1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Kalyanasundram J, Zawawi ZM, Kamel KA, Aroidoss ET, Ellan K, Anasir MI, Azizan MA, Zulkifli MMS, Zain RM. Emergence of ECSA-IOL E1-K211E/E2-V264A Lineage of Chikungunya virus during Malaysian 2021 outbreak. BMC Infect Dis 2024; 24:1199. [PMID: 39448916 PMCID: PMC11515639 DOI: 10.1186/s12879-024-10102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Chikungunya cases was reported to be on the rise in Malaysia from 2019 to 2021. Although potential endemicity was described previously, genotype shift during 2008 outbreak originating from the 2004 Indian Ocean Islands outbreak presents the probability of current CHIKV spread from neighboring countries. This is due to the prevalence of the new IOL sub-lineage which consists of E1-226A wildtype or reverted strains that are circulating in the Indian subcontinent before spreading to neighboring Thailand during 2018-2019 outbreak. METHOD In this study, samples received mostly from the Tangkak, Johor were analyzed. A total 56 CHIKV positive serum samples received in 2021 by Institute of Medical Research Malaysia (IMR), were collected based on sample selection criteria. Selected samples were subjected to total RNA extraction, whole-genome sequencing as well as bioinformatic analysis such as phylogenetic, variant and mutation analysis. RESULTS Based on the genomic and phylogenetic analysis, the CHIKV samples from 2021 outbreak were of ECSA-IOL genotype. Genome similarity analysis also revealed that these CHIKVs were highly similar to 2018-2019 outbreak strain from Thailand. In comparison to the 2008 outbreak CHIKV isolate, the current CHIKVs lacked the E1-A226V mutation and harbored the new E1-K211E/E2-V264A sub-linage mutation. Since the E1-K211E/E2-V264A mutation facilitates adaptation to Ae. aegypti as opposed to the E1-A226V mutation which improves adaptation to Ae. albopictus, the emergence 2021 CHIKV outbreak in Malaysia can be postulated due to vector shift. Interestingly, a novel nsP3-T441A/V mutation detected in this study, may also play a role in virus transmission, pathogenicity, fitness and vector adaptation. CONCLUSION In summary, the current CHIKV outbreak are strains originated from the Indian subcontinent through Thailand which may have capitalized on vector shifting by adapting to Ae. aegypti. The presence of novel nsP3-T441A/V mutation may also contribute to the spread of this virus across peninsular Malaysia.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia.
| | - Zarina Mohd Zawawi
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Emmanuel Tiagaraj Aroidoss
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Kavithambigai Ellan
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Muhammad Afif Azizan
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Murni Maya Sari Zulkifli
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institute of Health (NIH), Seksyen U13 Setia Alam, Jalan Setia Murni U13/52, 40170, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Lozano-Parra A, Herrera V, Calderón C, Badillo R, Gélvez Ramírez RM, Estupiñán Cárdenas MI, Lozano Jiménez JF, Villar LÁ, Rojas Garrido EM. Chronic Rheumatologic Disease in Chikungunya Virus Fever: Results from a Cohort Study Conducted in Piedecuesta, Colombia. Trop Med Infect Dis 2024; 9:247. [PMID: 39453274 PMCID: PMC11511048 DOI: 10.3390/tropicalmed9100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to determine the incidence of post-chikungunya chronic rheumatism (pCHIK-CR) and its impact on quality of life (QoL) and chronic fatigue in adults seven years after the 2014-2015 CHIKV outbreak in Piedecuesta, Colombia. We evaluated 78 adults (median age: 30 years, IQR: 21.0; women 60.3%) with confirmed CHIKV infection. In 2022, participants underwent a GALS examination and completed surveys on disability, stiffness, health status, and fatigue. A rheumatologist evaluated patients who reported arthralgia, morning stiffness, and abnormal GALS examination. Chronic fatigue was defined as fatigue persisting for over six months. Seven years after infection, 14.1% of participants were classified as pCHIK-CR cases, 41.0% as having non-inflammatory pain, likely degenerative (NIP-LD), and 44.9% without rheumatic disease (Wo-RM). Patients with pCHIK-CR and NIP-LD exhibited significantly worse QoL compared to Wo-RM cases. Chronic fatigue prevalence increased from 8.6% in Wo-RM patients to 25.0% in NIP-LD and 54.6% in pCHIK-CR cases. This study implemented a comprehensive clinical assessment to objectively estimate and characterize the incidence of chronic rheumatological disease attributed to CHIKV infection. One in seven cases with CHIKV infection develops pCHIK-CR, which impacts both QoL and chronic fatigue. This study contributes to understanding the burden of these arboviruses in the medium term.
Collapse
Affiliation(s)
- Anyela Lozano-Parra
- Grupo Epidemiología Clínica, Escuela de Medicina, Universidad Industrial de Santander UIS, Calle 9 Carrera 27, Bucaramanga 680002, Colombia; (A.L.-P.); (V.H.)
| | - Víctor Herrera
- Grupo Epidemiología Clínica, Escuela de Medicina, Universidad Industrial de Santander UIS, Calle 9 Carrera 27, Bucaramanga 680002, Colombia; (A.L.-P.); (V.H.)
| | - Carlos Calderón
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Reynaldo Badillo
- Departamento Medicina Interna, Universidad de Santander-UDES, Calle 35 # 10-43, Bucaramanga 680006, Colombia;
| | - Rosa Margarita Gélvez Ramírez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - María Isabel Estupiñán Cárdenas
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - José Fernando Lozano Jiménez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Luis Ángel Villar
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| |
Collapse
|
4
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
5
|
Aguiar GRF, da Silva GB, Ramalho JDAM, Srisawat N, Daher EDF. Common arboviruses and the kidney: a review. J Bras Nefrol 2024; 46:e20230168. [PMID: 39074252 PMCID: PMC11287847 DOI: 10.1590/2175-8239-jbn-2023-0168en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/17/2024] [Indexed: 07/31/2024] Open
Abstract
Arboviruses are endemic in several countries and represent a worrying public health problem. The most important of these diseases is dengue fever, whose numbers continue to rise and have reached millions of annual cases in Brazil since the last decade. Other arboviruses of public health concern are chikungunya and Zika, both of which have caused recent epidemics, and yellow fever, which has also caused epidemic outbreaks in our country. Like most infectious diseases, arboviruses have the potential to affect the kidneys through several mechanisms. These include the direct action of the viruses, systemic inflammation, hemorrhagic phenomena and other complications, in addition to the toxicity of the drugs used in treatment. In this review article, the epidemiological aspects of the main arboviruses in Brazil and other countries where these diseases are endemic, clinical aspects and the main laboratory changes found, including changes in renal function, are addressed. It also describes how arboviruses behave in kidney transplant patients. The pathophysiological mechanisms of kidney injury associated with arboviruses are described and finally the recommended treatment for each disease and recommendations for kidney support in this context are given.
Collapse
Affiliation(s)
- Gabriel Rotsen Fortes Aguiar
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
| | - Geraldo Bezerra da Silva
- Universidade de Fortaleza, Centro de Ciências da Saúde, Curso de Medicina, Fortaleza, CE, Brazil
| | - Janaína de Almeida Mota Ramalho
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
- Universidade de Fortaleza, Centro de Ciências da Saúde, Curso de Medicina, Fortaleza, CE, Brazil
| | - Nattachai Srisawat
- Chulalongkorn University, Faculty of Medicine, Department of Medicine, Division of Nephrology, Center of Excellence for Critical Care Nephrology, and Tropical Medicine Cluster, Bangkok, Tailândia
| | - Elizabeth de Francesco Daher
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Liao X, Xin J, Yu Z, Yan W, Li C, Cao L, Zhang H, Wang W. Unlocking the antiviral potential of rosmarinic acid against chikungunya virus via IL-17 signaling pathway. Front Cell Infect Microbiol 2024; 14:1396279. [PMID: 38800832 PMCID: PMC11127627 DOI: 10.3389/fcimb.2024.1396279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 μM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.
Collapse
Affiliation(s)
- Xinfei Liao
- Wenzhou Polytechnic, Wenzhou, Zhejiang, China
| | - Jialiang Xin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weiming Yan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Liang Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
7
|
Mohapatra RK, Bhattacharjee P, Desai DN, Kandi V, Sarangi AK, Mishra S, Sah R, Ibrahim AAAL, Rabaan AA, Zahan KE. Global health concern on the rising dengue and chikungunya cases in the American regions: Countermeasures and preparedness. Health Sci Rep 2024; 7:e1831. [PMID: 38274135 PMCID: PMC10808844 DOI: 10.1002/hsr2.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Background and Aim Severe morbidity and mortality due to seasonal infectious diseases are common global public health issues. Vector-borne viral illnesses like dengue and chikungunya overload the healthcare systems leading to critical financial burden to manage them. There is no effective drug or vaccine currently available to control these two diseases. Methods The review was formulated by incorporating relevant reports on chikungunya and dengue in the Americas regions through a comprehensive search of literature that were available on dedicated scientific publication portals such as PubMed, ScienceDirect, and Web of Science. Results The strategies of public health administrations to control largely the mosquito vectors during tropical monsoon seem to be effective. Yet, it seems practically impossible to completely eliminate them. The mosquito vector disseminates the virus via transovarian route thereby internalising the virus through generations, a reason behind reappearing and recurring outbreaks. The numerous factors associated with industrialisation, urbanisation, population density, and easy transboundary movements appear to have contributed to the spread of vectors from an endemic region to elsewhere. Conclusion The article made a state-of-affair comprehensive analysis of the rising dengue and chikungunya cases in the tropics, particularly the tropical Americas, as a human health concern, the countermeasures undertaken and the overall preparedness. The viral transmission is a hard situation to tackle as the vector survives in diverse temperature and ecology, is resistant to insecticides, and the unavailability of drugs. Better vector-control measures and improved understanding of the reemerging arboviral infections could offer an extended reaction time to counter outbreaks, and minimise associated morbidity/mortality.
Collapse
Affiliation(s)
| | | | - Dhruv N. Desai
- Department of PathobiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Ashish K. Sarangi
- Department of ChemistryCenturion University of Technology and ManagementBalangirOdishaIndia
| | - Snehasish Mishra
- School of BiotechnologyKIIT Deemed UniversityBhubaneswarOdishaIndia
| | - Ranjit Sah
- Department of MicrobiologyTribhuvan University Teaching Hospital, Institute of MedicineKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- Department of Medicine, College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | - Kudrat E. Zahan
- Department of ChemistryRajshahi UniversityRajshahiBangladesh
| |
Collapse
|
8
|
Torres dos Santos Lopes D, Cerutti Junior C, Areias Cabidelle A, Espinosa Miranda A, Drumond Louro I, Pamplona de Góes Cavalcanti L, Vicente CR. Factors associated with hospitalization in the acute phase of Chikungunya. PLoS One 2023; 18:e0296131. [PMID: 38134205 PMCID: PMC10745164 DOI: 10.1371/journal.pone.0296131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Determine characteristics associated with hospitalization in the acute phase of Chikungunya. METHODS Cross-sectional study including data on Chikungunya cases reported in Vitória, Espírito Santo state, Brazil, between March 2016 and December 2021. RESULTS Hospitalizations accounted for 1.42% (n = 41) of the 2,868 cases included. There were statistically significant differences between hospitalized and non-hospitalized regarding age (P 0.001), which was lower among hospitalized patients, and pregnancy, which was more frequent in the hospitalized group (P 0.010). Patients younger than two years old and older than 65 years corresponded to 31.7% of hospitalizations. Back pain (OR = 0.134; 95% CI = 0.044-0.409) and arthralgia (OR = 0.226; 95% CI = 0.083-0.613) were protective factors for hospitalization. CONCLUSION Groups at risk of severe Chikungunya, including those under two and over 65 years of age, may require more hospitalization, even with milder manifestations.
Collapse
Affiliation(s)
| | - Crispim Cerutti Junior
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Aline Areias Cabidelle
- Health Surveillance Sector, Health Department of Vitória, Vitória, Espírito Santo, Brazil
| | - Angelica Espinosa Miranda
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Iuri Drumond Louro
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Biology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Creuza Rachel Vicente
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
9
|
Radovanov J, Bijelović S, Kovačević G, Patić A, Pustahija T, Cvjetković IH. Mosquito and human surveillance of mosquito-borne diseases in the Serbian city of Novi Sad in 2022. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:131-137. [PMID: 37843455 DOI: 10.52707/1081-1710-48.2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Jelena Radovanov
- Centre for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Novi Sad 21000, Serbia,
| | - Sanja Bijelović
- Centre for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Novi Sad 21000, Serbia
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Kovačević
- Centre of Virology, Institute of Public Health of Vojvodina, Novi Sad 21000, Serbia
| | - Aleksandra Patić
- Centre of Virology, Institute of Public Health of Vojvodina, Novi Sad 21000, Serbia
| | - Tatjana Pustahija
- Centre for Disease Control and Prevention, Institute of Public Health of Vojvodina, Novi Sad 21000, Serbia
| | | |
Collapse
|
10
|
Cao V, Loeanurit N, Hengphasatporn K, Hairani R, Wacharachaisurapol N, Prompila N, Wittayalertpanya S, Shigeta Y, Khotavivattana T, Chavasiri W, Boonyasuppayakorn S. The 8-bromobaicalein alleviated chikungunya-induced musculoskeletal inflammation and reduced the viral load in healthy adult mice. Emerg Microbes Infect 2023; 12:2270074. [PMID: 37842770 PMCID: PMC10653753 DOI: 10.1080/22221751.2023.2270074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Chikungunya virus is a re-emerging arbovirus that has caused epidemic outbreaks in recent decades. Patients in older age groups with high viral load and severe immunologic response during acute infection are likely to develop chronic arthritis and severe joint pain. Currently, no antiviral drug is available. Previous studies suggested that a flavone derivative, 8-bromobaicalein, was a potential dengue and Zika replication inhibitor in a cell-based system targeting flaviviral polymerase. Here we characterized that 8-bromobaicalein inhibited chikungunya virus replication with EC50 of 0.49 ± 0.11 µM in Vero cells. The molecular target predicted at viral nsP1 methyltransferase using molecular binding and fragment molecular orbital calculation. Additionally, oral administration of 250 mg/kg twice daily treatment alleviated chikungunya-induced musculoskeletal inflammation and reduced viral load in healthy adult mice. Pharmacokinetic analysis indicated that the 250 mg/kg administration maintained the compound level above EC99.9 for 12 h. Therefore, 8-bromobaicalein should be a potential candidate for further development as a pan-arboviral drug.
Collapse
Affiliation(s)
- Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- DaNang University of Medical Technology and Pharmacy, DaNang, Vietnam
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Wacharachaisurapol
- Clinical Pharmakokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nantaporn Prompila
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmakokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, Thailand
| |
Collapse
|
11
|
Rocha DCP, Sisnande T, Gavino-Leopoldino D, Guimarães-Andrade IP, Cruz FF, Assunção-Miranda I, Mendonça SC, Leitão GG, Simas RC, Mohana-Borges R, Leitão SG, Allonso D. Antiviral, Cytoprotective, and Anti-Inflammatory Effect of Ampelozizyphus amazonicus Ducke Ethanolic Wood Extract on Chikungunya Virus Infection. Viruses 2023; 15:2232. [PMID: 38005909 PMCID: PMC10674702 DOI: 10.3390/v15112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Chikungunya fever, a debilitating disease caused by Chikungunya virus (CHIKV), is characterized by a high fever of sudden onset and an intense arthralgia that impairs individual regular activities. Although most symptoms are self-limited, long-term persistent arthralgia is observed in 30-40% of infected individuals. Currently, there is no vaccine or specific treatment against CHIKV infection, so there is an urgent need for the discovery of new therapeutic options for CHIKF chronic cases. This present study aims to test the antiviral, cytoprotective, and anti-inflammatory activities of an ethanol extract (FF72) from Ampelozizyphus amazonicus Ducke wood, chemically characterized using mass spectrometry, which indicated the major presence of dammarane-type triterpenoid saponins. The major saponin in the extract, with a deprotonated molecule ion m/z 897 [M-H]-, was tentatively assigned as a jujubogenin triglycoside, a dammarane-type triterpenoid saponin. Treatment with FF72 resulted in a significant reduction in both virus replication and the production of infective virions in BHK-21-infected cells. The viability of infected cells was assessed using an MTT, and the result indicated that FF72 treatment was able to revert the toxicity mediated by CHIKV infection. In addition, FF72 had a direct effect on CHIKV, since the infectivity was completely abolished in the presence of the extract. FF72 treatment also reduced the expression of the major pro-inflammatory mediators overexpressed during CHIKV infection, such as IL-1β, IL-6, IL-8, and MCP-1. Overall, the present study elucidates the potential of FF72 to become a promising candidate of herbal medicine for alphaviruses infections.
Collapse
Affiliation(s)
- Daniele C. P. Rocha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Daniel Gavino-Leopoldino
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Iris Paula Guimarães-Andrade
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Fernanda F. Cruz
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Iranaia Assunção-Miranda
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Simony C. Mendonça
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (G.G.L.)
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (G.G.L.)
| | - Rosineide Costa Simas
- Faculdade de Química, Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil;
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
12
|
Taylor M, Rayner JO. Immune Response to Chikungunya Virus: Sex as a Biological Variable and Implications for Natural Delivery via the Mosquito. Viruses 2023; 15:1869. [PMID: 37766276 PMCID: PMC10538149 DOI: 10.3390/v15091869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus with significant public health implications around the world. Climate change, as well as rapid urbanization, threatens to expand the population range of Aedes vector mosquitoes globally, increasing CHIKV cases worldwide in return. Epidemiological data suggests a sex-dependent response to CHIKV infection. In this review, we draw attention to the importance of studying sex as a biological variable by introducing epidemiological studies from previous CHIKV outbreaks. While the female sex appears to be a risk factor for chronic CHIKV disease, the male sex has recently been suggested as a risk factor for CHIKV-associated death; however, the underlying mechanisms for this phenotype are unknown. Additionally, we emphasize the importance of including mosquito salivary components when studying the immune response to CHIKV. As with other vector-transmitted pathogens, CHIKV has evolved to use these salivary components to replicate more extensively in mammalian hosts; however, the response to natural transmission of CHIKV has not been fully elucidated.
Collapse
Affiliation(s)
| | - Jonathan O. Rayner
- Department of Microbiology & Immunology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| |
Collapse
|
13
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Castillo Cario S, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells MS, Ramaiah A, Arumugaswami V. Innate immune pathway modulator screen identifies STING pathway activation as a strategy to inhibit multiple families of arbo and respiratory viruses. Cell Rep Med 2023; 4:101024. [PMID: 37119814 DOI: 10.1016/j.xcrm.2023.101024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, Daman, Dadra and Nagar Haveli and Daman and Diu 396210, India
| | - Angelica L Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India; City of Milwaukee Health Department, Milwaukee, WI 53202, USA.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Krokovsky L, Lins CRB, Guedes DRD, Wallau GDL, Ayres CFJ, Paiva MHS. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023; 15:v15030799. [PMID: 36992508 PMCID: PMC10053307 DOI: 10.3390/v15030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Mayaro virus (MAYV) is transmitted by Haemagogus spp. mosquitoes and has been circulating in Amazon areas in the North and Central West regions of Brazil since the 1980s, with an increase in human case notifications in the last 10 years. MAYV introduction in urban areas is a public health concern as infections can cause severe symptoms similar to other alphaviruses. Studies with Aedes aegypti have demonstrated the potential vector competence of the species and the detection of MAYV in urban populations of mosquitoes. Considering the two most abundant urban mosquito species in Brazil, we investigated the dynamics of MAYV transmission by Ae. aegypti and Culex quinquefasciatus in a mice model. Mosquito colonies were artificially fed with blood containing MAYV and infection (IR) and dissemination rates (DR) were evaluated. On the 7th day post-infection (dpi), IFNAR BL/6 mice were made available as a blood source to both mosquito species. After the appearance of clinical signs of infection, a second blood feeding was performed with a new group of non-infected mosquitoes. RT-qPCR and plaque assays were carried out with animal and mosquito tissues to determine IR and DR. For Ae. aegypti, we found an IR of 97.5-100% and a DR reached 100% in both 7 and 14 dpi. While IR and DR for Cx. quinquefasciatus was 13.1-14.81% and 60% to 80%, respectively. A total of 18 mice were used (test = 12 and control = 6) for Ae. aegypti and 12 (test = 8 and control = 4) for Cx. quinquefasciatus to evaluate the mosquito-mice transmission rate. All mice that were bitten by infected Ae. aegypti showed clinical signs of infection while all mice exposed to infected Cx. quinquefasciatus mosquitoes remained healthy. Viremia in the mice from Ae. aegypti group ranged from 2.5 × 108 to 5 × 109 PFU/mL. Ae. aegypti from the second blood feeding showed a 50% IR. Our study showed the applicability of an efficient model to complete arbovirus transmission cycle studies and suggests that the Ae. aegypti population evaluated is a competent vector for MAYV, while highlighting the vectorial capacity of Ae. aegypti and the possible introduction into urban areas. The mice model employed here is an important tool for arthropod-vector transmission studies with laboratory and field mosquito populations, as well as with other arboviruses.
Collapse
Affiliation(s)
- Larissa Krokovsky
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Carlos Ralph Batista Lins
- Biotério de Criação, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco (UFPE), Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, PE, Brazil
| |
Collapse
|
15
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Cario SC, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells M, Ramaiah A, Arumugaswami V. Broad-spectrum antiviral inhibitors targeting pandemic potential RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524824. [PMID: 36711787 PMCID: PMC9882367 DOI: 10.1101/2023.01.19.524824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijay Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, U.T of DNH & DD, India
| | - Angelica L. Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Mark Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Lead Contact
| |
Collapse
|
16
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
17
|
Millsapps EM, Underwood EC, Barr KL. Development and Application of Treatment for Chikungunya Fever. Res Rep Trop Med 2022; 13:55-66. [PMID: 36561535 PMCID: PMC9767026 DOI: 10.2147/rrtm.s370046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and application of treatment for Chikungunya fever (CHIKF) remains complicated as there is no current standard treatment and many barriers to research exist. Chikungunya virus (CHIKV) causes serious global health implications due to its socioeconomic impact and high morbidity rates. In research, treatment through natural and pharmaceutical techniques is being evaluated for their efficacy and effectiveness. Natural treatment options, such as homeopathy and physiotherapy, give patients a variety of options for how to best manage acute and chronic symptoms. Some of the most used pharmaceutical therapies for CHIKV include non-steroidal anti-inflammatory drugs (NSAIDS), methotrexate (MTX), chloroquine, and ribavirin. Currently, there is no commercially available vaccine for chikungunya, but vaccine development is crucial for this virus. Potential treatments need further research until they can become a standard part of treatment. The barriers to research for this complicated virus create challenges in the efficacy and equitability of its research. The rising need for increased research to fully understand chikungunya in order to develop more effective treatment options is vital in protecting endemic populations globally.
Collapse
Affiliation(s)
- Erin M Millsapps
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Emma C Underwood
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Kelli L Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA,Correspondence: Kelli L Barr, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd. Suite 304, Tampa, FL, 33612, USA, Tel +1 813 974 4480, Fax +1 813 974 4962, Email
| |
Collapse
|
18
|
mRNA Vaccine Designing Using Chikungunya Virus E Glycoprotein through Immunoinformatics-Guided Approaches. Vaccines (Basel) 2022; 10:vaccines10091476. [PMID: 36146554 PMCID: PMC9500984 DOI: 10.3390/vaccines10091476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus is an alphavirus transmitted by mosquitos that develops into chikungunya fever and joint pain in humans. This virus’ name originated from a Makonde term used to describe an illness that changes the joints and refers to the posture of afflicted patients who are affected by excruciating joint pain. There is currently no commercially available drug or vaccine for chikungunya virus infection and the treatment is performed by symptom reduction. Herein, we have developed a computationally constructed mRNA vaccine construct featuring envelope glycoprotein as the target molecule to aid in the treatment process. We have utilized the reverse vaccinology approach to determine epitopes that would generate adaptive immune reactions. The resulting T and B lymphocytes epitopes were screened by various immunoinformatic tools and a peptide vaccine construct was designed. It was validated by proceeding to docking and MD simulation studies. The following design was then back-translated in nucleotide sequence and codons were optimized according to the expression host system (H. sapiens). Various sequences, including 3′ and 5′ UTR regions, Kozak sequence, poly (A) tail, etc., were introduced into the sequence for the construction of the final mRNA vaccine construct. The secondary structure was generated for validation of the mRNA vaccine construct sequence. Additionally, in silico cloning was also performed to design a vector for proceeding towards in vitro experimentation. The proposed designed vaccine construct may proceed with experimental testing for further efficacy verification and the final development of a vaccine against chikungunya virus infection.
Collapse
|
19
|
Traverse EM, Millsapps EM, Underwood EC, Hopkins HK, Young M, Barr KL. Chikungunya Immunopathology as It Presents in Different Organ Systems. Viruses 2022; 14:v14081786. [PMID: 36016408 PMCID: PMC9414582 DOI: 10.3390/v14081786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently an urgent public health problem as high morbidity from the virus leaves populations with negative physical, social, and economic impacts. CHIKV has the potential to affect every organ of an individual, leaving patients with lifelong impairments which negatively affect their quality of life. In this review, we show the importance of CHIKV in research and public health by demonstrating the immunopathology of CHIKV as it presents in different organ systems. Papers used in this review were found on PubMed, using “chikungunya and [relevant organ system]”. There is a significant inflammatory response during CHIKV infection which affects several organ systems, such as the brain, heart, lungs, kidneys, skin, and joints, and the immune response to CHIKV in each organ system is unique. Whilst there is clinical evidence to suggest that serious complications can occur, there is ultimately a lack of understanding of how CHIKV can affect different organ systems. It is important for clinicians to understand the risks to their patients.
Collapse
|
20
|
Chirathaworn C, Chansaenroj J, Chaisuriyong W, Lertmaharit S, Poovorawan Y. IL-1Ra and sVCAM-1 in Chikungunya virus infection. Acta Trop 2022; 233:106548. [PMID: 35667454 DOI: 10.1016/j.actatropica.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Mediators involving in inflammation induction and regulation have been investigated as biomarkers for severe joint pain induced by chikungunya virus (CHIKV) infection. In this report, observational study was conducted to determine levels of an antagonist of interleukin-1 receptor (IL-1Ra) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in CHIKV patients with different disease severity. CHIKV infection patients presented without (n = 199) and with joint pain (n = 262) were included. IL-1Ra and sVCAM-1 levels in patient sera were determined. Levels of sVCAM-1 were strongly and significantly higher in the group of patients with joint pain than in the group without joint pain (p< 0.0001). The levels of both IL-1Ra and sVCAM-1 were not significantly increased with age.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Somrat Lertmaharit
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Rocha DCP, Souza TMA, Nunes PCG, Mohana-Borges R, Paes MV, Guimarães GMC, Arcila JCS, Paiva IA, Azeredo ELD, Damasco PV, de Souza LJ, Dos Santos FB, Allonso D. Increased circulating levels of High Mobility Group Box 1 (HMGB1) in acute-phase Chikungunya virus infection: Potential disease biomarker. J Clin Virol 2021; 146:105054. [PMID: 34920373 DOI: 10.1016/j.jcv.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) causes a febrile syndrome with intense and debilitating arthralgia that can persist for several months or years after complete virus clearance. As there is no specific antiviral treatment or vaccine against CHIKV, identification of serological markers that help clinical management of CHIKV patients is urgent. The High Mobility Group Box 1 (HMGB1) protein is secreted to extracellular milieu and triggers an intense inflammatory process by inducing the overexpression of pro-inflammatory cytokines. HMGB1 plays an important role in several virus diseases as well as in rheumatoid arthritis. OBJECTIVES This study focus on the investigation of HMGB1 serum levels in a sera panel from CHIKV-infected patients in an attempt to assess its potential as a biomarker for chikungunya clinical management. STUDY DESIGN Eighty CHIKV-positive samples and 32 samples from healthy donors were subjected to a quantitative HMGB1 ELISA assay to assess the HMGB1 circulating levels. RESULTS HMGB1 levels were significantly higher in CHIKV-positive samples (516.12 ng/mL, SEM ± 48.83 ng/mL) compared to negative control (31.20 ng/mL, SEM ± 3.24 ng/mL, p < 0.0001). Circulating levels of HMGB1 persisted elevated during the whole acute-phase of disease and correlated with virus titer (p < 0.05). CONCLUSIONS The present study is the first to describe increased serum levels of HMGB1 in CHIKV infection and its positive correlation with virus titer, suggesting its potential use as a biomarker for diagnosis and treatment of chikungunya fever.
Collapse
Affiliation(s)
- Daniele C P Rocha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Thiara Manuelle Alves Souza
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ 20231-092, Brazil; Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria de Saúde, Governo do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20031-142, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil
| | - Gabriel M C Guimarães
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Juan C S Arcila
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Iury Amâncio Paiva
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Elzinandes Leal de Azeredo
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Paulo Vieira Damasco
- Hospital Universitário Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20551-030, Brazil
| | - Luiz José de Souza
- Hospital dos Plantadores de Cana, Campos dos Goytacazes, RJ 28025-496, Brazil
| | - Flavia B Dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
22
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|