1
|
Masarikova M, Sukkar I, Jamborova I, Medvecky M, Papousek I, Literak I, Cizek A, Dolejska M. Antibiotic-resistant Escherichia coli from treated municipal wastewaters and Black-headed Gull nestlings on the recipient river. One Health 2024; 19:100901. [PMID: 39399230 PMCID: PMC11470789 DOI: 10.1016/j.onehlt.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Wastewaters belong among the most important sources of environmental pollution, including antibiotic-resistant bacteria. The aim of the study was to evaluate treated wastewaters as a possible transmission pathway for bacterial colonisation of gulls occupying the receiving river. A collection of antibiotic-resistant Escherichia coli originating both from treated municipal wastewaters discharged to the river Svratka (Czech Republic) and nestlings of Black-headed Gull (Chroicocephalus ridibundus) living 35 km downstream of the outlet was obtained using selective cultivation. Isolates were further characterised by various phenotyping and genotyping methods. From a total of 670 E. coli isolates (450 from effluents, 220 from gulls), 86 isolates (41 from effluents, 45 from gulls) showed identical antibiotic resistance phenotype and genotype and were further analysed for clonal relatedness using pulsed-field gel electrophoresis (PFGE). Despite the overall high diversity of the isolates, 21 isolates from both sources showed similar PFGE profiles. Isolates belonging to epidemiologically important sequence types (ST131, 15 isolates; ST23, three isolates) were subjected to whole-genome sequencing. Subsequent phylogenetic analysis did not reveal any close clonal relationship between the isolates from the effluents and gulls' nestlings with the closest strains showing 90 SNPs difference. Although our study did not provide direct evidence of transmission of antibiotic-resistant E. coli to wild gulls via treated wastewaters, we observed gull chicks as carriers of diverse multi-resistant E. coli, including high-risk clones, posing risk of further bacterial contamination of the surrounding environment.
Collapse
Affiliation(s)
- Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Ivana Jamborova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Matej Medvecky
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Czech Republic
| |
Collapse
|
2
|
Verburg I, Hernández Leal L, Waar K, Rossen JWA, Schmitt H, García-Cobos S. Klebsiella pneumoniae species complex: From wastewater to the environment. One Health 2024; 19:100880. [PMID: 39263320 PMCID: PMC11387367 DOI: 10.1016/j.onehlt.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Klebsiella pneumoniae plays a significant role in nosocomial infections and spreading antibiotic resistance, and therefore forms a major threat to public health. In this study, we investigated the role of the wastewater pathway in the spread of pathogenic bacteria and more specifically, in the spread of antibiotic resistant Klebsiella pneumoniae subspecies. Whole-genome sequencing was performed of 185 K. pneumoniae isolates collected from hospital, nursing home, and community wastewater, the receiving wastewater treatment plant (WWTP), and clinical isolates from the investigated hospital. K. pneumoniae isolates from different sources were not genetically related, except for WWTP influent (46.5%) and effluent (62.5%), revealing survival of bacteria from wastewater treatment. The content of antibiotic resistance (ARGs), virulence, and plasmid replicon genes differed between K. pneumoniae subspecies and their origin. While chromosomal bla genes were specific for each K. pneumoniae subspecies, bla genes predicted in plasmid contigs were found in several K. pneumoniae subspecies, implying possible gene transfer between subspecies. Transferable ARGs were most abundant in patients and hospital isolates (70%), but the average number of plasmid replicon genes per isolate was similar across all sources, showing plasmid content being more relevant than plasmid quantity. Most patient (90%) and hospital wastewater (34%) isolates were K. pneumoniae subsp. pneumoniae, and the yersiniabactin cluster genes ybt, fyuA, and irp12 were only found in this subspecies, as were the IncFII(pECLA), IncHI2A, and IncHI2 plasmid replicon genes, suggesting the clinical origin of these type of plasmids.
Collapse
Affiliation(s)
- Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Lucia Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
| | - Karola Waar
- Certe Medische Microbiologie Friesland, 8900, JA, Leeuwarden, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
- Institute for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721, MA, Bilthoven, the Netherlands
| | - Silvia García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Kim Y, Choe S, Cho Y, Moon H, Shin H, Seo J, Myung J. Biodegradation of poly(butylene adipate terephthalate) and poly(vinyl alcohol) within aquatic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176129. [PMID: 39255933 DOI: 10.1016/j.scitotenv.2024.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Understanding the environmental fate of biodegradable plastics in aquatic systems is crucial, given the alarming amount of plastic waste and microplastic particles transported through aquatic pathways. In particular, there is a need to analyze the biodegradation of commercialized biodegradable plastics upon release from wastewater treatment plants into natural aquatic systems. This study investigates the biodegradation behaviors of poly(butylene adipate terephthalate) (PBAT) and poly(vinyl alcohol) (PVA) in wastewater, freshwater, and seawater. Biodegradation of PBAT and PVA assessed through biochemical oxygen demand (BOD) experiments and microcosm tests revealed that the type of aquatic system governs the biodegradation behaviors of each plastic, with the highest biodegradation rate achieved in wastewater for both PBAT and PVA (25.6 and 32.2 % in 30 d, respectively). Plastic release pathway from wastewater into other aquatic systems simulated by sequential incubation in different microcosms suggested that PBAT exposed to wastewater and freshwater before reaching seawater was more prone to degradation than when directly exposed to seawater. On the other hand, PVA displayed comparable biodegradation rate regardless of whether it was directly exposed to seawater or had passed through other environments beforehand. Metagenome amplicon sequencing of 16S rRNA genes revealed distinct community shifts dependent on the type of plastics in changing environments along the simulated aquatic pathway. Several bacterial species putatively implicated in the biodegradation of PBAT and PVA are discussed. Our findings underscore the significant influence of pollution routes on the biodegradation of PBAT and PVA, highlighting the potential for wastewater treatment to facilitate rapid degradation compared to direct exposure to pristine aquatic environments.
Collapse
Affiliation(s)
- Youngju Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Shinhyeong Choe
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Yongjun Cho
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hoseong Moon
- Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea
| | - Hojun Shin
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Wardi M, Lemkhente Z, Alla AA, Slimani N, Abali M, Idaghdour Y, Belmouden A. Resistome analysis of wastewater treatment plants in Agadir city, Morocco, using a metagenomics approach. Sci Rep 2024; 14:26328. [PMID: 39487157 PMCID: PMC11530435 DOI: 10.1038/s41598-024-76773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Water scarcity has evolved into a pressing global issue, significantly impacting numerous regions worldwide. The use of treated wastewater stands out as a promising solution to this problem. However, the proliferation of various contaminants, primarily Antimicrobial Resistance Genes (ARGs), poses a significant challenge to its safe and sustainable use. In this study, we assessed the composition and abundance of 373 ARGs, corresponding to 31 different classes of antibiotics, in six wastewater treatment plants (WWTP) in Agadir city of Morocco. Influent and effluent samples were collected during the months of February and July in 2020, in addition to samples from the Atlantic Ocean. In total, 223 ARGs were uncovered, highlighting in particular resistance to aminoglycoside, macrolide lincosamide, beta-lactamase, chloramphenicol, sulfonamide, tetracycline, and other antibiotics. The mechanisms of action of these ARGs were mainly antibiotic inactivation, antibiotic target alteration, efflux pump and cellular protection. Mobile genetic elements (MGEs) were detected at high levels their co-occurrence with ARGs highlights their involvement in the acquisition and transmission of ARGs in microbial communities through horizontal gene transfer. While many wastewater treatment methods effectively reduce a large proportion of gene material and pathogens, a substantial fraction of ARGs and other contaminants persist in treated wastewater. This persistence poses potential risks to both human health and the environment, warranting the need of more effective treatment strategies.
Collapse
Affiliation(s)
- Maryem Wardi
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- Laboratory of Medical-Surgical, Biomedicine and Infectiology Research, Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Noureddine Slimani
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - M'hamed Abali
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Youssef Idaghdour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed Belmouden
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
| |
Collapse
|
5
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Maday SDM, Kingsbury JM, Weaver L, Pantos O, Wallbank JA, Doake F, Masterton H, Hopkins M, Dunlop R, Gaw S, Theobald B, Risani R, Abbel R, Smith D, Handley KM, Lear G. Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0071524. [PMID: 39329490 PMCID: PMC11497791 DOI: 10.1128/aem.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Stefan D. M. Maday
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Jessica A. Wallbank
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Maisie Hopkins
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosa Dunlop
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | - Kim M. Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Wang Y, Ren Z, Wu Y, Li Y, Han S. Antibiotic resistance genes transfer risk: Contributions from soil erosion and sedimentation activities, agricultural cycles, and soil chemical contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136227. [PMID: 39454331 DOI: 10.1016/j.jhazmat.2024.136227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
The transfer of antibiotic resistance genes (ARGs) pose environmental risks that are influenced by soil activity and pollution. Soil erosion and sedimentation accelerate degradation and migration, thereby affecting soil distribution and contamination. This study quantified the vertical and horizontal transfer capabilities of ARGs and simulated soil environments under various scenarios, such as erosion, agricultural cycles, and chemical pollution. The results showed that slope, runoff, and sediment volume significantly affected soil erosion and ARG transfer risks. The response of environmental factors to the transfer risk of ARGs is as follows: the promotion effect of soil deposition (average: 21.41 %) is significantly greater than the inhibitory effect of soil erosion (average: -11.31 %); the planting period (average: -64.654) is greater than the harvest period (average: -56.225); the response to soil chemical pollution is: the impact of phosphate fertilizer residues, antibiotics, and pesticide pollution is more significant. This study constructed a vertical and horizontal transfer system of ARGs in soil erosion and sedimentation environments and proposed a response analysis method for the impact of factors, such as soil erosion and sedimentation activities, agricultural cycles, and soil chemical pollution, on ARGs transfer capabilities.
Collapse
Affiliation(s)
- Yingwei Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Jilin Emergency Management, Changchun Institute of Technology, Changchun 130012, China.
| | - Yuhan Wu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yufei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Wu X, Jia W, Fang Z, Sun H, Wang G, Liu L, Zheng M, Chen G. Cyanobacteria mediate the dissemination of bacterial antibiotic resistance through conjugal transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124592. [PMID: 39047887 DOI: 10.1016/j.envpol.2024.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dynamics is not fully elucidated yet. We selected Microcystis aeruginosa as a model cyanobacteria to illustrate how cyanobacteria mediate the evolution and transfer processes of bacterial antibiotic resistance. The results show that the presence of cyanobacteria significantly decreased the abundance of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by 3%-99% and 2%-18%, respectively. In addition, it clearly altered bacterial community structure, with the dominant genera evolving from Acinetobacter (27%) and Enterobacter (42%) to Porphyrobacter (59%). The abundance of ARGs positively correlated with Proteobacteria and Firmicutes, rather than Cyanobacteria, and Bacteroidetes. In the presence of cyanobacteria, the transfer events of bacterial resistance genes via conjugation were found to decrease by 10%-89% (p < 0.05). Surprisingly, we found an extradentary high transfer frequency (about 0.1) for the ARGs via plasmid conjugation from the bacteria into M. aeruginosa population. It confirmed the role of cyanobacterial population as the competent hosts to facilitate ARGs spreading. Our findings provide valuable information on the risk evaluation of ARGs caused by cyanobacterial blooms in aquatic environments, key for the protection and assessment of aquatic environmental quality.
Collapse
Affiliation(s)
- Xuefei Wu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Jia
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhipeng Fang
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hualong Sun
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mengqi Zheng
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
9
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
10
|
Gunawardana W, Kalupahana RS, Kottawatta SA, Gamage A, Merah O. A Review of the Dissemination of Antibiotic Resistance through Wastewater Treatment Plants: Current Situation in Sri Lanka and Future Perspectives. Life (Basel) 2024; 14:1065. [PMID: 39337850 PMCID: PMC11433486 DOI: 10.3390/life14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of antibiotic resistance (AR) poses a significant threat to both public health and aquatic ecosystems. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for disseminating AR in the environment. However, only a limited number of studies have been conducted on AR dissemination through WWTPs in Sri Lanka. To address this knowledge gap in AR dissemination through WWTP operations in Sri Lanka, we critically examined the global situation of WWTPs as hotspots for transmitting antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) by evaluating more than a hundred peer-reviewed international publications and available national publications. Our findings discuss the current state of operating WWTPs in the country and highlight the research needed in controlling AR dissemination. The results revealed that the impact of different wastewater types, such as clinical, veterinary, domestic, and industrial, on the dissemination of AR has not been extensively studied in Sri Lanka; furthermore, the effectiveness of various wastewater treatment techniques in removing ARGs requires further investigation to improve the technologies. Furthermore, existing studies have not explored deeply enough the potential public health and ecological risks posed by AR dissemination through WWTPs.
Collapse
Affiliation(s)
- Wasana Gunawardana
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Ashoka Gamage
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle, LCA, Institut National de la Recherche Agronomique et Environnement, Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| |
Collapse
|
11
|
Polianciuc SI, Ciorîță A, Soran ML, Lung I, Kiss B, Ștefan MG, Leucuța DC, Gurzău AE, Carpa R, Colobațiu LM, Loghin F. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics (Basel) 2024; 13:780. [PMID: 39200080 PMCID: PMC11350919 DOI: 10.3390/antibiotics13080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluates antibiotic residues and bacterial loads in influent and effluent samples from three wastewater treatment plants (WWTPs) in Romania, across four seasons from 2021 to 2022. Analytical methods included solid-phase extraction and high-performance liquid chromatography (HPLC) to quantify antibiotic concentrations, while microbiological assays estimated bacterial loads and assessed antibiotic resistance patterns. Statistical analyses explored the impact of environmental factors such as temperature and rainfall on antibiotic levels. The results showed significant seasonal variations, with higher antibiotic concentrations in warmer seasons. Antibiotic removal efficiency varied among WWTPs, with some antibiotics being effectively removed and others persisting in the effluent, posing high environmental risks and potential for antibiotic resistance development. Bacterial loads were higher in spring and summer, correlating with increased temperatures. Eight bacterial strains were isolated, with higher resistance during warmer seasons, particularly to amoxicillin and clarithromycin.
Collapse
Affiliation(s)
- Svetlana Iuliana Polianciuc
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Electon Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Maria Loredana Soran
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca Elena Gurzău
- Department of Public Health, Faculty of Political, Administrative and Communication Sciences, Babeș-Bolyai University, 400095 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 400015 Cluj Napoca, Romania
| | - Liora Mihaela Colobațiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
13
|
Cailleau G, Junier T, Paul C, Fatton M, Corona-Ramirez A, Gning O, Beck K, Vidal J, Bürgmann H, Junier P. Temporal and spatial changes in the abundance of antibiotic resistance gene markers in a wastewater treatment plant. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11104. [PMID: 39164119 DOI: 10.1002/wer.11104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
In this study, we investigated the temporal and spatial quantitative changes in the concentration of antibiotic resistance gene (ARG) markers in a municipal wastewater treatment plant (WWTP). Four ARGs conferring resistance to different classes of antibiotics (ermB, sul1, tet[W], and blaCTXM) and a gene used as a proxy for ARG pollution (intl1) were quantified in two separate sampling campaigns covering two and half years of operation of the WWTP. First, a systematic monthly monitoring of multiple points in the inlet and the outlet revealed an absolute decrease in the concentration of all analyzed ARGs. However, the relative abundance of sul1 and intl1 genes relative to the total bacterial load (estimated using the universal marker 16S rDNA) increased in the outlet samples as compared to the inlet. To pinpoint the exact stage of removal and/or enrichment within the WWTP, a second sampling including the stages of the biological treatment was performed bimonthly. This revealed a distinct enrichment of sul1 and intl1 genes during the biological treatment phase. Moreover, the temporal and spatial variations in ARG abundance patterns within the WWTP underscored the complexity of the dynamics associated with the removal of ARGs during wastewater treatment. Understanding these dynamics is pivotal for developing efficient strategies to mitigate the dissemination of ARGs in aquatic environments. PRACTITIONER POINTS: Regular monitoring of ARG markers in WWTPs is essential to assess temporal and spatial changes, aiding in the development of effective mitigation strategies. Understanding the dynamics of ARG abundance during biological treatment is crucial for optimizing processes and minimizing dissemination in aquatic environments. Increased relative abundance of certain ARGs highlights potential enrichment during wastewater treatment, necessitating targeted interventions. Systematic monitoring of multiple points within WWTPs can provide valuable insights into the efficacy of treatment processes in reducing ARG levels over time. The complexity of ARG abundance patterns underscores the need to develop holistic approaches to tackle antibiotic resistance in wastewater systems.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland
| | | | - Christophe Paul
- Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland
| | | | - Ophelie Gning
- Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jacques Vidal
- Waste Water Treatment Plant, La Chaux-de-Fonds, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland
| |
Collapse
|
14
|
Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116610. [PMID: 38909392 DOI: 10.1016/j.ecoenv.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/31/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency. By following the PRISMA guidelines, the study systematically reviewed relevant literature on detecting and remedying these pollutants in wastewater treatment facilities. Conventional wastewater treatment plants struggle to eliminate CECs, HMs, and E. coli owing to their small size, persistence, and complex nature. The review suggests upgrading WWTPs with advanced tertiary processes to significantly improve contaminant removal. This calls for cost-effective treatment parameters and standardised assessment techniques to enhance the fate of MPs in WWTPs and WRRFs. It recommends integrating insights from mass-balance model studies on MPs in WWTP to overcome modelling challenges and ensure model reliability. In conclusion, this review underscores the urgent need for advancements in wastewater treatment processes to mitigate the environmental impact of trace anthropogenic biomarkers. Future efforts should focus on conducting comprehensive studies, implementing advanced treatment methods, and optimising management practices in WWTPs and WRRFs.
Collapse
Affiliation(s)
- Joshua Matesun
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Leslie Petrik
- Environmental and NanoScience Research Group, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eustina Musvoto
- TruSense Consulting Services (Pty) Ltd, 191 Hartley Street Pretoria, South Africa
| | - Wasiu Ayinde
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - David Ikumi
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
15
|
Liu X, Xin J, Sun Y, Zhao F, Niu C, Liu S. Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Mar Drugs 2024; 22:347. [PMID: 39195463 DOI: 10.3390/md22080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is an urgent need for new antibacterial and antifungal agents to combat the growing challenge of antibiotic resistance. As the largest ecosystem on Earth, the marine ecosystem includes a vast array of microorganisms (primarily bacteria and fungi), plants, invertebrates, and vertebrates, making it a rich source of various antimicrobial compounds. Notably, terpenoids, known for their complex structures and diverse bioactivities, are a significant and promising group of compounds in the battle against bacterial and fungal infections. In the past five years, numerous antimicrobial terpenoids have been identified from marine organisms such as bacteria, fungi, algae, corals, sea cucumbers, and sponges. This review article provides a detailed overview of 141 terpenoids with antibacterial and/or antifungal properties derived from marine organisms between 2019 and 2024. Terpenoids, a diverse group of natural organic compounds derived from isoprene units, are systematically categorized based on their carbon skeleton structures. Comprehensive information is provided about their names, structures, biological sources, and the extent of their antibacterial and/or antifungal effectiveness. This review aims to facilitate the rapid identification and development of prospective antimicrobials in the pharmaceutical sector.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jianzeng Xin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of life sciences, Yantai University, Yantai 264005, China
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
16
|
Lu C, Jiang Y, Lan M, Wang L, Zhang W, Wang F. Children's food allergy: Effects of environmental influences and antibiotic use across critical developmental windows. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134506. [PMID: 38714059 DOI: 10.1016/j.jhazmat.2024.134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Increasing studies linked outdoor air pollution (OAP), indoor environmental factors (IEFs), and antibiotics use (AU) with the first wave of allergies (i.e., asthma, allergic rhinitis, and eczema), yet the role of their exposures on children's second wave of allergy (i.e., food allergy) are unknown. OBJECTIVES To investigate the association between exposure to OAP and IEFs and childhood doctor-diagnosed food allergy (DFA) during the pre-pregnancy, prenatal, early postnatal, and current periods, and to further explore the effect of OAP and IEFs on DFA in children co-exposed to antibiotics. METHODS A retrospective cohort study involving 8689 preschoolers was carried out in Changsha, China. Data on the health outcomes, antibiotic use, and home environment of each child were collected through a questionnaire. Temperature and air pollutants data were obtained from 8 and 10 monitoring stations in Changsha, respectively. Exposure levels to temperature and air pollutants at individual home addresses were calculated by the inverse distance weighted (IDW) method. Multiple logistic regression models were employed to assess the associations of childhood DFA with exposure to OAP, IEF, and AU. RESULTS Childhood ever doctor-diagnosed food allergy (DFA) was linked to postnatal PM10 exposure with OR (95% CI) of 1.18 (1.03-1.36), especially for CO and O3 exposure during the first year with ORs (95% CI) = 1.08 (1.00-1.16) and 1.07 (1.00-1.14), as well as SO2 exposure during the previous year with OR (95% CI) of 1.13 (1.02-1.25). The role of postnatal air pollution is more important for the risk of egg, milk and other food allergies. Renovation-related IAP (new furniture) and dampness-related indoor allergens exposures throughout all time windows significantly increased the risk of childhood DFA, with ORs ranging from 1.23 (1.03-1.46) to 1.54 (1.29-1.83). Furthermore, smoke-related IAP (environmental tobacco smoke [ETS], parental and grandparental smoking) exposure during pregnancy, first year, and previous year was related to DFA. Additionally, exposure to pet-related indoor allergens (cats) during first year and total plant-related allergens (particularly nonflowering plants) during previous year were associated with DFA. Moreover, exposure to plant-related allergy during first and previous year was specifically associated with milk allergy, while keeping cats during first year increased the risk of fruits/vegetables allergy. Life-time and early-life AU was associated with the increased risk of childhood DFA with ORs (95% CI) = 1.57 (1.32-1.87) and 1.46 (1.27-1.67), including different types food allergies except fruit/vegetable allergy. CONCLUSIONS Postnatal OAP, life-time and early-life IEFs and AU exposure played a vital role in the development of DFA, supporting the "fetal origin of childhood FA" hypothesis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, China.
| | - Ying Jiang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Mengju Lan
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Lin Wang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Wanzhen Zhang
- Department of GICU, Henan Provincial Chest Hospital, Weiwu Road No. 1, Zhengzhou, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
18
|
Qin Y, Teng Y, Yang Y, Mao Z, Zhao S, Zhang N, Li X, Niu W. Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: Serine acetyltransferase and O-acetylserine sulfhydrylase. Chem Biol Drug Des 2024; 104:e14573. [PMID: 38965664 DOI: 10.1111/cbdd.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yan Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xu Li
- Institute of Chemistry Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
20
|
Gentile A, Piccolo P, Iannece P, Cicatelli A, Castiglione S, Guarino F. Reduction of antimicrobial resistance: Advancements in nature-based wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134330. [PMID: 38678704 DOI: 10.1016/j.jhazmat.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Water scarcity, affecting one-fifth of the global population, is exacerbated by industrial, agricultural, and population growth pressures on water resources. Wastewater, containing Contaminants of Emerging Concern (CECs) such as antibiotics, presents environmental and health hazards. This study explores a Nature-Based Solution (NBS) using Constructed Wetlands (CWs) for wastewater reclamation and CECs removal. Two CW configurations (Vertical-VCW and Hybrid-HCW) were tested for their efficacy. Results show significant reduction in for all the chemico-physical and biological parameters meeting Italian water reuse standards. Furthermore, Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) were effectively reduced, emphasizing the potential of the CWs in mitigating Antimicrobial Resistance (AMR). Lettuce seedlings irrigated with the treated wastewater exhibited no ARB/ARGs transfer, indicating the safety of the reclaimed wastewater for agricultural use. Overall, CWs emerge as sustainable Nature Based Solutions (NBS) for wastewater treatment, contributing to global water conservation efforts amid escalating water scarcity challenges.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Paolo Piccolo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Patrizia Iannece
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| |
Collapse
|
21
|
Park JH, Bae KS, Kang J, Yoon JK, Lee SH. Comprehensive Assessment of Multidrug-Resistant and Extraintestinal Pathogenic Escherichia coli in Wastewater Treatment Plant Effluents. Microorganisms 2024; 12:1119. [PMID: 38930502 PMCID: PMC11205404 DOI: 10.3390/microorganisms12061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli poses a significant threat to public health, contributing to elevated rates of morbidity, mortality, and economic burden. This study focused on investigating the antibiotic resistance profiles, resistance and virulence gene distributions, biofilm formation capabilities, and sequence types of E. coli strains resistant to six or more antibiotic classes. Among 918 strains isolated from 33 wastewater treatment plants (WWTPs), 53.6% (492/918) demonstrated resistance, 32.5% (298/918) were MDR, and over 8% (74/918) were resistant to six or more antibiotic classes, exhibiting complete resistance to ampicillin and over 90% to sulfisoxazole, nalidixic acid, and tetracycline. Key resistance genes identified included sul2, blaTEM, tetA, strA, strB, and fimH as the predominant virulence genes linked to cell adhesion but limited biofilm formation; 69% showed no biofilm formation, and approximately 3% were strong producers. Antibiotic residue analysis detected ciprofloxacin, sulfamethoxazole, and trimethoprim in all 33 WWTPs. Multilocus sequence typing analysis identified 29 genotypes, predominantly ST131, ST1193, ST38, and ST69, as high-risk clones of extraintestinal pathogenic E. coli. This study provided a comprehensive analysis of antibiotic resistance in MDR E. coli isolated from WWTPs, emphasizing the need for ongoing surveillance and research to effectively manage antibiotic resistance.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environment Research, Yangpyeong-gun, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Kyung-Seon Bae
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jihyun Kang
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jeong-Ki Yoon
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Soo-Hyung Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| |
Collapse
|
22
|
Wilson GJL, Perez-Zabaleta M, Owusu-Agyeman I, Kumar A, Ghosh A, Polya DA, Gooddy DC, Cetecioglu Z, Richards LA. Discovery of sulfonamide resistance genes in deep groundwater below Patna, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124205. [PMID: 38797351 DOI: 10.1016/j.envpol.2024.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India. The mean relative abundance of gene copies was found to be sulI (2.4 × 10-2 copies/16S rRNA gene) > sulII (5.4 × 10-3 copies/16S rRNA gene) > sulIII (2.4 × 10-3 copies/16S rRNA gene) in groundwater (n = 15) and surface water (n = 3). A comparison between antimicrobial resistance (AMR) genes and wastewater indicators, particularly tryptophan:fulvic-like fluorescence, suggests that wastewater was associated with AMR gene prevalence. Urban drainage channels, containing hospital and domestic wastes, are likely a substantial source of antimicrobial resistance in groundwater and surface water, including the Ganges (Ganga) River. This study is a reference point for decision-makers in the fight against antimicrobial resistance because it quantifies and determines potential sources of AMR genes in Indian groundwater.
Collapse
Affiliation(s)
- George J L Wilson
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
23
|
Bhuin A, Udayakumar S, Gopalarethinam J, Mukherjee D, Girigoswami K, Ponraj C, Sarkar S. Photocatalytic degradation of antibiotics and antimicrobial and anticancer activities of two-dimensional ZnO nanosheets. Sci Rep 2024; 14:10406. [PMID: 38710736 DOI: 10.1038/s41598-024-59842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 μg/l and 10 μg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.
Collapse
Affiliation(s)
- Abhik Bhuin
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India
| | - Saranya Udayakumar
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Janani Gopalarethinam
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Debdyuti Mukherjee
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT-M Research Park, Taramani, Chennai, 600113, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Caroline Ponraj
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
| | - Sujoy Sarkar
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
- Electric Vehicle Incubation, Testing and Research Centre (EVIT-RC), Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
| |
Collapse
|
24
|
Stankiewicz K, Boroń P, Prajsnar J, Żelazny M, Heliasz M, Hunter W, Lenart-Boroń A. Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170995. [PMID: 38378066 DOI: 10.1016/j.scitotenv.2024.170995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
25
|
Wang B, Ma B, Zhang Y, Stirling E, Yan Q, He Z, Liu Z, Yuan X, Zhang H. Global diversity, coexistence and consequences of resistome in inland waters. WATER RESEARCH 2024; 253:121253. [PMID: 38350193 DOI: 10.1016/j.watres.2024.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human activities have long impacted the health of Earth's rivers and lakes. These inland waters, crucial for our survival and productivity, have suffered from contamination which allows the formation and spread of antibiotic-resistant genes (ARGs) and consequently, ARG-carrying pathogens (APs). Yet, our global understanding of waterborne pathogen antibiotic resistance remains in its infancy. To shed light on this, our study examined 1240 metagenomic samples from both open and closed inland waters. We identified 22 types of ARGs, 19 types of mobile genetic elements (MGEs), and 14 types of virulence factors (VFs). Our findings showed that open waters have a higher average abundance and richness of ARGs, MGEs, and VFs, with more robust co-occurrence network compared to closed waters. Out of the samples studied, 321 APs were detected, representing a 43 % detection rate. Of these, the resistance gene 'bacA' was the most predominant. Notably, AP hotspots were identified in regions including East Asia, India, Western Europe, the eastern United States, and Brazil. Our research underscores how human activities profoundly influence the diversity and spread of resistome. It also emphasizes that both abiotic and biotic factors play pivotal roles in the emergence of ARG-carrying pathogens.
Collapse
Affiliation(s)
- Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, PR China
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, PR China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Erinne Stirling
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5064, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, PR China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, PR China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, PR China
| | - Xia Yuan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, PR China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, PR China.
| |
Collapse
|
26
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
27
|
Arnal C, Belhadj-Kaabi F, Ingrand V. [Which contribution of wastewater treatment plants in the fight against antimicrobial resistance?]. C R Biol 2024; 346:23-33. [PMID: 37655905 DOI: 10.5802/crbiol.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 09/02/2023]
Abstract
Due to the massive use of antibiotics, antimicrobial resistance (AMR) continues to spread, endangering global disease control and environmental quality. The sources of bacteria or antimicrobial resistance genes are linked to human activities: urban, hospital and industrial discharges, livestock farms). The role of sanitation systems-sewerage, wastewater treatment and sludge treatment (WWTP)-in the problem of AMR has not yet been clearly established by the scientific community. The data available to date show that they eliminate part of the bacteria, genes and antibiotics, although this is not their primary vocation. WWTPs thus play an important filtering role to limit dissemination in the environment. On the other hand, some authors warn against their potential involvement in the selection of new resistant germs, given the conditions conducive to the exchange of genetic material between microbial strains of various types and exposed to selective agents. Today, knowledge of the mechanisms involved in the selection of antibiotic resistance and the fate of bacteria and resistance genes within sanitation systems remains limited. Research is needed to better characterize the contribution of wastewater systems and the performance of wastewater, recycled water, stormwater and sludge treatment processes.
Collapse
|
28
|
Begmatov S, Beletsky AV, Dorofeev AG, Pimenov NV, Mardanov AV, Ravin NV. Metagenomic insights into the wastewater resistome before and after purification at large‑scale wastewater treatment plants in the Moscow city. Sci Rep 2024; 14:6349. [PMID: 38491069 PMCID: PMC10942971 DOI: 10.1038/s41598-024-56870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are considered to be hotspots for the spread of antibiotic resistance genes (ARGs). We performed a metagenomic analysis of the raw wastewater, activated sludge and treated wastewater from two large WWTPs responsible for the treatment of urban wastewater in Moscow, Russia. In untreated wastewater, several hundred ARGs that could confer resistance to most commonly used classes of antibiotics were found. WWTPs employed a nitrification/denitrification or an anaerobic/anoxic/oxic process and enabled efficient removal of organic matter, nitrogen and phosphorus, as well as fecal microbiota. The resistome constituted about 0.05% of the whole metagenome, and after water treatment its share decreased by 3-4 times. The resistomes were dominated by ARGs encoding resistance to beta-lactams, macrolides, aminoglycosides, tetracyclines, quaternary ammonium compounds, and sulfonamides. ARGs for macrolides and tetracyclines were removed more efficiently than beta-lactamases, especially ampC, the most abundant ARG in the treated effluent. The removal efficiency of particular ARGs was impacted by the treatment technology. Metagenome-assembled genomes of multidrug-resistant strains were assembled both for the influent and the treated effluent. Ccomparison of resistomes from WWTPs in Moscow and around the world suggested that the abundance and content of ARGs depend on social, economic, medical, and environmental factors.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071.
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Alexander G Dorofeev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071.
| |
Collapse
|
29
|
Abdulkadir N, Saraiva JP, Zhang J, Stolte S, Gillor O, Harms H, Rocha U. Genome-centric analyses of 165 metagenomes show that mobile genetic elements are crucial for the transmission of antimicrobial resistance genes to pathogens in activated sludge and wastewater. Microbiol Spectr 2024; 12:e0291823. [PMID: 38289113 PMCID: PMC10913551 DOI: 10.1128/spectrum.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/25/2023] [Indexed: 03/06/2024] Open
Abstract
Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens. The potential of these ARGs to be transmitted horizontally or vertically was also determined. A total of 5,916 MAGs (completeness >50%, contamination <10%) were recovered, covering 68 phyla and 279 genera. MAGs were dereplicated into 1,204 genome operational taxonomic units (gOTUs) as a proxy for species ( average nucleotide identity >0.95). The dominant ARG classes detected were bacitracin, multi-drug, macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside, and 10.26% of them were located on plasmids. The main hosts of ARGs belonged to Escherichia, Klebsiella, Acinetobacter, Gresbergeria, Mycobacterium, and Thauera. Our data showed that 253 MAGs carried virulence factor genes (VFGs) divided into 44 gOTUs, of which 45 MAGs were carriers of ARGs, indicating that potential human pathogens carried ARGs. Alarmingly, the MAG assigned as Escherichia coli contained 159 VFGs, of which 95 were located on chromosomes and 10 on plasmids. In addition to shedding light on the prevalence of ARGs in individual genomes recovered from activated sludge and wastewater, our study demonstrates a workflow that can identify antimicrobial-resistant pathogens in complex microbial communities. IMPORTANCE Antimicrobial resistance (AMR) threatens the health of humans, animals, and natural ecosystems. In our study, an analysis of 165 metagenomes from wastewater revealed antibiotic-targeted alteration, efflux, and inactivation as the most prevalent AMR mechanisms. We identified several genera correlated with multiple ARGs, including Klebsiella, Escherichia, Acinetobacter, Nitrospira, Ottowia, Pseudomonas, and Thauera, which could have significant implications for AMR transmission. The abundance of bacA, mexL, and aph(3")-I in the genomes calls for their urgent management in wastewater. Our approach could be applied to different ecosystems to assess the risk of potential pathogens containing ARGs. Our findings highlight the importance of managing AMR in wastewater and can help design measures to reduce the transmission and evolution of AMR in these systems.
Collapse
Affiliation(s)
- Nafi’u Abdulkadir
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
- Department of Biochemistry, Faculty of Natural Science, University of Leipzig, Leipzig, Germany
| | - Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
| | - Junya Zhang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Stefan Stolte
- Institute of Water Chemistry, Technical University of Dresden, Dresden, Germany
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion, Israel
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
- Department of Biochemistry, Faculty of Natural Science, University of Leipzig, Leipzig, Germany
| | - Ulisses Rocha
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
30
|
Nasser-Ali M, Aja-Macaya P, Conde-Pérez K, Trigo-Tasende N, Rumbo-Feal S, Fernández-González A, Bou G, Poza M, Vallejo JA. Emergence of Carbapenemase Genes in Gram-Negative Bacteria Isolated from the Wastewater Treatment Plant in A Coruña, Spain. Antibiotics (Basel) 2024; 13:194. [PMID: 38391580 PMCID: PMC10886265 DOI: 10.3390/antibiotics13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are recognized as important niches of antibiotic-resistant bacteria that can be easily spread to the environment. In this study, we collected wastewater samples from the WWTP of A Coruña (NW Spain) from April 2020 to February 2022 to evaluate the presence of Gram-negative bacteria harboring carbapenemase genes. Bacteria isolated from wastewater were classified and their antimicrobial profiles were determined. In total, 252 Gram-negative bacteria carrying various carbapenemase genes were described. Whole-genome sequencing was conducted on 55 selected carbapenemase producing isolates using Oxford Nanopore technology. This study revealed the presence of a significant population of bacteria carrying carbapenemase genes in WWTP, which constitutes a public health problem due to their risk of dissemination to the environment. This emphasizes the usefulness of WWTP monitoring for combating antibiotic resistance. Data revealed the presence of different types of sequences harboring carbapenemase genes, such as blaKPC-2, blaGES-5, blaGES-6, blaIMP-11, blaIMP-28, blaOXA-24, blaOXA-48, blaOXA-58, blaOXA-217, and blaVIM-2. Importantly, the presence of the blaKPC-2 gene in wastewater, several months before any clinical case was detected in University Hospital of A Coruña, suggests that wastewater-based epidemiology can be used as an early warning system for the surveillance of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mohammed Nasser-Ali
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Noelia Trigo-Tasende
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Ana Fernández-González
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
- Microbiome and Health Group, Faculty of Sciences, Campus da Zapateira, 15071 A Coruna, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC)-University Hospital of A Coruña (CHUAC)-Interdisciplinary Center for Chemistry and Biology (CICA)-University of A Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII). Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruna, Spain
| |
Collapse
|
31
|
Arroyo-Urea EM, Lázaro-Díez M, Garmendia J, Herranz F, González-Paredes A. Lipid-based nanomedicines for the treatment of bacterial respiratory infections: current state and new perspectives. Nanomedicine (Lond) 2024; 19:325-343. [PMID: 38270350 DOI: 10.2217/nnm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The global threat posed by antimicrobial resistance demands urgent action and the development of effective drugs. Lower respiratory tract infections remain the deadliest communicable disease worldwide, often challenging to treat due to the presence of bacteria that form recalcitrant biofilms. There is consensus that novel anti-infectives with reduced resistance compared with conventional antibiotics are needed, leading to extensive research on innovative antibacterial agents. This review explores the recent progress in lipid-based nanomedicines developed to counteract bacterial respiratory infections, especially those involving biofilm growth; focuses on improved drug bioavailability and targeting and highlights novel strategies to enhance treatment efficacy while emphasizing the importance of continued research in this dynamic field.
Collapse
Affiliation(s)
- Eva María Arroyo-Urea
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Ana González-Paredes
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
32
|
Jampani M, Mateo-Sagasta J, Chandrasekar A, Fatta-Kassinos D, Graham DW, Gothwal R, Moodley A, Chadag VM, Wiberg D, Langan S. Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132527. [PMID: 37788551 DOI: 10.1016/j.jhazmat.2023.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments.
Collapse
Affiliation(s)
- Mahesh Jampani
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka.
| | - Javier Mateo-Sagasta
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Aparna Chandrasekar
- UFZ - Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Leipzig, Germany; Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Despo Fatta-Kassinos
- Civil and Environmental Engineering Department and Nireas International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ritu Gothwal
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Arshnee Moodley
- International Livestock Research Institute (ILRI), Nairobi, Kenya; Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - David Wiberg
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Simon Langan
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| |
Collapse
|
33
|
Yu Z, He W, Klincke F, Madsen JS, Kot W, Hansen LH, Quintela-Baluja M, Balboa S, Dechesne A, Smets B, Nesme J, Sørensen SJ. Insights into the circular: The cryptic plasmidome and its derived antibiotic resistome in the urban water systems. ENVIRONMENT INTERNATIONAL 2024; 183:108351. [PMID: 38041983 DOI: 10.1016/j.envint.2023.108351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Plasmids have been a concern in the dissemination and evolution of antibiotic resistance in the environment. In this study, we investigated the total pool of plasmids (plasmidome) and its derived antibiotic resistance genes (ARGs) in different compartments of urban water systems (UWSs) in three European countries representing different antibiotic usage regimes. We applied a direct plasmidome approach using wet-lab methods to enrich circular DNA in the samples, followed by shotgun sequencing and in silico contig circularisation. We identified 9538 novel sequences in a total of 10,942 recovered circular plasmids. Of these, 66 were identified as conjugative, 1896 mobilisable and 8970 non-mobilisable plasmids. The UWSs' plasmidome was dominated by small plasmids (≤10 Kbp) representing a broad diversity of mobility (MOB) types and incompatibility (Inc) groups. A shared collection of plasmids from different countries was detected in all treatment compartments, and plasmids could be source-tracked in the UWSs. More than half of the ARGs-encoding plasmids carried mobility genes for mobilisation/conjugation. The richness and abundance of ARGs-encoding plasmids generally decreased with the flow, while we observed that non-mobilisable ARGs-harbouring plasmids maintained their abundance in the Spanish wastewater treatment plant. Overall, our work unravels that the UWS plasmidome is dominated by cryptic (i.e., non-mobilisable, non-typeable and previously unknown) plasmids. Considering that some of these plasmids carried ARGs, were prevalent across three countries and could persist throughout the UWSs compartments, these results should alarm and call for attention.
Collapse
Affiliation(s)
- Zhuofeng Yu
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Wanli He
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Franziska Klincke
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Marcos Quintela-Baluja
- Department of Microbiology and Parasitology, University of Santiago de Compostela, Praza do Obradoiro, 0, 15705 Santiago de Compostela, A Coruña, Spain
| | - Sabela Balboa
- School of Engineering, Newcastle University, NE1 7RX Newcastle upon Tyne, United Kingdom
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs. Lyngby, Denmark
| | - Barth Smets
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
34
|
English J, Newberry F, Hoyles L, Patrick S, Stewart L. Genomic analyses of Bacteroides fragilis: subdivisions I and II represent distinct species. J Med Microbiol 2023; 72. [PMID: 37910167 DOI: 10.1099/jmm.0.001768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. fragilis comprises two distinct groups - divisions I and II - characterized by the presence/absence of genes [cepA and ccrA (cfiA), respectively] that confer resistance to β-lactam antibiotics by either serine or metallo-β-lactamase production. No large-scale analyses of publicly available B. fragilis sequence data have been undertaken, and the resistome of the species remains poorly defined.Hypothesis/Gap Statement. Reclassification of divisions I and II B. fragilis as two distinct species has been proposed but additional evidence is required.Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies.Methodology. High-quality (n=377) genomes listed as B. fragilis in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II represent distinct species: B. fragilis sensu stricto (n=275 genomes) and B. fragilis A (n=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene levels.Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| | - Fiona Newberry
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Linda Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| |
Collapse
|
35
|
Xu M, Gao P, Chen HQ, Shen XX, Xu RZ, Cao JS. Metagenomic insight into the prevalence and driving forces of antibiotic resistance genes in the whole process of three full-scale wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118369. [PMID: 37356328 DOI: 10.1016/j.jenvman.2023.118369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
36
|
Luo T, Dai X, Wei W, Xu Q, Ni BJ. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14611-14621. [PMID: 37733635 DOI: 10.1021/acs.est.3c02815] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
37
|
Avatsingh AU, Sharma S, Kour S, Arora Y, Sharma S, Joshi D, Chaudhary PP, Perveen K, Kamal MA, Singh N. Prevalence of antibiotic-resistant Gram-negative bacteria having extended-spectrum β-lactamase phenotypes in polluted irrigation-purpose wastewaters from Indian agro-ecosystems. Front Microbiol 2023; 14:1227132. [PMID: 37608947 PMCID: PMC10440439 DOI: 10.3389/fmicb.2023.1227132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Antibiotic resistance in bacteria has emerged as a serious public health threat worldwide. Aquatic environments including irrigation-purpose wastewaters facilitate the emergence and transmission of antibiotic-resistant bacteria and antibiotic resistance genes leading to detrimental effects on human health and environment sustainability. Considering the paramount threat of ever-increasing antibiotic resistance to human health, there is an urgent need for continuous environmental monitoring of antibiotic-resistant bacteria and antibiotic resistance genes in wastewater being used for irrigation in Indian agro-ecosystems. In this study, the prevalence of antibiotic resistance in Gram-negative bacteria isolated from irrigation-purpose wastewater samples from Sirmaur and Solan districts of Himachal Pradesh was determined. Bacterial isolates of genera Escherichia, Enterobacter, Hafnia, Shigella, Citrobacter, and Klebsiella obtained from 11 different geographical locations were found to exhibit resistance against ampicillin, amoxyclav, cefotaxime, co-trimoxazole, tobramycin, cefpodoxime and ceftazidime. However, all the isolates were sensitive to aminoglycoside antibiotic gentamicin. Enterobacter spp. and Escherichia coli showed predominance among all the isolates. Multidrug-resistance phenotype was observed with isolate AUK-06 (Enterobacter sp.) which exhibited resistant to five antibiotics. Isolate AUK-02 and AUK-09, both E. coli strains showed resistant phenotypes to four antibiotics each. Phenotypic detection revealed that six isolates were positive for extended-spectrum β-lactamases which includes two isolates from Enterobacter spp. and E. coli each and one each from Shigella sp. and Citrobacter sp. Overall, the findings revealed the occurrence of antibiotic resistant and ESBL-positive bacterial isolates in wastewaters utilized for irrigation purpose in the study area and necessitate continuous monitoring and precautionary interventions. The outcomes of the study would be of significant clinical, epidemiological, and agro-environmental importance in designing effective wastewater management and environmental pollution control strategies.
Collapse
Affiliation(s)
- Achhada Ujalkaur Avatsingh
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Shilpa Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Shilippreet Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Yukta Arora
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sheetal Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Department of Microbiology, College of Basic Sciences and Humanities, GBPUA&T, Pantnagar, Uttarakhand, India
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohab Amin Kamal
- Environmental Engineering, Civil Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Nasib Singh
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
38
|
Moradigaravand D, Li L, Dechesne A, Nesme J, de la Cruz R, Ahmad H, Banzhaf M, Sørensen SJ, Smets BF, Kreft JU. Plasmid permissiveness of wastewater microbiomes can be predicted from 16S rRNA sequences by machine learning. Bioinformatics 2023; 39:btad400. [PMID: 37348862 PMCID: PMC10318386 DOI: 10.1093/bioinformatics/btad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
MOTIVATION Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR) determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa. Despite the clinical importance, tools for predicting HGT remain underdeveloped. RESULTS In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model (random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44-0.55], 0.43 for pKJK5 (0.95% CI: 0.41-0.49), and 0.53 for RP4 (0.95% CI: 0.48-0.57) with the experimental permissiveness in the unseen test dataset. Predictive phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the assessment of the risk of AMR pollution in wastewater systems. AVAILABILITY AND IMPLEMENTATION The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liguan Li
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Roberto de la Cruz
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Huda Ahmad
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jan-Ulrich Kreft
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
39
|
Nõlvak H, Truu M, Tiirik K, Devarajan AK, Peeb A, Truu J. The effect of synthetic silver nanoparticles on the antibiotic resistome and the removal efficiency of antibiotic resistance genes in a hybrid filter system treating municipal wastewater. WATER RESEARCH 2023; 237:119986. [PMID: 37098287 DOI: 10.1016/j.watres.2023.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Engineered nanoparticles, including silver nanoparticles (AgNPs), are released into the environment mainly through wastewater treatment systems. Knowledge of the impact of AgNPs on the abundance and removal efficiency of antibiotic resistance genes (ARGs) in wastewater treatment facilities, including constructed wetlands (CWs), is essential in the context of public health. This study evaluated the effect of increased (100-fold) collargol (protein-coated AgNPs) and ionic Ag+ in municipal wastewater on the structure, abundance, and removal efficiency of the antibiotic resistome, integron-integrase genes, and pathogens in a hybrid CW using quantitative PCR and metagenomic approaches. The abundance of ARGs in wastewater and the removal efficiency of ARGs in the hybrid system were significantly affected by higher Ag concentrations, especially with collargol treatment, resulting in an elevated ARG discharge of system effluent into the environment. The accumulated Ag in the filters had a more profound effect on the absolute and relative abundance of ARGs in the treated water than the Ag content in the water. This study recorded significantly enhanced relative abundance values for tetracycline (tetA, tetC, tetQ), sulfonamide (sul1, sul2), and aminoglycoside (aadA) resistance genes, which are frequently found on mobile genetic elements in collargol- and, to a lesser extent, AgNO3-treated subsystems. Elevated plasmid and integron-integrase gene levels, especially intI1, in response to collargol presence indicated the substantial role of AgNPs in promoting horizontal gene transfer in the treatment system. The pathogenic segment of the prokaryotic community was similar to a typical sewage community, and strong correlations between pathogen and ARG proportions were recorded in vertical subsurface flow filters. Furthermore, the proportion of Salmonella enterica was positively related to the Ag content in these filter effluents. The effect of AgNPs on the nature and characteristics of prominent resistance genes carried by mobile genetic elements in CWs requires further investigation.
Collapse
Affiliation(s)
- Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia.
| | - Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Kertu Tiirik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Arun Kumar Devarajan
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Angela Peeb
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| |
Collapse
|
40
|
Ramatla T, Ramaili T, Lekota KE, Ndou R, Mphuti N, Bezuidenhout C, Thekisoe O. A systematic review and meta-analysis on prevalence and antimicrobial resistance profile of Escherichia coli isolated from water in africa (2000-2021). Heliyon 2023; 9:e16123. [PMID: 37274713 PMCID: PMC10238873 DOI: 10.1016/j.heliyon.2023.e16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Water is essential for the survival of humans, animals and plants. Numerous research has been conducted on the prevalence and antibiotic resistance of Escherichia coli (E. coli) in water from various African countries, however, there is lack of comprehensive analysis of published literature. We conducted a systematic review and meta-analysis following the PRISMA guidelines where articles published in English language between January 2000 and March 2022 were searched from ScienceDirect, PubMed, Google Scholar, Scopus, African Journal Online (AJO), and Africa Index Medicus (AIM). Comprehensive Meta-Analysis (CMA) Ver 3.0 software was used to analyze the data. The pooled prevalence estimate (PPE) with 95% confidence interval was calculated using the random-effects model (CI). The overall PPE and antimicrobial resistance trends of E. coli isolated from water was screened from 4009 isolates which were isolated from 2586 samples. We extracted data from 17 studies including drinking water (n = 6), rivers (n = 5), wastewaters (n = 4) and wastewater/river (n = 1) which are all covering 27 countries in Africa with 3438 isolates. The PPE of E. coli in water was 71.7% (0.717; 95% CI: 0.562-0.833). The highest PPE antibiotic resistance was against penicillin followed by erythromycin, and ampicilin with resistance rates of 93.4%, 92.3%, and 69.4%, respectively. This systematic review provides critical evidence of E. coli consolidated prevalence and antibiotic resistance profiles, as well as regions where future studies and enhanced reporting could be beneficial in the African continent.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Nthabiseng Mphuti
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
41
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
42
|
Tuvo B, Scarpaci M, Bracaloni S, Esposito E, Costa AL, Ioppolo M, Casini B. Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105868. [PMID: 37239594 DOI: 10.3390/ijerph20105868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.
Collapse
Affiliation(s)
- Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michela Scarpaci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Bracaloni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Enrica Esposito
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Anna Laura Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Ioppolo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
43
|
Zhang T, Cheng F, Chen X, Zhang YN, Qu J, Chen J, Peijnenburg WJGM. Dark repair of sunlight-inactivated tetracycline-resistant bacteria: Mechanisms and important role of bacteria in viable but non-culturable state. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131560. [PMID: 37148796 DOI: 10.1016/j.jhazmat.2023.131560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) in the environment poses a potential threat to human health, and the reactivation of inactivated ARB accelerated the spread of ARB. However, little is known about the reactivation of sunlight-inactivated ARB in natural waters. In this study, the reactivation of sunlight-inactivated ARB in dark conditions was investigated with tetracycline-resistant E. coli (Tc-AR E. coli) as a representative. Results showed that sunlight-inactivated Tc-AR E. coli underwent dark repair to regain tetracycline resistance with dark repair ratios increasing from (0.124 ± 0.012)‱ within 24 h dark treatment to (0.891 ± 0.033)‱ within 48 h. The presence of Suwannee River fulvic acid (SRFA) promoted the reactivation of sunlight-inactivated Tc-AR E. coli and tetracycline inhibited their reactivation. The reactivation of sunlight-inactivated Tc-AR E. coli is mainly attributed to the repair of the tetracycline-specific efflux pump in the cell membrane. Tc-AR E. coli in a viable but non-culturable (VBNC) state was observed and dominated the reactivation as the inactivated ARB remain present in the dark for more than 20 h. These results explained the reason for distribution difference of Tc-ARB at different depths in natural waters, which are of great significance for understanding the environmental behavior of ARB.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaobing Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
44
|
El-Azazy M, El-Shafie AS, Al-Mulla R, Hassan SS, Nimir HI. Enhanced adsorptive removal of rifampicin and tigecycline from single system using nano-ceria decorated biochar of mango seed kernel. Heliyon 2023; 9:e15802. [PMID: 37180896 PMCID: PMC10172925 DOI: 10.1016/j.heliyon.2023.e15802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Pharmaceutically active compounds (PhACs) represent an emerging class of contaminants. With a potential to negatively impact human health and the ecosystem, existence of pharmaceuticals in the aquatic systems is becoming a worrying concern. Antibiotics is a major class of PhACs and their existence in wastewater signifies a health risk on the long run. With the purpose of competently removing antibiotics from wastewater, cost-effective, and copiously available waste-derived adsorbents were structured. In this study, mango seeds kernel (MSK), both as a pristine biochar (Py-MSK) and as a nano-ceria-laden (Ce-Py-MSK) were applied for the remediation of rifampicin (RIFM) and tigecycline (TIGC). To save time and resources, adsorption experiments were managed using a multivariate-based scheme executing the fractional factorial design (FrFD). Percentage removal (%R) of both antibiotics was exploited in terms of four variables: pH, adsorbent dosage, initial drug concentration, and contact time. Preliminary experiments showed that Ce-Py-MSK has higher adsorption efficiency for both RIFM and TIGC compared to Py-MSK. The %R was 92.36% for RIFM compared to 90.13% for TIGC. With the purpose of comprehending the adsorption process, structural elucidation of both sorbents was performed using FT-IR, SEM, TEM, EDX, and XRD analyses which confirmed the decoration of the adsorbent surface with the nano-ceria. BET analysis revealed that Ce-Py-MSK has a higher surface area (33.83 m2/g) contrasted to the Py-MSK (24.72 m2/g). Isotherm parameters revealed that Freundlich model best fit Ce-Py-MSK-drug interactions. A maximum adsorption capacity (qm) of 102.25 and 49.28 mg/g was attained for RIFM and TIGC, respectively. Adsorption kinetics for both drugs conformed well with both pseudo-second order (PSO) and Elovich models. This study, therefore, has established the suitability of Ce-Py-MSK as a green, sustainable, cost-effective, selective, and efficient adsorbent for the treatment of pharmaceutical wastewater.
Collapse
|
45
|
Sério J, Marques AP, Huertas R, Crespo JG, Pereira VJ. Occurrence and Treatment of Antibiotic-Resistant Bacteria Present in Surface Water. MEMBRANES 2023; 13:425. [PMID: 37103852 PMCID: PMC10141635 DOI: 10.3390/membranes13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
According to the World Health Organization, antibiotic resistance is one of the main threats to global health. The excessive use of several antibiotics has led to the widespread distribution of antibiotic-resistant bacteria and antibiotic resistance genes in various environment matrices, including surface water. In this study, total coliforms, Escherichia coli and enterococci, as well as total coliforms and Escherichia coli resistant to ciprofloxacin, levofloxacin, ampicillin, streptomycin, and imipenem, were monitored in several surface water sampling events. A hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis (using UV-C light emitting diodes that emit light at 265 nm and UV-C low pressure mercury lamps that emit light at 254 nm), and the combination of both processes to ensure the retention and inactivation of total coliforms and Escherichia coli as well as antibiotic-resistant bacteria (total coliforms and Escherichia coli) present in river water at occurrence levels. The membranes used (unmodified silicon carbide membranes and the same membrane modified with a photocatalytic layer) effectively retained the target bacteria. Direct photolysis using low-pressure mercury lamps and light-emitting diode panels (emitting at 265 nm) achieved extremely high levels of inactivation of the target bacteria. The combined treatment (unmodified and modified photocatalytic surfaces in combination with UV-C and UV-A light sources) successfully retained the bacteria and treated the feed after 1 h of treatment. The hybrid treatment proposed is a promising approach to use as point-of-use treatment by isolated populations or when conventional systems and electricity fail due to natural disasters or war. Furthermore, the effective treatment obtained when the combined system was used with UV-A light sources indicates that the process may be a promising approach to guarantee water disinfection using natural sunlight.
Collapse
Affiliation(s)
- João Sério
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Paula Marques
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Rosa Huertas
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Goulão Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vanessa Jorge Pereira
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
46
|
Gill SP, Snelling WJ, Dooley JSG, Ternan NG, Banat IM, Arnscheidt J, Hunter WR. Biological and synthetic surfactant exposure increases antimicrobial gene occurrence in a freshwater mixed microbial biofilm environment. Microbiologyopen 2023; 12:e1351. [PMID: 37186226 PMCID: PMC10022493 DOI: 10.1002/mbo3.1351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.
Collapse
Affiliation(s)
- Stephanie P. Gill
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Joerg Arnscheidt
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William R. Hunter
- Fisheries and Aquatic Ecosystems BranchAgri‐Food and Biosciences InstituteBelfastNorthern Ireland
| |
Collapse
|
47
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
48
|
Sidhu AS, Mikolajczyk FN, Fisher JC. Antimicrobial Resistance Linked to Septic System Contamination in the Indiana Lake Michigan Watershed. Antibiotics (Basel) 2023; 12:antibiotics12030569. [PMID: 36978436 PMCID: PMC10044017 DOI: 10.3390/antibiotics12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Extended-spectrum β-lactamases confer resistance to a variety of β-lactam antimicrobials, and the genes for these enzymes are often found on plasmids that include additional antimicrobial resistance genes (ARG). We surveyed aquatic environments in the Indiana Lake Michigan watershed in proximity to areas with high densities of residential septic systems to determine if human fecal contamination from septic effluent correlated with the presence of antimicrobial resistance genes and phenotypically resistant bacteria. Of the 269 E. coli isolated from environmental samples and one septic source, 97 isolates were resistant to cefotaxime, a third-generation cephalosporin. A subset of those isolates showed phenotypic resistance to other β-lactams, fluoroquinolones, sulfonamides, and tetracyclines. Quantitative PCR was used to quantify human-associated Bacteroides dorei gene copies (Human Bacteroides) from water samples and to identify the presence of ARG harbored on plasmids from E. coli isolates or in environmental DNA. We found a strong correlation between the presence of ARG and human fecal concentrations, which supports our hypothesis that septic effluent is a source of ARG and resistant organisms. The observed plasmid-based resistance adds an additional level of risk, as human-associated bacteria from septic systems may expand the environmental resistome by acting as a reservoir of transmissible resistance genes.
Collapse
|
49
|
Analytical key issues and challenges in the LC-MS/MS determination of antibiotics in wastewater. Anal Chim Acta 2023; 1239:340739. [PMID: 36628733 DOI: 10.1016/j.aca.2022.340739] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The research on antibiotics occurrence in the aquatic environment has become a hot topic in the last years due to their potential negative effects, associated to possible bacterial antibiotic-resistance, after continuous exposure to these compounds. Most of antibiotic residues are not completely removed in the wastewater treatment plants (WWTPs) and end up in the aquatic environment through treated wastewater (WW). The development of reliable analytical methodologies for the determination of antibiotics in influent (IWW) and effluent wastewater (EWW) is needed with different purposes, among others: monitoring their occurrence in the aquatic environment, performing environmental risk assessment, estimating removal efficiencies of WWTPs, or estimating the consumption of these compounds. In this paper, we perform an in-depth investigation on analytical key issues that pose difficulties in the determination of antibiotics in complex matrices, such as WW, and we identify challenges to be properly addressed for successful analysis. The analytical technique selected was liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), as it is the most powerful and widely applied at present for antibiotic residues determination. The mass spectrometric behavior of 18 selected antibiotics, the chromatographic performance, ion ratio variations associated to the sample matrix when using different precursor ions or protomers, and the macrolides adsorption to glass vial, were some of the issues studied in this work. On the basis of the detailed study performed, an analytical LC-MS/MS method based on sample direct injection has been developed for quantification of 18 antibiotics in IWW and EWW, allowing their determination at low ng L-1 levels.
Collapse
|
50
|
Mosaka TBM, Unuofin JO, Daramola MO, Tizaoui C, Iwarere SA. Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives. Front Microbiol 2023; 13:1100102. [PMID: 36733776 PMCID: PMC9888414 DOI: 10.3389/fmicb.2022.1100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
The discovery of antibiotics, which was once regarded as a timely medical intervention now leaves a bitter aftertaste: antimicrobial resistance (AMR), due to the unregulated use of these compounds and the poor management receiving wastewaters before discharge into pristine environments or the recycling of such treated waters. Wastewater treatment plants (WWTPs) have been regarded a central sink for the mostly unmetabolized or partially metabolised antibiotics and is also pivotal to the incidence of antibiotic resistance bacteria (ARBs) and their resistance genes (ARGs), which consistently contribute to the global disease burden and deteriorating prophylaxis. In this regard, we highlighted WWTP-antibiotics consumption-ARBs-ARGs nexus, which might be critical to understanding the epidemiology of AMR and also guide the precise prevention and remediation of such occurrences. We also discovered the unsophistication of conventional WWTPs and treatment techniques for adequate treatment of antibiotics, ARBs and ARGs, due to their lack of compliance with environmental sustainability, then ultimately assessed the prospects of cold atmospheric plasma (CAP). Herein, we observed that CAP technologies not only has the capability to disinfect wastewater polluted with copious amounts of chemicals and biologicals, but also have a potential to augment bioelectricity generation, when integrated into bio electrochemical modules, which future WWTPs should be retrofitted to accommodate. Therefore, further research should be conducted to unveil more of the unknowns, which only a snippet has been highlighted in this study.
Collapse
Affiliation(s)
- Thabang B. M. Mosaka
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa
| | - John O. Unuofin
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa
| | - Chedly Tizaoui
- Water and Resources Recovery Research Lab, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. Iwarere
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa,*Correspondence: Samuel A. Iwarere, ✉
| |
Collapse
|