 DOI: 10.1016/j.vetmic.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Feline upper respiratory tract disease (URTD) is a common but complicated disease that occurs in domestic cats, worldwide. 396 cats in Guangxi Province, China were screened for URTD-associated pathogens from March 2022 to August 2023. Mycoplasma felis was found to be the most prevalent infectious agent with a positivity rate of 24.75 %, followed by feline calicivirus (FCV), Chlamydia felis, feline herpesvirus 1 (FHV-1) and feline influenza A virus (FeIAV) with rates of 15.91, 11.62, 5.56 and 1.52 %, respectively. In particular, C. felis and M. felis were found in 13 of 55 co-infected cats. Of the 46 C. felis-positive samples, one strain, named as GXNN36, was successfully isolated using chicken embryos and it was characterized both in vivo and in vitro. For the cat studies, both high- and low-dose challenged groups showed severe conjunctivitis, accompanied by transient fever and respiratory symptoms. C. felis replicated well in turbinate, trachea and lung tissues with high copy numbers and the infection subsequently spread to the livers, spleens, pancreas, kidneys, hearts and intestines. These findings will help our understanding of the role of C. felis in feline URTD and provide a valuable model to evaluate the efficacy of vaccines and therapeutic remedies in the future.
Collapse
Affiliation(s)
- Jiancai Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Jianming Long
- Guangxi Nanning Heyi Biological Technology Co., Ltd., PR China
| | - Huabo Zhou
- Huabo Pet Hospital, Nanning 530004, PR China
| | - Chongqiang Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Yaohui Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Rang Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Haodong Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning 530004, PR China.
| |
Collapse
|
11
|
Reigada I, Kapp K, Kaudela T, García Soria M, Oksanen T, Hanski L. Tracking Chlamydia - Host interactions and antichlamydial activity in Caenorhabditis elegans. Biomed Pharmacother 2024; 177:116956. [PMID: 38901202 DOI: 10.1016/j.biopha.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed. Caenorhabditis elegans offers an alternative given its immune system and numerous orthologues of human genes. This study established C. elegans as an in vivo model for chlamydial infection. Both Chlamydia species reduced the worm's lifespan, their DNA being detectable at three- and six-days post-infection. Azithromycin at its MIC (25 nM) failed to prevent the infection-induced lifespan reduction, indicating a persister phenotype. In contrast, the methanolic extract of Schisandra chinensis berries showed anti-chlamydial activity both in vitro (in THP-1 macrophages) and in vivo, significantly extending the lifespan of infected C. elegans and reducing the bacterial load. Moreover, S. chinensis increased the transcriptional activity of SKN-1 in the worms, but was unable to impact the bacterial load or lifespan in a sek-1 defective C. elegans strain. In summary, this study validated C. elegans as a chlamydial infection model and showcased S. chinensis berries' in vivo anti-chlamydial potential, possibly through SEK/SKN-1 signaling modulation.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Karmen Kapp
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Theresa Kaudela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - María García Soria
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge (San Jorge University), Zaragoza 50830, Spain
| | - Timo Oksanen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
12
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
13
|
Chaiwattanarungruengpaisan S, Thongdee M, Arya N, Paungpin W, Sirimanapong W, Sariya L. Diversity and genetic characterization of Chlamydia isolated from Siamese crocodiles (Crocodylus siamensis). Acta Trop 2024; 253:107183. [PMID: 38479468 DOI: 10.1016/j.actatropica.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Chlamydiosis, an infection caused by several Chlamydia species, has been reported in Nile, saltwater, and Siamese crocodiles. Despite its widespread reports in various countries, including Thailand, genetic information on Chlamydia species remains limited. This study presents a whole-genome-based characterization of Siamese crocodile-isolated Chlamydia. The results showed that Siamese crocodile Chlamydia contained a single circular chromosome with a size of 1.22-1.23 Mbp and a plasmid with a size of 7.7-8.0 kbp. A plasmid containing eight coding sequences (CDSs) was grouped in a β lineage. A chromosome sequence had approximately 1,018-1,031 CDSs. Chlamydial factors involving virulence were documented in terms of the presence of cytotoxins and several virulence factors in the chromosomes of Siamese crocodile Chlamydia. The analysis of antimicrobial resistance genes in the Chlamydia genome revealed that the most common resistance genes were associated with aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and cephalosporins, with loose matching (identities between 21.12 % and 74.65 %). Phylogenetic analyses, encompassing the assessments of both whole proteome and nine taxonomic markers, revealed that Siamese crocodile Chlamydia was separated into three lineages (lineages I-III) with high bootstrapping statistic support. Interestingly, isolate 12-01 differed genetically from the others, suggesting that it is a new member of Chlamydia. The study findings indicate that Siamese crocodiles are susceptible hosts to Chlamydia, involving more than one species. This study is the first employing the highest number of whole-genome data on Siamese crocodile Chlamydia and provides better insights into pathogen genetics.
Collapse
Affiliation(s)
- Somjit Chaiwattanarungruengpaisan
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nlin Arya
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
14
|
Ardissone S, Greub G. The Chlamydia-related Waddlia chondrophila encodes functional type II toxin-antitoxin systems. Appl Environ Microbiol 2024; 90:e0068123. [PMID: 38214519 PMCID: PMC10880633 DOI: 10.1128/aem.00681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are widespread in chromosomes and plasmids of free-living microorganisms, but only a few have been identified in obligate intracellular species. We found seven putative type II TA modules in Waddlia chondrophila, a Chlamydia-related species that is able to infect a very broad series of eukaryotic hosts, ranging from protists to mammalian cells. The RNA levels of Waddlia TA systems are significantly upregulated by iron starvation and novobiocin, but they are not affected by antibiotics such as β-lactams and glycopeptides, which suggests different mechanisms underlying stress responses. Five of the identified TA modules, including HigBA1 and MazEF1, encoded on the Waddlia cryptic plasmid, proved to be functional when expressed in a heterologous host. TA systems have been associated with the maintenance of mobile genetic elements, bacterial defense against bacteriophages, and persistence upon exposure to adverse conditions. As their RNA levels are upregulated upon exposure to adverse conditions, Waddlia TA modules may be involved in survival to stress. Moreover, as Waddlia can infect a wide range of hosts including free-living amoebae, TA modules could also represent an innate immunity system to fight against bacteriophages and other microorganisms with which Waddlia has to share its replicative niche.IMPORTANCEThe response to adverse conditions, such as exposure to antibiotics, nutrient starvation and competition with other microorganisms, is essential for the survival of a bacterial population. TA systems are modules composed of two elements, a toxic protein and an antitoxin (protein or RNA) that counteracts the toxin. Although many aspects of TA biological functions still await to be elucidated, TAs have often been implicated in bacterial response to stress, including the response to nutrient starvation, antibiotic treatment and bacteriophage infection. TAs are ubiquitous in free-living bacteria but rare in obligate intracellular species such as chlamydiae. We identified functional TA systems in Waddlia chondrophila, a chlamydial species with a strikingly broad host range compared to other chlamydiae. Our work contributes to understand how obligate intracellular bacteria react to adverse conditions that might arise from competition with other viruses/bacteria for the same replicative niche and would threaten their ability to replicate.
Collapse
Affiliation(s)
- Silvia Ardissone
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
15
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
16
|
Drozdovskaya PA, Zinserling VA. [Pathogenesis and pathological anatomy of chlamydial infections]. Arkh Patol 2024; 86:68-74. [PMID: 39434530 DOI: 10.17116/patol20248605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The review presents modern view on the global problem of chlamydial infections. Current nomenclature of chlamydiae was adduced. Epidemiology, etiology, clinical features, pathogenesis, diagnosis and treatment of chlamydiosis received full coverage. The potential involvement of chlamydiae in the progression of various infectious and somatic diseases was revealed. Special attention was paid to pathomorphological alterations in human tissues, which develop during primary infection with chlamydia as well as during chronic infection. Key problems were demonstrated: underestimation of prevalence of chlamydiae among humans in worldwide clinical practice, the difficulty of detection of extragenital chlamydiosis, the lack of effective methods for diagnosis and treatment of persistent forms, the paucity of descriptions of pathomorphological picture of human chlamydiosis, the absence of specific prevention of infection.
Collapse
Affiliation(s)
- P A Drozdovskaya
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - V A Zinserling
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- S.P. Botkin Clinical Infectious Diseases Hospital, St. Petersburg, Russia
| |
Collapse
|
17
|
Filardo S, Di Pietro M, Bozzuto G, Fracella M, Bitossi C, Molinari A, Scagnolari C, Antonelli G, Sessa R. Interferon-ε as potential inhibitor of Chlamydia trachomatis infection. Microb Pathog 2023; 185:106427. [PMID: 37890679 DOI: 10.1016/j.micpath.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Chlamydia trachomatis, the main cause of bacterial sexually transmitted diseases, is responsible for severe reproductive sequelae. Amongst all the cytokines involved in host immunity towards this pathogen, IFN-ε has recently acquired importance for its potential contribution to the female reproductive tract innate defenses. Herein, our study aimed to explore, for the first time, the activity of IFN-ε toward C. trachomatis in an in vitro infection model, by testing its effects on the different phases of chlamydial developmental cycle, as well as on the ultrastructural characteristics of chlamydial inclusions, via transmission electron microscopy. Main result is the capability of IFN-ε to alter C. trachomatis growth, as suggested by reduced infectious progenies, as well as a patchy distribution of bacteria and altered morphology of reticulate bodies within inclusions. In conclusion, our results suggest that IFN-ε could play a role in the innate and adaptive immune defenses against C. trachomatis; in the future, it will be needed to investigate its activity on an infection model more closely resembling the physiological environment of the female genital tract.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giuseppina Bozzuto
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Camilla Bitossi
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Agnese Molinari
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
18
|
Taavitsainen-Wahlroos E, Reigada I, Sulmona I, Hanski L. Impact of azithromycin, doxycycline and redox-active small molecules on amoxicillin-induced Chlamydia pneumoniae persistence. Biomed Pharmacother 2023; 167:115451. [PMID: 37690390 DOI: 10.1016/j.biopha.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Amoxicillin is recommended as primary treatment for community-acquired bacterial pneumonia (CABP). 5-10% of CABP cases are caused by Chlamydia pneumoniae, an obligate intracellular bacterium which responds to beta-lactam antibiotics by converting to a persistent phenotype. To support rational pharmacotherapy of C. pneumoniae infections, we investigated how clinically relevant concentrations of azithromycin and doxycycline affect amoxicillin induced C. pneumoniae persistence. Given the known role of redox state alterations in the action of bactericidal antibiotics and widespread use of redox-active dietary supplements when experiencing respiratory symptoms, we also studied how redox active compounds affect the studied antibiotic treatments. Our data demonstrate that clinically applied amoxicillin concentrations (10 and 25 mg/l) fail to eradicate C. pneumoniae infection in respiratory epithelial cells. Transmission electron microscopy (TEM) of amoxicillin-treated C. pneumoniae infected cells reveal aberrant bacterial morphology characteristic of chlamydial stress response. Amoxicillin was also found to significantly limit the antichlamydial effect of azithromycin or doxycycline. However, based on quantitative culture and quantitative PCR data, azithromycin was superior to doxycycline in C. pneumoniae eradication either as monotherapy or in combination with amoxicillin. Amoxicillin was also found to decrease respiratory epithelial cell glutathione (GSH) levels, whereas redox-active dibenzocyclooctadiene lignans increased C. pneumoniae load in amoxicillin-treated cultures up to two-fold. These data highlight the impact of relative administration time on the efficacy of antichlamydial antibiotics and indicate unfavorable interactions between amoxicillin and redox-active small molecules.
Collapse
Affiliation(s)
- Eveliina Taavitsainen-Wahlroos
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Ilaria Sulmona
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Tommaso De Amicis 95, 80131, Naples, Italy
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland.
| |
Collapse
|
19
|
Jury B, Fleming C, Huston WM, Luu LDW. Molecular pathogenesis of Chlamydia trachomatis. Front Cell Infect Microbiol 2023; 13:1281823. [PMID: 37920447 PMCID: PMC10619736 DOI: 10.3389/fcimb.2023.1281823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Chlamydia trachomatis is a strict intracellular human pathogen. It is the main bacterial cause of sexually transmitted infections and the etiologic agent of trachoma, which is the leading cause of preventable blindness. Despite over 100 years since C. trachomatis was first identified, there is still no vaccine. However in recent years, the advancement of genetic manipulation approaches for C. trachomatis has increased our understanding of the molecular pathogenesis of C. trachomatis and progress towards a vaccine. In this mini-review, we aimed to outline the factors related to the developmental cycle phase and specific pathogenesis activity of C. trachomatis in order to focus priorities for future genetic approaches. We highlight the factors known to be critical for developmental cycle stages, gene expression regulatory factors, type III secretion system and their effectors, and individual virulence factors with known impacts.
Collapse
Affiliation(s)
- Brittany Jury
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Charlotte Fleming
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Laurence Don Wai Luu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
20
|
Rovero A, Kebbi-Beghdadi C, Greub G. Spontaneous Aberrant Bodies Formation in Human Pneumocytes Infected with Estrella lausannensis. Microorganisms 2023; 11:2368. [PMID: 37894026 PMCID: PMC10609161 DOI: 10.3390/microorganisms11102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Estrella lausannensis, a Chlamydia-related bacterium isolated from a Spanish river, is considered as a possible emerging human pathogen. Indeed, it was recently demonstrated to multiply in human macrophages, resisting oxidative burst and causing a strong cytopathic effect. In addition, a preliminary study highlighted a correlation between antibody response to E. lausannensis and pneumonia in children. To clarify the pathogenic potential of these bacteria, we infected a human pneumocyte cell line with E. lausannensis and assessed its replication and cytopathic effect using quantitative real-time PCR and immunofluorescence, as well as confocal and electron microscopy. Our results demonstrated that E. lausannensis enters and replicates rapidly in human pneumocytes, and that it causes a prompt lysis of the host cells. Furthermore, we reported the spontaneous formation of aberrant bodies, a form associated with persistence in Chlamydiae, suggesting that E. lausannensis infection could cause chronic disorders in humans.
Collapse
Affiliation(s)
- Aurelien Rovero
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
21
|
Dembek ZF, Mothershead JL, Owens AN, Chekol T, Wu A. Psittacosis: An Underappreciated and Often Undiagnosed Disease. Pathogens 2023; 12:1165. [PMID: 37764973 PMCID: PMC10536718 DOI: 10.3390/pathogens12091165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial agent Chlamydia psittaci, and the resulting disease of psittacosis, is a little-known and underappreciated infectious disease by healthcare practitioners and in public health in general. C. psittaci infections can cause significant psittacosis outbreaks, with person-to-person transmission documented in the last decade. In this publication, we review the pathogen and its disease, as well as examine the potential for genetic manipulation in this organism to create a more deadly pathogen. Recent disease surveys indicate that currently, the highest incidences of human disease exist in Australia, Germany and the UK. We recommend the universal public health reporting of C. psittaci and psittacosis disease and increasing the promotion of public health awareness.
Collapse
Affiliation(s)
- Zygmunt F. Dembek
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA; (Z.F.D.); (T.C.)
| | - Jerry L. Mothershead
- Applied Research Associates (ARA), Support to DTRA Technical Reachback, Albuquerque, NM 87110, USA;
| | - Akeisha N. Owens
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA;
| | - Tesema Chekol
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA; (Z.F.D.); (T.C.)
| | - Aiguo Wu
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA;
| |
Collapse
|
22
|
Olivera C, Mosmann JP, Anna AN, Bettucci Ferrero GN, Paira DA, Ferreyra FN, Martinez MS, Motrich RD, Cuffini CG, Saka HA, Rivero VE. Expression of HPV-16 E6 and E7 oncoproteins alters Chlamydia trachomatis developmental cycle and induces increased levels of immune regulatory molecules. Front Cell Infect Microbiol 2023; 13:1214017. [PMID: 37743859 PMCID: PMC10516566 DOI: 10.3389/fcimb.2023.1214017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infection with Human Papillomavirus (HPV) is a recognized risk factor for Chlamydia trachomatis (CT) infection and vice versa. Coinfection of HPV and CT in women is a very common and usually asymptomatic finding that has been linked to increased risk of cervical cancer. It has been demonstrated that CT facilitates the entry of multiple high risk HPV genotypes, leading to damage of the mucosal barrier and interfering with immune responses and viral clearance, which ultimately favours viral persistence and malignant transformation. Although the facilitating effects elicited by CT infection on viral persistence have been reported, little is known about the consequences of HPV infection on CT development. Methods Herein, we took advantage of a genetically modified human cervical cell line co-expressing HPV-16 major oncogenic proteins E6 and E7, as an experimental model allowing to investigate the possible effects that HPV infection would have on CT development. Results and discussion Our results show that CT infection of HPV-16 E6E7 expressing cells induced an upregulation of the expression of E6E7 oncoproteins and host cell inhibitory molecules PD-L1, HVEM and CD160. Additionally, smaller chlamydial inclusions and reduced infectious progeny generation was observed in E6E7 cells. Ultrastructural analysis showed that expression of E6 and E7 did not alter total bacterial counts within inclusions but resulted in increased numbers of reticulate bodies (RB) and decreased production of infectious elementary bodies (EB). Our results indicate that during CT and HPV coinfection, E6 and E7 oncoproteins impair RB to EB transition and infectious progeny generation. On the other hand, higher expression of immune inhibitory molecules and HPV-16 E6E7 are cooperatively enhanced in CT-infected cells, which would favour both oncogenesis and immunosuppression. Our findings pose important implications for clinical management of patients with HPV and CT coinfection, suggesting that screening for the mutual infection could represent an opportunity to intervene and prevent severe reproductive health outcomes, such as cervical cancer and infertility.
Collapse
Affiliation(s)
- Carolina Olivera
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jessica P. Mosmann
- Instituto de Virología “Dr. José M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ailen N. Anna
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gloria N. Bettucci Ferrero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela A. Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernando N. Ferreyra
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María S. Martinez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén D. Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G. Cuffini
- Instituto de Virología “Dr. José M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Héctor Alex Saka
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E. Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
23
|
Qi X, Grafskaia E, Yu Z, Shen N, Fedina E, Masyutin A, Erokhina M, Lepoitevin M, Lazarev V, Zigangirova N, Serre C, Durymanov M. Methylene Blue-Loaded NanoMOFs: Accumulation in Chlamydia trachomatis Inclusions and Light/Dark Antibacterial Effects. ACS Infect Dis 2023; 9:1558-1569. [PMID: 37477515 DOI: 10.1021/acsinfecdis.3c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Metal-organic framework nanoparticles (nanoMOFs) are promising nanomaterials for biomedical applications. Some of them, including biodegradable porous iron carboxylates are proposed for encapsulation and delivery of antibiotics. Due to the high drug loading capacity and fast internalization kinetics, nanoMOFs are more beneficial for the treatment of intracellular bacterial infections compared to free antibacterial drugs, which poorly accumulate inside the cells because of the inability to cross membrane barriers or have low intracellular retention. However, nanoparticle internalization does not ensure their accumulation in the cell compartment that shelters a pathogen. This study shows the availability of MIL-100(Fe)-based MOF nanoparticles to co-localize with Chlamydia trachomatis, an obligate intracellular bacterium, in the infected RAW264.7 macrophages. Furthermore, nanoMOFs loaded with photosensitizer methylene blue (MB) exhibit complete photodynamic inactivation of C. trachomatis growth. Simultaneous infection and treatment of RAW264.7 cells with empty nanoMOFs resulted in a bacterial load reduction from 100 to 36% that indicates an intrinsic anti-chlamydial effect of this iron-containing nanomaterial. Thus, our findings suggest the use of iron-based nanoMOFs as a promising drug delivery platform, which contributes to antibacterial effect, for the treatment of chlamydial infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Ekaterina Grafskaia
- Genetic Engineering Lab, Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Scientific Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Ningfei Shen
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Elena Fedina
- The Gamaleya National Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alexander Masyutin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- Cell Biology Lab, Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, Moscow 107564, Russia
| | - Maria Erokhina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- Cell Biology Lab, Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, Moscow 107564, Russia
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Vassili Lazarev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Genetic Engineering Lab, Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Scientific Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nailya Zigangirova
- The Gamaleya National Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Mikhail Durymanov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
24
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Lillis R, Kuritzky L, Huynh Z, Arcenas R, Hansra A, Shah R, Yang B, Taylor SN. Outpatient sexually transmitted infection testing and treatment patterns in the United States: a real-world database study. BMC Infect Dis 2023; 23:469. [PMID: 37442964 DOI: 10.1186/s12879-023-08434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most common notifiable sexually transmitted infections (STIs) in the United States. Because symptoms of these infections often overlap with other urogenital infections, misdiagnosis and incorrect treatment can occur unless appropriate STI diagnostic testing is performed in clinical settings. The objective of this study was to describe STI diagnostic testing and antimicrobial treatment patterns and trends among adolescent and adult men and women with lower genitourinary tract symptoms (LGUTS). METHODS We analyzed insurance claims data from the IBM® MarketScan® Research Databases. Patients included were between 14 and 64 years old with LGUTS as determined by selected International Classification of Diseases codes between January 2010 and December 2019. Testing of STIs and relevant drug claims were captured, and distribution of testing patterns and drug claims were described. RESULTS In total, 23,537,812 episodes with LGUTS (87.4% from women; 12.6% from men) were analyzed from 12,341,154 patients. CT/NG testing occurred in only 17.6% of all episodes. For episodes where patients received treatment within 2 weeks of the visit date, 89.3% received treatment within the first 3 days (likely indicating presumptive treatment), and 77.7% received it on the first day. For women with pelvic inflammatory disease and men with orchitis/epididymitis and acute prostatitis, ≤ 15% received CT/NG testing, and around one-half received antibiotic treatment within 3 days. CONCLUSIONS Our study revealed low CT/NG testing rates, even in patients diagnosed with complications commonly associated with these STIs, along with high levels of potentially inappropriate presumptive treatment. This highlights the need for timely and accurate STI diagnosis in patients with LGUTS to inform appropriate treatment recommendations.
Collapse
Affiliation(s)
- Rebecca Lillis
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70119, USA.
| | - Louis Kuritzky
- Department of Community Health and Family Medicine, University of Florida, Gainesville, FL, USA
- Clinical Faculty, University of Central Florida/Hospital Corporation of America Family Medicine Residency, Gainesville, FL, USA
| | - Zune Huynh
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | | | | | - Roma Shah
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | - Baiyu Yang
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | - Stephanie N Taylor
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70119, USA
| |
Collapse
|
26
|
Onorini D, Leonard CA, Phillips Campbell R, Prähauser B, Pesch T, Schoborg RV, Jerse AE, Tarigan B, Borel N. Neisseria gonorrhoeae Coinfection during Chlamydia muridarum Genital Latency Does Not Modulate Murine Vaginal Bacterial Shedding. Microbiol Spectr 2023; 11:e0450022. [PMID: 37039695 PMCID: PMC10269798 DOI: 10.1128/spectrum.04500-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Chlamydia trachomatis and Neisseria gonorrhoeae are the most frequently reported agents of bacterial sexually transmitted disease worldwide. Nonetheless, C. trachomatis/N. gonorrhoeae coinfection remains understudied. C. trachomatis/N. gonorrhoeae coinfections are more common than expected by chance, suggesting C. trachomatis/N. gonorrhoeae interaction, and N. gonorrhoeae infection may reactivate genital chlamydial shedding in women with latent (quiescent) chlamydial infection. We hypothesized that N. gonorrhoeae would reactivate latent genital Chlamydia muridarum infection in mice. Two groups of C. muridarum-infected mice were allowed to transition into genital latency. One group was then vaginally inoculated with N. gonorrhoeae; a third group received N. gonorrhoeae alone. C. muridarum and N. gonorrhoeae vaginal shedding was measured over time in the coinfected and singly infected groups. Viable C. muridarum was absent from vaginal swabs but detected in rectal swabs, confirming C. muridarum genital latency and consistent with the intestinal tract as a C. muridarum reservoir. C. muridarum inclusions were observed in large intestinal, but not genital, tissues during latency. Oviduct dilation was associated with C. muridarum infection, as expected. Contradicting our hypothesis, N. gonorrhoeae coinfection did not reactivate latent C. muridarum vaginal shedding. In addition, latent C. muridarum infection did not modulate recovery of vaginal viable N. gonorrhoeae. Evidence for N. gonorrhoeae-dependent increased C. muridarum infectivity has thus not been demonstrated in murine coinfection, and the ability of C. muridarum coinfection to potentiate N. gonorrhoeae infectivity may depend on actively replicating vaginal C. muridarum. The proportion of mice with increased vaginal neutrophils (PMNs) was higher in N. gonorrhoeae-infected than in C. muridarum-infected mice, as expected, while that of C. muridarum/N. gonorrhoeae-coinfected mice was intermediate to the singly infected groups, suggesting latent C. muridarum murine infection may limit PMN response to subsequent N. gonorrhoeae infection. IMPORTANCE Our work builds upon the limited understanding of C. muridarum/N. gonorrhoeae coinfection. Previously, N. gonorrhoeae infection of mice with acute (actively replicating) vaginal C. muridarum infection was shown to increase recovery of viable vaginal N. gonorrhoeae and vaginal PMNs, with no effect on C. muridarum vaginal shedding (R. A. Vonck et al., Infect Immun 79:1566-1577, 2011). It has also been shown that chlamydial infection of human and murine PMNs prevents normal PMN responses, including the response to N. gonorrhoeae (K. Rajeeve et al., Nat Microbiol 3:824-835, 2018). Our findings show no effect of latent genital C. muridarum infection on the recovery of viable N. gonorrhoeae, in contrast to the previously reported effect of acute C. muridarum infection, and suggesting that acute versus latent C. muridarum infection may have distinct effects on PMN function in mice. Together, these studies to date provide evidence that Chlamydia/N. gonorrhoeae synergistic interactions may depend on the presence of replicating Chlamydia in the genital tract, while chlamydial effects on vaginal PMNs may extend beyond acute infection.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regenia Phillips Campbell
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Bernadetta Tarigan
- Department of Mathematics, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
You C, Liao M, Wang M, Zhao L, Li L, Ye X, Yang T. The Effect of Amoxicillin Pre-Exposure on Treatment Outcomes and Antimicrobial Susceptibility in Patients with Urogenital Chlamydia trachomatis Infection. Infect Drug Resist 2023; 16:3575-3587. [PMID: 37305735 PMCID: PMC10257477 DOI: 10.2147/idr.s410410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose We investigated the influence of amoxicillin pre-exposure on treatment outcomes, Chlamydia trachomatis (CT) culture, the presence of drug-resistant genes, minimum inhibitory concentrations (MICs), and fractional inhibitory concentrations (FICs) in CT clinical strains. Additionally, we explored the effect of different antimicrobial combinations on CT. Patients and Methods Clinical data of 62 patients with CT infection were recorded. Of these, 33 had pre-exposure to amoxicillin and 29 did not. Among patients with pre-exposure, 17 received azithromycin and 16 received minocycline. Among the patients without pre-exposure, 15 received azithromycin and 14 received minocycline. All patients underwent microbiological cure follow-ups one month after completing the treatment. 23S rRNA gene mutations, acquisition of tet(M) and tet(C) were detected using reverse transcription PCR (RT-PCR) and PCR, respectively. The MICs and FICs of azithromycin, minocycline, and moxifloxacin, alone or in combination, were determined using the microdilution and checkerboard methods, respectively. Results More cases of treatment failure occurred in pre-exposed patients, in both treatment groups (P <0.05). No 23S rRNA gene mutations or tet(M) and tet(C) acquisitions were found. More inclusion bodies were cultured from patients without amoxicillin pre-exposure than from those with pre-exposure (P <0.0001). The MICs of all antibiotics were higher in pre-exposed patients than in those without pre-exposure (P <0.01). The FICs of azithromycin plus moxifloxacin were lower than those of the other antibiotic combinations (P <0.0001). The synergy rate of azithromycin plus moxifloxacin was significantly higher than those of azithromycin plus minocycline and minocycline plus moxifloxacin (P <0.001). The FICs of all antibiotic combinations were comparable between isolates from the two patient groups (all P >0.05). Conclusion Pre-exposure to amoxicillin in CT patients may inhibit CT growth and decrease sensitivity of CT strains to antibiotics. Azithromycin plus moxifloxacin may be a promising treatment regimen for genital CT infections with treatment failure.
Collapse
Affiliation(s)
- Cong You
- Department of Dermatology and Venereology; Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Mingyi Liao
- Department of Dermatology and Venereology; Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Mei Wang
- Department of Dermatology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Leran Zhao
- Department of Dermatology and Venereology, the General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Longnian Li
- Department of Dermatology and Venereology; Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiaoying Ye
- Department of Dermatology and Venereology; Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Yang
- Department of Dermatology and Venereology; Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
28
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
29
|
Caven LT, Carabeo RA. The role of infected epithelial cells in Chlamydia-associated fibrosis. Front Cell Infect Microbiol 2023; 13:1208302. [PMID: 37265500 PMCID: PMC10230099 DOI: 10.3389/fcimb.2023.1208302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Ocular, genital, and anogenital infection by the obligate intracellular pathogen Chlamydia trachomatis have been consistently associated with scar-forming sequelae. In cases of chronic or repeated infection of the female genital tract, infection-associated fibrosis of the fallopian tubes can result in ectopic pregnancy or infertility. In light of this urgent concern to public health, the underlying mechanism of C. trachomatis-associated scarring is a topic of ongoing study. Fibrosis is understood to be an outcome of persistent injury and/or dysregulated wound healing, in which an aberrantly activated myofibroblast population mediates hypertrophic remodeling of the basement membrane via deposition of collagens and other components of the extracellular matrix, as well as induction of epithelial cell proliferation via growth factor signaling. Initial study of infection-associated immune cell recruitment and pro-inflammatory signaling have suggested the cellular paradigm of chlamydial pathogenesis, wherein inflammation-associated tissue damage and fibrosis are the indirect result of an immune response to the pathogen initiated by host epithelial cells. However, recent work has revealed more direct routes by which C. trachomatis may induce scarring, such as infection-associated induction of growth factor signaling and pro-fibrotic remodeling of the extracellular matrix. Additionally, C. trachomatis infection has been shown to induce an epithelial-to-mesenchymal transition in host epithelial cells, prompting transdifferentiation into a myofibroblast-like phenotype. In this review, we summarize the field's current understanding of Chlamydia-associated fibrosis, reviewing key new findings and identifying opportunities for further research.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
30
|
Qi X, Shen N, Al Othman A, Mezentsev A, Permyakova A, Yu Z, Lepoitevin M, Serre C, Durymanov M. Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections. Pharmaceutics 2023; 15:1521. [PMID: 37242762 PMCID: PMC10220673 DOI: 10.3390/pharmaceutics15051521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF's pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ningfei Shen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
31
|
Paira DA, Olmedo JJ, Olivera C, Tissera AD, Molina RI, Rivero VE, Motrich RD, Saka HA. Chronic epididymitis due to Chlamydia trachomatis LGV-L2 in an HIV-negative heterosexual patient: a case report. Front Public Health 2023; 11:1129166. [PMID: 37228719 PMCID: PMC10203518 DOI: 10.3389/fpubh.2023.1129166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen and the leading bacterial cause of sexually transmitted infections worldwide. Chlamydia trachomatis genovars L1-L3 are responsible for lymphogranuloma venereum (LGV), an invasive sexually transmitted disease endemic in tropical and subtropical regions of Africa, South America, the Caribbean, India and South East Asia. The typical signs and symptoms of C. trachomatis LGV urogenital infections in men include herpetiform ulcers, inguinal buboes, and/or lymphadenopathies. Since 2003, endemic cases of proctitis and proctocolitis caused by C. trachomatis LGV emerged in Europe, mainly in HIV-positive men who have sex with men (MSM). Scarce data have been reported about unusual clinical presentations of C. trachomatis LGV urogenital infections. Herein, we report a case of a 36-year-old heterosexual, HIV-negative male declaring he did not have sex with men or trans women, who presented to the Urology and Andrology outpatient clinic of a healthcare center from Cordoba, Argentina, with intermittent testicular pain over the preceding 6 months. Doppler ultrasound indicated right epididymitis and funiculitis. Out of 17 sexually transmitted infections (STIs) investigated, a positive result was obtained only for C. trachomatis. Also, semen analysis revealed oligoasthenozoospermia, reduced sperm viability as well as increased sperm DNA fragmentation and necrosis, together with augmented reactive oxygen species (ROS) levels and the presence of anti-sperm IgG autoantibodies. In this context, doxycycline 100 mg/12 h for 45 days was prescribed. A post-treatment control documented microbiological cure along with resolution of clinical signs and symptoms and improved semen quality. Strikingly, sequencing of the ompA gene revealed C. trachomatis LGV L2 as the causative uropathogen. Remarkably, the patient did not present the typical signs and symptoms of LGV. Instead, the infection associated with chronic testicular pain, semen inflammation and markedly reduced sperm quality. To our knowledge, this is the first reported evidence of chronic epididymitis due to C. trachomatis LGV L2 infection in an HIV-negative heterosexual man. These findings constitute important and valuable information for researchers and practitioners and highlight that C. trachomatis LGV-L2 should be considered as putative etiologic agent of chronic epididymitis, even in the absence of the typical LGV signs and symptoms.
Collapse
Affiliation(s)
- Daniela Andrea Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Javier Olmedo
- Fundación Urológica Córdoba para la Docencia e Investigación Médica (FUCDIM), Córdoba, Argentina
| | - Carolina Olivera
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Virginia Elena Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Darío Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Héctor Alex Saka
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
32
|
Hatch ND, Ouellette SP. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538638. [PMID: 37162869 PMCID: PMC10168357 DOI: 10.1101/2023.04.27.538638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
C. trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia . Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed CRISPRi techniques novel to the chlamydial field to examine effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. Importance Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia . Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.
Collapse
|
33
|
Huynh DT, Jong WSP, Oudejans MAH, van den Berg van Saparoea HB, Luirink J, van Ulsen P. Heterologous Display of Chlamydia trachomatis PmpD Passenger at the Surface of Salmonella OMVs. MEMBRANES 2023; 13:366. [PMID: 37103793 PMCID: PMC10145130 DOI: 10.3390/membranes13040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Chlamydia trachomatis is the bacterial pathogen that causes most cases of sexually transmitted diseases annually. To combat the global spread of asymptomatic infection, development of effective (mucosal) vaccines that offer both systemic and local immune responses is considered a high priority. In this study, we explored the expression of C. trachomatis full-length (FL) PmpD, as well as truncated PmpD passenger constructs fused to a "display" autotransporter (AT) hemoglobin protease (HbpD) and studied their inclusion into outer membrane vesicles (OMVs) of Escherichia coli and Salmonella Typhimurium. OMVs are considered safe vaccine vectors well-suited for mucosal delivery. By using E. coli AT HbpD-fusions of chimeric constructs we improved surface display and successfully generated Salmonella OMVs decorated with a secreted and immunogenic PmpD passenger fragment (aa68-629) to 13% of the total protein content. Next, we investigated whether a similar chimeric surface display strategy could be applied to other AT antigens, i.e., secreted fragments of Prn (aa35-350) of Bordetella pertussis and VacA (aa65-377) of Helicobacter pylori. The data provided information on the complexity of heterologous expression of AT antigens at the OMV surface and suggested that optimal expression strategies should be developed on an antigen-to-antigen basis.
Collapse
Affiliation(s)
- Dung T. Huynh
- Abera Bioscience AB, 750 26 Uppsala, Sweden
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Manon A. H. Oudejans
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Joen Luirink
- Abera Bioscience AB, 750 26 Uppsala, Sweden
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Cheng A, Wan D, Ghatak A, Wang C, Feng D, Fondell JD, Ebright RH, Fan H. Identification and Structural Modeling of the RNA Polymerase Omega Subunits in Chlamydiae and Other Obligate Intracellular Bacteria. mBio 2023; 14:e0349922. [PMID: 36719197 PMCID: PMC9973325 DOI: 10.1128/mbio.03499-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Gene transcription in bacteria is carried out by the multisubunit RNA polymerase (RNAP), which is composed of a catalytic core enzyme and a promoter-recognizing σ factor. The core enzyme comprises two α subunits, one β subunit, one β' subunit, and one ω subunit. The ω subunit plays critical roles in the assembly of the core enzyme and other cellular functions, including the regulation of bacterial growth, the stress response, and biofilm formation. However, the identity of an ω subunit for the obligate intracellular bacterium Chlamydia has not previously been determined. Here, we report the identification of the hypothetical protein CTL0286 as the probable chlamydial ω subunit based on sequence, synteny, and AlphaFold and AlphaFold-Multimer three-dimensional-structure predictions. Our findings indicate that CTL0286 functions as the missing ω subunit of chlamydial RNAP. Our extended analysis also indicates that all obligate intracellular bacteria have ω orthologs. IMPORTANCE Chlamydiae are obligate intracellular bacteria that replicate only inside eukaryotic cells. Previously, it has not been possible to identify a candidate gene encoding the chlamydial RNA polymerase ω subunit, and it has been hypothesized that the chlamydial RNA polymerase ω subunit was lost in the evolutionary process through which Chlamydiae reduced their genome size and proteome sizes to adapt to an obligate intracellular lifestyle. Here, we report the identification of the chlamydial RNA polymerase ω subunit, based on conserved sequence, conserved synteny, AlphaFold-predicted conserved three-dimensional structure, and AlfaFold-Multimer-predicted conserved interactions. Our identification of the previously elusive chlamydial RNA polymerase ω subunit sets the stage for investigation of its roles in regulation of gene expression during chlamydial growth, development, and stress responses, and sets the stage for preparation and study of the intact chlamydial RNA polymerase and its interactions with inhibitors.
Collapse
Affiliation(s)
- Andrew Cheng
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Danny Wan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Graduate Program in Physiology and Integrative Biology, Rutgers School of Graduate Studies, Piscataway, New Jersey, USA
| | - Arkaprabha Ghatak
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Chengyuan Wang
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Deyu Feng
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Joseph D. Fondell
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Richard H. Ebright
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Huizhou Fan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
35
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
36
|
Yusuf K, Sampath V, Umar S. Bacterial Infections and Cancer: Exploring This Association And Its Implications for Cancer Patients. Int J Mol Sci 2023; 24:3110. [PMID: 36834525 PMCID: PMC9958598 DOI: 10.3390/ijms24043110] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are common in the etiology of human diseases owing to the ubiquity of bacteria. Such infections promote the development of periodontal disease, bacterial pneumonia, typhoid, acute gastroenteritis, and diarrhea in susceptible hosts. These diseases may be resolved using antibiotics/antimicrobial therapy in some hosts. However, other hosts may be unable to eliminate the bacteria, allowing them to persist for long durations and significantly increasing the carrier's risk of developing cancer over time. Indeed, infectious pathogens are modifiable cancer risk factors, and through this comprehensive review, we highlight the complex relationship between bacterial infections and the development of several cancer types. For this review, searches were performed on the PubMed, Embase, and Web of Science databases encompassing the entirety of 2022. Based on our investigation, we found several critical associations, of which some are causative: Porphyromonas gingivalis and Fusobacterium nucleatum are associated with periodontal disease, Salmonella spp., Clostridium perfringens, Escherichia coli, Campylobacter spp., and Shigella are associated with gastroenteritis. Helicobacter pylori infection is implicated in the etiology of gastric cancer, and persistent Chlamydia infections present a risk factor for the development of cervical carcinoma, especially in patients with the human papillomavirus (HPV) coinfection. Salmonella typhi infections are linked with gallbladder cancer, and Chlamydia pneumoniae infection is implicated in lung cancer, etc. This knowledge helps identify the adaptation strategies used by bacteria to evade antibiotic/antimicrobial therapy. The article also sheds light on the role of antibiotics in cancer treatment, the consequences of their use, and strategies for limiting antibiotic resistance. Finally, the dual role of bacteria in cancer development as well as in cancer therapy is briefly discussed, as this is an area that may help to facilitate the development of novel microbe-based therapeutics as a means of securing improved outcomes.
Collapse
Affiliation(s)
- Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Venkatesh Sampath
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
Host Cell Amplification of Nutritional Stress Contributes To Persistence in Chlamydia trachomatis. mBio 2022; 13:e0271922. [PMID: 36377897 PMCID: PMC9765610 DOI: 10.1128/mbio.02719-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Persistence, a viable but non-replicating growth state, has been implicated in diseases caused by Chlamydia trachomatis. Starvation of distinct nutrients produces a superficially similar persistent state, implying convergence on a common intracellular environment. We employed host-pathogen dual RNA-sequencing under both iron- and tryptophan-starved conditions to systematically characterize the persistent chlamydial transcriptome and to define common contributions of the host cell transcriptional stress response in shaping the intracellular environment. The transcriptome of the infected host cells was highly specific to each nutritional stress, despite comparable effects on chlamydial growth and development in each condition. In contrast, the chlamydial transcriptomes between nutritional conditions were highly similar, suggesting some overlap in host cell responses to iron limitation and tryptophan starvation that contribute to a common persistent phenotype. We demonstrate that a commonality in the host cell responses is the suppression of GTP biosynthesis, a nucleotide for which Chlamydia are auxotrophic. Pharmacological inhibition of host IMP dehydrogenase (IMPDH1), which catalyzes the rate-limiting step in de novo guanine nucleotide synthesis, resulted in comparable GTP depletion to both iron and tryptophan starvation and induced chlamydial persistence. Moreover, IMPDH1 inhibition and iron starvation acted synergistically to control chlamydial growth. Thus, host cell reduction in GTP levels amplifies the nutritional stress to intracellular chlamydiae in infection-relevant models of persistence, illustrating the determinative role the infected host cell plays in bacterial stress responses. IMPORTANCE Bacteria respond to nutritional stress through universal and unique mechanisms. Genome reduction in the Chlamydiaceae, a consequence of coevolution with their obligate eukaryotic hosts, has reduced their repertoire of stress response mechanisms. Here, we demonstrate that the infected host cell may provide the context within which universal stress responses emerge for Chlamydia trachomatis. We report that during starvation of the essential nutrients iron or tryptophan, a common response of the infected epithelial cell is the suppression of GTP biosynthesis, which induces a persistent developmental state in the pathogen. Thus, chlamydial persistence results from the combined effects of primary stresses on the pathogen and the host, with the latter eliciting a secondary host cell response that intensifies the inhospitable intracellular environment.
Collapse
|
38
|
Gilliland HN, Olive AJ. GarD-ing the pathogen-containing vacuole from destruction. Cell Host Microbe 2022; 30:1655-1657. [PMID: 36521440 DOI: 10.1016/j.chom.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human pathogen Chlamydia trachomatis evades killing by IFNγ-activated mechanisms, yet how this occurs remains unclear. In this issue of Cell Host & Microbe, Walsh et al. identify an IFNγ-dependent antimicrobial mechanism mediated by the host ubiquitin ligase RNF213 that is evaded by the Chlamydia effector GarD.
Collapse
Affiliation(s)
- Haleigh N Gilliland
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Yinjia pill inhibits persistent Chlamydia trachomatis infection. Chin Med J (Engl) 2022; 135:2893-2895. [PMID: 36070468 PMCID: PMC9945367 DOI: 10.1097/cm9.0000000000002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/26/2022] Open
|
40
|
He Z, Wang C, Wang J, Zheng K, Ding N, Yu M, Li W, Tang Y, Li Y, Xiao J, Liang M, Wu Y. Chlamydia psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor expression. Int J Med Microbiol 2022; 312:151571. [PMID: 36511277 DOI: 10.1016/j.ijmm.2022.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study tested the hypothesis that Chlamydia psittaci (C. psittaci) survives and multiplies in human neutrophils by activating P2X7, a nonselective cationic channel receptor expressed constitutively on the surface of these cells. Findings illustrated that P2X7 receptor expression was enhanced in C. psittaci-infected neutrophils. C. psittaci was able to inhibite spontaneous apoptosis of neutrophils through mitochondrial-induced ATP release and IL-8 production. Importantly, inhibiting ATP activation of the P2X7 receptor with AZ10606120 promotes apoptosis, while stimulating P2X7 receptor expression with BzATP delayed spontaneous apoptosis of human neutrophils, suggesting that C. psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor. This study reveals new insights into the survival advantages of the latent persistent state of C. psittaci and the mechanism by which it evades the innate immune response.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mingxing Liang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
41
|
Hou C, Jin Y, Wu H, Li P, Liu L, Zheng K, Wang C. Alternative strategies for Chlamydia treatment: Promising non-antibiotic approaches. Front Microbiol 2022; 13:987662. [PMID: 36504792 PMCID: PMC9727249 DOI: 10.3389/fmicb.2022.987662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium where most species are pathogenic and infectious, causing various infectious diseases and complications in humans and animals. Antibiotics are often recommended for the clinical treatment of chlamydial infections. However, extensive research has shown that antibiotics may not be sufficient to eliminate or inhibit infection entirely and have some potential risks, including antibiotic resistance. The impact of chlamydial infection and antibiotic misuse should not be underestimated in public health. This study explores the possibility of new therapeutic techniques, including a review of recent studies on preventing and suppressing chlamydial infection by non-antibiotic compounds.
Collapse
Affiliation(s)
- Chen Hou
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yingqi Jin
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Hua Wu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Pengyi Li
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Longyun Liu
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China,*Correspondence: Kang Zheng
| | - Chuan Wang
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China,Chuan Wang
| |
Collapse
|
42
|
Rodrigues R, Marques L, Vieira-Baptista P, Sousa C, Vale N. Therapeutic Options for Chlamydia trachomatis Infection: Present and Future. Antibiotics (Basel) 2022; 11:1634. [PMID: 36421278 PMCID: PMC9686482 DOI: 10.3390/antibiotics11111634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Sexually transmitted infections (STIs), such as Chlamydia trachomatis (Ct) infection, have serious consequences for sexual and reproductive health worldwide. Ct is one of the most common sexually transmitted bacterial infections in the world, with approximately 129 million new cases per year. C. trachomatis is an obligate intracellular Gram-negative bacterium. The infection is usually asymptomatic, notwithstanding, it could also be associated with severe sequels and complications, such as chronic pain, infertility, and gynecologic cancers, and thus there is an urgent need to adequately treat these cases in a timely manner. Consequently, beyond its individual effects, the infection also impacts the economy of the countries where it is prevalent, generating a need to consider the hypothesis of implementing Chlamydia Screening Programs, a decision that, although it is expensive to execute, is a necessary investment that unequivocally will bring financial and social long-term advantages worldwide. To detect Ct infection, there are different methodologies available. Nucleic acid amplification tests, with their high sensitivity and specificity, are currently the first-line tests for the detection of Ct. When replaced by other detection methods, there are more false negative tests, leading to underreported cases and a subsequent underestimation of Ct infection's prevalence. Ct treatment is based on antibiotic prescription, which is highly associated with drug resistance. Therefore, currently, there have been efforts in line with the development of alternative strategies to effectively treat this infection, using a drug repurposing method, as well as a natural treatment approach. In addition, researchers have also made some progress in the Ct vaccine development over the years, despite the fact that it also necessitates more studies in order to finally establish a vaccination plan. In this review, we have focused on the therapeutic options for treating Ct infection, expert recommendations, and major difficulties, while also exploring the possible avenues through which to face this issue, with novel approaches beyond those proposed by the guidelines of Health Organizations.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 446 C24, 4465-671 Leça do Balio, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Avenida da Boavista, 171, 4050-115 Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carlos Sousa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 446 C24, 4465-671 Leça do Balio, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
43
|
Vollmuth N, Schlicker L, Guo Y, Hovhannisyan P, Janaki-Raman S, Kurmasheva N, Schmitz W, Schulze A, Stelzner K, Rajeeve K, Rudel T. c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis. eLife 2022; 11:76721. [PMID: 36155135 PMCID: PMC9512400 DOI: 10.7554/elife.76721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Schlicker
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yongxia Guo
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pargev Hovhannisyan
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Naziia Kurmasheva
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Almut Schulze
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Stelzner
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
44
|
Yu X, Xu Q, Chen W, Mai Z, Mo L, Su X, Ou J, Lan Y, Zheng H, Xue Y. Rhein inhibits Chlamydia trachomatis infection by regulating pathogen-host cell. Front Public Health 2022; 10:1002029. [PMID: 36238249 PMCID: PMC9552556 DOI: 10.3389/fpubh.2022.1002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The global incidence of genital Chlamydia trachomatis infection increased rapidly as the primary available treatment of C. trachomatis infection being the use of antibiotics. However, the development of antibiotics resistant stain and other treatment failures are often observed in patients. Consequently, novel therapeutics are urgently required. Rhein is a monomer derivative of anthraquinone compounds with an anti-infection activity. This study investigated the effects of rhein on treating C. trachomatis infection. Rhein showed significant inhibitory effects on the growth of C. trachomatis in multiple serovars of C. trachomatis, including D, E, F and L1, and in various host cells, including HeLa, McCoy and Vero. Rhein could not directly inactivate C. trachomatis but could inhibit the growth of C. trachomatis by regulating pathogen-host cell interactions. Combined with azithromycin, the inhibitory effect of rehin was synergistic both in vitro and in vivo. Together these findings suggest that rhein could be developed for the treatment of C. trachomatis infections.
Collapse
Affiliation(s)
- Xueying Yu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Chen
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Zhida Mai
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lijun Mo
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xin Su
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiangli Ou
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinyuan Lan
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China,*Correspondence: Heping Zheng
| | - Yaohua Xue
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China,Yaohua Xue
| |
Collapse
|
45
|
Kuratli J, Leonard CA, Frohns A, Schoborg R, Piazena H, Borel N. Refinement of water-filtered infrared A (wIRA) irradiations of in vitro acute and persistent chlamydial infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112533. [PMID: 35914465 DOI: 10.1016/j.jphotobiol.2022.112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Water-filtered infrared A (wIRA) alone or in combination with visible light (VIS) exerts anti-chlamydial effects in vitro and in vivo in acute infection models. However, it has remained unclear whether reduced irradiation duration and irradiance would still maintain anti-chlamydial efficacy. Furthermore, efficacy of this non-chemical treatment option against persistent (chronic) chlamydial infections has not been investigated to date. To address this knowledge gap, we evaluated 1) irradiation durations of 5, 15 or 30 min in genital and ocular Chlamydia trachomatis acute infection models, 2) irradiances of 100, 150 or 200 mW/cm2 in the acute genital infection model and 3) anti-chlamydial activity of wIRA and VIS against C. trachomatis serovar B and E with amoxicillin (AMX)- or interferon γ (IFN-γ)-induced persistence. Reduction of irradiation duration reduced anti-chlamydial efficacy. Irradiances of 150 to 200 mW/cm2, but not 100 mW/cm2, induced anti-chlamydial effects. For persistent infections, wIRA and VIS irradiation showed robust anti-chlamydial activity independent of the infection status (persistent or recovering), persistence inducer (AMX or IFN-γ) or chlamydial strain (serovar B or E). This study clarifies the requirement of 30 min irradiation duration and 150 mW/cm2 irradiance to induce significant anti-chlamydial effects in vitro, supports the use of irradiation in the wIRA and VIS spectrum as a promising non-chemical treatment for chlamydial infections and provides important information for follow-up in vivo studies. Notably, wIRA and VIS exert anti-chlamydial effects on persistent chlamydiae which are known to be refractory to antibiotic treatment.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland.
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| | - Antonia Frohns
- Plant membrane biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Robert Schoborg
- Department of Medical Education and Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, PO Box 70582, Johnson City, TN 37614, USA.
| | - Helmut Piazena
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| |
Collapse
|
46
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
47
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|
48
|
Bortezomib Eliminates Persistent Chlamydia trachomatis Infection through Rapid and Specific Host Cell Apoptosis. Int J Mol Sci 2022; 23:ijms23137434. [PMID: 35806436 PMCID: PMC9267172 DOI: 10.3390/ijms23137434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Chlamydia trachomatis, a parasitic intracellular bacterium, is a major human pathogen that causes millions of trachoma, sexually transmitted infections, and pneumonia cases worldwide. Previously, peptidomimetic inhibitors consisting of a hydrophobic dipeptide derivative exhibited significant inhibitory effects against chlamydial growth. Based on this finding, this study showed that both bortezomib (BTZ) and ixazomib (IXA), anticancer drugs characterized by proteasome inhibitors, have intensive inhibitory activity against Chlamydia. Both BTZ and IXA consisted of hydrophobic dipeptide derivatives and strongly restricted the growth of Chlamydia (BTZ, IC50 = 24 nM). In contrast, no growth inhibitory effect was observed for other nonintracellular parasitic bacteria, such as Escherichia coli. BTZ and IXA appeared to inhibit chlamydial growth bacteriostatically via electron microscopy. Surprisingly, Chlamydia-infected cells that induced a persistent infection state were selectively eliminated by BTZ treatment, whereas uninfected cells survived. These results strongly suggested the potential of boron compounds based on hydrophobic dipeptides for treating chlamydial infections, including persistent infections, which may be useful for future therapeutic use in chlamydial infectious diseases.
Collapse
|
49
|
Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication. Cell Microbiol 2022. [DOI: 10.1155/2022/9854449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.
Collapse
|
50
|
Liechti GW. Localized Peptidoglycan Biosynthesis in Chlamydia trachomatis Conforms to the Polarized Division and Cell Size Reduction Developmental Models. Front Microbiol 2021; 12:733850. [PMID: 34956109 PMCID: PMC8699169 DOI: 10.3389/fmicb.2021.733850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size regulation in bacteria is a function of two basic cellular processes: the expansion of the cell envelope and its constriction at spatially defined points at what will eventually become the division plane. In most bacterial species, both cell wall expansion and restriction are dependent on peptidoglycan (PG), a structural polymer comprised of sugars and amino acids that imparts strength and rigidity to bacterial membranes. Pathogenic Chlamydia species are unique in that their cell walls contain very little PG, which is restricted almost entirely to the apparent division plane of the microbe's replicative forms. Very little is known about the degree to which PG affects the size and shape of C. trachomatis during its division process, and recent studies suggest the process is initiated via a polarized mechanism. We conducted an imaging study to ascertain the dimensions, orientation, and relative density of chlamydial PG throughout the organism's developmental cycle. Our analysis indicates that PG in replicating C. trachomatis can be associated with four, broad structural forms; polar/septal disks, small/thick rings, large rings, and small/thin rings. We found that PG density appeared to be highest in septal disks and small/thick rings, indicating that these structures likely have high PG synthesis to degradation ratios. We also discovered that as C. trachomatis progresses through its developmental cycle PG structures, on average, decrease in total volume, indicating that the average cell volume of chlamydial RBs likely decreases over time. When cells infected with C. trachomatis are treated with inhibitors of critical components of the microbe's two distinct PG synthases, we observed drastic differences in the ratio of PG synthesis to degradation, as well as the volume and shape of PG-containing structures. Overall, our results suggest that C. trachomatis PG synthases differentially regulate the expansion and contraction of the PG ring during both the expansion and constriction of the microbe's cell membrane during cell growth and division, respectively.
Collapse
Affiliation(s)
- George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|