1
|
Sanmark E, Marjanen P, Virtanen J, Aaltonen K, Tauriainen S, Österlund P, Mäkelä M, Saari S, Roine A, Rönkkö T, Vartiainen VA. Identifying viral infections through analysis of head space volatile organic compounds. J Breath Res 2024; 19:016004. [PMID: 39437816 DOI: 10.1088/1752-7163/ad89f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of anin vitrocell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.
Collapse
Affiliation(s)
- E Sanmark
- Department of Otorhinolaryngology and Phoniatrics-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - P Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - J Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Aaltonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Tauriainen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - P Österlund
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M Mäkelä
- Olfactomics Oy, Tampere, Finland
| | - S Saari
- Tampere University of Applied Sciences, Tampere, Finland
| | - A Roine
- Olfactomics Oy, Tampere, Finland
| | - T Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - V A Vartiainen
- Heart and Lung center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
3
|
Maluck S, Bobrovsky R, Poór M, Lange RW, Steinmetzer T, Jerzsele Á, Adorján A, Bajusz D, Rácz A, Pászti-Gere E. In Vitro Evaluation of Antipseudomonal Activity and Safety Profile of Peptidomimetic Furin Inhibitors. Biomedicines 2024; 12:2075. [PMID: 39335588 PMCID: PMC11444200 DOI: 10.3390/biomedicines12092075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibitors of the serine protease furin have been widely studied as antimicrobial agents due to their ability to block the cleavage and activation of certain viral surface proteins and bacterial toxins. In this study, the antipseudomonal effects and safety profiles of the furin inhibitors MI-1851 and MI-2415 were assessed. Fluorescence quenching studies suggested no relevant binding of the compounds to human serum albumin and α1-acid glycoprotein. Both inhibitors demonstrated significant antipseudomonal activity in Madin-Darby canine kidney cells, especially compound MI-1851 at very low concentrations (0.5 µM). Using non-tumorigenic porcine IPEC-J2 cells, neither of the two furin inhibitors induced cytotoxicity (CCK-8 assay) or altered significantly the intracellular (Amplex Red assay) or extracellular (DCFH-DA assay) redox status even at a concentration of 100 µM. The same assays with MI-2415 conducted on primary human hepatocytes also resulted in no changes in cell viability and oxidative stress at up to 100 µM. Microsomal and hepatocyte-based CYP3A4 activity assays showed that both inhibitors exhibited a concentration-dependent inhibition of the isoenzyme at high concentrations. In conclusion, this study indicates a good safety profile of the furin inhibitors MI-1851 and MI-2415, suggesting their applicability as antimicrobials for further in vivo investigations, despite some inhibitory effects on CYP3A4.
Collapse
Affiliation(s)
- Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Rivka Bobrovsky
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Roman W Lange
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Anita Rácz
- Plasma Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
4
|
Romeo PH, Conquet L, Messiaen S, Pascal Q, Moreno SG, Bravard A, Bernardino-Sgherri J, Dereuddre-Bosquet N, Montagutelli X, Le Grand R, Petit V, Ferri F. Multiple Mechanisms of Action of Sulfodyne ®, a Natural Antioxidant, against Pathogenic Effects of SARS-CoV-2 Infection. Antioxidants (Basel) 2024; 13:1083. [PMID: 39334742 PMCID: PMC11429452 DOI: 10.3390/antiox13091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Few therapeutic options are available to treat COVID-19. The KEAP1/NRF2 pathway, the major redox-responsive pathway, has emerged as a potential therapeutic target for COVID-19 as it regulates redox homeostasis and inflammation that are altered during SARS-CoV-2 infection. Here, we characterized the effects of NRF2-agonist Sulfodyne®, a stabilized natural Sulforaphane, in cellular and animal models of SARS-CoV-2 infection. In pulmonary or colonic epithelial cell lines, Sulfodyne® elicited a more efficient inhibition of SARS-CoV-2 replication than NRF2-agonists DMF and CDDO. This antiviral activity was not dependent on NRF2 but was associated with the regulation of several metabolic pathways, including the inhibition of ER stress and mTOR signaling, which are activated during SARS-CoV-2 infection. Sulfodyne® also decreased SARS-CoV-2 mediated inflammatory responses by inhibiting the delayed induction of IFNB1 and type I IFN-stimulated genes in infected epithelial cell lines and by reducing the activation of human by-stander monocytes recruited after SARS-CoV-2 infection. In K18-hACE2 mice infected with SARS-CoV-2, Sulfodyne® treatment reduced both early lung viral load and disease severity by fine-tuning IFN-beta levels. Altogether, these results provide evidence for multiple mechanisms that underlie the antiviral and anti-inflammatory activities of Sulfodyne® and pinpoint Sulfodyne® as a potent therapeutic agent against pathogenic effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paul-Henri Romeo
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Laurine Conquet
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Sébastien Messiaen
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Anne Bravard
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Vanessa Petit
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Federica Ferri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Giles SK, Hague WB, Edwards RA. ICP - could there be a virus in the works? Obstet Med 2024; 17:175-178. [PMID: 39262907 PMCID: PMC11384809 DOI: 10.1177/1753495x241258385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 09/13/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver-specific disorder affecting pregnant women, with an Australian incidence of 0.6% pa and recurring in 70% of those affected. ICP causes mild to severe pruritus, often resulting in considerable skin excoriations, profound sleep disturbances, and severe anxiety, and yet the aetiology and optimal treatment or management of this condition remains unknown. In this review, we consider the role of viruses in causing or exacerbating ICP and discuss viruses that have been most closely implicated in the disease, including the role of Hepatitis B and Hepatitis C viruses in ICP.
Collapse
Affiliation(s)
- Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| | - Wm Bill Hague
- Robinson Research Institute, The University of Adelaide, North Adelaide, SA, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Ammirata G, Arigoni M, Licastro D, Caviglia GP, Disabato M, Zubair G, Bezzio C, Saibeni S, De Nicolò A, Cusato J, Palermiti A, Manca A, Tolosano E, Cozzini S, Mancini M, Altruda F, D’Avolio A, Ribaldone DG, Ala U, Fagoonee S. Extracellular Vesicle-Enclosed Oxidative Stress- and Inflammation-Related microRNAs as Potential Biomarkers of Vitamin D Responsivity: A Pilot Study on Inflammatory Bowel Disease Patients with or without COVID-19. Antioxidants (Basel) 2024; 13:1047. [PMID: 39334706 PMCID: PMC11429492 DOI: 10.3390/antiox13091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The relationship between serum 25-hydroxyvitamin D (25(OH)D) levels, genomic response to vitamin D (Vit.D), and positivity to SARS-CoV-2 remains understudied. In this pilot study, during the follow-up of patients with Inflammatory Bowel Disease (IBD) and COVID-19, we investigated this issue by analyzing the molecular contents of serum extracellular vesicles (EVs) from six groups of IBD patients (n = 32), classified according to anti-SARS-CoV-2 status, 25(OH)D level, and Vit.D supplementation, by small RNA-seq. This analysis revealed differentially expressed miRNAs, PIWI-RNA, transfer RNA, small nucleolar RNAs, and protein-coding RNAs in the EVs obtained from these cohorts of IBD patients. Experimental validation evidenced a statistically significant increase in miR30d-5p, miR150-5p, Let-7f-5p, and Let-7a-5p in the anti-SARS-CoV-2-positive and low 25(OH)D and Vit.D supplemented groups with respect to the non-Vit.D supplemented group, indicating their responsiveness to Vit.D treatment. Bioinformatics analysis highlighted the regulation of these validated miRNAs by oxidative stress and inflammation, hallmarks of IBD and COVID-19. Our study reports an unprecedented panel of circulating EV-enclosed inflammation- and oxidative stress-related miRNAs, the potentiality of which, as biomarkers for Vit.D responsivity in IBD patients, needs to be explored in future studies on larger cohorts in order to allow clinicians to optimize current treatment strategies upon viral infection.
Collapse
Affiliation(s)
- Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Danilo Licastro
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Gian Paolo Caviglia
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Michela Disabato
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ghania Zubair
- Department of Mathematics “Giuseppe Peano”, University of Turin, 10126 Turin, Italy;
| | - Cristina Bezzio
- IBD Centre, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Simone Saibeni
- Gastroenterology Unit, Rho Hospital, ASST Rhodense, 20017 Milan, Italy;
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Stefano Cozzini
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Marcello Mancini
- Institute for Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Davide Giuseppe Ribaldone
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, CNR, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
7
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
8
|
Kryńska K, Kuliś K, Mazurek W, Gudowska-Sawczuk M, Zajkowska M, Mroczko B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int J Mol Sci 2024; 25:8715. [PMID: 39201402 PMCID: PMC11354773 DOI: 10.3390/ijms25168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In 2024, over 775 million cases of COVID-19 were recorded, including approximately 7 million deaths, indicating its widespread and dangerous nature. The disease is caused by the SARS-CoV-2 virus, which can manifest a wide spectrum of symptoms, from mild infection to respiratory failure and even death. Neurological symptoms, such as headaches, confusion, and impaired consciousness, have also been reported in some COVID-19 patients. These observations suggest the potential of SARS-CoV-2 to invade the central nervous system and induce neuroinflammation during infection. This review specifically explores the relationship between SARS-CoV-2 infection and selected neurological diseases such as multiple sclerosis (MS), ischemic stroke (IS), and Alzheimer's disease (AD). It has been observed that the SARS-CoV-2 virus increases the production of cytokines whose action can cause the destruction of the myelin sheaths of nerve cells. Subsequently, the body may synthesize autoantibodies that attack nerve cells, resulting in damage to the brain's anatomical elements, potentially contributing to the onset of multiple sclerosis. Additionally, SARS-CoV-2 exacerbates inflammation, worsening the clinical condition in individuals already suffering from MS. Moreover, the secretion of pro-inflammatory cytokines may lead to an escalation in blood clot formation, which can result in thrombosis, obstructing blood flow to the brain and precipitating an ischemic stroke. AD is characterized by intense inflammation and heightened oxidative stress, both of which are exacerbated during SARS-CoV-2 infection. It has been observed that the SARS-CoV-2 demonstrates enhanced cell entry in the presence of both the ACE2 receptor, which is already elevated in AD and the ApoE ε4 allele. Consequently, the condition worsens and progresses more rapidly, increasing the mortality rate among AD patients. The above information underscores the numerous connections between SARS-CoV-2 infection and neurological diseases.
Collapse
Affiliation(s)
- Klaudia Kryńska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Katarzyna Kuliś
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Wiktoria Mazurek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| |
Collapse
|
9
|
Castiglione Morelli MA, Iuliano A, Viggiani L, Matera I, Pistone A, Schettini SCA, Colucci P, Ostuni A. Redox Balance and Inflammatory Response in Follicular Fluids of Women Recovered by SARS-CoV-2 Infection or Anti-COVID-19 Vaccinated: A Combined Metabolomics and Biochemical Study. Int J Mol Sci 2024; 25:8400. [PMID: 39125969 PMCID: PMC11313332 DOI: 10.3390/ijms25158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
To date, not many studies have presented evidence of SARS-CoV-2 infecting the female reproductive system. Furthermore, so far, no effect of the administration of anti-COVID 19 vaccines has been reported to affect the quality of oocytes retrieved from women who resorted to assisted reproduction technology (ART). The FF metabolic profiles of women who had been infected by SARS-CoV-2 before IVF treatments or after COVID-19 vaccination were examined by 1H NMR. Immunochemical characterization of proteins and cytokines involved in the redox and inflammatory pathways was performed. The increased expression of SOD2 and NQO1, the lack of alteration of IL-6 and CXCL10 levels, as well as the increased expression of CD39, suggested that, both sharing similar molecular mechanisms or proceeding along different routes, the redox balance is controlled in the FF of both vaccinated and recovered women compared to controls. The lower amount of metabolites known to have proinflammatory activity, i.e., TMAO and lipids, further supported the biochemical results, suggesting that the FF microenvironment is controlled so as to guarantee oocyte quality and does not compromise the outcome of ART. In terms of the number of blastocysts obtained after ICSI and the pregnancy rate, the results are also comforting.
Collapse
Affiliation(s)
| | - Assunta Iuliano
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Licia Viggiani
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Alessandro Pistone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Sergio C. A. Schettini
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Paola Colucci
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| |
Collapse
|
10
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
11
|
Yadav PK, Pandey AN, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Follicular oocyte as a potential target for severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2024; 34:e2568. [PMID: 38937111 DOI: 10.1002/rmv.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Masoori L, Khalaf AK, Ezzatkhah F, Balaña-Fouce R, Mahmoudvand H. Promising effects of 1,8 Cineole to control Giardia lamblia infection: Targeting the inflammation, oxidative stress, and infectivity. Acta Trop 2024; 255:107201. [PMID: 38604329 DOI: 10.1016/j.actatropica.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1β, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.
Collapse
Affiliation(s)
- Leila Masoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León 24071 León, Spain
| | - Hossein Mahmoudvand
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
13
|
Meem SS, Proma AY, Bhuiyan MA, Dewan SMR. The pressing need for study on the effects of Mpox on the progression of vascular inflammation: A well-timed call. Health Sci Rep 2024; 7:e2223. [PMID: 38946778 PMCID: PMC11211998 DOI: 10.1002/hsr2.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024] Open
Abstract
Background This article explored the possibility that the Mpox virus (MPXV) may initiate or stimulate the consequences of vascular inflammation. In 1970, it was discovered that Macaca cynomolgus primates infected with MPXV also infected humans in the Democratic Republic of the Congo. Discussion The study demonstrates that MPXV invades host cells via viral proteins and surface receptors, initiating the release of diverse inflammatory mediators such as IL-1, IL-6, TNF-α, CCL2, CXCL2, CXCL8, CXCL10, and so forth probably through endothelial dysfunction by reactive oxygen species production. In general, these mediators have been found to contribute to vascular inflammation and the formation of atherosclerotic plaque at a later stage, which may contribute to the onset of vascular inflammation. Conclusion The discussed association between vascular inflammation and Mpox has the potential to be an important finding in the field of vascular biology research.
Collapse
Affiliation(s)
- Sara Shahid Meem
- Department of Pharmacy, School of MedicineUniversity of Asia PacificDhakaBangladesh
| | - Amrin Yeasin Proma
- Department of Pharmacy, School of MedicineUniversity of Asia PacificDhakaBangladesh
| | | | | |
Collapse
|
14
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Di Luca D, Maccari C, Arcangeletti MC, Caselli E. Virus-Induced MicroRNA Modulation and Systemic Sclerosis Disease. Biomedicines 2024; 12:1360. [PMID: 38927567 PMCID: PMC11202132 DOI: 10.3390/biomedicines12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| |
Collapse
|
16
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
17
|
Sertbas M, Ulgen KO. Uncovering the Effect of SARS-CoV-2 on Liver Metabolism via Genome-Scale Metabolic Modeling for Reprogramming and Therapeutic Strategies. ACS OMEGA 2024; 9:15535-15546. [PMID: 38585079 PMCID: PMC10993323 DOI: 10.1021/acsomega.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Genome-scale metabolic models (GEMs) are promising computational tools that contribute to elucidating host-virus interactions at the system level and developing therapeutic strategies against viral infection. In this study, the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on liver metabolism was investigated using integrated GEMs of human hepatocytes and SARS-CoV-2. They were generated for uninfected and infected hepatocytes using transcriptome data. Reporter metabolite analysis resulted in significant transcriptional changes around several metabolites involved in xenobiotics, drugs, arachidonic acid, and leukotriene metabolisms due to SARS-CoV-2 infection. Flux balance analysis and minimization of metabolic adjustment approaches unraveled possible virus-induced hepatocellular reprogramming in fatty acid, glycerophospholipid, sphingolipid cholesterol, and folate metabolisms, bile acid biosynthesis, and carnitine shuttle among others. Reaction knockout analysis provided critical reactions in glycolysis, oxidative phosphorylation, purine metabolism, and reactive oxygen species detoxification subsystems. Computational analysis also showed that administration of dopamine, glucosamine, D-xylose, cysteine, and (R)-3-hydroxybutanoate contributes to alleviating viral infection. In essence, the reconstructed host-virus GEM helps us understand metabolic programming and develop therapeutic strategies to battle SARS-CoV-2.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
18
|
Jung F, Connes P. Morphology and Function of Red Blood Cells in COVID-19 Patients: Current Overview 2023. Life (Basel) 2024; 14:460. [PMID: 38672731 PMCID: PMC11051426 DOI: 10.3390/life14040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In severe cases, SARS-CoV-2 infection leads to severe respiratory failure. Although angiotensin-converting enzyme 2 (ACE2) receptors are not expressed in red blood cells, SARS-CoV-2 can interact with red blood cells (RBCs) via several receptors or auxiliary membrane proteins. Recent data show that viral infection causes significant damage to the RBCs, altering their morphology, deformability, and aggregability. Loss of RBC deformability and/or increased aggregability favors the development of thrombotic processes in the microcirculation, as has been described to occur in COVID-19 patients. In addition, many patients also develop systemic endotheliitis associated with generalized coagulopathy. This manifests itself clinically as obstructive microthrombi in the area of the medium and smallest vessels, which can affect all internal organs. It is thought that such changes in the RBCs may contribute to the microangiopathy/microthrombosis associated with COVID-19 and may result in impaired capillary blood flow and tissue oxygenation.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Philippe Connes
- Laboratory LIBM EA7424, Team “Vascular Biology and Red Blood Cell”, University of Lyon I, 69500 Lyon, France;
| |
Collapse
|
19
|
Cárdenas-Rodríguez N, Ignacio-Mejía I, Correa-Basurto J, Carrasco-Vargas H, Vargas-Hernández MA, Albores-Méndez EM, Mayen-Quinto RD, De La Paz-Valente R, Bandala C. Possible Role of Cannabis in the Management of Neuroinflammation in Patients with Post-COVID Condition. Int J Mol Sci 2024; 25:3805. [PMID: 38612615 PMCID: PMC11012123 DOI: 10.3390/ijms25073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.
Collapse
Affiliation(s)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico;
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exal Manuel Albores-Méndez
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | | | - Reynita De La Paz-Valente
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
20
|
Ostrycharz E, Fitzner A, Kęsy A, Siennicka A, Hukowska-Szematowicz B. MicroRNAs participate in the regulation of apoptosis and oxidative stress-related gene expression in rabbits infected with Lagovirus europaeus GI.1 and GI.2 genotypes. Front Microbiol 2024; 15:1349535. [PMID: 38516020 PMCID: PMC10955125 DOI: 10.3389/fmicb.2024.1349535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
MicroRNAs (miRs) are a group of small, 17-25 nucleotide, non-coding RNA that regulate gene expression at the post-transcriptional level. To date, little is known about the molecular signatures of regulatory interactions between miRs and apoptosis and oxidative stress in viral diseases. Lagovirus europaeus is a virus that causes severe disease in rabbits (Oryctolagus cuniculus) called Rabbit Hemorrhagic Disease (RHD) and belongs to the Caliciviridae family, Lagovirus genus. Within Lagovirus europaeus associated with RHD, two genotypes (GI.1 and GI.2) have been distinguished, and the GI.1 genotype includes four variants (GI.1a, GI.1b, GI.1c, and GI.1d). The study aimed to assess the expression of miRs and their target genes involved in apoptosis and oxidative stress, as well as their potential impact on the pathways during Lagovirus europaeus-two genotypes (GI.1 and GI.2) infection of different virulences in four tissues (liver, lung, kidneys, and spleen). The expression of miRs and target genes related to apoptosis and oxidative stress was determined using quantitative real-time PCR (qPCR). In this study, we evaluated the expression of miR-21 (PTEN, PDCD4), miR-16b (Bcl-2, CXCL10), miR-34a (p53, SIRT1), and miRs-related to oxidative stress-miR-122 (Bach1) and miR-132 (Nfr-2). We also examined the biomarkers of both processes (Bax, Bax/Bcl-2 ratio, Caspase-3, PARP) and HO-I as biomarkers of oxidative stress. Our report is the first to present the regulatory effects of miRs on apoptosis and oxidative stress genes in rabbit infection with Lagovirus europaeus-two genotypes (GI.1 and GI.2) in four tissues (liver, lungs, kidneys, and spleen). The regulatory effect of miRs indicates that, on the one hand, miRs can intensify apoptosis (miR-16b, miR-34a) in the examined organs in response to a viral stimulus and, on the other hand, inhibit (miR-21), which in both cases may be a determinant of the pathogenesis of RHD and tissue damage. Biomarkers of the Bax and Bax/Bcl-2 ratio promote more intense apoptosis after infection with the Lagovirus europaeus GI.2 genotype. Our findings demonstrate that miR-122 and miR-132 regulate oxidative stress in the pathogenesis of RHD, which is associated with tissue damage. The HO-1 biomarker in the course of rabbit hemorrhagic disease indicates oxidative tissue damage. Our findings show that miR-21, miR-16b, and miR-34a regulate three apoptosis pathways. Meanwhile, miR-122 and miR-132 are involved in two oxidative stress pathways.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Doctoral School, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute-State Research Institute, Zduńska Wola, Poland
- National Reference Laboratory for Rabbit Hemorrhagic Disease (RHD), Zduńska Wola, Poland
| | - Andrzej Kęsy
- Department of Foot and Mouth Disease, National Veterinary Research Institute-State Research Institute, Zduńska Wola, Poland
- National Reference Laboratory for Rabbit Hemorrhagic Disease (RHD), Zduńska Wola, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| |
Collapse
|
21
|
Kwon EB, Kim B, Kim YS, Choi JG. Anastrozole Protects against Human Coronavirus Infection by Ameliorating the Reactive Oxygen Species-Mediated Inflammatory Response. Antioxidants (Basel) 2024; 13:116. [PMID: 38247540 PMCID: PMC10813058 DOI: 10.3390/antiox13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1β. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1β, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.
Collapse
Affiliation(s)
| | | | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| |
Collapse
|
22
|
Saleem A, Mumtaz PT, Saleem S, Manzoor T, Taban Q, Dar MA, Bhat B, Ahmad SM. Comparative transcriptome analysis of E. coli & Staphylococcus aureus infected goat mammary epithelial cells reveals genes associated with infection. Int Immunopharmacol 2024; 126:111213. [PMID: 37995572 DOI: 10.1016/j.intimp.2023.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sahar Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Qamar Taban
- Nutrition & Health Sciences, University of Nebraska-Lincoln, United States
| | - Mashooq Ahmad Dar
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | - Basharat Bhat
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| |
Collapse
|
23
|
Guerrero M, Hernández J, Gomez L, Guerrero C. Oxidative stress enhances rotavirus oncolysis in breast cancer and leukemia, except in melanoma with abundant matrix. Virus Res 2024; 339:199285. [PMID: 38013142 PMCID: PMC10711233 DOI: 10.1016/j.virusres.2023.199285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVES This study aimed to explore the impact of oxidative stress and extracellular matrix integrity on rotavirus infection in various cancer cells, including breast cancer, acute lymphoblastic leukemia, and melanoma. METHODS We induced oxidative stress using ROS-inducing drugs (cisplatin, metronidazole, melatonin, valproic acid, doxorubicin, losartan, nitrofurantoin, and DHA) and investigated the effects on viral infection in MCF-7, Reh, A375, B16-F1, and SK-MEL-28 cells and the generation of virions from infected cells by harvesting the supernatants every two hours, reinfecting other cells, and analyzing cell viability and DNA fragmentation. FINDINGS In MCF-7 and Reh cells, rotavirus Wt1-5 infection led to increased ROS generation, virion production, membrane permeability, mitochondrial dysfunction, DNA damage, and cell death. These effects were amplified by ROS-inducing drugs. Conversely, melanoma cells (SK-MEL-28 and A375) with a robust extracellular matrix network showed limited sensitivity to the drugs. Notably, losartan, which modulates the extracellular matrix, enhanced viral infection in melanoma cells (99 %). CONCLUSIONS Oxidative stress promotes oncolytic rotavirus infection in breast cancer and acute lymphoblastic leukemia cells, suggesting potential utility in combination with radiotherapy or chemotherapy due to their shared induction of intracellular oxidative stress.
Collapse
Affiliation(s)
- Marvi Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi
| | - Juan Hernández
- Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Luis Gomez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi; Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Carlos Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi.
| |
Collapse
|
24
|
Majeed M, Nagabhushanam K, Lawrence L, Prakasan P, Mundkur L. The Mechanism of Anti-Viral Activity of a Novel, Hydroponically Selenium-Enriched Garlic Powder (SelenoForce ®) Against SARS-CoV-2 Virus. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241268100. [PMID: 39130207 PMCID: PMC11311149 DOI: 10.1177/27536130241268100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024]
Abstract
Abstract The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is far from over as new strains are emerging all over the world. Selenium as a micronutrient is important for immunity and also has anti-viral activity. Objective The study evaluated the activity of a Selenium enriched garlic powder (SeGP or SelenoForce®) against SARS-CoV-2 viral replication in vitro and explored its possible mechanism of action. Methods The anti-SARS-CoV-2 activity assay was carried out in Vero E6 cells in vitro. Human lung carcinoma A549 cells were used to study the antioxidant activity, expression of angiotensin converting enzyme (ACE), transmembrane protease, serine 2 (TMPRSS2) and the activity of proprotein convertase, and furin. Anti-inflammatory activity was evaluated in lipopolysaccharide-activated RAW 264.7 cells. Results SeGP inhibited the replication of SARS-CoV-2 in Vero E6 cells with an IC50 of 19.59 μg/ml. It exhibited significant antioxidant activity in vitro with IC50 value determined as 43.45 μg/ml. The Selenium enriched product inhibited the expression of ACE and TMPRSS2 and also showed inhibition of furin protease activity. In the presence of SeGP, the secretion of nitric oxide, interleukin -6 and TNF-α were reduced in activated RAW 264.7 macrophages. Conclusion The results of the study suggest that Selenium enriched garlic powder could inhibit SARS-CoV-2 multiplication in vitro, reduce oxidative stress and inflammatory mediators suggesting that it could be developed as an effective supplement or adjunct therapy to combat viral infections.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, India
- Sabinsa Corporation, East Windsor, NJ, USA
| | | | | | | | | |
Collapse
|
25
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
26
|
Scott C, Hall S, Zhou J, Lehmann C. Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19-A Scoping Review. J Clin Med 2023; 13:227. [PMID: 38202234 PMCID: PMC10779964 DOI: 10.3390/jcm13010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute "long" COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations. This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection. Early in the SARS-CoV-19 infection, cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the associated cytokine storm. Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic stress injury, insomnia, pain, and decreased appetite. While current research primarily focuses on potential treatments for the acute phase of COVID-19, there is a gap in research addressing therapeutics for the early and post-infectious phases. This review highlights the potential for future research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a potential treatment strategy for both early and post-SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Cassidy Scott
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Stefan Hall
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| |
Collapse
|
27
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Granato G, Gesmundo I, Pedrolli F, Kasarla R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells. Front Immunol 2023; 14:1231363. [PMID: 37649486 PMCID: PMC10462983 DOI: 10.3389/fimmu.2023.1231363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1β, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1β secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.
Collapse
Affiliation(s)
- Giuseppina Granato
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iacopo Gesmundo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Pedrolli
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ramesh Kasarla
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Begani
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrew V. Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
- Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Riccarda Granata
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Ramamoorthy R, Hussain H, Ravelo N, Sriramajayam K, Di Gregorio DM, Paulrasu K, Chen P, Young K, Masciarella AD, Jayakumar AR, Paidas MJ. Kidney Damage in Long COVID: Studies in Experimental Mice. BIOLOGY 2023; 12:1070. [PMID: 37626956 PMCID: PMC10452084 DOI: 10.3390/biology12081070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Signs and symptoms involving multiple organ systems which persist for weeks or months to years after the initial SARS-CoV-2 infection (also known as PASC or long COVID) are common complications of individuals with COVID-19. We recently reported pathophysiological changes in various organs post-acute infection of mice with mouse hepatitis virus-1 (MHV-1, a coronavirus) (7 days) and after long-term post-infection (12 months). One of the organs severely affected in this animal model is the kidney, which correlated well with human studies showing kidney injury post-SARS-CoV-2 infection. Our long-term post-infection pathological observation in kidneys includes the development of edema and inflammation of the renal parenchyma, severe acute tubular necrosis, and infiltration of macrophages and lymphocytes, in addition to changes observed in both acute and long-term post-infection, which include tubular epithelial cell degenerative changes, peritubular vessel congestion, proximal and distal tubular necrosis, hemorrhage in the interstitial tissue, and vacuolation of renal tubules. These findings strongly suggest the possible development of renal fibrosis, in particular in the long-term post-infection. Accordingly, we investigated whether the signaling system that is known to initiate the above-mentioned changes in kidneys in other conditions is also activated in long-term post-MHV-1 infection. We found increased TGF-β1, FGF23, NGAL, IL-18, HIF1-α, TLR2, YKL-40, and B2M mRNA levels in long-term post-MHV-1 infection, but not EGFR, TNFR1, BCL3, and WFDC2. However, only neutrophil gelatinase-associated lipocalin (NGAL) increased in acute infection (7 days). Immunoblot studies showed an elevation in protein levels of HIF1-α, TLR-2, and EGFR in long-term post-MHV-1 infection, while KIM-1 and MMP-7 protein levels are increased in acute infection. Treatment with a synthetic peptide, SPIKENET (SPK), which inhibits spike protein binding, reduced NGAL mRNA in acute infection, and decreased TGF-β1, BCL3 mRNA, EGFR, HIF1-α, and TLR-2 protein levels long-term post-MHV-1 infection. These findings suggest that fibrotic events may initiate early in SARS-CoV-2 infection, leading to pronounced kidney fibrosis in long COVID. Targeting these factors therapeutically may prevent acute or long-COVID-associated kidney complications.
Collapse
Affiliation(s)
- Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Hussain Hussain
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA;
| | - Natalia Ravelo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Kannappan Sriramajayam
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dibe M. Di Gregorio
- University of Miami College of Arts and Sciences, Coral Gables, FL 33146, USA;
| | - Kodisundaram Paulrasu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | - Karen Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | | | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
31
|
Biondo C, Ponzo E, Midiri A, Ostone GB, Mancuso G. The Dark Side of Nosocomial Infections in Critically Ill COVID-19 Patients. Life (Basel) 2023; 13:1408. [PMID: 37374189 DOI: 10.3390/life13061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially serious acute respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the World Health Organization (WHO) declared COVID-19 a global pandemic, the virus has spread to more than 200 countries with more than 500 million cases and more than 6 million deaths reported globally. It has long been known that viral respiratory tract infections predispose patients to bacterial infections and that these co-infections often have an unfavourable clinical outcome. Moreover, nosocomial infections, also known as healthcare-associated infections (HAIs), are those infections that are absent at the time of admission and acquired after hospitalization. However, the impact of coinfections or secondary infections on the progression of COVID-19 disease and its lethal outcome is still debated. The aim of this review was to assess the literature on the incidence of bacterial co-infections and superinfections in patients with COVID-19. The review also highlights the importance of the rational use of antibiotics in patients with COVID-19 and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, alternative antimicrobial agents to counter the emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients will also be discussed.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Elena Ponzo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
32
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
33
|
Pennacchia F, Rusi E, Ruqa WA, Zingaropoli MA, Pasculli P, Talarico G, Bruno G, Barbato C, Minni A, Tarani L, Galardo G, Pugliese F, Lucarelli M, Ferraguti G, Ciardi MR, Fiore M. Blood Biomarkers from the Emergency Department Disclose Severe Omicron COVID-19-Associated Outcomes. Microorganisms 2023; 11:microorganisms11040925. [PMID: 37110348 PMCID: PMC10146633 DOI: 10.3390/microorganisms11040925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Since its outbreak, Coronavirus disease 2019 (COVID-19), a life-threatening respiratory illness, has rapidly become a public health emergency with a devastating social impact. Lately, the Omicron strain is considered the main variant of concern. Routine blood biomarkers are, indeed, essential for stratifying patients at risk of severe outcomes, and a huge amount of data is available in the literature, mainly for the previous variants. However, only a few studies are available on early routine biochemical blood biomarkers for Omicron-afflicted patients. Thus, the aim and novelty of this study were to identify routine blood biomarkers detected at the emergency room for the early prediction of severe morbidity and/or mortality. Methods: 449 COVID-19 patients from Sapienza University Hospital of Rome were divided into four groups: (1) the emergency group (patients with mild forms who were quickly discharged); (2) the hospital ward group (patients that after the admission in the emergency department were hospitalized in a COVID-19 ward); (3) the intensive care unit (ICU) group (patients that after the admission in the emergency department required intensive assistance); (4) the deceased group (patients that after the admission in the emergency department had a fatal outcome). Results: ANOVA and ROC data showed that high-sensitivity troponin-T (TnT), fibrinogen, glycemia, C-reactive protein, lactate dehydrogenase, albumin, D-dimer myoglobin, and ferritin for both men and women may predict lethal outcomes already at the level of the emergency department. Conclusions: Compared to previous Delta COVID-19 parallel emergency patterns of prediction, Omicron-induced changes in TnT may be considered other early predictors of severe outcomes.
Collapse
Affiliation(s)
- Fiorenza Pennacchia
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Eqrem Rusi
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Wael Abu Ruqa
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, 02100 Rieti, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Francesco Pugliese
- Department of Anesthesiology Critical Care Medicine and Pain Therapy, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|