1
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024:e0110224. [PMID: 39431820 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
2
|
Mayne R, Secret S, Geoghegan C, Trebes A, Kean K, Reid K, Lin GL, Ansari MA, de Cesare M, Bonsall D, Elliott I, Piazza P, Brown A, Bray J, Knight JC, Harvala H, Breuer J, Simmonds P, Bowden RJ, Golubchik T. Castanet: a pipeline for rapid analysis of targeted multi-pathogen genomic data. Bioinformatics 2024; 40:btae591. [PMID: 39360992 PMCID: PMC11494375 DOI: 10.1093/bioinformatics/btae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
MOTIVATION Target enrichment strategies generate genomic data from multiple pathogens in a single process, greatly improving sensitivity over metagenomic sequencing and enabling cost-effective, high-throughput surveillance and clinical applications. However, uptake by research and clinical laboratories is constrained by an absence of computational tools that are specifically designed for the analysis of multi-pathogen enrichment sequence data. Here we present an analysis pipeline, Castanet, for use with multi-pathogen enrichment sequencing data. Castanet is designed to work with short-read data produced by existing targeted enrichment strategies, but can be readily deployed on any BAM file generated by another methodology. Also included are an optional graphical interface and installer script. RESULTS In addition to genome reconstruction, Castanet reports method-specific metrics that enable quantification of capture efficiency, estimation of pathogen load, differentiation of low-level positives from contamination, and assessment of sequencing quality. Castanet can be used as a traditional end-to-end pipeline for consensus generation, but its strength lies in the ability to process a flexible, pre-defined set of pathogens of interest directly from multi-pathogen enrichment experiments. In our tests, Castanet consensus sequences were accurate reconstructions of reference sequences, including in instances where multiple strains of the same pathogen were present. Castanet performs effectively on standard computers and can process the entire output of a 96-sample enrichment sequencing run (50M reads) using a single batch process command, in $<$2 h. AVAILABILITY AND IMPLEMENTATION Source code freely available under GPL-3 license at https://github.com/MultipathogenGenomics/castanet, implemented in Python 3.10 and supported in Ubuntu Linux 22.04. The data underlying this article are available in Europe Nucleotide Archives, at https://www.ebi.ac.uk/ena/browser/view/PRJEB77004.
Collapse
Affiliation(s)
- Richard Mayne
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Shannah Secret
- Radcliffe Department of Medicine, University of Oxford, West Wing John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- Microbiology Services, NHS Blood and Transplant, London NW9 5BG, United Kingdom
| | - Cyndi Geoghegan
- Centre for Human Genetics, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Amy Trebes
- Genewiz UK Ltd, Azenta Life Sciences, Oxfordshire OX14 1SG, United Kingdom
- Oxford Genomics Centre, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Kai Kean
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Kaitlin Reid
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, University of Oxford, Oxfordshire OX3 7LE, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Mariateresa de Cesare
- National Facility for Genomics, Human Technopole, Viale Rita Levi-Montalcini, Milan 20157, Italy
| | - David Bonsall
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Ivo Elliott
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxfordshire OX3 7LE, United Kingdom
| | - Paolo Piazza
- Centre for Human Genetics, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Anthony Brown
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - James Bray
- Department of Biology, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Julian C Knight
- Oxford Genomics Centre, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
| | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, West Wing John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- Microbiology Services, NHS Blood and Transplant, London NW9 5BG, United Kingdom
| | - Judith Breuer
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Rory J Bowden
- Genomics Lab, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Melbourne, Australia
| | - Tanya Golubchik
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Sydney, Australia
| |
Collapse
|
3
|
Fernandez-Cassi X, Kohn T. Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-22. [PMID: 38647859 PMCID: PMC11422458 DOI: 10.1007/s12560-024-09594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preamplification pipelines (specific to RNA viruses, DNA viruses or both) for viral genome sequencing using spiked-in Phosphate Buffered Saline and sewage samples containing known concentrations of viruses. We found that compared to the pipeline targeting all genome types, the RNA pipeline performed better in detecting RNA viruses in both spiked and unspiked sewage samples, allowing the detection of various mammalian viruses including members from the Reoviridae, Picornaviridae, Astroviridae and Caliciviridae. However, the DNA-specific pipeline did not improve the detection of mammalian DNA viruses. We also measured viral recovery by quantitative reverse transcription polymerase chain reaction and assessed the impact of genetic background (non-viral genetic material) on viral coverage. Our results indicate that viral recoveries were generally lower in sewage (average of 11.0%) and higher in Phosphate Buffered Saline (average of 23.4%) for most viruses. Additionally, spiked-in viruses showed lower genome coverage in sewage, demonstrating the negative effect of genetic background on sequencing. Finally, correlation analysis revealed a relationship between virus concentration and genome normalized reads per million, indicating that viral metagenomic sequencing can be semiquantitative.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland.
- Departament of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Catalunya, Spain.
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland
| |
Collapse
|
4
|
Li C, Hu Y, Liu Y, Li N, Yi L, Tu C, He B. The tissue virome of black-spotted frogs reveals a diversity of uncharacterized viruses. Virus Evol 2024; 10:veae062. [PMID: 39175838 PMCID: PMC11341201 DOI: 10.1093/ve/veae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Amphibians are an essential class in the maintenance of global ecosystem equilibrium, but they face serious extinction risks driven by climate change and infectious diseases. Unfortunately, the virus diversity harbored by these creatures has been rarely investigated. By profiling the virus flora residing in different tissues of 100 farmed black-spotted frogs (Rana nigromaculata) using a combination of DNA and RNA viromic methods, we captured 28 high-quality viral sequences covering at least 11 viral families. Most of these sequences were remarkably divergent, adding at least 10 new species and 4 new genera within the families Orthomyxoviridae, Adenoviridae, Nodaviridae, Phenuiviridae, and Picornaviridae. We recovered five orthomyxovirus segments, with three distantly neighboring two Chinese fish-related viruses. The recombination event of frog virus 3 occurred among the frog and turtle strains. The relative abundance and molecular detection revealed different tissue tropisms of these viruses, with the orthomyxovirus and adenoviruses being enteric and probably also neurotropic, but the new astrovirus and picornavirus being hepatophilic. These results expand the spectrum of viruses harbored by anurans, highlighting the necessity to continuously monitor these viruses and to investigate the virus diversity in a broader area with more diverse amphibian species.
Collapse
Affiliation(s)
- Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Yazhou Hu
- Fisheries College, Hunan Agriculture University, No. 1 Nongda Road, Furong District, Changsha, Hunan Province 410128, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, No. 12 Wenhui Road, Hanjiang District, Yangzhou, Jiangsu Province 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| |
Collapse
|
5
|
McDonnell B, Parlindungan E, Vasiliauskaite E, Bottacini F, Coughlan K, Krishnaswami LP, Sassen T, Lugli GA, Ventura M, Mastroleo F, Mahony J, van Sinderen D. Viromic and Metagenomic Analyses of Commercial Spirulina Fermentations Reveal Remarkable Microbial Diversity. Viruses 2024; 16:1039. [PMID: 39066202 PMCID: PMC11281685 DOI: 10.3390/v16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Commercially produced cyanobacteria preparations sold under the name spirulina are widely consumed, due to their traditional use as a nutrient-rich foodstuff and subsequent marketing as a superfood. Despite their popularity, the microbial composition of ponds used to cultivate these bacteria is understudied. A total of 19 pond samples were obtained from small-scale spirulina farms and subjected to metagenome and/or virome sequencing, and the results were analysed. A remarkable level of prokaryotic and viral diversity was found to be present in the ponds, with Limnospira sp. and Arthrospira sp. sometimes being notably scarce. A detailed breakdown of prokaryotic and viral components of 15 samples is presented. Twenty putative Limnospira sp.-infecting bacteriophage contigs were identified, though no correlation between the performance of these cultures and the presence of phages was found. The high diversity of these samples prevented the identification of clear trends in sample performance over time, between ponds or when comparing successful and failed fermentations.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Erika Vasiliauskaite
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Keith Coughlan
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Lakshmi Priyadarshini Krishnaswami
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Tom Sassen
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium;
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, 43124 Parma, Italy
| | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium;
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
6
|
Wainaina M, Lindahl JF, Mayer-Scholl A, Ufermann CM, Domelevo Entfellner JB, Roesler U, Roesel K, Grace D, Bett B, Al Dahouk S. Molecular and serological diagnosis of multiple bacterial zoonoses in febrile outpatients in Garissa County, north-eastern Kenya. Sci Rep 2024; 14:12263. [PMID: 38806576 PMCID: PMC11133362 DOI: 10.1038/s41598-024-62714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial zoonoses are diseases caused by bacterial pathogens that can be naturally transmitted between humans and vertebrate animals. They are important causes of non-malarial fevers in Kenya, yet their epidemiology remains unclear. We investigated brucellosis, Q-fever and leptospirosis in the venous blood of 216 malaria-negative febrile patients recruited in two health centres (98 from Ijara and 118 from Sangailu health centres) in Garissa County in north-eastern Kenya. We determined exposure to the three zoonoses using serological (Rose Bengal test for Brucella spp., ELISA for C. burnetti and microscopic agglutination test for Leptospira spp.) and real-time PCR testing and identified risk factors for exposure. We also used non-targeted metagenomic sequencing on nine selected patients to assess the presence of other possible bacterial causes of non-malarial fevers. Considerable PCR positivity was found for Brucella (19.4%, 95% confidence intervals [CI] 14.2-25.5) and Leptospira spp. (1.7%, 95% CI 0.4-4.9), and high endpoint titres were observed against leptospiral serovar Grippotyphosa from the serological testing. Patients aged 5-17 years old had 4.02 (95% CI 1.18-13.70, p-value = 0.03) and 2.42 (95% CI 1.09-5.34, p-value = 0.03) times higher odds of infection with Brucella spp. and Coxiella burnetii than those of ages 35-80. Additionally, patients who sourced water from dams/springs, and other sources (protected wells, boreholes, bottled water, and water pans) had 2.39 (95% CI 1.22-4.68, p-value = 0.01) and 2.24 (1.15-4.35, p-value = 0.02) times higher odds of exposure to C. burnetii than those who used unprotected wells. Streptococcus and Moraxella spp. were determined using metagenomic sequencing. Brucellosis, leptospirosis, Streptococcus and Moraxella infections are potentially important causes of non-malarial fevers in Garissa. This knowledge can guide routine diagnosis, thus helping lower the disease burden and ensure better health outcomes, especially in younger populations.
Collapse
Affiliation(s)
- Martin Wainaina
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya.
- Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany.
| | - Johanna F Lindahl
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Uppsala, Sweden
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
| | - Christoph-Martin Ufermann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
| | | | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163, Berlin, Germany
| | - Kristina Roesel
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Delia Grace
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, ME130NQ, UK
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
- Department of Internal Medicine III, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department 1 - Infectious Diseases, Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
7
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
8
|
Santos JD, Sobral D, Pinheiro M, Isidro J, Bogaardt C, Pinto M, Eusébio R, Santos A, Mamede R, Horton DL, Gomes JP, Borges V. INSaFLU-TELEVIR: an open web-based bioinformatics suite for viral metagenomic detection and routine genomic surveillance. Genome Med 2024; 16:61. [PMID: 38659008 PMCID: PMC11044337 DOI: 10.1186/s13073-024-01334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Implementation of clinical metagenomics and pathogen genomic surveillance can be particularly challenging due to the lack of bioinformatics tools and/or expertise. In order to face this challenge, we have previously developed INSaFLU, a free web-based bioinformatics platform for virus next-generation sequencing data analysis. Here, we considerably expanded its genomic surveillance component and developed a new module (TELEVIR) for metagenomic virus identification. RESULTS The routine genomic surveillance component was strengthened with new workflows and functionalities, including (i) a reference-based genome assembly pipeline for Oxford Nanopore technologies (ONT) data; (ii) automated SARS-CoV-2 lineage classification; (iii) Nextclade analysis; (iv) Nextstrain phylogeographic and temporal analysis (SARS-CoV-2, human and avian influenza, monkeypox, respiratory syncytial virus (RSV A/B), as well as a "generic" build for other viruses); and (v) algn2pheno for screening mutations of interest. Both INSaFLU pipelines for reference-based consensus generation (Illumina and ONT) were benchmarked against commonly used command line bioinformatics workflows for SARS-CoV-2, and an INSaFLU snakemake version was released. In parallel, a new module (TELEVIR) for virus detection was developed, after extensive benchmarking of state-of-the-art metagenomics software and following up-to-date recommendations and practices in the field. TELEVIR allows running complex workflows, covering several combinations of steps (e.g., with/without viral enrichment or host depletion), classification software (e.g., Kaiju, Kraken2, Centrifuge, FastViromeExplorer), and databases (RefSeq viral genome, Virosaurus, etc.), while culminating in user- and diagnosis-oriented reports. Finally, to potentiate real-time virus detection during ONT runs, we developed findONTime, a tool aimed at reducing costs and the time between sample reception and diagnosis. CONCLUSIONS The accessibility, versatility, and functionality of INSaFLU-TELEVIR are expected to supply public and animal health laboratories and researchers with a user-oriented and pan-viral bioinformatics framework that promotes a strengthened and timely viral metagenomic detection and routine genomics surveillance. INSaFLU-TELEVIR is compatible with Illumina, Ion Torrent, and ONT data and is freely available at https://insaflu.insa.pt/ (online tool) and https://github.com/INSaFLU (code).
Collapse
Affiliation(s)
- João Dourado Santos
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Miguel Pinheiro
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Joana Isidro
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Carlijn Bogaardt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rodrigo Eusébio
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - André Santos
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rafael Mamede
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel L Horton
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
| |
Collapse
|
9
|
Dang X, Hanson BA, Orban ZS, Jimenez M, Suchy S, Koralnik IJ. Characterization of the brain virome in human immunodeficiency virus infection and substance use disorder. PLoS One 2024; 19:e0299891. [PMID: 38630782 PMCID: PMC11023569 DOI: 10.1371/journal.pone.0299891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/17/2024] [Indexed: 04/19/2024] Open
Abstract
Viruses can infect the brain in individuals with and without HIV-infection: however, the brain virome is poorly characterized. Metabolic alterations have been identified which predispose people to substance use disorder (SUD), but whether these could be triggered by viral infection of the brain is unknown. We used a target-enrichment, deep sequencing platform and bioinformatic pipeline named "ViroFind", for the unbiased characterization of DNA and RNA viruses in brain samples obtained from the National Neuro-AIDS Tissue Consortium. We analyzed fresh frozen post-mortem prefrontal cortex from 72 individuals without known viral infection of the brain, including 16 HIV+/SUD+, 20 HIV+/SUD-, 16 HIV-/SUD+, and 20 HIV-/SUD-. The average age was 52.3 y and 62.5% were males. We identified sequences from 26 viruses belonging to 11 viral taxa. These included viruses with and without known pathogenic potential or tropism to the nervous system, with sequence coverage ranging from 0.03 to 99.73% of the viral genomes. In SUD+ people, HIV-infection was associated with a higher total number of viruses, and HIV+/SUD+ compared to HIV-/SUD+ individuals had an increased frequency of Adenovirus (68.8 vs 0%; p<0.001) and Epstein-Barr virus (EBV) (43.8 vs 6.3%; p=0.037) as well as an increase in Torque Teno virus (TTV) burden. Conversely, in HIV+ people, SUD was associated with an increase in frequency of Hepatitis C virus, (25 in HIV+/SUD+ vs 0% in HIV+/SUD-; p=0.031). Finally, HIV+/SUD- compared to HIV-/SUD- individuals had an increased frequency of EBV (50 vs 0%; p<0.001) and an increase in TTV viral burden, but a decreased Adenovirus viral burden. These data demonstrate an unexpectedly high variety in the human brain virome, identifying targets for future research into the impact of these taxa on the central nervous system. ViroFind could become a valuable tool for monitoring viral dynamics in various compartments, monitoring outbreaks, and informing vaccine development.
Collapse
Affiliation(s)
- Xin Dang
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Stephen Suchy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
10
|
Sharko FS, Mazloum A, Krotova AO, Byadovskaya OP, Prokhvatilova LB, Chvala IA, Zolotikov UE, Kozlova AD, Krylova AS, Grosfeld EV, Prokopenko AV, Korzhenkov AA, Patrushev MV, Namsaraev ZB, Sprygin AV, Toshchakov SV. Metagenomic profiling of viral and microbial communities from the pox lesions of lumpy skin disease virus and sheeppox virus-infected hosts. Front Vet Sci 2024; 11:1321202. [PMID: 38420205 PMCID: PMC10899707 DOI: 10.3389/fvets.2024.1321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.
Collapse
Affiliation(s)
- Fedor S. Sharko
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Ali Mazloum
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Ilya A. Chvala
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Erika V. Grosfeld
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | | | | | | | | | | | | |
Collapse
|
11
|
Pawłowski T, Radkowski M, Perlejewski K, Laskus T, Małyszczak K. The Severity of Depressive Symptoms as an Independent Predictor of Sustained Virological Response During Treatment of Hepatitis C With Pegylated Interferon-α2a and Oral Ribavirin. Psychosom Med 2024; 86:124-128. [PMID: 38193776 DOI: 10.1097/psy.0000000000001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Sustained virological response (SVR) is the best indicator of successful therapy for hepatitis C virus (HCV) infection. Patients with chronic HCV infection treated with pegylated interferon-α and ribavirin (PEG-IFN-α/RBV) can achieve SVR 56% of the time. OBJECTIVES This study aimed to evaluate baseline predictors of SVR in patients treated with PEG-IFN-α/RBV for HCV chronic infection. METHODS A total of 101 patients receiving PEG-IFN-α/RBV for chronic HCV infection participated in the prospective cohort study. Symptoms of depression were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS) before the treatment. The multivariate regression analysis was applied to determine predictors of SVR. RESULTS Of a total of 101 patients included, 99 patients reached the primary end point-24 weeks after completing treatment. After the initial analysis of probable predictive variables, the logistic analysis included age, sex, HCV genetic type, and MADRS score. The HCV genotype (odds ratio = 0.22 [confidence interval = 0.073-0.68, p = .008) and MADRS score (OR = 0.88 [confidence interval = 0.80-0.98), p = .013]) predicted an SVR outcome. CONCLUSIONS The severity of depressive symptoms before treatment and HCV genotype are independent predictors of SVR.
Collapse
Affiliation(s)
- Tomasz Pawłowski
- From the Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry (Pawłowski, Małyszczak), Wrocław Medical University, Wrocław; Departments of Immunopathology of Infectious and Parasitic Diseases (Radkowski, Perlejewski) and Adults Infectious Diseases (Laskus), Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
12
|
Levine ZC, Sene A, Mkandawire W, Deme AB, Ndiaye T, Sy M, Gaye A, Diedhiou Y, Mbaye AM, Ndiaye IM, Gomis J, Ndiop M, Sene D, Faye Paye M, MacInnis BL, Schaffner SF, Park DJ, Badiane AS, Colubri A, Ndiaye M, Sy N, Sabeti PC, Ndiaye D, Siddle KJ. Investigating the etiologies of non-malarial febrile illness in Senegal using metagenomic sequencing. Nat Commun 2024; 15:747. [PMID: 38272885 PMCID: PMC10810818 DOI: 10.1038/s41467-024-44800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.
Collapse
Affiliation(s)
- Zoë C Levine
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Graduate Program in Biological and Biomedical Science, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Boston, MA, USA
| | - Aita Sene
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Winnie Mkandawire
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Awa B Deme
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Tolla Ndiaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Mouhamad Sy
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Amy Gaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Younouss Diedhiou
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Amadou M Mbaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Ibrahima M Ndiaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Jules Gomis
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Médoune Ndiop
- Programme National de lutte contre le Paludisme, Ministère de la Santé, Dakar Fann, Senegal
| | - Doudou Sene
- Programme National de lutte contre le Paludisme, Ministère de la Santé, Dakar Fann, Senegal
| | | | - Bronwyn L MacInnis
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel J Park
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aida S Badiane
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Andres Colubri
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Mouhamadou Ndiaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal
| | - Ngayo Sy
- Service de Lutte Anti Parasitaire, Thies, Senegal
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Daouda Ndiaye
- Department of Parasitology, Cheikh Anta Diop University Dakar, Dakar, Senegal.
- Centre International de Recherche et de Formation en Génomique Appliquée et de la Surveillance Sanitaire, Dakar, Senegal.
| | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Perlejewski K, Radkowski M, Pawełczyk A, Rydzanicz M, Dzieciątkowski T, Makowiecki M, Paciorek M, Welc-Falęciak R, Horban A, Laskus T. Enteroviral central nervous system infections in patients with Lyme neuroborreliosis. Ticks Tick Borne Dis 2023; 14:102253. [PMID: 37729847 DOI: 10.1016/j.ttbdis.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Patients with Lyme neuroborreliosis (LNB) are rarely tested for the presence of neurovirulent viruses other than tick-borne encephalitis virus (TBEV); however, such coinfections could be of clinical importance. The aim of the study was to search for the presence of neurotropic viruses in a LNB patients. Fourteen patients admitted with signs and symptoms of neuroinfection who were eventually diagnosed to have LNB (according to the guidelines of the European Federation of Neurological Societies) were subjects of the study. Sera and cerebrospinal fluid (CSF) collected at the time of initial presentation were tested for viral pathogens most common in our geographical area: human enteroviruses (EV), herpes simplex virus type 1 and 2, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus, human herpesvirus type 6, human adenoviruses, and TBEV using PCR/RT-PCR and serological assays. RNA and DNA-based metagenomic next-generation sequencing (mNGS) was used to detect other viral pathogens. EV was detected in CSF from two (14 %) LNB patients and viral loads were similar (220 and 270 copies/ml). The mMGS analysis were performed on CSFs from 10 patients and generated a total 213,750,885 NGS reads, 0.05 % of which were viral. However, none of potential pathogens fulfilled the criteria for positive viral detection by mNGS. Using a number of PCR/RT-PCR assays and mNGS we identified EV infection in two out of 14 LNB patients. The possible co-occurrence of enterovirus and Lyme neuroborreliosis infections may warrant further research.
Collapse
Affiliation(s)
- Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, Warsaw 02-106, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, Warsaw 02-106, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, Warsaw 02-106, Poland
| | - Małgorzata Rydzanicz
- Department of the Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, Warsaw 02-106, Poland
| | - Tomasz Dzieciątkowski
- Department of Microbiology, Medical University of Warsaw, Chalubińskiego 5, Warsaw 02-004, Poland
| | - Michał Makowiecki
- Department of Adults Infectious Diseases, Medical University of Warsaw, Wolska 37, Warsaw 01-201, Poland
| | - Marcin Paciorek
- Department of Adults Infectious Diseases, Medical University of Warsaw, Wolska 37, Warsaw 01-201, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Andrzej Horban
- Department of Adults Infectious Diseases, Medical University of Warsaw, Wolska 37, Warsaw 01-201, Poland
| | - Tomasz Laskus
- Department of Adults Infectious Diseases, Medical University of Warsaw, Wolska 37, Warsaw 01-201, Poland
| |
Collapse
|
14
|
Lhossein T, Sylvain K, Descamps V, Morel V, Demey B, Brochot E. Evaluation of the ABL NGS assay for HIV-1 drug resistance testing. Heliyon 2023; 9:e22210. [PMID: 38058650 PMCID: PMC10696055 DOI: 10.1016/j.heliyon.2023.e22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
HIV evolution and variability around the world requires special monitoring of the viral strains in infected people. High-throughput HIV sequencing and drug resistance testing techniques have become routinely available over the last few years. We conducted a study to assess the new CE-marked ABL NGS HIV genotyping assay on an Illumina® platform, to compare the results (the detection of resistance associated mutations (RAMs) detected in the three main targets: reverse transcriptase, protease, and integrase) with those produced by three Sanger-based assays, and to compare the assays' respective costs. For the 10 samples and a 20 % sensitivity threshold for the NGS technology, the percent agreement between the four assays ranged from 99.5 % to 100 %. We detected 4 more and 10 more RAMs of interest when we lowered the NGS assay's threshold to 10 % and 3 %, respectively. At a threshold of 3 %, the antiretroviral sensitivity interpretation algorithm (for protease inhibitors) was modified for only two patients. The NGS assay's unit cost fell rapidly as the number of samples per run increased. Compared with Sanger sequencing, the ABL NGS HIV genotyping assay is just as robust and somewhat more expensive but opens up interesting multiplexing perspectives for virology laboratories.
Collapse
Affiliation(s)
- Thomas Lhossein
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Karine Sylvain
- Department of Virology, Amiens University Medical Center, Amiens, France
| | - Véronique Descamps
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Virginie Morel
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
15
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Bayram F, Öruc M, Becker-Ziaja B, Perera I, Weerasena J, Handunnetti S, Schwarz F, Premawansa G, Premawansa S, Yapa W, Nitsche A, Kohl C. Comparative virome analysis of individual shedding routes of Miniopterus phillipsi bats inhabiting the Wavul Galge cave, Sri Lanka. Sci Rep 2023; 13:12859. [PMID: 37553373 PMCID: PMC10409741 DOI: 10.1038/s41598-023-39534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.
Collapse
Affiliation(s)
- Therese Muzeniek
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Dilara Bas
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Fatimanur Bayram
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Mizgin Öruc
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Beate Becker-Ziaja
- Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), Robert Koch Institute, 13353, Berlin, Germany
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Franziska Schwarz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
16
|
Gao L, Li L, Fang B, Fang Z, Xiang Y, Zhang M, Zhou J, Song H, Chen L, Li T, Xiao H, Wan R, Jiang Y, Peng H. Carryover Contamination-Controlled Amplicon Sequencing Workflow for Accurate Qualitative and Quantitative Detection of Pathogens: a Case Study on SARS-CoV-2. Microbiol Spectr 2023; 11:e0020623. [PMID: 37098913 PMCID: PMC10269707 DOI: 10.1128/spectrum.00206-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/02/2023] [Indexed: 04/27/2023] Open
Abstract
Carryover contamination during amplicon sequencing workflow (AMP-Seq) put the accuracy of the high-throughput detection for pathogens at risk. The purpose of this study is to develop a carryover contaminations-controlled AMP-Seq (ccAMP-Seq) workflow to enable accurate qualitative and quantitative detection for pathogens. By using the AMP-Seq workflow to detect SARS-CoV-2, Aerosols, reagents and pipettes were identified as potential sources of contaminations and ccAMP-Seq was then developed. ccAMP-Seq used filter tips and physically isolation of experimental steps to avoid cross contamination, synthetic DNA spike-ins to compete with contaminations and quantify SARS-CoV-2, dUTP/uracil DNA glycosylase system to digest the carryover contaminations, and a new data analysis procedure to remove the sequencing reads from contaminations. Compared to AMP-Seq, the contamination level of ccAMP-Seq was at least 22-folds lower and the detection limit was also about an order of magnitude lower-as low as one copy/reaction. By testing the dilution series of SARS-CoV-2 nucleic acid standard, ccAMP-Seq showed 100% sensitivity and specificity. The high sensitivity of ccAMP-Seq was further confirmed by the detection of SARS-CoV-2 from 62 clinical samples. The consistency between qPCR and ccAMP-Seq was 100% for all the 53 qPCR-positive clinical samples. Seven qPCR-negative clinical samples were found to be positive by ccAMP-Seq, which was confirmed by extra qPCR tests on subsequent samples from the same patients. This study presents a carryover contamination-controlled, accurate qualitative and quantitative amplicon sequencing workflow that addresses the critical problem of pathogen detection for infectious diseases. IMPORTANCE Accuracy, a key indicator of pathogen detection technology, is compromised by carryover contamination in the amplicon sequencing workflow. Taking the detection of SARS-CoV-2 as case, this study presents a new carryover contamination-controlled amplicon sequencing workflow. The new workflow significantly reduces the degree of contamination in the workflow, thereby significantly improving the accuracy and sensitivity of the SARS-CoV-2 detection and empowering the ability of quantitative detection. More importantly, the use of the new workflow is simple and economical. Therefore, the results of this study can be easily applied to other microorganism, which has great significance for improving the detection level of microorganism.
Collapse
Affiliation(s)
- Lifen Gao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Bin Fang
- Hubei Provincial Centers for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Yanghai Xiang
- Yueyang Central Hospital, Yueyang, Hunan, People’s Republic of China
| | - Min Zhang
- Yueyang Central Hospital, Yueyang, Hunan, People’s Republic of China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Huiyin Song
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Lihong Chen
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Huafeng Xiao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Renjing Wan
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Yongzhong Jiang
- Hubei Provincial Centers for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Mingliao Biotechnology Co., Ltd., Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
17
|
Prajwal P, Neary T, Rohrbach K, Bittel P, Göller PC, Buch T, Dümcke S, Keller PM. Optimizing mycobacteria molecular diagnostics: No decontamination! Human DNA depletion? Greener storage at 4 °C! Front Microbiol 2023; 14:1104752. [PMID: 37113238 PMCID: PMC10126496 DOI: 10.3389/fmicb.2023.1104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Tuberculosis (TB) is an infectious disease caused by the group of bacterial pathogens Mycobacterium tuberculosis complex (MTBC) and is one of the leading causes of death worldwide. Timely diagnosis and treatment of drug-resistant TB is a key pillar of WHO's strategy to combat global TB. The time required to carry out drug susceptibility testing (DST) for MTBC via the classic culture method is in the range of weeks and such delays have a detrimental effect on treatment outcomes. Given that molecular testing is in the range of hours to 1 or 2 days its value in treating drug resistant TB cannot be overstated. When developing such tests, one wants to optimize each step so that tests are successful even when confronted with samples that have a low MTBC load or contain large amounts of host DNA. This could improve the performance of the popular rapid molecular tests, especially for samples with mycobacterial loads close to the limits of detection. Where optimizations could have a more significant impact is for tests based on targeted next generation sequencing (tNGS) which typically require higher quantities of DNA. This would be significant as tNGS can provide more comprehensive drug resistance profiles than the relatively limited resistance information provided by rapid tests. In this work we endeavor to optimize pre-treatment and extraction steps for molecular testing. Methods We begin by choosing the best DNA extraction device by comparing the amount of DNA extracted by five commonly used devices from identical samples. Following this, the effect that decontamination and human DNA depletion have on extraction efficiency is explored. Results The best results were achieved (i.e., the lowest Ct values) when neither decontamination nor human DNA depletion were used. As expected, in all tested scenarios the addition of decontamination to our workflow substantially reduced the yield of DNA extracted. This illustrates that the standard TB laboratory practice of applying decontamination, although being vital for culture-based testing, can negatively impact the performance of molecular testing. As a complement to the above experiments, we also considered the best Mycobacterium tuberculosis DNA storage method to optimize molecular testing carried out in the near- to medium-term. Comparing Ct values following three-month storage at 4 °C and at -20 °C and showed little difference between the two. Discussion In summary, for molecular diagnostics aimed at mycobacteria this work highlights the importance of choosing the right DNA extraction device, indicates that decontamination causes significant loss of mycobacterial DNA, and shows that samples preserved for further molecular testing can be stored at 4 °C, just as well at -20 °C. Under our experimental settings, human DNA depletion gave no significant improvement in Ct values for the detection of MTBC.
Collapse
Affiliation(s)
- Prajwal Prajwal
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
- Clemedi AG, Schlieren, Switzerland
| | - Turlough Neary
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Katja Rohrbach
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Pascal Bittel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Pauline C. Göller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | | | - Peter M. Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- *Correspondence: Peter M. Keller,
| |
Collapse
|
18
|
Kawasaki J, Tomonaga K, Horie M. Large-scale investigation of zoonotic viruses in the era of high-throughput sequencing. Microbiol Immunol 2023; 67:1-13. [PMID: 36259224 DOI: 10.1111/1348-0421.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023]
Abstract
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.
Collapse
Affiliation(s)
- Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
19
|
Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022; 20:e44. [PMID: 36617651 PMCID: PMC9847385 DOI: 10.5808/gi.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022] Open
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.
Collapse
Affiliation(s)
- Suwalak Chitcharoen
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| | - John Mauleekoonphairoj
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Khongphatthanayothin
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Bangkok General Hospital, Bangkok 10330, Thailand
| | - Boosamas Sutjaporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pharawee Wandee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok 10110, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| |
Collapse
|
20
|
Elimination of Foreign Sequences in Eukaryotic Viral Reference Genomes Improves the Accuracy of Virome Analysis. mSystems 2022; 7:e0090722. [PMID: 36286492 PMCID: PMC9765019 DOI: 10.1128/msystems.00907-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Widespread in public databases, foreign contaminant sequences pose a substantial obstacle in genomic analyses. Such contamination in viral genome databases is also notorious but more complicated and often causes questionable results in various applications, particularly in virome-based virus detection. Here, we conducted comprehensive screening and identification of the foreign sequences hidden in the largest eukaryotic viral genome collections of GenBank and UniProt using a scrutiny pipeline, which enables us to rigorously detect those problematic viral sequences (PVSs) with origins in hosts, vectors, and laboratory components. As a result, a total of 766 nucleotide PVSs and 276 amino acid PVSs with lengths up to 6,605 bp were determined, which were widely distributed in 39 families with many involving highly public health-concerning viruses, such as hepatitis C virus, Crimean-Congo hemorrhagic fever virus, and filovirus. The majority of these PVSs are genomic fragments of hosts including humans and bacteria. However, they cannot simply be regarded as foreign contaminants, since parts of them are results of natural occurrence or artificial engineering of viruses. Nevertheless, they severely disturb such sequence-based analyses as genome annotation, taxonomic assignment, and virome profiling. Therefore, we provide a clean version of the eukaryotic viral reference data set by the removal of these PVSs, which allows more accurate virome analysis with less time consumed than with other comprehensive databases. IMPORTANCE High-throughput sequencing-based viromics highly depends on reference databases, but foreign contamination is widespread in public databases and often leads to confusing and even wrong conclusions in genomic analysis and viromic profiling. To address this issue, we systematically detected and identified the contamination in the largest viral sequence collections of GenBank and UniProt based on a stringent scrutiny pipeline. We found hundreds of PVSs that are related to hosts, vectors, and laboratory components. By the removal of them, the resulting data set greatly improves the accuracy and efficiency of eukaryotic virome profiling. These results refresh our knowledge of the type and origin of PVSs and also have warning implications for viromic analysis. Viromic practitioners should be aware of these problems caused by PVSs and need to realize that a careful review of bioinformatic results is necessary for a reliable conclusion.
Collapse
|
21
|
Slavov SN. Viral Metagenomics for Identification of Emerging Viruses in Transfusion Medicine. Viruses 2022; 14:v14112448. [PMID: 36366546 PMCID: PMC9699440 DOI: 10.3390/v14112448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Viral metagenomics has revolutionized our understanding for identification of unknown or poorly characterized viruses. For that reason, metagenomic studies gave been largely applied for virus discovery in a wide variety of clinical samples, including blood specimens. The emerging blood-transmitted virus infections represent important problem for public health, and the emergence of HIV in the 1980s is an example for the vulnerability of Blood Donation systems to such infections. When viral metagenomics is applied to blood samples, it can give a complete overview of the viral nucleic acid abundance, also named "blood virome". Detailed characterization of the blood virome of healthy donors could identify unknown (emerging) viral genomes that might be assumed as hypothetic transfusion threats. However, it is impossible only by application of viral metagenomics to assign that one viral agent could impact blood transfusion. That said, this is a complex issue and will depend on the ability of the infectious agent to cause clinically important infection in blood recipients, the viral stability in blood derivatives and the presence of infectious viruses in blood, making possible its transmission by transfusion. This brief review summarizes information regarding the blood donor virome and some important challenges for use of viral metagenomics in hemotherapy for identification of transfusion-transmitted viruses.
Collapse
Affiliation(s)
- Svetoslav Nanev Slavov
- Department of Cellular and Molecular Therapy (NuCeL), Butantan Institute, São Paulo 05503-900, SP, Brazil; ; Tel.: +55-(16)-2101-9300 (ext. 9365)
- Laboratory of Bioinformatics, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto CEP 14051-140, SP, Brazil
| |
Collapse
|
22
|
Esnault G, Earley B, Cormican P, Waters SM, Lemon K, Cosby SL, Lagan P, Barry T, Reddington K, McCabe MS. Assessment of Rapid MinION Nanopore DNA Virus Meta-Genomics Using Calves Experimentally Infected with Bovine Herpes Virus-1. Viruses 2022; 14:1859. [PMID: 36146668 PMCID: PMC9501177 DOI: 10.3390/v14091859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory disease (BRD), which is the leading cause of morbidity and mortality in cattle, is caused by numerous known and unknown viruses and is responsible for the widespread use of broad-spectrum antibiotics despite the use of polymicrobial BRD vaccines. Viral metagenomics sequencing on the portable, inexpensive Oxford Nanopore Technologies MinION sequencer and sequence analysis with its associated user-friendly point-and-click Epi2ME cloud-based pathogen identification software has the potential for point-of-care/same-day/sample-to-result metagenomic sequence diagnostics of known and unknown BRD pathogens to inform a rapid response and vaccine design. We assessed this potential using in vitro viral cell cultures and nasal swabs taken from calves that were experimentally challenged with a single known BRD-associated DNA virus, namely, bovine herpes virus 1. Extensive optimisation of the standard Oxford Nanopore library preparation protocols, particularly a reduction in the PCR bias of library amplification, was required before BoHV-1 could be identified as the main virus in the in vitro cell cultures and nasal swab samples within approximately 7 h from sample to result. In addition, we observed incorrect assignment of the bovine sequence to bacterial and viral taxa due to the presence of poor-quality bacterial and viral genome assemblies in the RefSeq database used by the EpiME Fastq WIMP pathogen identification software.
Collapse
Affiliation(s)
- Gaelle Esnault
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Oak Park, R93 XE12 Carlow, Ireland
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, H91 TK33 Galway, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Oak Park, R93 XE12 Carlow, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Oak Park, R93 XE12 Carlow, Ireland
| | - Sinead M. Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Oak Park, R93 XE12 Carlow, Ireland
| | - Ken Lemon
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Stoney Road, Belfast BT4 3SD, UK
| | - S. Louise Cosby
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Stoney Road, Belfast BT4 3SD, UK
| | - Paula Lagan
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Stoney Road, Belfast BT4 3SD, UK
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, H91 TK33 Galway, Ireland
| | - Kate Reddington
- Microbial Diagnostics Research Laboratory (MDRL), Microbiology, School of Natural Sciences, National University of Ireland, H91 TK33 Galway, Ireland
| | - Matthew S. McCabe
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Oak Park, R93 XE12 Carlow, Ireland
| |
Collapse
|
23
|
Ambroset C, Peticca A, Tricot A, Tardy F. Genomic features of Mycoplasma bovis subtypes currently circulating in France. BMC Genomics 2022; 23:603. [PMID: 35986252 PMCID: PMC9392320 DOI: 10.1186/s12864-022-08818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Mycoplasma (M.) bovis is a major etiological agent of bovine respiratory disease, which is the most economically costly disease of cattle worldwide. Cattle disease surveillance on M. bovis is increasingly using gene-based techniques, such as multilocus sequence typing (MLST), or genome-based techniques such as core genome MLST that both require only partial genomic data. However, accurate up-to-date surveillance also demands complete, circular genomes that can be used as reference to track the evolution of the different lineages. Yet, in France, two of the main subtypes currently circulating still have no representing genome in public databases. Here, to address this gap, we provide and compare three new complete M. bovis genomes obtained from recent clinical isolates that represent major subtypes circulating in France and Europe. Results Genomes were obtained using a hybrid assembly strategy (Illumina and Nanopore) with fine-tuning of settings and inputs used in the Unicycler assembly pipeline, such as size selection of reads and quality trimming of the FASTQ files. The main characteristics and synteny of the genomes were compared. The three genomes mainly differed by their content in terms of mobile genetic elements, i.e. integrative conjugative elements (ICE) and insertion sequences (IS), a feature that impacts their structure. For instance, strain L15527, representing subtype3 (st3), harbours an exceptionally high number of ICEs, which results in a bigger-sized genome than all those previously described and could be associated with the propensity of st3 to gain and fix mutations through chromosomal transfer mechanisms. In contrast, strain F9160, of st1, is very close to the PG45 type strain isolated in 1961 in the USA, and harbours a huge number of IS. These features may be associated with an evolution towards a host-restricted state or in a “closed” host or environment reservoir until a recent re-emergence. Conclusions Whole-genome comparison of the three French M. bovis subtypes provides valuable resources for future studies combining epidemiology, phylogenetic data, and phylodynamic methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08818-9.
Collapse
|
24
|
de Figueiredo MLG, Williams EP, Jonsson CB, Khan MJ, Nunes MRT, de Lima CPS, Figueiredo LTM, Costa MRF, Mourão MPG, Lacerda MVG, Aquino VH. Screening of febrile patients with suspected malaria from the Brazilian Amazon for virus infection. Arch Virol 2022; 167:2151-2162. [PMID: 35841448 DOI: 10.1007/s00705-022-05514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health threat, especially in tropical and subtropical regions. More than 150 arboviruses can cause febrile illness following infection in humans. The Brazilian Amazon region has the highest number of arboviruses detected worldwide. In addition to arboviruses, malaria, caused by Plasmodium vivax, is endemic in the Amazon. Patients with malaria and arboviral disease frequently show similar clinical presentation and laboratory findings, making the diagnosis of the cause of the infection challenging. The aim of this study was to evaluate the potential for viral infections in patients with suspected malaria but without Plasmodium infection in the Brazilian Amazon. We recruited 200 subjects with suspected malaria in Manaus, Brazil. First, we tested for arboviruses in serum samples from 124 of the 200 participants using an arbovirus DNA microarray platform, which did not detect any virus. Then, we mixed the serum samples of the other 76 participants in 10 pools and subjected them to next-generation sequencing. Analysis of the sequencing data revealed the presence of only one arbovirus (Zika virus) in one sample pool. This analysis also detected the presence of primate erythroparvovirus 1 and pegivirus C. These results suggest that arboviruses are not the most frequent viral infections in patients with suspected malaria but without Plasmodium infection in the metropolitan region of Manaus. Implementation of specific viral surveillance tests will help in the early detection of viruses with epidemic potential.
Collapse
Affiliation(s)
- Mario Luis Garcia de Figueiredo
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohd Jaseem Khan
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | - Luiz Tadeu Moraes Figueiredo
- Ribeirao Preto Medical School, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.
- Instituto Leônidas and Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil.
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
25
|
Cornet L, Baurain D. Contamination detection in genomic data: more is not enough. Genome Biol 2022; 23:60. [PMID: 35189924 PMCID: PMC8862208 DOI: 10.1186/s13059-022-02619-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The decreasing cost of sequencing and concomitant augmentation of publicly available genomes have created an acute need for automated software to assess genomic contamination. During the last 6 years, 18 programs have been published, each with its own strengths and weaknesses. Deciding which tools to use becomes more and more difficult without an understanding of the underlying algorithms. We review these programs, benchmarking six of them, and present their main operating principles. This article is intended to guide researchers in the selection of appropriate tools for specific applications. Finally, we present future challenges in the developing field of contamination detection.
Collapse
Affiliation(s)
- Luc Cornet
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| |
Collapse
|
26
|
Composition of Eukaryotic Viruses and Bacteriophages in Individuals with Acute Gastroenteritis. Viruses 2021; 13:v13122365. [PMID: 34960634 PMCID: PMC8704738 DOI: 10.3390/v13122365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/21/2023] Open
Abstract
Metagenomics based on the next-generation sequencing (NGS) technique is a target-independent assay that enables the simultaneous detection and genomic characterization of all viruses present in a sample. There is a limited amount of data about the virome of individuals with gastroenteritis (GI). In this study, the enteric virome of 250 individuals (92% were children under 5 years old) with GI living in the northeastern and northern regions of Brazil was characterized. Fecal samples were subjected to NGS, and the metagenomic analysis of virus-like particles (VLPs) identified 11 viral DNA families and 12 viral RNA families. As expected, the highest percentage of viral sequences detected were those commonly associated with GI, including rotavirus, adenovirus, norovirus (94.8%, 82% and 71.2%, respectively). The most common co-occurrences, in a single individual, were the combinations of rotavirus-adenovirus, rotavirus-norovirus, and norovirus-adenovirus (78%, 69%, and 62%, respectively). In the same way, common fecal-emerging human viruses were also detected, such as parechovirus, bocaporvirus, cosavirus, picobirnavirus, cardiovirus, salivirus, and Aichivirus. In addition, viruses that infect plants, nematodes, fungi, protists, animals, and arthropods could be identified. A large number of unclassified viral contigs were also identified. We show that the metagenomics approach is a powerful and promising tool for the detection and characterization of different viruses in clinical GI samples.
Collapse
|