1
|
González JF, Laipply B, Sadowski VA, Price M, Gunn JS. Functional role of the biofilm regulator CsgD in Salmonella enterica sv. Typhi. Front Cell Infect Microbiol 2024; 14:1478488. [PMID: 39720794 PMCID: PMC11668344 DOI: 10.3389/fcimb.2024.1478488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/07/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Typhoid fever is an infectious disease primarily caused by Salmonella enterica sv. Typhi (S. Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S. Typhi play a major role in the transmission of typhoid fever, as they intermittently shed the bacteria and can unknowingly infect humans in close proximity. An estimated 90% of chronic carriers have gallstones; biofilm formation on gallstones is a primary factor in the establishment and maintenance of gallbladder carriage. CsgD is a central biofilm regulator in Salmonella, but the S. Typhi csgD gene has a mutation that introduces an early stop codon, resulting in a protein truncated by 8 amino acids at the C-terminus. In this study, we investigate the role of role of CsgD in S. Typhi. Methods We introduced a fully functional copy of the csgD gene from S. Typhimurium into S. Typhi under both a native and a constitutive promoter and tested for red, dry, and rough (Rdar) colony morphology, curli fimbriae, cellulose, and biofilm formation. Results and discussion We demonstrate that although CsgD-regulated curli and cellulose production were partially restored, the introduction of the S. Typhimurium csgD did not induce the Rdar colony morphology. Interestingly, we show that CsgD does not have a significant role in S. Typhi biofilm formation, as biofilm-forming capacities depend more on the isolate than the CsgD regulator. This data suggests the presence of an alternative biofilm regulatory process in this human-restricted pathogen.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Victoria A. Sadowski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Matthew Price
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Zhou Y, Zhou Y, Liao B, Chen X, Niu Y, Ren B. Effects of Toothpaste Containing 2% Zinc Citrate on Gingival Health and Three Related Bacteria-A Randomized Double-Blind Study. Clin Exp Dent Res 2024; 10:e70020. [PMID: 39497343 PMCID: PMC11534642 DOI: 10.1002/cre2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Gingivitis is the initial stage of periodontitis, one of the most common oral diseases and the primary cause of tooth loss. This study aims to evaluate the effect of toothpaste containing 2% zinc citrate on gingival health and the abundance of three bacteria related to gingivitis and periodontitis. METHODS AND MATERIALS Eleven volunteers with the same oral health status were randomly assigned to the treatment (n = 5) and control (n = 6) groups. The control group used fluoride toothpaste, while the treatment group used fluoride toothpaste supplemented with 2% zinc citrate for 3 months. The plaque index, gingival index, and bleeding index were measured at baseline (0 day), 3 weeks, and 3 months. Dental plaque from four areas of the mouth (FDI criteria) was collected at the same timepoints. A total of 132 dental plaque samples were analyzed using quantitative PCR (qPCR) to monitor the abundance of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. RESULTS Toothpaste containing 2% zinc citrate significantly lowered the gingival index and reduced gum bleeding but did not affect the plaque index. It also reduced the total abundance of the three bacteria related to gingivitis and periodontitis in dental plaque over a long-term period. CONCLUSIONS Toothpaste with 2% zinc citrate persistently improves gingival health and reduces the presence of gingivitis-associated bacteria in dental plaque. TRIAL REGISTRATION Chinese Clinical Trial Registry (Clinical trial registration no.: ChiCTR1900020592) (09/01/2019).
Collapse
Affiliation(s)
- Yujie Zhou
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Zhou
- Hawley & Hazel Chemical Co. (ZS) Ltd., Zhongshan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobin Chen
- Hawley & Hazel Chemical Co. (ZS) Ltd., Zhongshan, China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neurodegenerative disorders. J Alzheimers Dis 2024; 102:577-586. [PMID: 39529279 DOI: 10.1177/13872877241289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between cognitive neurodegenerative disease and oral diseases has been under great interest recently. Several studies have suggested a connection between periodontitis and Alzheimer's disease (AD) or other neurodegenerative disorders. OBJECTIVE This study aimed to review the potential mechanisms between oral diseases and neurodegenerative diseases. METHODS The study was executed as a literature review of English-language publications from 2018-2022. The databases used for the search were PubMed, Cochrane, Scopus, and Web of Science. The search phrases used were "neurodegenerative diseases" AND "oral health" and "neurodegenerative diseases" AND "oral diseases." RESULTS The linkage between the two disease groups was observed in several distinct publications and several potential mechanisms were found. The link between periodontitis and AD proved to be the most significant. The effect was accentuated in elderly people where individuals possessed also other risk factors for neurodegenerative diseases and had generally worse oral health conditions. CONCLUSIONS Oral diseases may be risks for neurodegenerative changes along many different pathways. Good oral health should be acknowledged as a potential preventative or risk-reducing act against neurodegenerative diseases.
Collapse
Affiliation(s)
- Lauriina Soiniemi
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, and Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arja M Kullaa
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
4
|
Matta-Pacheco J, Tsukamoto-Jaramillo A, Tinedo-López PL, Espinoza-Carhuancho F, Pacheco-Mendoza J, Mayta-Tovalino F. Bibliometric Study of Periodontitis and Alzheimer's Disease: Trends, Collaboration, and Emerging Patterns. J Contemp Dent Pract 2024; 25:863-868. [PMID: 39791414 DOI: 10.5005/jp-journals-10024-3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
AIM To perform a bibliometric study of periodontal disease and Alzheimer's disease (AD) focusing on trends, collaborative efforts, and emerging patterns. MATERIALS AND METHODS From January 2018 to May 2024, an observational study was carried out utilizing metadata extracted from the Scopus database. A search methodology, specifically designed for this database, was developed using MeSH terms combined with Boolean operators such as "AND" and "OR". The Bibliometrix tool was employed to facilitate the study, using indicators including the number of citations and publications, the authorship of the publication, the country of origin, the year of publication, the type of publication, the H-index, WorldMap, Sankey diagram, keyword analysis, topic evolution, and scientific findings. RESULTS A total of 50.7 and 27.3% of the publications were in Q1 and Q2 quartile journals. The University of Central Lancashire has the most publications (17), but the University of California at San Francisco has the highest impact (1545 citations per publication). The journal Periodontology 2000 had a total of 643 citations per publication. Sim Kaur Singhrao (16) and Ingar Olsen (10) were the authors with the most publications, whereas Eric C Reynolds had the highest impact with 1,300 citations. CONCLUSIONS This bibliometric study found a gradual growth in publications, with the highest number of studies during 2021 and 2022, followed by a decrease in subsequent years, with Q1 and Q2 journals predominating. In terms of scientific productivity, the United States is the leading country in this area of research. The journal Periodontology 2000 had the highest number of citations, demonstrating the particular interest of periodontology in studying the association between periodontal disease and systemic diseases. CLINICAL SIGNIFICANCE The present study is significant because the relationship between periodontitis and Alzheimer is currently considered a novel multidisciplinary research opportunity, given that it includes both medical and dental specialties. This research also provides a valuable contribution to academics, universities, and research centers because it will allow us to understand trends and new research horizons and identify the most productive authors. How to cite this article: Matta-Pacheco J, Tsukamoto-Jaramillo A, Tinedo-López PL, et al. Bibliometric Study of Periodontitis and Alzheimer's Disease: Trends, Collaboration, and Emerging Patterns. J Contemp Dent Pract 2024;25(9):863-868.
Collapse
Affiliation(s)
- Juliana Matta-Pacheco
- Department of Periodontics, School of Dentistry, Universidad Cientifica del Sur, Lima, Perú
| | | | - Pedro L Tinedo-López
- Department of Periodontics, School of Dentistry, Universidad Cientifica del Sur, Lima, Perú
| | - Fran Espinoza-Carhuancho
- Bibliometrics, Evidence Evaluation and Systematic Reviews (BEERS) Group, Human Medicine Career, Universidad Científica del Sur, Lima, Peru
| | - Josmel Pacheco-Mendoza
- Bibliometrics, Evidence Evaluation and Systematic Reviews (BEERS) Group, Human Medicine Career, Universidad Científica del Sur, Lima, Peru
| | - Frank Mayta-Tovalino
- Bibliometrics, Evidence Evaluation and Systematic Reviews (BEERS) Group, Human Medicine Career, Universidad Científica del Sur, Lima, Peru, Phone: +5113171023, e-mail:
| |
Collapse
|
5
|
Liu N, Haziyihan A, Zhao W, Chen Y, Chao H. Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going? Transl Neurodegener 2024; 13:42. [PMID: 39160618 PMCID: PMC11331646 DOI: 10.1186/s40035-024-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.
Collapse
Affiliation(s)
- Ni Liu
- Zhengzhou University, Zhengzhou, 450001, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Wei Zhao
- Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- Zhengzhou University, Zhengzhou, 450001, China.
- Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Wada E, Ito C, Shinohara M, Handa S, Maetani M, Yasugi M, Miyake M, Sakamoto T, Yazawa A, Kamitani S. Prunin Laurate Derived from Natural Substances Shows Antibacterial Activity against the Periodontal Pathogen Porphyromonas gingivalis. Foods 2024; 13:1917. [PMID: 38928857 PMCID: PMC11202431 DOI: 10.3390/foods13121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontal disease is an inflammatory disease caused by infection with periodontopathogenic bacteria. Oral care is essential to prevent and control periodontal disease, which affects oral and systemic health. However, many oral hygiene products currently on the market were developed as disinfectants, and their intense irritation makes their use difficult for young children and older people. This study investigated the antibacterial effects of prunin laurate (Pru-C12) and its analogs on periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis). Pru-C12 and its analogs inhibited in vitro bacterial growth at more than 10 μM and biofilm formation at 50 µM. Among its analogs, only Pru-C12 showed no cytotoxicity at 100 µM. Three of the most potent inhibitors also inhibited the formation of biofilms. Furthermore, Pru-C12 inhibited alveolar bone resorption in a mouse experimental periodontitis model by P. gingivalis infection. These findings may be helpful in the development of oral hygiene products for the prevention and control of periodontal disease and related disorders.
Collapse
Affiliation(s)
- Erika Wada
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
| | - Chiharu Ito
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
| | - Mai Shinohara
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
| | - Satoshi Handa
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan; (S.H.); (T.S.)
| | - Miki Maetani
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
| | - Mayo Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan; (M.Y.); (M.M.)
| | - Masami Miyake
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan; (M.Y.); (M.M.)
| | - Tatsuji Sakamoto
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan; (S.H.); (T.S.)
| | - Ayaka Yazawa
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
- Department of Nutrition, Graduate School of Human Life & Ecology, Osaka Metropolitan University, Habikino 583-8555, Osaka, Japan
| | - Shigeki Kamitani
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
- Department of Nutrition, Graduate School of Human Life & Ecology, Osaka Metropolitan University, Habikino 583-8555, Osaka, Japan
| |
Collapse
|
7
|
Yu X, Devine D, Vernon J. Manipulating the diseased oral microbiome: the power of probiotics and prebiotics. J Oral Microbiol 2024; 16:2307416. [PMID: 38304119 PMCID: PMC10833113 DOI: 10.1080/20002297.2024.2307416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their aetiology is rooted in microbial activity within the oral cavity, through the generation of detrimental metabolites and the instigation of potentially adverse host immune responses. Due to the increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are necessary. Advances in sequencing technologies have established relationships between disease and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formulations to tackle preventable oral disorders through colonisation with, or promotion of, beneficial microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident species which underlie health status. Research emphasis on the metabolic environment of the oral cavity has elucidated relationships between commensal and pathogenic organisms, for example, the sequential metabolism of fermentable carbohydrates deemed central to acid production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis in the oral environment may be the most appropriate approach to health conservation. In this review we discuss an ecological approach to the maintenance of a healthy oral environment and debate the potential use of probiotic and prebiotic supplementation, specifically targeted at sustaining oral niches to preserve the delicately balanced microbiome.
Collapse
Affiliation(s)
- X. Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - D.A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - J.J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Moghadam MT, Mojtahedi A, Bakhshayesh B, Babakhani S, Ajorloo P, Shariati A, Mirzaei M, Heidarzadeh S, Jazi FM. The Effect of Bacterial Composition Shifts in the Oral Microbiota on Alzheimer's Disease. Curr Mol Med 2024; 24:167-181. [PMID: 35986539 DOI: 10.2174/1566524023666220819140748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, despite significant advances in medical science, has not yet been definitively cured, and the exact causes of the disease remain unclear. Due to the importance of AD in the clinic, large expenses are spent annually to deal with this neurological disorder, and neurologists warn of an increase in this disease in elderly in the near future. It has been believed that microbiota dysbiosis leads to Alzheimer's as a multi-step disease. In this regard, the presence of footprints of perturbations in the oral microbiome and the predominance of pathogenic bacteria and their effect on the nervous system, especially AD, is a very interesting topic that has been considered by researchers in the last decade. Some studies have looked at the mechanisms by which oral microbiota cause AD. However, many aspects of this interaction are still unclear as to how oral microbiota composition can contribute to this disease. Understanding this interaction requires extensive collaboration by interdisciplinary researchers to explore all aspects of the issue. In order to reveal the link between the composition of the oral microbiota and this disease, researchers from various domains have sought to explain the mechanisms of shift in oral microbiota in AD in this review.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Bakhshayesh
- Department of Neurology, Neuroscience Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lee HJ, Lee Y, Hong SH, Park JW. Decoding the Link between Periodontitis and Neuroinflammation: The Journey of Bacterial Extracellular Vesicles. Curr Genomics 2023; 24:132-135. [PMID: 38178987 PMCID: PMC10761334 DOI: 10.2174/0113892029258657231010065320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| |
Collapse
|
10
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
11
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
12
|
Ha JY, Seok J, Kim SJ, Jung HJ, Ryu KY, Nakamura M, Jang IS, Hong SH, Lee Y, Lee HJ. Periodontitis promotes bacterial extracellular vesicle-induced neuroinflammation in the brain and trigeminal ganglion. PLoS Pathog 2023; 19:e1011743. [PMID: 37871107 PMCID: PMC10621956 DOI: 10.1371/journal.ppat.1011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.
Collapse
Affiliation(s)
- Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Suk-Jeong Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ka-Young Ryu
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Guo H, Li B, Yao H, Liu D, Chen R, Zhou S, Ji Y, Zeng L, Du M. Profiling the oral microbiomes in patients with Alzheimer's disease. Oral Dis 2023; 29:1341-1355. [PMID: 34931394 DOI: 10.1111/odi.14110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To analyse the characteristics of the oral microbiomes and expected to find biomarkers about Alzheimer's disease (AD). SUBJECTS AND METHODS AD patients (n = 26) and cognitive intact people (n = 26) were examined for cognition, depression, oral health and collected saliva and gingival crevicular fluid (GCF) in the morning. Full-length 16S rRNA gene was amplified and sequencing was performed using the PacBio platform. RESULTS The predominant bacterium of salivary microbiome and periodontal microbiome from AD patients was Streptococcus oralis and Porphyromonas gingivalis, respectively. With respect to β diversity analysis, there was a significance difference in periodontal microbiome between AD patients and cognitively intact subjects. The relative abundance of Veillonella parvula significantly increased in oral microbiomes from AD patients. Interestingly, the dominant species were different between early-onset AD and late-onset AD patients. Moreover, the predominant species were changed as the clinical severity of AD. Furthermore, the correlation analysis revealed that V. parvula was associated with AD in both saliva and GCF and that P. gingivalis was associated with AD only in GCF. CONCLUSIONS In this study, the microbiome community of oral microbes was altered in AD patients and periodontal microbiome was sensitive to cognition changes. Moreover, V. parvula and P. gingivalis were associated with AD.
Collapse
Affiliation(s)
- Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Biao Li
- Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Danfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Rourong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuhui Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Lin Zeng
- Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Fogelholm N, Leskelä J, Manzoor M, Holmer J, Paju S, Hiltunen K, Roitto HM, Saarela RK, Pitkälä K, Eriksdotter M, Buhlin K, Pussinen PJ, Mäntylä P. Subgingival microbiome at different levels of cognition. J Oral Microbiol 2023; 15:2178765. [PMID: 36844899 PMCID: PMC9946326 DOI: 10.1080/20002297.2023.2178765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Oral health and declining cognition may have a bi-directional association. We characterized the subgingival microbiota composition of subjects from normal cognition to severe cognitive decline in two cohorts. Memory and Periodontitis (MINOPAR) include 202 home-living participants (50-80 years) in Sweden. Finnish Oral Health Studies in Older Adults (FINORAL) include 174 participants (≥65 years) living in long-term care in Finland. We performed oral examination and assessed the cognitive level with Mini Mental State Examination (MMSE). We sequenced the 16S-rRNA gene (V3-V4 regions) to analyse the subgingival bacterial compositions. The microbial diversities only tended to differ between the MMSE categories, and the strongest determinants were increased probing pocket depth (PPD) and presence of caries. However, abundances of 101 taxa were associated with the MMSE score. After adjusting for age, sex, medications, PPD, and caries, only eight taxa retained the significance in the meta-analyses of the two cohorts. Especially Lachnospiraceae [XIV] at the family, genus, and species level increased with decreasing MMSE. Cognitive decline is associated with obvious changes in the composition of the oral microbiota. Impaired cognition is accompanied with poor oral health status and the appearance of major taxa of the gut microbiota in the oral cavity. Good oral health-care practices require special deliberations among older adults.
Collapse
Affiliation(s)
- Nele Fogelholm
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jaakko Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jacob Holmer
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Kaija Hiltunen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hanna-Maria Roitto
- Department of Neurosciences, University of Helsinki, Helsinki, Finland.,Internal medicine and rehabilitation, Division of Geriatrics, Helsinki University Hospital Helsinki, Finland.,Population health unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Riitta Kt Saarela
- Department of Social Services and Health Care, Oral Health Care, Helsinki, Finland
| | - Kaisu Pitkälä
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Helsinki University Hospital, Helsinki, Finland
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kåre Buhlin
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Päivi Mäntylä
- School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
16
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
17
|
Kwon OY, Lee SH. Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways. Antioxidants (Basel) 2022; 12:antiox12010078. [PMID: 36670940 PMCID: PMC9854571 DOI: 10.3390/antiox12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the short- and long-term memory deficits of LPS-injected mice were improved by oral administration of Ishige okamurae extracts (IOE). LPS-induced neuronal loss, increase in amyloid-β plaque, and expression of COX-2 and iNOS were restored by IOE. In addition, LPS-induced activation of Toll-like receptor-4 (TLR-4) and its downstream molecules, such as MyD88, NFκB, and mitogen-activated protein kinases (MAPKs), were significantly attenuated in the brains of mice fed with IOE. We found that pretreatment of IOE to C6 glioma cells ameliorated LPS-induced expression of TLR-4 and its inflammatory cascades, such as MyD88 expression, reactive oxygen species production, MAPKs phosphorylation, and NFκB phosphorylation with consequent downregulation of COX-2, iNOS, proinflammatory cytokines, and nitric oxide expression. Furthermore, IOE (0.2 µg/mL) was found to have equivalent efficacy with 10 μM of MyD88 inhibitor in preventing LPS-induced inflammatory responses in C6 glioma cells. Taken together, these results strongly suggest that IOE could be developed as a promising anti-neuroinflammatory agent which is able to control the TLR-4/MyD88-dependent signaling pathways.
Collapse
|
18
|
Dziedzic A. Is Periodontitis Associated with Age-Related Cognitive Impairment? The Systematic Review, Confounders Assessment and Meta-Analysis of Clinical Studies. Int J Mol Sci 2022; 23:15320. [PMID: 36499656 PMCID: PMC9739281 DOI: 10.3390/ijms232315320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
It has been suggested that molecular pathological mechanisms responsible for periodontitis can be linked with biochemical alterations in neurodegenerative disorders. Hypothetically, chronic systemic inflammation as a response to periodontitis plays a role in the etiology of cognitive impairment. This study aimed to determine whether periodontitis (PDS) is a risk factor for age-related cognitive impairment (ACI) based on evidence of clinical studies. A comprehensive, structured systematic review of existing data adhering to the Preferred Reporting Items for Systematic Review and Meta Analyses (PRISMA) guidelines was carried out. Five electronic databases, PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched for key terms published in peer-reviewed journals until January 2021. The Newcastle-Ottawa scale was used to assess the quality of studies and risk of bias. The primary and residual confounders were explored and evaluated. A meta-analysis synthesizing quantitative data was carried out using a random-effects model. Seventeen clinical studies were identified, including 14 cohort, one cross-sectional, and two case-control studies. Study samples ranged from 85 to 262,349 subjects, with follow-up between 2 and 32 years, and age above 45 years, except for two studies. The findings of studies suggesting the PDS-ACI relationship revealed substantial differences in design and methods. A noticeable variation related to the treatment of confounders was observed. Quality assessment unveiled a moderate quality of evidence and risk of bias. The subgroups meta-analysis and pooled sensitivity analysis of results from seven eligible studies demonstrated overall that the presence of PDS is associated with an increased risk of incidence of cognitive impairment (OR = 1.36, 95% CI 1.03-1.79), particularly dementia (OR = 1.39, 95% CI 1.02-1.88) and Alzheimer's disease (OR = 1.03 95% CI 0.98-1.07)). However, a considerable heterogeneity of synthesized data (I2 = 96%) and potential publication bias might affect obtained results. While there is a moderate statistical association between periodontitis and dementia, as well as Alzheimer's disease, the risk of bias in the evidence prevents conclusions being drawn about the role of periodontitis as a risk factor for age-related cognitive impairment.
Collapse
Affiliation(s)
- Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
19
|
Song C, Dai F, Ning Y, Deng T, Yang Y, Zhu H, Song L. Application of antimicrobial photodynamic therapy to treat subgingival multidrug-resistant bacterial infections in ICU patients. Photodiagnosis Photodyn Ther 2022; 40:103176. [PMID: 36351563 DOI: 10.1016/j.pdpdt.2022.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Drug-resistant bacterial infections have received much attention in recent years. Antimicrobial photodynamic therapy (aPDT) is an effective antimicrobial strategy. This study aimed to evaluate the therapeutic effect of methylene blue (MB)-mediated aPDT against subgingival multidrug-resistant (MDR) bacterial infections in intensive care unit (ICU) patients. METHODS Eighty-three patients who were hospitalized in the ICU of the Second Affiliated Hospital of Nanchang University from July 2019 to June 2021 were selected. The intraoral partitioned control test was conducted. Teeth that met the criteria were selected from different quadrants of the same patient, randomly divided into three groups, namely, A, B, and C, and treated with aPDT, chlorhexidine gargle, or normal saline. The counts of MDR bacteria in the gingival crevicular fluid were assessed in the different groups at different time points before and after treatment. RESULTS The MDR bacterial count decreased immediately after aPDT and was significantly different from that in the chlorhexidine gargle rinse group and the normal saline rinse group (P<0.05). There was no significant difference among the three groups at 6, 12, and 24 hours after treatment (P>0.05). CONCLUSION aPDT can be used to treat subgingival MDR bacterial infections, but the long-term effects of treatment need to be further studied.
Collapse
Affiliation(s)
- Chaoru Song
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Fang Dai
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yumei Ning
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Tian Deng
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yuting Yang
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Hongbiao Zhu
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Li Song
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
20
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
21
|
Pritchard AB, Fabian Z, Lawrence CL, Morton G, Crean S, Alder JE. An Investigation into the Effects of Outer Membrane Vesicles and Lipopolysaccharide of Porphyromonas gingivalis on Blood-Brain Barrier Integrity, Permeability, and Disruption of Scaffolding Proteins in a Human in vitro Model. J Alzheimers Dis 2022; 86:343-364. [PMID: 35034897 DOI: 10.3233/jad-215054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The effects of the key pathogens and virulence factors associated with gum disease such as Porphyromonas gingivalis (P. gingivalis) on the central nervous system is of great interest with respect to development of neuropathologies and hence therapeutics and preventative strategies. Chronic infections and associated inflammation are known to weaken the first line of defense for the brain, the blood-brain barrier (BBB). OBJECTIVE The focus of this study is to utilize an established human in vitro BBB model to evaluate the effects of P. gingivalis virulence factors lipopolysaccharide (LPS) and outer membrane vesicles (OMVs) on a primary-derived human model representing the neurovascular unit of the BBB. METHODS Changes to the integrity of the BBB after application of P. gingivalis LPS and OMVs were investigated and correlated with transport of LPS. Additionally, the effect of P. gingivalis LPS and OMVs on human brain microvascular endothelial cells in monolayer was evaluated using immunofluorescence microscopy. RESULTS The integrity of the BBB model was weakened by application of P. gingivalis LPS and OMVs, as measured by a decrease in electrical resistance and a recovery deficit was seen in comparison to the controls. Application of P. gingivalis OMVs to a monoculture of human brain microvascular endothelial cells showed disruption of the tight junction zona occludens protein (ZO-1) compared to controls. CONCLUSION These findings show that the integrity of tight junctions of the human BBB could be weakened by association with P. gingivalis virulence factors LPS and OMVs containing proteolytic enzymes (gingipains).
Collapse
Affiliation(s)
- Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Zsolt Fabian
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Clare L Lawrence
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Glyn Morton
- School of Forensic and Investigative Science, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane E Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
22
|
Shinohara M, Maetani M, Kitada C, Nishigami Y, Yazawa A, Kamitani S. Analysis of the Effects of Food Additives on Porphyromonas gingivalis. Pathogens 2022; 11:pathogens11010065. [PMID: 35056013 PMCID: PMC8779409 DOI: 10.3390/pathogens11010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022] Open
Abstract
This study aims to investigate six food additives (octanoic acid, decanoic acid, acesulfame K, aspartame, saccharin, and sucralose) used in foods for the elderly or people with dysphagia because of the effect of these food additives on Porphyromonas gingivalis (P. gingivalis), which is a keystone pathogen of periodontal diseases. The growth of P. gingivalis was inhibited by 5 mM octanoic acid, 1.25 mM decanoic acid, 1.25% acesulfame K, 0.0625% aspartame, 0.03125% saccharin, and 0.625% sucralose. In addition, these food additives showed bactericidal activity for planktonic P. gingivalis (5 mM octanoic acid, 5 mM decanoic acid, 0.25% aspartame, 0.25% saccharin, and 5% sucralose). Moreover, biofilm formation was inhibited by 10 mM octanoic acid, 10 mM decanoic acid, 10% acesulfame K, 0.35% aspartame, 0.5% saccharin, and 7.5% sucralose. Moreover, the same concentration of these food additives without aspartame killed P. gingivalis in the biofilm. Aspartame and sucralose did not show cytotoxicity to human cell lines at concentrations that affected P. gingivalis. These findings may be useful in clarifying the effects of food additives on periodontopathogenic bacteria.
Collapse
|
23
|
Chakravarthi ST, Joshi SG. An Association of Pathogens and Biofilms with Alzheimer's Disease. Microorganisms 2021; 10:microorganisms10010056. [PMID: 35056505 PMCID: PMC8778325 DOI: 10.3390/microorganisms10010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
As one of the leading causes of dementia, Alzheimer's disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer's disease.
Collapse
Affiliation(s)
- Sandhya T. Chakravarthi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
- Correspondence: or ; Tel.: +1-215-895-1988
| |
Collapse
|
24
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
25
|
Borsa L, Dubois M, Sacco G, Lupi L. Analysis the Link between Periodontal Diseases and Alzheimer's Disease: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179312. [PMID: 34501899 PMCID: PMC8430572 DOI: 10.3390/ijerph18179312] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The hypothesis of an infectious connection from the oro-pharyngeal sphere to the brain underlines the interest in analyzing the link between periodontal disease and Alzheimer’s disease. The aim of this systematic review was to examine the link between Alzheimer’s disease and periodontal disease in patients aged 65 and over. Databases (PubMed (MEDLINE), the Cochrane Library, and Embase) were analyzed for relevant references up to 21 June 2021. The authors independently selected the studies and extracted the data. The quality of included studies was checked using the National Institutes of Health’s quality assessment tools. Five studies were included. The selected studies described in their results an increase in F. nucleatum in Alzheimer’s disease patients (adjusted p = 0.02), and its incidence was linked to C. rectus and P. gingivalis (adjusted HR = 1.22 (1.04–1.43), p = 0.012) as well as A. naeslundii (crude HR = 2.0 (1.1–3.8)). The presence of periodontitis at baseline was associated with a six-fold increase in the rate of cognitive decline over a 6-month follow-up period (ADAS-Cog mean change = 2.9 ± 6.6). The current review suggests an association between periodontal disease and Alzheimer’s disease. The treatment of periodontal disease could be a way to explore Alzheimer’s disease prevention.
Collapse
Affiliation(s)
- Leslie Borsa
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
- UPR7354–Laboratoire Microbiologie Orale, Immunothérapie et Santé (Micoralis), Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France
- Correspondence:
| | - Margaux Dubois
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
| | - Guillaume Sacco
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06003 Nice, France;
- Université Côte d’Azur, CoBTeK, 06100 Nice, France
- Univ Angers, Université de Nantes, LPPL, SFR CONFLUENCES, 49000 Angers, France
| | - Laurence Lupi
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
- UPR7354–Laboratoire Microbiologie Orale, Immunothérapie et Santé (Micoralis), Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France
| |
Collapse
|
26
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
27
|
Kaur M, Geurs NC, Cobb CM, Otomo-Corgel J, Takesh T, Lee JH, Lam TM, Lin K, Nguyen A, Nguyen BL, Wilder-Smith P. Evaluating efficacy of a novel dentifrice in reducing probing depths in Stage I and II periodontitis maintenance patients: A randomized, double-blind, positive controlled clinical trial. J Periodontol 2021; 92:1286-1294. [PMID: 33331040 PMCID: PMC9984250 DOI: 10.1002/jper.20-0721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Compliance to periodontal maintenance therapy (PMT) is essential for long-term periodontal health. Between PMT visits, patients must maintain good oral hygiene. A dentifrice with demonstrable clinical benefits for use between PMT visits would be highly desirable. The aim of this clinical study was to investigate the effect of a novel dental gel on probing depths (PD) and inflammation when used as a home care dentifrice in Stage I and II periodontitis patients. METHODS This double-blind clinical study randomized 65 subjects with Stage I and II periodontitis to the novel dental gel containing 2.6% EDTA, and a commercially available anti-gingivitis dentifrice with 0.454% stannous fluoride. Primary endpoint was PD at 6 months for those sites with baseline PD ≥ 4 mm and secondary endpoints included whole mouth mean scores of modified gingival index (MGI), modified sulcus bleeding index (mSBI) and plaque index (PI). No SRP was performed at baseline. RESULTS Subjects using the novel dentifrice showed significant PD reductions of 1.18 mm (from 4.27 mm at baseline to 3.09 mm at 6 months) compared to 0.93 mm (from 4.23 mm at baseline to 3.30 mm at 6 months) shown for those using the positive control dentifrice. Difference between treatments at 6 months was 0.21 mm with P-value = 0.0126. Significant improvements in MGI (P = 0.0000), mSBI (P = 0.0000), and PI (P = 0.0102) were also observed in 6 months. CONCLUSION The novel dentifrice showed significant reductions in PD and gingival inflammation over 6 months solely as a home care dentifrice without baseline SRP in Stage I and II periodontitis maintenance patients.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Dentistry, Department of Periodontology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicolaas C. Geurs
- School of Dentistry, Department of Periodontology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charles M. Cobb
- School of Dentistry, Department of Periodontology, University of Missouri-Kansas City, Kansas, Missouri, USA
| | - Joan Otomo-Corgel
- School of Dentistry, Department of Periodontology, University of California at Los Angles, Los Angeles, California, USA
| | - Thair Takesh
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - June H. Lee
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - Tracie M. Lam
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - Kairong Lin
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - Audrey Nguyen
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - Brian L. Nguyen
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| | - Petra Wilder-Smith
- Beckman Laser Institute and Medical Clinic, Department of Dentistry, University of California at Irvine, Irvine, California, USA
| |
Collapse
|
28
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
29
|
Guo H, Chang S, Pi X, Hua F, Jiang H, Liu C, Du M. The Effect of Periodontitis on Dementia and Cognitive Impairment: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136823. [PMID: 34202071 PMCID: PMC8297088 DOI: 10.3390/ijerph18136823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
The association between periodontal disease and dementia/cognitive impairment continues to receive increasing attention. However, whether periodontal disease is a risk factor for dementia/cognitive impairment is still uncertain. This meta-analysis was conducted to comprehensively analyze the effect of periodontitis on dementia and cognitive impairment, and to assess the periodontal status of dementia patients at the same time. A literature search was undertaken on 19 October 2020 using PubMed, Web of Science, and Embase with different search terms. Two evaluators screened studies according to inclusion and exclusion criteria, and a third evaluator was involved if there were disagreements; this process was the same as that used for data extraction. Included studies were assessed with the Newcastle-Ottawa Scale (NOS), and results were analyzed using software Review Manager 5.2. Twenty observational studies were included. In the comparison between periodontitis and cognitive impairment, the odds ratio (OR) was 1.77 (95% confidence interval (CI), 1.31–2.38), which indicated that there was a strong relationship between periodontitis and cognitive impairment. There was no statistical significance in the effect of periodontitis on dementia (OR = 1.59; 95%CI, 0.92–2.76). The subgroup analysis revealed that moderate or severe periodontitis was significantly associated with dementia (OR = 2.13; 95%CI, 1.25–3.64). The mean difference (MD) of the community periodontal index (CPI) and clinical attachment level (CAL) was 0.25 (95%CI, 0.09–0.40) and 1.22 (95%CI, 0.61–1.83), respectively. In this meta-analysis, there was an association between periodontitis and cognitive impairment, and moderate or severe periodontitis was a risk factor for dementia. Additionally, the deterioration of periodontal status was observed among dementia patients.
Collapse
Affiliation(s)
- Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
| | - Shuli Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
| | - Xiaoqin Pi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
| | - Fang Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
- Center for Evidence-Based Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
| | - Chang Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
- Correspondence: (C.L.); (M.D.); Tel.: +86-027-8768-6227 (C.L.)
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (S.C.); (X.P.); (F.H.); (H.J.)
- Correspondence: (C.L.); (M.D.); Tel.: +86-027-8768-6227 (C.L.)
| |
Collapse
|
30
|
Contaldo M, Fusco A, Stiuso P, Lama S, Gravina AG, Itro A, Federico A, Itro A, Dipalma G, Inchingolo F, Serpico R, Donnarumma G. Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study. Microorganisms 2021; 9:1064. [PMID: 34069179 PMCID: PMC8156550 DOI: 10.3390/microorganisms9051064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Various bi-directional associations exist between oral health and gastro-intestinal diseases. The oral microbiome plays a role in the gastro-intestinal carcinogenesis and fusobacteria are the most investigated bacteria involved. This paper aims to review the current knowledge and report the preliminary data on salivary levels of Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans in subjects with different gastro-intestinal conditions or pathologies, in order to determine any differences. The null hypothesis was "subjects with different gastro-intestinal diseases do not show significant differences in the composition of the oral microbiota". Twenty-one subjects undergoing esophagastroduodenoscopy or colonscopy were recruited. For each subject, a salivary sample was collected before the endoscopy procedure, immediately stored at -20 °C and subsequently used for genomic bacterial DNA extraction by real-time PCR. Low levels of F. nucleatum and P. gingivalis were peculiar in the oral microbiota in subjects affected by Helicobater pylori-negative chronic gastritis without cancerization and future studies will elucidate this association. The level of C. albicans did not statistically differ among groups. This preliminary study could be used in the future, following further investigation, as a non-invasive method for the search of gastrointestinal diseases and associated markers.
Collapse
Affiliation(s)
- Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (A.F.); (G.D.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Stefania Lama
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Annalisa Itro
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy;
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Angelo Itro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (G.D.); (F.I.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (A.F.); (G.D.)
| |
Collapse
|
31
|
Leblhuber F, Steiner K, Geisler S, Fuchs D, Gostner JM. On the Possible Relevance of Bottom-up Pathways in the Pathogenesis of Alzheimer's Disease. Curr Top Med Chem 2021; 20:1415-1421. [PMID: 32407280 DOI: 10.2174/1568026620666200514090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer's disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Too LK, Hunt N, Simunovic MP. The Role of Inflammation and Infection in Age-Related Neurodegenerative Diseases: Lessons From Bacterial Meningitis Applied to Alzheimer Disease and Age-Related Macular Degeneration. Front Cell Neurosci 2021; 15:635486. [PMID: 33867940 PMCID: PMC8044768 DOI: 10.3389/fncel.2021.635486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related neurodegenerative diseases, such as Alzheimer disease (AD) and age-related macular degeneration (AMD), are multifactorial and have diverse genetic and environmental risk factors. Despite the complex nature of the diseases, there is long-standing, and growing, evidence linking microbial infection to the development of AD dementia, which we summarize in this article. Also, we highlight emerging research findings that support a role for parainfection in the pathophysiology of AMD, a disease of the neurosensory retina that has been shown to share risk factors and pathological features with AD. Acute neurological infections, such as Bacterial Meningitis (BM), trigger inflammatory events that permanently change how the brain functions, leading to lasting cognitive impairment. Neuroinflammation likewise is a known pathological event that occurs in the early stages of chronic age-related neurodegenerative diseases AD and AMD and might be triggered as a parainfectious event. To date, at least 16 microbial pathogens have been linked to the development of AD; on the other hand, investigation of a microbe-AMD relationship is in its infancy. This mini-review article provides a synthesis of existing evidence indicating a contribution of parainfection in the aetiology of AD and of emerging findings that support a similar process in AMD. Subsequently, it describes the major immunopathological mechanisms that are common to BM and AD/AMD. Together, this evidence leads to our proposal that both AD and AMD may have an infectious aetiology that operates through a dysregulated inflammatory response, leading to deleterious outcomes. Last, it draws fresh insights from the existing literature about potential therapeutic options for BM that might alleviate neurological disruption associated with infections, and which could, by extension, be explored in the context of AD and AMD.
Collapse
Affiliation(s)
- Lay Khoon Too
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas Hunt
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P. Simunovic
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
33
|
Chok KC, Ng KY, Koh RY, Chye SM. Role of the gut microbiome in Alzheimer's disease. Rev Neurosci 2021; 32:767-789. [PMID: 33725748 DOI: 10.1515/revneuro-2020-0122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of individuals each year and this number is expected to significantly increase. The complicated microorganisms residing in human gut are closely associated with our health. Emerging evidence has suggested possible involvement of human gut microbiome in AD. Symbiotic gut microbiomes are known to maintain brain health by modulating host's barriers integrity, metabolic system, immune system, nervous system and endocrine system. However, in the event of gut dysbiosis and barriers disruption, gut pathobionts disrupt homeostasis of the metabolic system, immune system, nervous system, and endocrine system, resulting in deterioration of neurological functions and subsequently promoting development of AD. Multiple therapeutic approaches, such as fecal microbiome transplant, antibiotics, prebiotics, probiotics, symbiotic, and diet are discussed as potential treatment options for AD by manipulating the gut microbiome to reverse pathological alteration in the systems above.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Science, International Medical University, 57000Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
35
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
36
|
Bachtiar E, Putri C. Infection of Porphyromonas gingivalis in Alzheimer’s Disease and the Suppression of Immunity. DENTAL HYPOTHESES 2021. [DOI: 10.4103/denthyp.denthyp_38_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
38
|
Rong X, Xiang L, Li Y, Yang H, Chen W, Li L, Liang D, Zhou X. Chronic Periodontitis and Alzheimer Disease: A Putative Link of Serum Proteins Identification by 2D-DIGE Proteomics. Front Aging Neurosci 2020; 12:248. [PMID: 32973486 PMCID: PMC7472842 DOI: 10.3389/fnagi.2020.00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence indicates Chronic Periodontitis (CP) is a comorbidity of Alzheimer’s disease (AD), which is the most common form of age-related dementia, and for the latter, effective diagnostic and treatment strategies are lacking. Although inflammation is present in both diseases, the exact mechanisms and cross-links between CP and AD are poorly understood; and a direct association between the two has not been reported. This study aimed to identify a direct serum proteins link between AD and CP. Two-dimensional differential in-gel electrophoresis was employed to analyze serum samples from 12 CP patients and 12 age-matched controls. Furthermore, to determine the molecular link between CP and AD, neuroblastoma SK-N-SH APPwt cells were treated with 1 μg/ml of lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS). Ten differentially expressed proteins were identified in CP patients. Among them, nine proteins were up-regulated, and one protein was down-regulated. Of the 10 differentially expressed proteins, five proteins were reportedly involved in the pathology of AD: Cofilin-2, Cathepsin B, Clusterin, Triosephosphate isomerase, and inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4). Western blotting indicated significantly higher expression of Cofilin-2, Cathepsin B, and Clusterin and lower expression of ITI-H4 in the CP group than in the Control group. The serum concentration of Cathepsin B has a good correlation with MMSE scores. Moreover, the protein level of Cathepsin B (but not that of ADAM10 and BACE1) increased significantly along with a prominent increase in Aβ1–40 and Aβ1–42 in the cell lysates of P.g-LPS-treated SK-N-SH APPwt cells. Cathepsin B inhibition resulted in a sharp decrease in Aβ1–40 and Aβ1–42 in the cell lysates. Furthermore, TNF-α was one of the most important inflammatory cytokines for the P.g-LPS-induced Cathepsin B upregulation in SK-N-SH APPwt cells. These results show that CP and AD share an association, while Cathepsin B could be a key link between the two diseases. The discovery of the identical serum proteins provides a potential mechanism underlying the increased risk of AD in CP patients, which could be critical for elucidating the pathophysiology of AD.
Collapse
Affiliation(s)
- Xianfang Rong
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Liping Xiang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yanfen Li
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Hongfa Yang
- Department of Cardiology, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Weijian Chen
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Lei Li
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Defeng Liang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xincai Zhou
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
39
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10:9800. [PMID: 32555242 PMCID: PMC7300016 DOI: 10.1038/s41598-020-66704-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acyl homoserine lactones (AHLs), the quorum sensing (QS) signals produced by Gram-negative bacteria, are currently considered to play a minor role in the development of oral biofilm since their production by oral pathogens has not been ascertained thus far. However, we report the presence of AHLs in different oral samples and their production by the oral pathogen Porphyromonas gingivalis. The importance of AHLs is further supported by a very high prevalence of AHL-degradation capability, up to 60%, among bacteria isolated from dental plaque and saliva samples. Furthermore, the wide-spectrum AHL-lactonase Aii20J significantly inhibited oral biofilm formation in different in vitro biofilm models and caused important changes in bacterial composition. Besides, the inhibitory effect of Aii20J on a mixed biofilm of 6 oral pathogens was verified using confocal microscopy. Much more research is needed in order to be able to associate specific AHLs with oral pathologies and to individuate the key actors in AHL-mediated QS processes in dental plaque formation. However, these results indicate a higher relevance of the AHLs in the oral cavity than generally accepted thus far and suggest the potential use of inhibitory strategies against these signals for the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Departamento de Ciruxía e Especialidade Médico-Cirúrxica, Facultade de Medicina e Odontoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Dentaid S.L., Barcelona, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
42
|
Abstract
IMPACT STATEMENT The number of commensal bacteria in the body surpasses the number of actual human cells. Thus, various interactions between microbes and human cells constitute an inevitable phenomenon. Recent evidence has led to bacterial extracellular RNAs (exRNAs) being proposed as good candidates for microbe-host inter-kingdom communication tools as they can modulate the expression of host genes. However, research findings on the relevance of interactions between extracellular RNA and human diseases are still in their infancy. Nevertheless, substantial data suggest that microbial exRNAs are implicated in various human diseases both at local and distant sites. By exploring various scenarios for the involvement of microbial exRNAs in human diseases, we may better understand the role of exRNAs as "communication signals" for diseases and thereby develop novel therapeutic strategies by using them and their carrier extracellular vesicles.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Microbiology and Immunology, Kyungpook National University School of Dentistry, Daegu 41940, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
43
|
Invasion of Human Retinal Pigment Epithelial Cells by Porphyromonas gingivalis leading to Vacuolar/Cytosolic localization and Autophagy dysfunction In-Vitro. Sci Rep 2020; 10:7468. [PMID: 32366945 PMCID: PMC7198524 DOI: 10.1038/s41598-020-64449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.
Collapse
|
44
|
Leblhuber F, Huemer J, Steiner K, Gostner JM, Fuchs D. Knock-on effect of periodontitis to the pathogenesis of Alzheimer's disease? Wien Klin Wochenschr 2020; 132:493-498. [PMID: 32215721 PMCID: PMC7519001 DOI: 10.1007/s00508-020-01638-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
Background Alzheimer’s disease has chronic inflammatory components, which can be enhanced by systemic immune activation resulting in inflammation or vice versa. There is growing evidence that chronic periodontitis drives systemic inflammation and finally Alzheimer’s disease. Thus, a link might exist between oral pathogens and Alzheimer’s disease. This may be of special significance as there is an age-related incidence of chronic periodontitis. Methods In this study, 20 consecutive patients with probable Alzheimer’s disease were investigated. Diagnosis was established by cognitive tests, routine laboratory tests and cerebral magnetic resonance tomography. In 35% of these patients with cognitive impairment pathogenic periodontal bacteria were found. Results The presence of Porphyromonas gingivalis, the key pathogen and one of the species involved in chronic periodontitis, was found to be associated with lower mini mental state examination scores (p < 0.05) and with a tendency to lower scores in the clock drawing test (p = 0.056). Furthermore, association between lower serum concentrations of the immune biomarker neopterin and the presence of Treponema denticola (p < 0.01) as well as of kynurenine were found in Alzheimer patients positive vs. negative for Tannerella forsytia (p < 0.05). Conclusions Data indicate a possible association of specific periodontal pathogens with cognitive impairment, Treponema denticola and Tannerella forsytia may alter the host immune response in Alzheimer’s disease. Albeit still preliminary, findings of the study may point to a possible role of an altered salivary microbiome as a causal link between chronic periodontitis and cognitive impairment in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Julia Huemer
- Freelance Certified Dental Hygienist, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Kepler University Clinic, Linz, Austria
| | - Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80, 4th Floor, Room M04-313, 6020, Innsbruck, Austria.
| |
Collapse
|
45
|
Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Mastrangelo F, Lo Russo L, Lo Muzio L. The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer's Disease: A Systematic Review. J Clin Med 2020; 9:E495. [PMID: 32054121 PMCID: PMC7074205 DOI: 10.3390/jcm9020495] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
The evidence of a connection between the peripheral inflammatory processes and neurodegenerative diseases of the central nervous system is becoming more apparent. This review of the related literature highlights the most recent clinical, epidemiological, and in vitro studies trying to investigate possible connections between periodontal bacteria and the onset and progression of Alzheimer's disease. This review was conducted by searching databases such as PubMed and Scopus using keywords or combinations such as Alzheimer's Disease AND periodontal or dementia AND periodontitis OR periodontal. After eliminating overlaps and screening the articles not related to these issues, we identified 1088 records and proceeded to the selection of articles for an evaluation of the associative assumptions. The hypothesis suggested by the authors and confirmed by the literature is that the bacterial load and the inflammatory process linked to periodontal disease can intensify inflammation at the level of the central nervous system, favoring the occurrence of the disease. The analysis of the literature highlights how periodontal disease can directly contribute to the peripheral inflammatory environment by the introduction of periodontal or indirect pathogenic bacteria and proinflammatory cytokines locally produced at the periodontal level following bacterial colonization of periodontal defects.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10126 Turin, Italy
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| |
Collapse
|
46
|
Lin JW, Chang CH, Caffrey JL. Examining the association between oral health status and dementia: A nationwide nested case-controlled study. Exp Biol Med (Maywood) 2020; 245:231-244. [PMID: 32039633 DOI: 10.1177/1535370220904924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease as a consequence of chronic brain inflammation mediated by infectious microbes including the oral microbiome continues to attract support. Taiwan’s National Insurance database was used to evaluate associations between dental health and Alzheimer’s disease; 209,112 new cases of Alzheimer’s disease were matched 1:4 with 836,448 dementia-free controls to test the hypothesis that better dental health would be associated with less occurrence of dementia. Ten year dental records and conditional logistic regression models were used to estimate the odds ratios associated with Alzheimer’s disease. Subgroup analyses compared vascular Alzheimer’s disease and sporadic Alzheimer’s disease. As the population aged, Alzheimer’s disease diagnoses were more frequent with a 10 fold upward inflection after 60. Nearly 56% of sporadic Alzheimer’s disease patients were women but less than 50% had vascular Alzheimer’s disease. Comorbidities were 10–20% higher in the Alzheimer’s disease patients than in controls, but stroke, chronic infection, and pneumonia were 40–45% more common in the vascular Alzheimer’s disease patients. Heart disease, hypertension, diabetes, stroke, peripheral artery disease, pneumonia, and herpetic disease (HSV) were all associated with higher odds of Alzheimer’s disease. HSV was not a factor in the vascular Alzheimer’s disease. Routine dental procedures tended to lower odds ratios. Root canals and extractions that restore oral homeostasis were associated with lower odds of dementia. However, when extractions exceeded four, the odds of Alzheimer’s disease rose. The fact that Alzheimer’s disease was not associated with periodontal procedures per se but with more frequent periodontal emergencies suggested again a chronic issue. Dental health costs suggest that good dental care was associated with lower odds of Alzheimer’s disease except for radiographic costs which were consistently associated with higher odds, independent of oral health. Common comorbid conditions were associated with higher odds of Alzheimer’s disease and oral health care was associated with lower odds, providing support for the hypothesis that the oral microbiome is a factor in the development of Alzheimer’s disease. Impact statement This study clearly demonstrates the power and value of a nationally applied digital medical record. Longitudinal studies of gradually developing pathologies like dementia have often been limited by sample size and narrow and incomplete medical histories. The Taiwan National Insurance database provides an unparalleled opportunity for detailed analyses of associations between current medical conditions and a spectrum of prior medical and dental events. The temporal impact of the database will only become more important as the past historical record progressively expands going forward. The inclusion of dental records in assessing the relationship with subsequent dementia is very important because this information is often unavailable or dependent on subject recall. This study clearly establishes associations between a variety of suspected cardiovascular and metabolic factors and the odds of dementia. A critical outcome should include the design of targeted interventions and the subsequent assessment of their efficacy.
Collapse
Affiliation(s)
- J W Lin
- Cardiovascular Center, National Taiwan University Hospital Yunlin Branch, Douliu City, Yunlin County 64051
| | - C H Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10617
| | - J L Caffrey
- Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, TX 76107, USA
| |
Collapse
|
47
|
Shang Q, Gao Y, Qin T, Wang S, Shi Y, Chen T. Interaction of Oral and Toothbrush Microbiota Affects Oral Cavity Health. Front Cell Infect Microbiol 2020; 10:17. [PMID: 32117797 PMCID: PMC7011102 DOI: 10.3389/fcimb.2020.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Tooth brushing is necessary to maintain oral health. Little research has been carried out to explore microbial diversity in toothbrushes and to study the potential impact of these bacteria on human health. In the present study, 20 participants were enrolled, and the microbial diversity in their oral cavity and toothbrushes was investigated using high-throughput sequencing. Our results indicate that 1,136 and 976 operational taxonomic units (OTUs) were obtained from groups CB (samples from toothbrushes of participants using traditional Chinese medicinal toothpaste) and AB (samples from toothbrushes of those using antibacterial toothpaste), respectively. The pathogens Acinetobacter baumannii, Staphylococcus aureus, and Candida albicans were identified on toothbrushes. The presence of these pathogens increases the chance for the host to get infectious diseases, neurodegenerative diseases, cardiovascular diseases, and cancers. Moreover, our in vitro results indicate that traditional Chinese medicinal toothpaste and antibacterial toothpaste can not only inhibit the growth of pathogens but also markedly inhibit the growth of probiotics Lactobacillus salivarius and Streptococcus salivarius. Therefore, the inhibitory effect of toothpaste on probiotics, together with the existence of pathogens in toothbrushes, indicates a potential risk of tooth brushing for people in a sub-healthy state.
Collapse
Affiliation(s)
- Qingyao Shang
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,School of Stomatology, Nanchang University, Nanchang, China
| | - Yuan Gao
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Ting Qin
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Shuai Wang
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Yan Shi
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,School of Stomatology, Nanchang University, Nanchang, China.,National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2019; 151:104582. [PMID: 31794871 DOI: 10.1016/j.phrs.2019.104582] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative pathology affecting milions of people worldwide associated with deposition of senile plaques. While the genetic and environmental risk factors associated with the onset and consolidation of late onset AD are heterogeneous and sporadic, growing evidence also suggests a potential link between some infectious diseases caused by oral microbiota and AD. Oral microbiota dysbiosis is purported to contribute either directly to amyloid protein production, or indirectly to neuroinflammation, occurring as a consequence of bacterial invasion. Over the last decade, the development of Human Oral Microbiome database (HOMD) has deepened our understanding of oral microbes and their different roles during the human lifetime. Oral pathogens mostly cause caries, periodontal disease, and edentulism in aged population, and, in particular, alterations of the oral microbiota causing chronic periodontal disease have been associated with the risk of AD. Here we describe how different alterations of the oral microbiota may be linked to AD, highlighting the importance of a good oral hygiene for the prevention of oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), and IdisBa, Palma de Mallorca, Balearic Islands, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex 51687, France
| | | | - Francesca Pistollato
- Centre for Health & Nutrition, Universidad Europea del Atlantico, Santander, Spain
| | - Tamara Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Grazia D'Onofrio
- Unit of Geriatrics, Department of Medical Sciences, Fondazione Casa Sollievo della sofferenza, San Giovanni Rotondo, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Liu XX, Jiao B, Liao XX, Guo LN, Yuan ZH, Wang X, Xiao XW, Zhang XY, Tang BS, Shen L. Analysis of Salivary Microbiome in Patients with Alzheimer’s Disease. J Alzheimers Dis 2019; 72:633-640. [PMID: 31594229 DOI: 10.3233/jad-190587] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xi-Xi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xin-Xin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Hua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Yue Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
50
|
Nagy U, Guédat C, Giannopoulou C, Schimmel M, Müller F, Srinivasan M. Microbiological evaluation of LOCATOR® Legacy attachments: A cross-sectional clinical study. Clin Exp Dent Res 2019; 5:476-484. [PMID: 31687180 PMCID: PMC6820581 DOI: 10.1002/cre2.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
Objective This retrospective cross‐sectional study aimed to evaluate quantitatively the oral microbiome in the tri‐lobe central cavity of Locator Legacy attachment and verify whether it harbors a different, potentially more pathogenic, bacterial spectrum than the adjacent edentulous ridge. Materials and Methods Edentulous patients rehabilitated with implant overdentures using Locator Legacy attachments were recruited for this study. The clinical examination comprised probing depths, mobility, peri‐implant, and periodontal health along with intraoral swabs for microbiological evaluation, polymerase chain reaction (PCR) testing, and candida culture. The swabs were collected from the trilobed cavity of the attachment and the adjacent edentulous ridge. PCR was performed to detect six specific bacteria, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, Prevotella intermedia, and Parvimonas micra. Statistical analyses were performed using McNemar's test and Wilcoxon's rank sum test with the significance set to p < .05. Results A total of 50 participants with a mean age of 71.5 ± 9.6 years participated in the study. No significant differences in the microbiome were found between samples from the ridge and the attachment. No significantly different numbers in the candida cultures were identified, and the presence of a removable prostheses did not demonstrate a significant association with the prevalence of candida. Conclusions Within the limits of this study and the investigated bacterial species, the trilobed cavity of the attachment does not seem to increase the bacterial load.
Collapse
Affiliation(s)
- Ursina Nagy
- Division of Removable Prosthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland
| | - Christophe Guédat
- Division of Removable Prosthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland.,Division of Orthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland
| | - Catherine Giannopoulou
- Division of Periodontology, University Clinics of Dental Medicine University of Geneva Geneva Switzerland
| | - Martin Schimmel
- Division of Removable Prosthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland.,Division of Gerodontology, School for Dental Medicine University of Bern Bern Switzerland
| | - Frauke Müller
- Division of Removable Prosthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland.,Service of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics Geneva University Hospitals Geneva Switzerland
| | - Murali Srinivasan
- Division of Removable Prosthodontics, University Clinics of Dental Medicine University of Geneva Geneva Switzerland.,Clinic of General-, Special Care-, and Geriatric Dentistry (KABS), Center of Dental Medicine University of Zurich Zurich Switzerland
| |
Collapse
|