1
|
Wang X, Sheng Y, Ji P, Deng Y, Sun Y, Chen Y, Nan Y, Hiscox JA, Zhou EM, Liu B, Zhao Q. A Broad-specificity Neutralizing Nanobody against Hepatitis E Virus Capsid Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:442-455. [PMID: 38905108 PMCID: PMC11299488 DOI: 10.4049/jimmunol.2300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Di DYW, Li B, Jeon MK, Yan T. Comparing solid-based concentration methods for rapid and efficient recovery of SARS-CoV-2 for wastewater surveillance. J Virol Methods 2023; 320:114790. [PMID: 37558056 DOI: 10.1016/j.jviromet.2023.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
As wastewater-based surveillance of SARS-CoV-2 attracts interest globally, there is a need to evaluate and identify rapid and efficient methods for concentrating enveloped viruses in wastewater. When comparing five precipitation/flocculation-based concentration methods (including aluminum hydroxide adsorption-precipitation, AHAP; zinc acetate precipitation, ZAP; skimmed milk flocculation, SMF; FeCl3 precipitation, FCP; and direct centrifugation, DC), AHAP was found to be the most efficient method in terms of seeded BCoV recovery (50.2 %). Based on the BCoV recovery efficiency and turnaround time, the AHAP and DC methods were selected and tested on five additional wastewater samples containing both seeded BCoV and indigenous wastewater SARS-CoV-2 RNA. The BCoV recovery (DC: average=30.1 %, sx =14.7 %; AHAP: average=33.0 %, sx =14.2 %) and SARS-CoV-2 based on the N2 gene assay (DC: average=3.6 ×103 gene copies or GC/mL, sx =1.9 × 103 GC/mL; AHAP: average=3.0 ×103 GC/mL, sx =2.0 ×103 GC/mL) of both methods were not significantly different in solid fraction (p = 0.89). This study showed significant higher BCoV recovery and SARS-CoV-2 viral RNA in wastewater solid fraction (p = 0.006) than liquid fraction. Our result suggests that the solid fraction of wastewater samples is more suitable for recovering enveloped viruses from wastewater, and the DC and AHAP methods equally provide suitably rapid, cost-effective, and significantly higher recovery of SARS-CoV-2 viral RNA in wastewater samples.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
4
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
5
|
Golkocheva-Markova E, Ismailova C, Kevorkyan A, Raycheva R, Zhelyazkova S, Kotsev S, Pishmisheva M, Rangelova V, Stoyanova A, Yoncheva V, Tenev T, Gladnishka T, Trifonova I, Christova I, Dimitrov R, Bruni R, Ciccaglione AR. Age and Gender Trends in the Prevalence of Markers for Hepatitis E Virus Exposure in the Heterogeneous Bulgarian Population. Life (Basel) 2023; 13:1345. [PMID: 37374127 DOI: 10.3390/life13061345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of hepatitis E virus (HEV) in the Bulgarian population remains underestimated. The aim of the present study was to evaluate age and gender trends in HEV prevalence in the heterogeneous Bulgarian population. Stored serum samples from blood donors and different patient sub-populations-kidney recipients (KR), patients with Guillain-Barre syndrome (GBS), Lyme disease (LD), patients with liver involvement and a clinical diagnosis other than viral hepatitis A and E (non-AE), hemodialysis (HD) and HIV-positive patients (HIV)-were retrospectively investigated for markers of past and recent/ongoing HEV infection. The estimated overall seroprevalence of past infection was 10.6%, ranging from 5.9% to 24.5% for the sub-populations evaluated, while the seroprevalence of recent/ongoing HEV infection was 7.5%, ranging from 2.1% to 20.4%. The analysis of the individual sub-populations showed a different prevalence with respect to sex. In regard to age, the cohort effect was preserved, as a multimodal pattern was observed only for the GBS sub-population. Molecular analysis revealed HEV 3f and 3e. The type of the population is one of the main factors on which the anti-HEV prevalence depends, highlighting the need for the development of guidelines related to the detection and diagnosis of HEV infection with regard to specific patient populations.
Collapse
Affiliation(s)
- Elitsa Golkocheva-Markova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Chiydem Ismailova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Ani Kevorkyan
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Ralitsa Raycheva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Sashka Zhelyazkova
- Clinic of Nervous Diseases, University Hospital "Alexandrovska", Medical University, 1431 Sofia, Bulgaria
| | - Stanislav Kotsev
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria
| | - Maria Pishmisheva
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Asya Stoyanova
- NRL Enteroviruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Viliana Yoncheva
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Tencho Tenev
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Teodora Gladnishka
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Iva Trifonova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Iva Christova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | |
Collapse
|
6
|
Girón-Guzmán I, Díaz-Reolid A, Cuevas-Ferrando E, Falcó I, Cano-Jiménez P, Comas I, Pérez-Cataluña A, Sánchez G. Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160914. [PMID: 36526211 PMCID: PMC9744676 DOI: 10.1016/j.scitotenv.2022.160914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/05/2023]
Abstract
During the current COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a reliable strategy both as a surveillance method and a way to provide an overview of the SARS-CoV-2 variants circulating among the population. Our objective was to compare two different concentration methods, a well-established aluminum-based procedure (AP) and the commercially available Maxwell® RSC Enviro Wastewater TNA Kit (TNA) for human enteric virus, viral indicators and SARS-CoV-2 surveillance. Additionally, both concentration methods were analyzed for their impact on viral infectivity, and nucleic acids obtained from each method were also evaluated by massive sequencing for SARS-CoV-2. The percentage of SARS-CoV-2 positive samples using the AP method accounted to 100 %, 83.3 %, and 33.3 % depending on the target region while 100 % positivity for these same three target regions was reported using the TNA procedure. The concentrations of norovirus GI, norovirus GII and HEV using the TNA method were significantly greater than for the AP method while no differences were reported for rotavirus, astrovirus, crAssphage and PMMoV. Furthermore, TNA kit in combination with the Artic v4 primer scheme yields the best SARS-CoV-2 sequencing results. Regarding impact on infectivity, the concentration method used by the TNA kit showed near-complete lysis of viruses. Our results suggest that although the performance of the TNA kit was higher than that of the aluminum procedure, both methods are suitable for the analysis of enveloped and non-enveloped viruses in wastewater by molecular methods.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pablo Cano-Jiménez
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
7
|
Wu H, Tian Z, Yao L, Ghonaim AH, Chen X, Ruan S, Li H, Li W, He Q. Combination of Fe(OH) 3 modified diatomaceous earth and qPCR for the enrichment and detection of African swine fever virus in water. Front Vet Sci 2022; 9:1045190. [PMID: 36619955 PMCID: PMC9822731 DOI: 10.3389/fvets.2022.1045190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Water is one of the primary vectors for African swine fever virus (ASFV) transmission among swine herds. However, the low concentrations of ASFV in water represent a challenge for the detection of the virus by conventional PCR methods, and enrichment of the virus would increase the test sensitivity. In this study, aiming to enrich ASFV in water quickly and efficiently, a rapid and efficient water-borne virus enrichment system (MDEF, modified diatomaceous earth by ferric hydroxide colloid) was used to enrich ASFV in water. After enrichment by MDEF, conventional real-time PCR (qPCR) was used for ASFV detection. ASFV were inactivated and diluted in 10 L of water, of which 4 mL were collected after 60 min treatment using the MDEF system. Two thousand five hundred times reduction of the sample volume was achieved after enrichment. A high adsorption rate of about 99.99 (±0.01)% and a high recovery rate of 64.01 (±10.20)% to 179.65 (±25.53)% was achieved by using 1g modified diatomaceous earth for 10 L ASFV contaminated water. The limit of qPCR detection of ASFV decreased to 1 × 10-1.11 GU ml-1 (genomic units per milliliter) from 1 × 102.71 GU ml-1 after concentrating the spiked water from 10 L to 4 ml. Preliminary application of MDEF allowed successful detection of African swine fever virus (ASFV), porcine circovirus type 2 (PCV2), and pseudorabies virus (PRV) in sewage. Thus, the combination of modified diatomaceous earth and real-time PCR is a promising strategy for the detection of viruses in water.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zihan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ahmed H. Ghonaim
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China,Desert Research Center, Cairo, Egypt
| | - Xiaoyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Ruan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huimin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China,*Correspondence: Qigai He ✉
| |
Collapse
|
8
|
Pakbin B, Rossen JWA, Brück WM, Montazeri N, Allahyari S, Dibazar SP, Abdolvahabi R, Mahmoudi R, Peymani A, Samimi R. Prevalence of foodborne and zoonotic viral pathogens in raw cow milk samples. FEMS Microbiol Lett 2022; 369:6815774. [PMID: 36352488 DOI: 10.1093/femsle/fnac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Foodborne and zoonotic viral pathogens are responsible for substantial morbidity and mortality worldwide. These viruses can be transmitted through foods such as dairy products to humans and cause several acute and chronic diseases. This study aimed to investigate the prevalence and profile of different foodborne and zoonotic viruses in raw cow milk samples. We collected 492 raw cow milk samples from local dairy markets in Qazvin, Iran. Then we evaluated the presence of hepatitis A virus, noroviruses, rotavirus, astrovirus, bovine leukaemia virus (BLV) and tick-borne encephalitis virus (TBEV) in samples using conventional and nested reverse transcription-polymerase chain reaction methods. We found that 34.95, 7.72, 25.81, 14.63, 66.86, 12.80 and 21.34% of raw milk samples were contaminated with norovirus GI, norovirus GII, hepatitis A virus, rotavirus, astrovirus, BLV and TBEV viruses, respectively. Interestingly, the samples collected from the city's south area revealed a higher prevalence of foodborne and zoonotic viruses. Astrovirus and its combination with norovirus GI were the most prevalent virus profiles. Also, the highest correlations were observed among the presence of rotavirus and hepatitis A viruses (0.36) and TBEV and norovirus GII (0.31). Considering the prevalence rate and virus profiles of different foodborne and zoonotic viruses in raw milk samples, hygiene practices and the pasteurization process are strongly suggested to be conducted throughout the cow milk production chain and in dairy industries to prevent infections with these pathogens.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - John W A Rossen
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, 8025 AB Zwolle, the Netherlands.,Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland
| | - Naim Montazeri
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | | | - Razieh Abdolvahabi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Rasoul Samimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| |
Collapse
|
9
|
Martins RM, Carvalho T, Bittar C, Quevedo DM, Miceli RN, Nogueira ML, Ferreira HL, Costa PI, Araújo JP, Spilki FR, Rahal P, Calmon MF. Long-Term Wastewater Surveillance for SARS-CoV-2: One-Year Study in Brazil. Viruses 2022; 14:v14112333. [PMID: 36366431 PMCID: PMC9692902 DOI: 10.3390/v14112333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023] Open
Abstract
Wastewater-based epidemiology (WBE) is a tool involving the analysis of wastewater for chemicals and pathogens at the community level. WBE has been shown to be an effective surveillance system for SARS-CoV-2, providing an early-warning-detection system for disease prevalence in the community via the detection of genetic materials in the wastewater. In numerous nation-states, studies have indicated the presence of SARS-CoV-2 in wastewater. Herein, we report the primary time-course monitoring of SARS-CoV-2 RNA in wastewater samples in São José do Rio Preto-SP/Brazil in order to explain the dynamics of the presence of SARS-CoV-2 RNA during one year of the SARS-CoV-2 pandemic and analyze possible relationships with other environmental parameters. We performed RNA quantification of SARS-CoV-2 by RT-qPCR using N1 and N2 targets. The proportion of positive samples for every target resulted in 100% and 96.6% for N1 and N2, respectively. A mean lag of -5 days is observed between the wastewater signal and the new SARS-CoV-2-positive cases reported. A correlation was found between the air and wastewater temperatures and therefore between the SARS-CoV-2 viral titers for N1 and N2 targets. We also observed a correlation between SARS-CoV-2 viral titers and media wastewater flow for the N1 target. In addition, we observed higher viral genome copies within the wastewater samples collected on non-rainy days for the N1 target. Thus, we propose that, based on our results, monitoring raw wastewater may be a broadly applicable strategy that might contribute to resolving the pressing problem of insufficient diagnostic testing; it may represent an inexpensive and early-warning method for future COVID-19 outbreaks, mainly in lower- and middle-income countries.
Collapse
Affiliation(s)
- Renan Moura Martins
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Tamara Carvalho
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Cintia Bittar
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Daniela Muller Quevedo
- Institute of Exact and Technological Sciences (ICET), University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Rafael Nava Miceli
- SeMAE-Autonomous Municipal Water and Sewage Service, São José do Rio Preto 15048-000, SP, Brazil
| | - Mauricio Lacerda Nogueira
- Virology Research Laboratory (LPV), Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Helena Lage Ferreira
- Applied Preventive Veterinary Medicine Laboratory, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Paulo Inácio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-360, SP, Brazil
| | - João Pessoa Araújo
- Biotechnology Institute, São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marilia Freitas Calmon
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
- Correspondence:
| |
Collapse
|
10
|
Ma Z, de Man RA, Kamar N, Pan Q. Chronic hepatitis E: Advancing research and patient care. J Hepatol 2022; 77:1109-1123. [PMID: 35605741 DOI: 10.1016/j.jhep.2022.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
The hepatitis E virus (HEV) was initially thought to exclusively cause acute hepatitis. However, the first diagnosis of chronic hepatitis E in transplant recipients in 2008 profoundly changed our understanding of this pathogen. We have now begun to understand that specific HEV genotypes can cause chronic infection in certain immunocompromised populations. Over the past decade, dedicated clinical and experimental research has substantiated knowledge on the epidemiology, transmission routes, pathophysiological mechanisms, diagnosis, clinical features and treatment of chronic HEV infection. Nevertheless, many gaps and major challenges remain, particularly regarding the translation of knowledge into disease prevention and improvement of clinical outcomes. This article aims to highlight the latest developments in the understanding and management of chronic hepatitis E. More importantly, we attempt to identify major knowledge gaps and discuss strategies for further advancing both research and patient care.
Collapse
Affiliation(s)
- Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Disease (Infinity), University Paul Sabatier, Toulouse, France
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Takuissu GR, Kenmoe S, Ndip L, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Oyono MG, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Nkie Esemu S, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Suffredini E, La Rosa G. Hepatitis E Virus in Water Environments: A Systematic Review and Meta-analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:223-235. [PMID: 36036329 PMCID: PMC9458591 DOI: 10.1007/s12560-022-09530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans, through foodborne, zoonotic, and waterborne transmission routes. This study aimed to assess the prevalence of HEV in water matrices. Six categories were defined: untreated and treated wastewater, surface water (river, lake, and seawater), drinking water, groundwater, and other water environments (irrigation water, grey water, reservoir water, flood water, and effluent of pig slaughterhouse). We searched PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Study selection and data extraction were performed by at least two independent investigators. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameter. Sources of heterogeneity were explored by subgroup analysis. This study is registered with PROSPERO, number CRD42021289116. We included 87 prevalence studies from 58 papers, 66.4% of which performed in Europe. The overall prevalence of HEV in water was 9.8% (95% CI 6.4-13.7). The prevalence was higher in untreated wastewater (15.1%) and lower in treated wastewater (3.8%) and in drinking water (4.7%). In surface water, prevalence was 7.4%, and in groundwater, the percentage of positive samples, from only one study available, was 8.3%. Overall, only 36.8% of the studies reported the genotype of HEV, with genotype 3 (HEV-3) prevalent (168 samples), followed by HEV-1 (148 sample), and HEV-4 (2 samples). High-income countries were the most represented with 59/87 studies (67.8%), while only 3/87 (3.5%) of the studies were performed in low-income countries. The overall prevalence obtained of this study was generally higher in industrialized countries. Risk of bias was low in 14.9% of the studies and moderate in 85.1%. The results of this review showed the occurrence of HEV in different waters environments also in industrialized countries with sanitation and safe water supplies. While HEV transmission to humans through water has been widely demonstrated in developing countries, it is an issue still pending in industrialized countries. Better knowledge on the source of pollution, occurrence, survival in water, and removal by water treatment is needed to unravel this transmission path.
Collapse
Affiliation(s)
- G R Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - L Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - M G Oyono
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - J Kenfack-Zanguim
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - G I Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | - S Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
12
|
Ahmad T, Jin H, Dhama K, Yatoo MI, Tiwari R, Bilal M, Dhawan M, Emran TB, Alestad JH, Alhani HM, BinKhalaf HK, Rabaan AA. Hepatitis E virus in pigs and the environment: An updated review of public health concerns. NARRA J 2022; 2:e78. [PMID: 38449702 PMCID: PMC10914032 DOI: 10.52225/narra.v2i2.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 09/01/2023]
Abstract
Hepatitis E virus (HEV) is an important public health problem and is responsible for both acute and chronic viral hepatitis. Public health implications of HEV are derived from its transmission route, either water-borne or food-borne, and its zoonotic potential. Not only in developing countries, but HEV cases are also found in a high number in developed countries. The spread of HEV to the environment might pollute surface waters, which could act as the source of infection for both humans and animals. Identification of the virus in animal products suggests the circulation of HEV within water and food chains. High seroprevalence and circulation of HEV in livestock, in particular pigs, as well as in environmental samples warrants further investigation into pig markets. HEV virulence in different environments and meat supply chains could shed light on the possible sources of infection in humans and the degree of occupational risk. The purpose of this review is to discuss HEV infections with an emphasis on livestock- and environment-related risk factors, and food-borne, water-borne, and zoonotic transmissions.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, Indias
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology, Glasgow, United Kingdom
- Collage of medicine, Microbiology, Jabriya, Kuwait
- Kuwait Chair Madam in Antimicrobial Resistance Committee, Alternative Permanent Representative of Kuwait to the United Nation Agencies, Rome, Italys
| | - Hatem M. Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Infection Control, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Preventive Medicine and Infection Prevention and Control, Directorate of Ministry of Health, Eastern Region, Dammam, Saudi Arabia
| | - Habib K. BinKhalaf
- Department of Molecular Laboratory, King Fahad Hospital, Hofuf, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
13
|
Sodhi KK, Singh CK. A systematic review on the occurrence, fate, and remediation of SARS-CoV-2 in wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:8073-8086. [PMID: 35755183 PMCID: PMC9207430 DOI: 10.1007/s13762-022-04326-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 06/12/2023]
Abstract
The COVID-19 has been declared a pandemic by the World Health Organization. Along with impairing the respiratory system, it also affects the gastrointestinal system. By reviewing experiments on the wastewater analysis for the detection of coronavirus, this study explores the fate, persistence, and various remediation strategies for the virus removal from the wastewater. The results indicated that the virus can be detected in the wastewater samples, feces, and sewage, even before the onset of symptoms. Coronavirus can be a potential panzootic disease, as several mammalian species get infected by the deadly virus. The disinfection strategies used earlier for the treatment of wastewater are not sufficient for the removal of viruses from the wastewater. Therefore, concerted efforts should be made to understand their fate, sources, and occurrence in the environmental matrices. To prevent the spread of the panzootic disease, revised guidelines should be issued for the remediation of the virus. Recent viral remediation methods such as membrane bioreactors and advanced oxidation methods can be used. Therefore, the present review puts a light on the current knowledge on the occurrence of coronaviruses in wastewater, the possible sources, fate, and removal strategies.
Collapse
Affiliation(s)
- K. K. Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - C. K. Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
14
|
Monitoring Bacterial Community Dynamics in a Drinking Water Treatment Plant: An Integrative Approach Using Metabarcoding and Microbial Indicators in Large Water Volumes. WATER 2022. [DOI: 10.3390/w14091435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monitoring bacterial communities in a drinking water treatment plant (DWTP) may help to understand their regular operations. Bacterial community dynamics in an advanced full-scale DWTP were analyzed by 16S rRNA metabarcoding, and microbial water quality indicators were determined at nine different stages of potabilization: river water and groundwater intake, decantation, sand filtration, ozonization, carbon filtration, reverse osmosis, mixing chamber and post-chlorination drinking water. The microbial content of large water volumes (up to 1100 L) was concentrated by hollow fiber ultrafiltration. Around 10 million reads were obtained and grouped into 10,039 amplicon sequence variants. Metabarcoding analysis showed high bacterial diversity at all treatment stages and above all in groundwater intake, followed by carbon filtration and mixing chamber samples. Shifts in bacterial communities occurred downstream of ozonization, carbon filtration, and, more drastically, chlorination. Proteobacteria and Bacteroidota predominated in river water and throughout the process, but in the final drinking water, the strong selective pressure of chlorination reduced diversity and was clearly dominated by Cyanobacteria. Significant seasonal variation in species distribution was observed in decantation and carbon filtration samples. Some amplicon sequence variants related to potentially pathogenic genera were found in the DWTP. However, they were either not detected in the final water or in very low abundance (<2%), and all EU Directive quality standards were fully met. A combination of culture and high-throughput sequencing techniques may help DWTP managers to detect shifts in microbiome, allowing for a more in-depth assessment of operational performance.
Collapse
|
15
|
Cuevas-Ferrando E, Pérez-Cataluña A, Falcó I, Randazzo W, Sánchez G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front Microbiol 2022; 13:836193. [PMID: 35464930 PMCID: PMC9026171 DOI: 10.3389/fmicb.2022.836193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Wastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I (GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV) along with crAssphage was investigated in influent and effluent water sampled in four wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR. Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that was sporadically detected. All samples tested positive for crAssphage at concentration ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in effluent wastewater, showing higher mean concentration than targeted enteric viruses. Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30, p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05) to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted viruses were observed. Overall, these results corroborate crAssphage as an indicator for fecal contamination in wastewater but a poor marker for either viral occurrence and viral integrity/infectivity. Despite the viral load reductions detected in effluent compared to influent wastewaters, the estimates of viral infectivity based on viability molecular methods might pose a concern for (re)-using of treated water.
Collapse
|
16
|
Maan HS, Chaurasia D, Kapoor G, Dave L, Siddiqui A, Pal S, Singh HO, Biswas D, Chowdhary R. Intestinal viral infections of nSARS-CoV2 in the Indian community: Risk of virus spread in India. J Med Virol 2022; 94:1315-1329. [PMID: 34825708 PMCID: PMC9015588 DOI: 10.1002/jmv.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
In December 2019, novel severe acute respiratory syndrome coronavirus 2 (nSARS-CoV-2) virus outbreaks emerged from Wuhan, China, and spread all over the world, including India. Molecular diagnosis of Coronavirus Disease 2019 (COVID) 19 for densely and highly populated countries like India is time-consuming. A few reports have described the successful diagnosis of nSARS-CoV-2 virus from sewage and wastewater samples contaminated with fecal matter, suggesting the diagnosis of COVID 19 from the same to raise an alarm about the community transmission of virus for implementation of evacuation and lockdown strategies. So far, the association between the detection of virus and its concentration in stool samples with severity of the disease and the presence or absence of gastrointestinal symptoms have been rarely reported. We led the search utilizing multiple databases, specifically PubMed (Medline), EMBASE, and Google Scholar. We conducted a literature survey on gastrointestinal infection and the spread of this virus through fecal-oral transmission. Reports suggested that the existence and persistence of nSARS-CoV-2 in anal/rectal swabs and stool specimens for a longer period of time than in nasopharyngeal swabs provides a strong tenable outcome of gastrointestinal contamination and dissemination of this infection via potential fecal-oral transmission. This review may be helpful to conduct further studies to address the enteric involvement and excretion of nSARS-CoV-2 RNA in feces and control the community spread in both COVID-19 patients ahead of the onset of symptoms and in asymptomatic individuals through wastewater and sewage surveillance as an early indication of infection. The existence of the viral genome and active viral particle actively participate in genomic variations. Hence, we comprehended the enteric spread of different viruses amongst communities with special reference to nSARS-CoV-2.
Collapse
Affiliation(s)
- Harjeet S. Maan
- State Virology Laboratory, Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Deepti Chaurasia
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Garima Kapoor
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Lokendra Dave
- Department of Respiratory MedicineGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Arshi Siddiqui
- Department of BiotechnologyBarkatullah UniversityBhopalMadhya PradeshIndia
| | - Savita Pal
- Department of BiochemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Hari O. Singh
- Division of Molecular Biology, Indian Council of Medical ResearchNational AIDS Research InstitutePuneMaharashtraIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| | - Rashmi Chowdhary
- Department of BiochemistryAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| |
Collapse
|
17
|
Bes M, Costafreda MI, Riveiro-Barciela M, Piron M, Rico A, Quer J, Puig L, Sauleda S. Effect of Hepatitis E Virus RNA Universal Blood Donor Screening, Catalonia, Spain, 2017‒2020. Emerg Infect Dis 2022; 28:157-165. [PMID: 34932460 PMCID: PMC8714212 DOI: 10.3201/eid2801.211466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis in several countries in Europe. HEV is acquired mainly by consumption of contaminated pork but can also be transmitted through blood transfusion. HEV infection is usually self-limited but can become persistent in immunocompromised persons. During the first 30 months of HEV RNA universal screening of blood donations in Catalonia, Spain, we identified 151 HEV RNA-positive donations (1/4,341 blood donations). Most infected donors reported consumption of pates and sausages, and 58% were negative for HEV IgM and IgG. All HEV isolates belonged to genotype 3. All infected donors spontaneously resolved the infection, and no neurologic symptoms and reinfections were observed after 1 year of follow-up. Since the implementation of HEV RNA universal screening, no new cases of transfusion-transmitted HEV infection were reported. Our data indicate HEV screening of blood donations provides safer blood for all recipients, especially for immunosuppressed persons.
Collapse
|
18
|
Cuevas-Ferrando E, Allende A, Pérez-Cataluña A, Truchado P, Hernández N, Gil MI, Sánchez G. Occurrence and Accumulation of Human Enteric Viruses and Phages in Process Water from the Fresh Produce Industry. Foods 2021; 10:foods10081853. [PMID: 34441630 PMCID: PMC8391481 DOI: 10.3390/foods10081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
The virological quality of process water (PW) used by the produce industry has received limited attention. As a first step to overcoming technical limitations in monitoring viruses in PW, the analytical performance of ultrafiltration was assessed to concentrate viral particles from 20 L of spiked PW. The selected method used for sample concentration of PW was carefully validated, thus enabling the accurate quantification and estimation of viral titers of human enteric viruses and phages. PW from the produce industry was collected periodically from the washing tanks of commercial facilities. The analysis of coliphages was performed by plaque assay, while the occurrence of enteric viruses and crAssphage was determined by molecular techniques. Significant differences in the physicochemical composition of PW, mostly due to the different nature of fresh produce types and differences in the sanitizer used in commercial operation, were observed. Accumulation of crAssphage and coliphages was observed in PW, but correlation with human enteric viruses was not possible due to the low prevalence of these pathogens in the PW analyzed. The obtained results showed that depending on the type of product washed, the product/water ratio and the residual concentrations of the sanitizers, the prevalence and concentration of bacteriophages changed significantly.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Natalia Hernández
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Maria Isabel Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
19
|
Moraes DFDSD, Mesquita JR, Dutra V, Nascimento MSJ. Systematic Review of Hepatitis E Virus in Brazil: A One-Health Approach of the Human-Animal-Environment Triad. Animals (Basel) 2021; 11:ani11082290. [PMID: 34438747 PMCID: PMC8388429 DOI: 10.3390/ani11082290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is an important causative agent of acute and chronic hepatitis worldwide. Originally identified in epidemics associated with flooding in Asia, it nowadays shows very distinct genetic and epidemiological patterns. While HEV genotypes (HEV-) 1 and 2 are associated with the original outbreaks (waterborne diseases), HEV-3 and HEV-4 present a zoonotic pattern (associated with consumption of meat from infected animals), HEV-5 and 6 have been found only in wild boar in Japan, and HEV-7 and 8 have been detected in camels and dromedary seldom affecting humans. Brazil, with a precarious sanitary structure and being an important world meat producer, was the focus of this study in order to identify patterns of occurrence of HEV. After reviewing scientific studies, it was identified that the only genotype found in Brazil is HEV-3 and the area where there were more reports was the South region of the country. This is the region that produces more pork. These results indicate that HEV-3 is widespread in the country and sanitary surveillance is essential in the national production of pigs, as well as the implementation of monitoring protocols in hospitals. Abstract Brazil is the fifth largest country in the world with diverse socioeconomic and sanitary conditions, also being the fourth largest pig producer in the world. The aim of the present systematic review was to collect and summarize all HEV published data from Brazil (from 1995 to October 2020) performed in humans, animals, and the environment, in a One Health perspective. A total of 2173 papers were retrieved from five search databases (LILACs, Mendeley, PubMed, Scopus, and Web of Science) resulting in 71 eligible papers after application of exclusion/inclusion criteria. Data shows that HEV genotype 3 (HEV-3) was the only retrieved genotype in humans, animals, and environment in Brazil. The South region showed the highest human seroprevalence and also the highest pig density and industry, suggesting a zoonotic link. HEV-1 and 2 were not detected in Brazil, despite the low sanitary conditions of some regions. From the present review we infer that HEV epidemiology in Brazil is similar to that of industrialized countries (only HEV-3, swine reservoirs, no waterborne transmission, no association with low sanitary conditions). Hence, we alert for the implementation of HEV surveillance systems in swine and for the consideration of HEV in the diagnostic routine of acute and chronic hepatitis in humans.
Collapse
Affiliation(s)
- Danny Franciele da Silva Dias Moraes
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
- Secretaria de Estado do Meio Ambiente de Mato Grosso (SEMA), Cuiabá 78050-970, Brazil
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João R. Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Correspondence:
| | - Valéria Dutra
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
| | | |
Collapse
|
20
|
Pérez-Cataluña A, Cuevas-Ferrando E, Randazzo W, Sánchez G. Bias of library preparation for virome characterization in untreated and treated wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144589. [PMID: 33422963 DOI: 10.1016/j.scitotenv.2020.144589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The use of metagenomics for virome characterization and its implementation for wastewater analyses, including wastewater-based epidemiology, has increased in the last years. However, the lack of standardized methods can led to highly different results. The aim of this work was to analyze virome profiles in upstream and downstream wastewater samples collected from four wastewater treatment plants (WWTPs) using two different library preparation kits. Viral particles were enriched from wastewater concentrates using a filtration and nuclease digestion procedure prior to total nucleic acid (NA) extraction. Sequencing was performed using the ScriptSeq v2 RNA-Seq (LS) and the NEBNext Ultra II RNA (NB) library preparation kits. Cleaned reads and contigs were annotated using a curated in-house database composed by reads assigned to viruses at NCBI. Significant differences in viral families and in the ratio of detection were shown between the two library kits used. The use of LS library showed Virgaviridae, Microviridae and Siphoviridae as the most abundant families; while Ackermannviridae and Helleviridae were highly represented within the NB library. Additionally, the two sequencing libraries produced outcomes that differed in the detection of viral indicators. These results highlighted the importance of library selection for studying viruses in untreated and treated wastewater. Our results underline the need for further studies to elucidate the influence of sequencing procedures in virome profiles in wastewater matrices in order to improve the knowledge of the virome in the water environment.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain; European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany.
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain; European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain; European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany.
| |
Collapse
|
21
|
Cuevas-Ferrando E, Pérez-Cataluña A, Allende A, Guix S, Randazzo W, Sánchez G. Recovering coronavirus from large volumes of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143101. [PMID: 33268258 DOI: 10.1016/jscitontenv.2020.143101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 05/28/2023]
Abstract
The need for monitoring tools to better control the ongoing coronavirus disease (COVID-19) pandemic is extremely urgent and the contamination of water resources by excreted viral particles poses alarming questions to be answered. As a first step to overcome technical limitations in monitoring SARS-CoV-2 along the water cycle, we assessed the analytical performance of a dead end hollow fiber ultrafiltration coupled to different options for secondary concentrations to concentrate viral particles from large volume of spiked tap water, seawater and surface water together with two quantitative RT-qPCR detection kits. Spiking the porcine epidemic diarrhea virus (PEDV), an enveloped virus surrogate for SARS-CoV-2, together with the mengovirus, we demonstrated that PEG-precipitation and SENS-kit better recovered PEDV (13.10 ± 0.66%) from tap water, while centrifugal filtration resulted the best option to recover mengovirus regardless of the detection kit used. No statistical significant differences were found when comparing high (10,000 ×g) and low (3500 ×g) centrifugation speeds for the secondary PEG- based concentration of spiked seawater, while considerable inhibition was observed for both viruses detected by NoInh-kit assay. Similarly, the co-concentration of PCR inhibitors and viral particles was observed in surface waters detected with either SENS-kit or NoInh-kit and RNA dilution was needed to achieve acceptable recoveries at the expenses of the overall sensitivity of the method. These methodologies represent suitable options to investigate SARS-CoV-2 occurrence in different water resources and allow to conduct on site sampling of large volume of water.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Susana Guix
- Enteric Virus laboratory, Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
22
|
Cuevas-Ferrando E, Pérez-Cataluña A, Allende A, Guix S, Randazzo W, Sánchez G. Recovering coronavirus from large volumes of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143101. [PMID: 33268258 PMCID: PMC7563921 DOI: 10.1016/j.scitotenv.2020.143101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 05/18/2023]
Abstract
The need for monitoring tools to better control the ongoing coronavirus disease (COVID-19) pandemic is extremely urgent and the contamination of water resources by excreted viral particles poses alarming questions to be answered. As a first step to overcome technical limitations in monitoring SARS-CoV-2 along the water cycle, we assessed the analytical performance of a dead end hollow fiber ultrafiltration coupled to different options for secondary concentrations to concentrate viral particles from large volume of spiked tap water, seawater and surface water together with two quantitative RT-qPCR detection kits. Spiking the porcine epidemic diarrhea virus (PEDV), an enveloped virus surrogate for SARS-CoV-2, together with the mengovirus, we demonstrated that PEG-precipitation and SENS-kit better recovered PEDV (13.10 ± 0.66%) from tap water, while centrifugal filtration resulted the best option to recover mengovirus regardless of the detection kit used. No statistical significant differences were found when comparing high (10,000 ×g) and low (3500 ×g) centrifugation speeds for the secondary PEG- based concentration of spiked seawater, while considerable inhibition was observed for both viruses detected by NoInh-kit assay. Similarly, the co-concentration of PCR inhibitors and viral particles was observed in surface waters detected with either SENS-kit or NoInh-kit and RNA dilution was needed to achieve acceptable recoveries at the expenses of the overall sensitivity of the method. These methodologies represent suitable options to investigate SARS-CoV-2 occurrence in different water resources and allow to conduct on site sampling of large volume of water.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Susana Guix
- Enteric Virus laboratory, Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
23
|
Pérez-Cataluña A, Cuevas-Ferrando E, Randazzo W, Falcó I, Allende A, Sánchez G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143870. [PMID: 33338788 PMCID: PMC7722604 DOI: 10.1016/j.scitotenv.2020.143870] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated. Urban wastewater seeded with gamma-irradiated SARS-CoV-2, porcine epidemic diarrhea virus (PEDV), and mengovirus (MgV) was used to test the concentration efficiency of an aluminum-based adsorption-precipitation method and a polyethylene glycol (PEG) precipitation protocol. Moreover, two different RNA extraction methods were compared in this study: a commercial manual spin column centrifugation kit and an automated protocol based on magnetic silica beads. Overall, the evaluated concentration methods did not impact the recovery of gamma-irradiated SARS-CoV-2 nor MgV, while extraction methods showed significant differences for PEDV. Mean recovery rates of 42.9 ± 9.5%, 27.5 ± 14.3% and 9.0 ± 2.2% were obtained for gamma-irradiated SARS-CoV-2, PEDV and MgV, respectively. Limits of detection (LoD95%) for five genomic SARS-CoV-2 targets (N1, N2, gene E, IP2 and IP4) ranged from 1.56 log genome equivalents (ge)/mL (N1) to 2.22 log ge/mL (IP4) when automated system was used; while values ranging between 2.08 (N1) and 2.34 (E) log ge/mL were observed when using column-based extraction method. Different targets were also evaluated in naturally contaminated wastewater samples with 91.2%, 85.3%, 70.6%, 79.4% and 73.5% positivity, for N1, N2, E, IP2 and IP4, respectively. Our benchmarked comparison study suggests that the aluminum precipitation method coupled with the automated nucleic extraction represents a method of acceptable sensitivity to provide readily results of interest for SARS-CoV-2 WBE surveillance.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
24
|
Shi D, Ma H, Miao J, Liu W, Yang D, Qiu Z, Shen Z, Yin J, Yang Z, Wang H, Li H, Chen Z, Li J, Jin M. Levels of human Rotaviruses and Noroviruses GII in urban rivers running through the city mirror their infection prevalence in populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142203. [PMID: 32920413 PMCID: PMC7470703 DOI: 10.1016/j.scitotenv.2020.142203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Enteric viruses exposed to water pose a huge threat to global public health and can lead to waterborne disease outbreaks. A sudden increase in enteric viruses in some water matrices also underpins the prevalence of corresponding waterborne diseases in communities over the same time period. However, few efforts have been focused on water matrices whose viral pollution may best reflect the clinical prevalence in communities. Here, a one-year surveillance of human enteric viruses including Enteroviruses (EnVs), Rotaviruses (HRVs), Astroviruses (AstVs), Noroviruses GII (HuNoVsGII) and Mastadenoviruses (HAdVs) in four representative water matrices: an urban river (UR) running through city, effluent from Wastewater Treatment Plant (EW), raw water for Urban Water Treatment Plant (RW), and tap water (TW) were performed by qPCR. The relationship between the virus detection frequency at each site and their prevalence in clinical PCR assay was further analyzed. We found that the detection frequencies of HRVs, HuNoVsGII, and AstVs in stools peaked in winter, while EnVs peaked in autumn. No EnVs occurred in EW, RW, or TW, but HuNoVsGII and AstVs occurred intensively in winter. For UR, all types of enteric viruses could be detected and the levels of acute gastroenteritis viruses (HRVs, HuNoVsGII, AstVs, and HAdVs) were highest in autumn or winter, whereas EnVs peaked in summer. In terms of correlation analyses, only HRVs and HuNoVsGII levels in UR showed a strong positive correlation with their prevalence in clinical stool samples. This study indicated that HRVs and HuNoVsGII levels in URs may mirror the local virus prevalence, thereby implying the possibility of revealing their local epidemiology by monitoring them in the URs.
Collapse
Affiliation(s)
- Danyang Shi
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Hui Ma
- Department of Clinical Laboratory, Tianjin Children's Hospital, No. 238, Longyan Road, Tianjin 300134, China
| | - Jing Miao
- Department of Public Health, Shanxi University of Chinese Medicine, Xianyang 712046, China
| | - Weili Liu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Dong Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Jing Yin
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhongwei Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Huaran Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Haibei Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhengshan Chen
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Junwen Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China.
| | - Min Jin
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China.
| |
Collapse
|
25
|
Cristóvão MB, Tela S, Silva AF, Oliveira M, Bento-Silva A, Bronze MR, Crespo MTB, Crespo JG, Nunes M, Pereira VJ. Occurrence of Antibiotics, Antibiotic Resistance Genes and Viral Genomes in Wastewater Effluents and Their Treatment by a Pilot Scale Nanofiltration Unit. MEMBRANES 2020; 11:9. [PMID: 33374743 PMCID: PMC7824572 DOI: 10.3390/membranes11010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Broad-spectrum fluoroquinolone antibiotics (ciprofloxacin and levofloxacin), carbapenem and fluoroquinolone resistance genes, as well as viral genomes, were detected in grab samples of wastewater effluents. Passive samplers, which are simpler and easier to use and provide information about the concentrations and combination of contaminants present in a certain fluid matrix over time, proved to be extremely promising devices to monitor the presence of the target antibiotics in wastewater effluents. Nanofiltration was tested with a pilot-scale unit installed at a domestic wastewater treatment facility, using a Desal 5DK membrane operated at a constant transmembrane pressure of 6 bar and 70% recovery rate. In a 24 h experimental assay, the variation of the membrane permeance was low (6.3%). High rejections of the target contaminants from the wastewater effluent were obtained by the pilot-scale treatment. Hence, nanofiltration using the Desal 5DK membrane is considered to be a promising treatment to cope with chemical and biological contaminants present in wastewater effluents.
Collapse
Affiliation(s)
- Maria Beatriz Cristóvão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- LAQV-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Solomon Tela
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- LAQV-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Andreia Filipa Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Micaela Oliveira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - João Goulão Crespo
- LAQV-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Mónica Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vanessa Jorge Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.B.C.); (S.T.); (A.F.S.); (M.O.); (M.R.B.); (M.T.B.C.); (M.N.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
26
|
Clinical Characteristics of Acute Hepatitis E and Their Correlation with HEV Genotype 3 Subtypes in Italy. Pathogens 2020; 9:pathogens9100832. [PMID: 33050666 PMCID: PMC7650787 DOI: 10.3390/pathogens9100832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Genotype 3 (GT3) is responsible for most European autochthonous hepatitis E virus (HEV) infections. This study analyzed circulating genotypes and GT3 subtypes in the Lazio region, Italy, between 2011 and 2019, as well as their pathogenic characteristics. Of the 64 evaluable HEV GT3 patient-derived sequences, identified subtypes included GT3f (n = 36), GT3e (n = 15), GT3c (n = 9), GT3a (n = 1) and three unsubtyped GT3 sequences. GT3c strains were similar to Dutch sequences (96.8–98.1% identity), GT3e strains showed high similarity (96.8%) with a United Kingdom sequence, while the most related sequences to GT3f Italian strains were isolated in France, Belgium and Japan. One sequence was closely related to another Italian strain isolated in raw sewage in 2016. The liver functioning test median values for 56 evaluable GT3 patients were: alanine aminotransferase (ALT), 461 (range 52–4835 U/L); aspartate aminotransferase (AST), 659 (range 64–6588 U/L); and total bilirubin, 3.49 (range 0.4–33 mg/dL). The median HEV RNA viral load for 26 evaluable GT3 patients was 42,240 IU/mL (range 5680–895,490 IU/mL). Of the 37 GT3 patients with available clinical information, no correlation was observed between HEV clinical manifestations and GT3 subtype. HEV symptoms were comparable among GT3c/e/f patients across most analyzed categories except for epigastric pain, which occurred more frequently in patients with HEV GT3e (75%) than in patients with GT3c (50%) or GT3f (19%) (p = 0.01). Additionally, patients with HEV GT3c exhibited significantly higher median international normalized ratio (INR) than patients with GT3e and GT3f (p = 0.033). The severity of GT3 acute hepatitis E was not linked to HEV RNA viral load or to the GT3 subtype.
Collapse
|
27
|
Randazzo W, Cuevas-Ferrando E, Sanjuán R, Domingo-Calap P, Sánchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health 2020; 230:113621. [PMID: 32911123 PMCID: PMC7462597 DOI: 10.1016/j.ijheh.2020.113621] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly emerging pandemic which has enforced extreme containment measures worldwide. In the absence of a vaccine or efficient treatment, cost-effective epidemiological surveillance strategies are urgently needed. Here, we have used RT-qPCR for SARS-CoV-2 detection in a series of longitudinal metropolitan wastewaters samples collected from February to April 2020, during the earliest stages of the epidemic in the Region of Valencia, Spain. We were able to consistently detect SARS-CoV-2 RNA in samples taken in late February, when communicated cases in that region were only incipient. We also find that the wastewater viral RNA context increased rapidly and anticipated the subsequent ascent in the number of declared cases. Our results strongly suggest that the virus was undergoing community transmission earlier than previously believed, and suggest that wastewater analysis could be sensitive and cost-effective strategy for COVID-19 epidemiological surveillance. Routine implementation of this surveillance tool would significantly improve our preparedness against new or re-occurring viral outbreaks.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, Universitat de València, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain; Department of Genetics, Universitat de València, 46980, Paterna, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
28
|
Randazzo W, Cuevas-Ferrando E, Sanjuán R, Domingo-Calap P, Sánchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health 2020. [PMID: 32911123 DOI: 10.1101/2020.04.23.20076679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly emerging pandemic which has enforced extreme containment measures worldwide. In the absence of a vaccine or efficient treatment, cost-effective epidemiological surveillance strategies are urgently needed. Here, we have used RT-qPCR for SARS-CoV-2 detection in a series of longitudinal metropolitan wastewaters samples collected from February to April 2020, during the earliest stages of the epidemic in the Region of Valencia, Spain. We were able to consistently detect SARS-CoV-2 RNA in samples taken in late February, when communicated cases in that region were only incipient. We also find that the wastewater viral RNA context increased rapidly and anticipated the subsequent ascent in the number of declared cases. Our results strongly suggest that the virus was undergoing community transmission earlier than previously believed, and suggest that wastewater analysis could be sensitive and cost-effective strategy for COVID-19 epidemiological surveillance. Routine implementation of this surveillance tool would significantly improve our preparedness against new or re-occurring viral outbreaks.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, Universitat de València, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain; Department of Genetics, Universitat de València, 46980, Paterna, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
29
|
Puente H, Randazzo W, Falcó I, Carvajal A, Sánchez G. Rapid Selective Detection of Potentially Infectious Porcine Epidemic Diarrhea Coronavirus Exposed to Heat Treatments Using Viability RT-qPCR. Front Microbiol 2020; 11:1911. [PMID: 32973701 PMCID: PMC7472829 DOI: 10.3389/fmicb.2020.01911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) cause severe respiratory, enteric, and systemic infections in a wide range of hosts, including humans and animals. Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of porcine epidemic diarrhea (PED), a highly contagious intestinal disease affecting pigs of all ages. In this study, we optimized a viability real-time reverse transcriptase polymerase chain reaction (RT-qPCR) for the selective detection of infectious and heat-inactivated PEDV. PEMAX™, EMA™, and PMAxx™ photoactivable dyes along with PtCl4 and CDDP platinum compounds were screened as viability markers using two RT-qPCR assays: firstly, on PEDV purified RNA, and secondly on infectious and thermally inactivated virus suspensions. Furthermore, PMAxx™ pretreatment matched the thermal inactivation pattern obtained by cell culture better than other viability markers. Finally, we further optimized the pretreatment by coupling viability markers with Triton X-100 in inoculated serum resulting in a better estimation of PEDV infectivity than RT-qPCR alone. Our study has provided a rapid analytical tool based on viability RT-qPCR to infer PEDV infectivity with potential application for feed and feed ingredients monitoring in swine industry. This development would allow for greater accuracy in epidemiological surveys and outbreak investigations.
Collapse
Affiliation(s)
- Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
30
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020. [PMID: 32425251 DOI: 10.1101/2020.04.22.20075200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
31
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020; 181:115942. [PMID: 32425251 PMCID: PMC7229723 DOI: 10.1016/j.watres.2020.115942] [Citation(s) in RCA: 792] [Impact Index Per Article: 158.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
32
|
Salvador D, Neto C, Benoliel MJ, Caeiro MF. Assessment of the Presence of Hepatitis E virus in Surface Water and Drinking Water in Portugal. Microorganisms 2020; 8:E761. [PMID: 32438739 PMCID: PMC7285264 DOI: 10.3390/microorganisms8050761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the consumption of contaminated water. This virus is responsible for both sporadic and epidemic outbreaks, leading to thousands of infections per year in several countries, and is thus considered an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, targeting the detection and eventual quantification of enteric viruses in samples from surface and drinking water. Samples positive for HEV RNA were recurrently found by reverse transcription quantitative PCR (RT-qPCR), in both types of matrix. The infectivity of these samples was evaluated in cultured Vero E6 cells and RNA from putative viruses produced in cultures evidencing cytopathic effects and was subjected to RT-qPCR targeting HEV genomic RNA. Our results evidenced the existence of samples positive either for HEV RNA (77.8% in surface water and 66.7% in drinking water) or for infectious HEV (23.0% in surface water and 27.7% in drinking water). These results highlight the need for effective virological control of water for human consumption and activities.
Collapse
Affiliation(s)
- Daniel Salvador
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Edifício Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal;
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Centro de Estudos do Ambiente e do Mar (CESAM), Edifício C2—Piso 2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
| | - Maria João Benoliel
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
| | - Maria Filomena Caeiro
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Centro de Estudos do Ambiente e do Mar (CESAM), Edifício C2—Piso 2, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
33
|
Cuevas-Ferrando E, Martínez-Murcia A, Pérez-Cataluña A, Sánchez G, Randazzo W. Assessment of ISO Method 15216 to Quantify Hepatitis E Virus in Bottled Water. Microorganisms 2020; 8:E730. [PMID: 32414206 PMCID: PMC7284727 DOI: 10.3390/microorganisms8050730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents of water-borne human viral hepatitis and considered in Europe an emerging zoonotic pathogen. Analysis of bottled water through a standard method validated for HEV can contribute towards the risk management of this hazard. Putting some recent reports by the European Food Safety Authority in place, this study aimed to assess the performance of the concentration and extraction procedures described in ISO 15216-1:2017 for norovirus and hepatitis A virus on HEV detection. Following the ISO recommendation, the bottled water samples were spiked using serially diluted HEV fecal suspensions together with mengovirus as process control and concentrated by filtration via positively charged nylon membranes. In order to extract viral RNA from the resulting concentrates, two different methods were compared in this study: The one recommended in the ISO norm, NucliSens® MiniMag® system (NS), and an alternative commercially available kit NucleoSpin®RNA virus kit (MN). Finally, three reverse transcription quantitative PCR (RT-qPCR) assays were used to quantify HEV titers. The evaluated procedures resulted in average HEV recoveries of 14.08 ± 4.90% and 3.58 ± 0.30% for the MN and NS methods, respectively. The limit of detection (LoD95%) was 1.25 × 104 IU/L for both extraction methods combined with the three RT-qPCR assays tested, with the exception of NS extraction coupled with RT-qPCR1 that showed a LoD95% of 4.26 × 103 IU/L. The method characteristics generated in this study support the limited suitability of the ISO 15216-1:2017 concentration procedure coupled with the evaluated RT-qPCR assays for detecting HEV in bottled water.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (E.C.-F.); (A.P.-C.); (G.S.)
| | - Antonio Martínez-Murcia
- Area de Microbiología, EPSO, Universidad Miguel Hernández, Carretera de Beniel Km 3.2, 03312 Orihuela, Alicante, Spain;
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (E.C.-F.); (A.P.-C.); (G.S.)
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (E.C.-F.); (A.P.-C.); (G.S.)
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (E.C.-F.); (A.P.-C.); (G.S.)
- Department of Microbiology and Ecology, University of Valencia. Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
34
|
Epidemiological Surveillance of Norovirus and Rotavirus in Sewage (2016-2017) in Valencia (Spain). Microorganisms 2020; 8:microorganisms8030458. [PMID: 32213877 PMCID: PMC7144017 DOI: 10.3390/microorganisms8030458] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to perform the molecular epidemiology of rotaviruses and noroviruses detected in sewage samples from a large wastewater facility from the city of Valencia, Spain. A total of 46 sewage samples were collected over a one-year period (September 2016 to September 2017). Norovirus and rotavirus were detected and quantified by RT-qPCR, genotyped by semi-nested RT-PCR and further characterized by sequencing and phylogenetic analyses. Noroviruses and rotaviruses were widely distributed in sewage samples (69.6% for norovirus GI, 76.0% norovirus GII, and 71.7% rotaviruses) and viral loads varied from 4.33 to 5.75 log PCRU/L for norovirus GI, 4.69 to 6.95 log PCRU/L for norovirus GII, and 4.08 to 6.92 log PCRU/L for rotavirus. Overall, 87.5% (28/32) of GI noroviruses could not be genotyped, 6.25% (2/32) of the samples contained GI.2 genotype, and another 6.25% (2/32) were positive for GI.4 genotype. The most common genotype of GII noroviruses was GII.2 (40%, 14/35), followed by GII.6 (8.6%, 3/35) and GII.17 (5.7%, 2/35) while the remaining GII strains could not be typed (45.7%, 16/35). Rotavirus VP4 genotype P[8] was the only one found in 19 out of 33 rotavirus-positive samples (57.7%). G2 was the most prevalent rotavirus VP7 genotype (15.2%, 5/33) followed by G3, G9, and G12, with two positive samples for each genotype (6.1%, 2/33). In one sample both G1 and G2 genotypes were detected simultaneously (3%). The results presented here show that the surveillance of noroviruses and rotaviruses in sewage is useful for the study of their transmission in the population and their molecular epidemiology.
Collapse
|