1
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2024:d4cb00221k. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
2
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Howard C, Mukadam N, Hui EK, Livingston G. The effects of sleep duration on the risk of dementia incidence in short and long follow-up studies: A systematic review and meta-analysis. Sleep Med 2024; 124:522-530. [PMID: 39442346 DOI: 10.1016/j.sleep.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Sleep duration's association with future dementia could be a cause or consequence, or both. We searched electronic databases on 14th April 2023 for primary peer-reviewed, longitudinal studies examining the relationship between sleep duration and dementia with any follow-up duration. We meta-analysed studies examining brief (≤6 h/night) and extended sleep duration (≥9 h/night) separately and divided the studies into those with follow-up periods of less or more than 10 years. The quality of evidence was assessed using the Newcastle-Ottawa scale. 31 studies fulfilled the inclusion criteria. For brief sleep duration, a meta-analysis of short follow-up studies (≤10 years) found a 46 % increased risk of future dementia (relative risk [RR] - 1·46; 95 % Confidence Intervals [CIs] 1·48-1·77; I2 = 88·92 %, 6 studies). Studies with long follow-ups (>10 years) did not show a significantly increased risk (RR - 1·12; 0·95-1·29; I2 = 65·91 %; 5 studies). For extended sleep duration, a meta-analysis of short and long follow-up studies reported an increased risk of dementia (respectively RR - 2·20; 1·11-3·3; I2 = 94·17 %; 4 studies and RR - 1·74; 1·30-2·18; I2 = 86·56 %; 4 studies). Our findings suggest that brief sleep duration might be a prodromal symptom but not a risk factor of dementia. Extended sleep duration may be a risk factor. However, our results had high heterogeneity limiting external validity and generalisability.
Collapse
Affiliation(s)
- Connie Howard
- Division of Psychiatry, University College London, UK.
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, UK; Camden and Islington NHS Foundation Trust, UK.
| | - Esther K Hui
- Division of Psychiatry, University College London, UK
| | - Gill Livingston
- Division of Psychiatry, University College London, UK; Camden and Islington NHS Foundation Trust, UK
| |
Collapse
|
4
|
Güzel Ö, Kehoe PG. The Contribution of the Renin-Angiotensin System to Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39543022 DOI: 10.1007/7854_2024_525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The renin-angiotensin system (RAS) is becoming increasingly recognised as a biochemical pathway relevant to the development and progression of Alzheimer's disease (AD). RAS involvement in AD was initially linked to AD via numerous genetic association studies and more recent Genome-Wide Association Studies (GWAS), and in some cases in relation to classical hallmarks of AD pathology. Since these initial findings, which will be summarised here, several complementary areas of research are converging in support of what has been proposed as the Angiotensin Hypothesis for Alzheimer's disease. This hypothesis proposes how the RAS and disease-associated changes to the normal balance between opposing regulatory pathways within RAS warrant careful consideration in the pathogenesis of AD and its pathology. We discuss some of these in relation to RAS-targeting therapeutics, originally developed for the treatment of cardiovascular conditions, and how they might be repurposed as interventions for AD.
Collapse
Affiliation(s)
- Özge Güzel
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK.
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Patrick G Kehoe
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
De Vito AN, Emrani S, Hallowell E, Goldstein A, Davis JD, Margolis SA. Medication management error types: Associations with mild cognitive impairment subtype. Clin Neuropsychol 2024; 38:1931-1946. [PMID: 38588668 DOI: 10.1080/13854046.2024.2339560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Objective: Medication management errors are suspected to be prevalent among older adults with mild cognitive impairment (MCI). This study examined types of simulated medication-taking errors in cognitively normal older adults (CN; n = 131), single domain amnestic MCI (sdMCI, n = 91), and multi-domain MCI (mdMCI, n = 44). Errors were measured using the medication management ability assessment (MMAA). Methods: 266 participants seen for neuropsychological evaluation (94.4% White, 57.9% female, average age = 72, average education = 14 years) completed the MMAA (version 4.1), a performance-based task of medication management. Group differences in MMAA total scores, accuracy, and error types were evaluated using Kruskall-Wallis H tests. This study was the first to explore a newly operationalized error, perseverations, caused by taking a specific dose ≥2 times during the simulation. Results: CN and sdMCI groups had higher MMAA total scores than individuals with mdMCI, indicating better overall performance. The mdMCI group made a higher number of omission errors (missed pills) than other groups, but no differences were found for commission errors (extra pills). The sdMCI group made more perseverative errors compared to the CN group. Conclusions: Individuals with mdMCI made more simulated medication management errors than CN and sdMCI groups, indicating that they may be most vulnerable to difficulties in medication management. In contrast, sdMCI individuals were more likely to make perseverative errors, which may reflect a tendency towards overcompensation of memory loss. Future studies should assess whether MMAA performance is associated with patterns of real-world medication-taking in more diverse samples of older adults.
Collapse
Affiliation(s)
- Alyssa N De Vito
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
| | - Sheina Emrani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Hallowell
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Mental Health and Behavioral Science and Services, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Allyson Goldstein
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
| | - Jennifer D Davis
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
| | - Seth A Margolis
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
6
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Pecher H, Storch M, Beyer F, Witte V, Baasner CF, Schönknecht P, Weise CM. Hypothalamic atrophy and structural covariance in amnestic mild cognitive impairment and Alzheimer's dementia. Neuroimage Clin 2024; 44:103687. [PMID: 39406040 PMCID: PMC11525751 DOI: 10.1016/j.nicl.2024.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive cognitive decline and specific brain atrophy patterns, primarily involving the medial temporal lobes. A number of studies have discussed hypothalamic involvement in AD with consecutive metabolic and/or autonomic disturbances yet only few studies have investigated hypothalamic atrophy in AD and its early stages in particular. METHODS We applied semi-automated volumetry of the hypothalamus (HTH) in 3 T MRI in a sample N = 175 participants [age 74.9 ± 7.22; gender 85 m/90f; cognitively normal controls (CN; N = 56); amnestic mild cognitive impairment (MCI; N = 78); AD (N = 41)] from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In addition, we used voxel-based morphometry (VBM), cortical thickness (CTH) analyses and source-based morphometry (SBM) derived networks of structural covariance to investigate brain structural covariance patterns of the HTH under consideration of diagnostic groups, β-amyloid (AB) positivity and apolipoprotein E (APOE) ε4 status. RESULTS Hypothalamic atrophy was observed in both early and advanced disease stages (i.e. hypothalamic volume CN > MCI > AD). VBM, CTH analysis and SBM revealed positive associations between hypothalamic volume (HV) and AD-vulnerable regions, largely corresponding to the Papez circuit and brain regions implicated in autonomic regulation, however, group differences regarding HTH structural covariance were not observed. Similar observations were made in carriers and non-carriers of the ε4 allele, yet more pronounced in ε4 carriers. Although not reaching significance, comparisons of AB positive vs. negative subjects indicated stronger HTH atrophy in biomarker positive participants. HV was not associated with body mass index or longitudinal weight change. CONCLUSIONS Our findings support early structural changes of the HTH in AD. HV covaries with regional volumes of AD-vulnerable regions. This could point to secondary atrophy of the HTH following atrophy of the hippocampus and other structures of the Papez circuit in AD.
Collapse
Affiliation(s)
- Hannah Pecher
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German; Department of Radiology, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115 Berlin, Germany.
| | - Melanie Storch
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany; Department of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck-Institute for Human Cognitive and Brain Sciences, and Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Veronica Witte
- Department of Neurology, Max Planck-Institute for Human Cognitive and Brain Sciences, and Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian-Frank Baasner
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German
| | - Peter Schönknecht
- Medical Faculty, Department of Psychiatry and Psychotherapy, University Hospital Leipzig, 04103 Leipzig, Germany; Out-Patient Department for Sexual-Therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, 04103, Leipzig, Germany; Academic Saxon State Hospital Altscherbitz, 04435 Schkeuditz, Germany
| | - Christopher M Weise
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German
| |
Collapse
|
8
|
Butler CA, Ciccotosto GD, Rygh N, Bijlsma E, Dashper SG, Brown AC. Bacterial Membrane Vesicles: The Missing Link Between Bacterial Infection and Alzheimer Disease. J Infect Dis 2024; 230:S87-S94. [PMID: 39255395 PMCID: PMC11385588 DOI: 10.1093/infdis/jiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 09/12/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease, affecting approximately 19% of the global adult population. A relationship between periodontal disease and Alzheimer disease has long been recognized, and recent evidence has been uncovered to link these 2 diseases mechanistically. Periodontitis is caused by dysbiosis in the subgingival plaque microbiome, with a pronounced shift in the oral microbiota from one consisting primarily of Gram-positive aerobic bacteria to one predominated by Gram-negative anaerobes, such as Porphyromonas gingivalis. A common phenomenon shared by all bacteria is the release of membrane vesicles to facilitate biomolecule delivery across long distances. In particular, the vesicles released by P gingivalis and other oral pathogens have been found to transport bacterial components across the blood-brain barrier, initiating the physiologic changes involved in Alzheimer disease. In this review, we summarize recent data that support the relationship between vesicles secreted by periodontal pathogens to Alzheimer disease pathology.
Collapse
Affiliation(s)
| | | | - Nathaniel Rygh
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Elly Bijlsma
- Melbourne Dental School, The University of Melbourne, Australia
| | | | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
9
|
Contador I, Buch-Vicente B, del Ser T, Llamas-Velasco S, Villarejo-Galende A, Benito-León J, Bermejo-Pareja F. Charting Alzheimer's Disease and Dementia: Epidemiological Insights, Risk Factors and Prevention Pathways. J Clin Med 2024; 13:4100. [PMID: 39064140 PMCID: PMC11278014 DOI: 10.3390/jcm13144100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex and multifactorial condition without cure at present. The latest treatments, based on anti-amyloid monoclonal antibodies, have only a modest effect in reducing the progression of cognitive decline in AD, whereas the possibility of preventing AD has become a crucial area of research. In fact, recent studies have observed a decrease in dementia incidence in developed regions such as the US and Europe. However, these trends have not been mirrored in non-Western countries (Japan or China), and the contributing factors of this reduction remain unclear. The Lancet Commission has delineated a constrained classification of 12 risk factors across different life stages. Nevertheless, the scientific literature has pointed to over 200 factors-including sociodemographic, medical, psychological, and sociocultural conditions-related to the development of dementia/AD. This narrative review aims to synthesize the risk/protective factors of dementia/AD. Essentially, we found that risk/protective factors vary between individuals and populations, complicating the creation of a unified prevention strategy. Moreover, dementia/AD explanatory mechanisms involve a diverse array of genetic and environmental factors that interact from the early stages of life. In the future, studies across different population-based cohorts are essential to validate risk/protective factors of dementia. This evidence would help develop public health policies to decrease the incidence of dementia.
Collapse
Affiliation(s)
- Israel Contador
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17117 Stockholm, Sweden
| | - Bárbara Buch-Vicente
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
| | - Teodoro del Ser
- Alzheimer Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| | - Sara Llamas-Velasco
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Villarejo-Galende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Julián Benito-León
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Félix Bermejo-Pareja
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
10
|
Fernandes T, Melo T, Conde T, Neves B, Domingues P, Resende R, Pereira CF, Moreira PI, Domingues MR. Mapping the lipidome in mitochondria-associated membranes (MAMs) in an in vitro model of Alzheimer's disease. J Neurochem 2024; 168:1237-1253. [PMID: 38327008 DOI: 10.1111/jnc.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.
Collapse
Affiliation(s)
- Tânia Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Bay S, Digwal CS, Rodilla Martín AM, Sharma S, Stanisavljevic A, Rodina A, Attaran A, Roychowdhury T, Parikh K, Toth E, Panchal P, Rosiek E, Pasala C, Arancio O, Fraser PE, Alldred MJ, Prado MAM, Ginsberg SD, Chiosis G. Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders. Biomedicines 2024; 12:1252. [PMID: 38927459 PMCID: PMC11201208 DOI: 10.3390/biomedicines12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anoosha Attaran
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kamya Parikh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eugene Toth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Gainey M, Niles A, Imeh-Nathaniel S, Goodwin RL, Roley LT, Win O, Nathaniel TI, Imeh-Nathaniel A. Comorbidities in patients with vascular dementia and Alzheimer's disease with Neuropsychiatric symptoms. Geriatr Nurs 2024; 57:217-223. [PMID: 38696879 DOI: 10.1016/j.gerinurse.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION This study aimed to examine baseline risk factors in Alzheimer's Disease (AD) and Vascular dementia (VaD) patients with neuropsychiatry symptoms (NPS), and determine whether specific risk factors differ by subtypes of dementia for AD and VaD patients with NPS. METHODS A retrospective data analysis was conducted to evaluate similarities and differences in the risk factors for AD and VaD with NPS. The analysis included 2949 patients with VaD and 6341 patients with clinical confirmation of AD and VaD with or without NPS collected between February 2016 and August 2021. The multivariate logistic regression analysis was used to determine the risk factors associated with AD and VaD with NPS, by predicting the increasing odds (odds ratios (ORs) of an association of a specific baseline risk factor with AD or VaD with NPS. The validity of the regression models was tested using a Hosmer-Lemeshow test, while the Receiver Operating Curve (ROC) was used to test the sensitivity of the models. RESULTS In the adjusted analysis TSH (OR = 1.781, 95 % CI, p = 0.0025) and CHF (OR = 1.620, 95 %, p = 0.016) were associated with VaD with NPS, while a history of emergency department(ED) admission (OR = 0.277, 95 % CI, p = 0.003) likely to be associated with VaD patients without NPS. For AD patients, a history of CVA (OR = 1.395, 95 % CI, p = 0.032) and cancer (OR = 1.485, 95 % CI, p = 0.013) were associated with AD patients with NPS. DISCUSSION The findings of this study indicate that an abnormal thyroid gland and CHF were linked to VaD patients with behavioral disturbances, while CVA and cancer were linked to AD patients with behavioral disturbances. These findings suggest the need to develop management strategies for the care of patients with AD and VaD with NPS.
Collapse
Affiliation(s)
- Mallory Gainey
- University of South Carolina, School of Medicine-Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Addison Niles
- PRISMA Health UP-State South Carolina, 701 Grove Rd, Greenville, SC, 29605, USA
| | | | | | | | - Ohmar Win
- PRISMA Health UP-State South Carolina, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Thomas I Nathaniel
- University of South Carolina, School of Medicine-Greenville, 701 Grove Rd, Greenville, SC, 29605, USA.
| | | |
Collapse
|
13
|
Warren A. The relationship between gender differences in dietary habits, neuroinflammation, and Alzheimer's disease. Front Aging Neurosci 2024; 16:1395825. [PMID: 38694261 PMCID: PMC11061392 DOI: 10.3389/fnagi.2024.1395825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Neurocognitive decline is one of the foremost dire issues in medicine today. The mechanisms by which dementia pathogenesis ensues are complicated and multifactorial, particularly in the case of Alzheimer's disease (AD). One irrefutable, yet unexplained factor is the gender disparity in AD, in which women are disproportionately affected by AD, both in the rate and severity of the disease. Examining the multifaceted contributing causes along with unique gender dynamics in modifiable risk factors, such as diet, may lend some insight into why this disparity exists and potential paths forward. The aim of this brief narrative review is to summarize the current literature of gender differences in dietary habits and how they may relate to neuroinflammatory states that contribute to AD pathogenesis. As such, the interplay between diet, hormones, and inflammation will be discussed, along with potential interventions to inform care practices.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
14
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
15
|
Bayram S, Akkaş ÖA. Adaptation of the Australian National University Alzheimer's Disease Risk Index-Short Form (ANU-ADRI-SF) into Turkish. Int J Older People Nurs 2024; 19:e12608. [PMID: 38509777 DOI: 10.1111/opn.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The 'Australian National University Alzheimer's Disease Risk Index' (ANU-ADRI) assesses the risk of developing Alzheimer's disease (AD) and is a potential tool for its prevention. OBJECTIVES The aim of this study is to adapt the ANU-ADRI-SF (the short version of ANU-ADRI) into the Turkish language and Turkish cultural context. METHODS The study was methodological and involved the translation and intercultural adaptation of the ANU-ADRI-SF into the Turkish language. The study included 384 community-based participants from a province in the Western Black Sea Region of Türkiye. Data was collected via an online form prepared using Google Forms. RESULTS The index was translated from its original language, English, into Turkish and then retranslated to English by bilingual translators. It was then reviewed and evaluated for possible issues related to translation and degrees of equivalence. When TR-ANU-ADRI-SF levels were compared according to sex, the mean risk scores were found to be 11.25 ± 7.02 for males and 11.69 ± 7.99 for females. After cross-cultural adaptation, the TR-ANU-ADRI-SF was conceptually intelligible to Turkish adults. CONCLUSIONS The TR-ANU-ADRI-SF is a valid and reliable AD risk assessment tool. IMPLICATIONS FOR PRACTICE Given the increase in AD and its impact on people's health, there is a great need for strategies to be implemented by health professionals to improve the lifestyle of the adult population. For use in conjunction with these strategies, a localised AD risk assessment tool that can be applied by clinicians or by individual patients has been adapted and introduced to the Turkish literature.
Collapse
Affiliation(s)
- Serap Bayram
- Elderly Care Program, Vocational School of Health Services, Düzce University, Düzce, Turkey
| | | |
Collapse
|
16
|
Li YS, Xia YG, Liu YL, Jiang WR, Qiu HN, Wu F, Li JB, Lin JN. Metabolic-dysfunction associated steatotic liver disease-related diseases, cognition and dementia: A two-sample mendelian randomization study. PLoS One 2024; 19:e0297883. [PMID: 38422093 PMCID: PMC10903857 DOI: 10.1371/journal.pone.0297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The results of current studies on metabolic-dysfunction associated steatotic liver disease (MASLD)-related diseases, cognition and dementia are inconsistent. This study aimed to elucidate the effects of MASLD-related diseases on cognition and dementia. METHODS By using single-nucleotide polymorphisms (SNPs) associated with different traits of NAFLD (chronically elevated serum alanine aminotransferase levels [cALT], imaging-accessed and biopsy-proven NAFLD), metabolic dysfunction-associated steatohepatitis, and liver fibrosis and cirrhosis, we employed three methods of mendelian randomization (MR) analysis (inverse-variance weighted [IVW], weighted median, and MR-Egger) to determine the causal relationships between MASLD-related diseases and cognition and dementia. We used Cochran's Q test to examine the heterogeneity, and MR-PRESSO was used to identify outliers (NbDistribution = 10000). The horizontal pleiotropy was evaluated using the MR-Egger intercept test. A leave-one-out analysis was used to assess the impact of individual SNP on the overall MR results. We also repeated the MR analysis after excluding SNPs associated with confounding factors. RESULTS The results of MR analysis suggested positive causal associations between MASLD confirmed by liver biopsy (p of IVW = 0.020, OR = 1.660, 95%CI = 1.082-2.546) and liver fibrosis and cirrhosis (p of IVW = 0.009, OR = 1.849, 95%CI = 1.169-2.922) with vascular dementia (VD). However, there was no evidence of a causal link between MASLD-related diseases and cognitive performance and other types of dementia (any dementia, Alzheimer's disease, dementia with lewy bodies, and frontotemporal dementia). Sensitivity tests supported the robustness of the results. CONCLUSIONS This two-sample MR analysis suggests that genetically predicted MASLD and liver fibrosis and cirrhosis may increase the VD risk. Nonetheless, the causal effects of NAFLD-related diseases on VD need more in-depth research.
Collapse
Affiliation(s)
- Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Yu-Ge Xia
- Geriatric Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Wei-Ran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| |
Collapse
|
17
|
Roccati E, Bindoff AD, Collins JM, Eastgate J, Borchard J, Alty J, King AE, Vickers JC, Carboni M, Logan C. Modifiable dementia risk factors and AT(N) biomarkers: findings from the EPAD cohort. Front Aging Neurosci 2024; 16:1346214. [PMID: 38384935 PMCID: PMC10879413 DOI: 10.3389/fnagi.2024.1346214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Modifiable risk factors account for a substantial proportion of Alzheimer's disease (AD) cases and we currently have a discrete AT(N) biomarker profile for AD biomarkers: amyloid (A), p-tau (T), and neurodegeneration (N). Here, we investigated how modifiable risk factors relate to the three hallmark AT(N) biomarkers of AD. Methods Participants from the European Prevention of Alzheimer's Dementia (EPAD) study underwent clinical assessments, brain magnetic resonance imaging, and cerebrospinal fluid collection and analysis. Generalized additive models (GAMs) with penalized regression splines were modeled in the AD Workbench on the NTKApp. Results A total of 1,434 participants were included (56% women, 39% APOE ε4+) with an average age of 65.5 (± 7.2) years. We found that modifiable risk factors of less education (t = 3.9, p < 0.001), less exercise (t = 2.1, p = 0.034), traumatic brain injury (t = -2.1, p = 0.036), and higher body mass index (t = -4.5, p < 0.001) were all significantly associated with higher AD biomarker burden. Discussion This cross-sectional study provides further support for modifiable risk factors displaying neuroprotective associations with the characteristic AT(N) biomarkers of AD.
Collapse
Affiliation(s)
- Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan David Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jessica Marie Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Joshua Eastgate
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jay Borchard
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- Royal Hobart Hospital, Hobart, TAS, Australia
| | - Anna Elizabeth King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - James Clement Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Chad Logan
- Roche Diagnostics GmbH, Penzberg, Germany
| | - EPAD Consortium
- Department of Radiology and Nuclear Medicine, University of Amsterdam, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
18
|
Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-Virgin Olive Oil in Alzheimer's Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int J Mol Sci 2024; 25:1914. [PMID: 38339193 PMCID: PMC10856527 DOI: 10.3390/ijms25031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aβ aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.
Collapse
Affiliation(s)
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.)
| |
Collapse
|
19
|
Dakterzada F, Jové M, Huerto R, Carnes A, Sol J, Pamplona R, Piñol-Ripoll G. Cerebrospinal fluid neutral lipids predict progression from mild cognitive impairment to Alzheimer's disease. GeroScience 2024; 46:683-696. [PMID: 37999901 PMCID: PMC10828158 DOI: 10.1007/s11357-023-00989-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023] Open
Abstract
Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. The CSF lipidome was analyzed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 209 participants: 91 AD, 92 MCI, and 26 control participants. The MCI patients were followed up for a median of 58 (± 12.5) months to evaluate their clinical progression to AD. Forty-eight (52.2%) MCI patients progressed to AD during follow-up. We found that higher CSF levels of hexacosanoic acid and ceramide Cer(d38:4) were associated with an increased risk of amyloid beta 42 (Aβ42) positivity in CSF, while levels of phosphatidylethanolamine PE(40:0) were associated with a reduced risk. Higher CSF levels of sphingomyelin SM(30:1) were positively associated with pathological levels of phosphorylated tau in CSF. Cholesteryl ester CE(11D3:1) and an unknown lipid were recognized as the most associated lipid species with MCI to AD progression. Furthermore, TG(O-52:2) was identified as the lipid most strongly associated with the rate of progression. Our results indicate the involvement of membrane and intracellular neutral lipids in the pathophysiological processes of AD and the progression from MCI to AD dementia. Therefore, CSF neutral lipids can be used as potential prognostic markers for AD.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Anna Carnes
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
- Institut Català de La Salut, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain.
| |
Collapse
|
20
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
22
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
23
|
Souchet B, Michaïl A, Heuillet M, Dupuy-Gayral A, Haudebourg E, Pech C, Berthemy AA, Autelitano F, Billoir B, Domoto-Reilly K, Fowler C, Grabowski T, Jayadev S, Masters CL, Braudeau J. Multiomics Blood-Based Biomarkers Predict Alzheimer's Predementia with High Specificity in a Multicentric Cohort Study. J Prev Alzheimers Dis 2024; 11:567-581. [PMID: 38706273 PMCID: PMC11061038 DOI: 10.14283/jpad.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The primary criteria for diagnosing mild cognitive impairment (MCI) due to Alzheimer's Disease (AD) or probable mild AD dementia rely partly on cognitive assessments and the presence of amyloid plaques. Although these criteria exhibit high sensitivity in predicting AD among cognitively impaired patients, their specificity remains limited. Notably, up to 25% of non-demented patients with amyloid plaques may be misdiagnosed with MCI due to AD, when in fact they suffer from a different brain disorder. The introduction of anti-amyloid antibodies complicates this scenario. Physicians must prioritize which amyloid-positive MCI patients receive these treatments, as not all are suitable candidates. Specifically, those with non-AD amyloid pathologies are not primary targets for amyloid-modifying therapies. Consequently, there is an escalating medical necessity for highly specific blood biomarkers that can accurately detect pre-dementia AD, thus optimizing amyloid antibody prescription. OBJECTIVES The objective of this study was to evaluate a predictive model based on peripheral biomarkers to identify MCI and mild dementia patients who will develop AD dementia symptoms in cognitively impaired population with high specificity. DESIGN Peripheral biomarkers were identified in a gene transfer-based animal model of AD and then validated during a retrospective multi-center clinical study. SETTING Participants from 7 retrospective cohorts (US, EU and Australia). PARTICIPANTS This study followed 345 cognitively impaired individuals over up to 13 years, including 193 with MCI and 152 with mild dementia, starting from their initial visits. The final diagnoses, established during their last assessments, classified 249 participants as AD patients and 96 as having non-AD brain disorders, based on the specific diagnostic criteria for each disorder subtype. Amyloid status, assessed at baseline, was available for 82.9% of the participants, with 61.9% testing positive for amyloid. Both amyloid-positive and negative individuals were represented in each clinical group. Some of the AD patients had co-morbidities such as metabolic disorders, chronic diseases, or cardiovascular pathologies. MEASUREMENTS We developed targeted mass spectrometry assays for 81 blood-based biomarkers, encompassing 45 proteins and 36 metabolites previously identified in AAV-AD rats. METHODS We analyzed blood samples from study participants for the 81 biomarkers. The B-HEALED test, a machine learning-based diagnostic tool, was developed to differentiate AD patients, including 123 with Prodromal AD and 126 with mild AD dementia, from 96 individuals with non-AD brain disorders. The model was trained using 70% of the data, selecting relevant biomarkers, calibrating the algorithm, and establishing cutoff values. The remaining 30% served as an external test dataset for blind validation of the predictive accuracy. RESULTS Integrating a combination of 19 blood biomarkers and participant age, the B-HEALED model successfully distinguished participants that will develop AD dementia symptoms (82 with Prodromal AD and 83 with AD dementia) from non-AD subjects (71 individuals) with a specificity of 93.0% and sensitivity of 65.4% (AUROC=81.9%, p<0.001) during internal validation. When the amyloid status (derived from CSF or PET scans) and the B-HEALED model were applied in association, with individuals being categorized as AD if they tested positive in both tests, we achieved 100% specificity and 52.8% sensitivity. This performance was consistent in blind external validation, underscoring the model's reliability on independent datasets. CONCLUSIONS The B-HEALED test, utilizing multiomics blood-based biomarkers, demonstrates high predictive specificity in identifying AD patients within the cognitively impaired population, minimizing false positives. When used alongside amyloid screening, it effectively identifies a nearly pure prodromal AD cohort. These results bear significant implications for refining clinical trial inclusion criteria, facilitating drug development and validation, and accurately identifying patients who will benefit the most from disease-modifying AD treatments.
Collapse
Affiliation(s)
- B Souchet
- Jérôme Braudeau, AgenT, 4 rue Pierre Fontaine, 91000 Evry-Courcouronnes, France. e-mail address: , Telephone: +33 6 11 10 26 95
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vejandla B, Savani S, Appalaneni R, Veeravalli RS, Gude SS. Alzheimer's Disease: The Past, Present, and Future of a Globally Progressive Disease. Cureus 2024; 16:e51705. [PMID: 38313929 PMCID: PMC10838557 DOI: 10.7759/cureus.51705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a significant 21st-century public health challenge. This article delves into AD's neurodegenerative complexities, highlighting cognitive decline, memory impairment, and societal burdens. Mechanistically, protein misfolding, amyloid-beta (Aβ) pathway abnormalities, and genetic/environmental factors are discussed. The pivotal amyloid hypothesis is dissected, focusing on Aβ aggregation's role in synaptic dysfunction and neurodegeneration. The review showcases promising therapeutic strategies, including anti-amyloid antibodies and β/γ-secretase inhibitors targeting Aβ production. Notably, the FDA-approved Lecanemab signifies a breakthrough, slowing disease progression. Anti-Tau therapies' emergence is highlighted, addressing late-stage intervention. Tau aggregation blockers and anti-Tau antibodies offer potential against intracellular tau pathology. The review underscores collaborative efforts to uncover AD's secrets and pave the way for memory preservation.
Collapse
Affiliation(s)
| | - Sarah Savani
- Medicine, Loyola University Chicago Stritch School of Medicine, Chicago, USA
| | | | | | - Sai Sravya Gude
- Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, USA
| |
Collapse
|
25
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
26
|
Walker J. Patient and caregiver experiences of living with dementia in Tanzania. DEMENTIA 2023; 22:1900-1920. [PMID: 37879079 PMCID: PMC10644685 DOI: 10.1177/14713012231204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Introduction: Tanzania is a low-income country with an increasing prevalence of dementia, which provides challenges for the existing healthcare system. People with dementia often don't receive a formal diagnosis, and with a lack of formal healthcare, are often predominantly supported by family relatives. There are very few published data relating to lived experiences of people with dementia in Tanzania. This study aimed to understand people with dementia, and their caregivers' experiences of living with dementia in Tanzania and the perceived needs of people with dementia.Methods: Qualitative, semi-structured interviews were conducted with 14 people with dementia and 12 caregivers in Moshi, Tanzania. Interviews were audio-recorded, translated, transcribed and analysed using a Framework Analysis approach.Results: Three sub-themes were identified within data describing the experience of 'Living with Dementia in Tanzania': 'Deteriorations in Health', 'Challenges to living with Dementia in Tanzanian Culture', and 'Lack of Support': people with dementia faced challenges due to social isolation, stigmatisation, and lack of caregiver knowledge on how best to provide support. Collectively, these impacted on both the physical and mental health of people with dementia. Misconceptions about dementia aetiology related to age, stresses of daily life and other co-morbidities. People with dementia were motivated to access treatment, exhibiting pluralistic health-seeking behaviours. There was an overall preference for non-pharmacological interventions over medication, with high levels of trust in medical professional opinions.Conclusions: Living with dementia in Tanzania is influenced by both cultural and religious factors. More work is needed to target supplementary healthcare (with efforts to promote accessibility), support for caregivers and public health education about dementia to overcome existent misconceptions and stigma.
Collapse
Affiliation(s)
- Jessica Walker
- Population Health Sciences Institute, Newcastle University, UK
| |
Collapse
|
27
|
Izuo N, Watanabe N, Noda Y, Saito T, Saido TC, Yokote K, Hotta H, Shimizu T. Insulin resistance induces earlier initiation of cognitive dysfunction mediated by cholinergic deregulation in a mouse model of Alzheimer's disease. Aging Cell 2023; 22:e13994. [PMID: 37822109 PMCID: PMC10652326 DOI: 10.1111/acel.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid β burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Nobuhiro Watanabe
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Yoshihiro Noda
- Department of Animal FacilityTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takashi Saito
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
- Department of Neurocognitive ScienceInstitute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Harumi Hotta
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Aging Stress Response Research Project TeamNational Center for Geriatrics and GerontologyObuJapan
| |
Collapse
|
28
|
Akbar Z, Fituri S, Ouagueni A, Alalwani J, Sukik A, Al-Jayyousi GF, Bassil M, Tayyem R. Associations of the MIND Diet with Cardiometabolic Diseases and Their Risk Factors: A Systematic Review. Diabetes Metab Syndr Obes 2023; 16:3353-3371. [PMID: 37908631 PMCID: PMC10614652 DOI: 10.2147/dmso.s427412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Recent studies have expanded the scope of research on the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet beyond its impact on cognitive performance. These investigations have specifically explored its potential to provide protection against cardiometabolic diseases and associated risk factors, including obesity and dyslipidemia. Methods We systematically summarized and evaluated all existing observational and trial evidence for the MIND diet in relation to cardiometabolic diseases and their risk factors in adults. PubMed, Embase, CINAHL and Cochrane Library databases were systematically searched to extract original studies on humans published until September 2023, without date restrictions. A total of 491 studies were initially retrieved, out of which 23 met the eligibility criteria and were included in the final review. Duplicated and irrelevant studies were screened out by five independent reviewers using the Rayyan platform. Quality assessment was ascertained using the Newcastle-Ottawa scale for observational studies and the Cochrane risk-of-bias tool (RoB 2) for randomized trials. Results Across the different study designs, the MIND diet was generally associated with an improvement in anthropometric measures and other cardiometabolic outcomes, such as blood pressure, glycemic control, lipid profile, inflammation and stroke. The effects of the MIND eating pattern on some cardiovascular diseases are less conclusive. Conclusion The findings of this systematic review support the recommendation of the MIND diet as a strategy to reduce cardiometabolic risk in adults. Further well-designed and long-term studies are warranted.
Collapse
Affiliation(s)
- Zoha Akbar
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sundus Fituri
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Ouagueni
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Joud Alalwani
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Ayah Sukik
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Maya Bassil
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
Leahy TP, Simpson A, Sammon C, Ballard C, Gsteiger S. Estimating the prevalence of diagnosed Alzheimer disease in England across deprivation groups using electronic health records: a clinical practice research datalink study. BMJ Open 2023; 13:e075800. [PMID: 37879685 PMCID: PMC10603427 DOI: 10.1136/bmjopen-2023-075800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE Estimate the prevalence of diagnosed Alzheimer's disease (AD) and early Alzheimer's disease (eAD) overall and stratified by age, sex and deprivation and combinations thereof in England on 1 January 2020. DESIGN Cross-sectional. SETTING Primary care electronic health record data, the Clinical Practice Research database linked with secondary care data, Hospital Episode Statistics (HES) and patient-level deprivation data, Index of Multiple Deprivation (IMD). OUTCOME MEASURES The prevalence per 100 000 of the population and corresponding 95% CIs for both diagnosed AD and eAD overall and stratified by covariates. Sensitivity analyses were conducted to assess the sensitivity of the population definition and look-back period. RESULTS There were 448 797 patients identified in the Clinical Practice Research Datalink that satisfied the study inclusion criteria and were eligible for HES and IMD linkage. For the main analysis of AD and eAD, 379 763 patients are eligible for inclusion in the denominator. This resulted in an estimated prevalence of diagnosed AD of 378.39 (95% CI, 359.36 to 398.44) per 100 000 and eAD of 292.81 (95% CI, 276.12 to 310.52) per 100 000. Prevalence estimates across main and sensitivity analyses for the entire AD study population were found to vary widely with estimates ranging from 137.48 (95% CI, 127.05 to 148.76) to 796.55 (95% CI, 768.77 to 825.33). There was significant variation in prevalence of diagnosed eAD when assessing the sensitivity with the look-back periods, as low as 120.54 (95% CI, 110.80 to 131.14) per 100 000, and as high as 519.01 (95% CI, 496.64 to 542.37) per 100 000. CONCLUSIONS The study found relatively consistent patterns of prevalence across both AD and eAD populations. Generally, the prevalence of diagnosed AD increased with age and increased with deprivation for each age category. Women had a higher prevalence than men. More granular levels of stratification reduced patient numbers and increased the uncertainty of point prevalence estimates. Despite this, the study found a relationship between deprivation and prevalence of AD.
Collapse
Affiliation(s)
| | - Alex Simpson
- Global Access, F Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | |
Collapse
|
30
|
Gervais NJ, Gravelsins L, Brown A, Reuben R, Perovic M, Karkaby L, Nicoll G, Laird K, Ramana S, Bernardini MQ, Jacobson M, Velsher L, Foulkes W, Rajah MN, Olsen RK, Grady C, Einstein G. Disturbed sleep is associated with reduced verbal episodic memory and entorhinal cortex volume in younger middle-aged women with risk-reducing early ovarian removal. Front Endocrinol (Lausanne) 2023; 14:1265470. [PMID: 37859979 PMCID: PMC10584319 DOI: 10.3389/fendo.2023.1265470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Women with early ovarian removal (<48 years) have an elevated risk for both late-life Alzheimer's disease (AD) and insomnia, a modifiable risk factor. In early midlife, they also show reduced verbal episodic memory and hippocampal volume. Whether these reductions correlate with a sleep phenotype consistent with insomnia risk remains unexplored. Methods We recruited thirty-one younger middleaged women with risk-reducing early bilateral salpingo-oophorectomy (BSO), fifteen of whom were taking estradiol-based hormone replacement therapy (BSO+ERT) and sixteen who were not (BSO). Fourteen age-matched premenopausal (AMC) and seventeen spontaneously peri-postmenopausal (SM) women who were ~10y older and not taking ERT were also enrolled. Overnight polysomnography recordings were collected at participants' home across multiple nights (M=2.38 SEM=0.19), along with subjective sleep quality and hot flash ratings. In addition to group comparisons on sleep measures, associations with verbal episodic memory and medial temporal lobe volume were assessed. Results Increased sleep latency and decreased sleep efficiency were observed on polysomnography recordings of those not taking ERT, consistent with insomnia symptoms. This phenotype was also observed in the older women in SM, implicating ovarian hormone loss. Further, sleep latency was associated with more forgetting on the paragraph recall task, previously shown to be altered in women with early BSO. Both increased sleep latency and reduced sleep efficiency were associated with smaller anterolateral entorhinal cortex volume. Discussion Together, these findings confirm an association between ovarian hormone loss and insomnia symptoms, and importantly, identify an younger onset age in women with early ovarian removal, which may contribute to poorer cognitive and brain outcomes in these women.
Collapse
Affiliation(s)
- Nicole J. Gervais
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Alana Brown
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Rebekah Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mateja Perovic
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Laurice Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gina Nicoll
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Kazakao Laird
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Jacobson
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lea Velsher
- Genetics Program, North York General Hospital, Toronto, ON, Canada
| | - William Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - M. Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Cheryl Grady
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
| |
Collapse
|
31
|
Dakterzada F, Jové M, Huerto R, Carnes A, Sol J, Pamplona R, Piñol-Ripoll G. Changes in Plasma Neutral and Ether-Linked Lipids Are Associated with The Pathology and Progression of Alzheimer's Disease. Aging Dis 2023; 14:1728-1738. [PMID: 37196122 PMCID: PMC10529749 DOI: 10.14336/ad.2023.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/21/2023] [Indexed: 05/19/2023] Open
Abstract
Aberrant lipid metabolism has been strongly linked to Alzheimer's disease (AD) pathogenesis. However, the role of lipids in the pathophysiological processes of AD and their clinical progression is unclear. We hypothesized that plasma lipids are associated with the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. To evaluate our hypotheses, we analysed the plasma lipidome profile by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 213 subjects recruited consecutively: 104 AD, 89 MCI, and 20 control subjects. Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). We found that higher plasma levels of sphingomyelin SM(36:0) and diglyceride DG(44:3) were associated with an increased risk of amyloid beta 42 (Aβ42) positivity in CSF, while levels of SM(40:1) were associated with a reduced risk. Higher plasma levels of ether-linked triglyceride TG(O-60:10) were negatively associated with pathological levels of phosphorylated tau in CSF. Plasma levels of fatty acid ester of hydroxy fatty acid FAHFA(34:0) and ether-linked phosphatidylcholine PC(O-36:1) were positively associated with pathological levels of total tau in CSF. Regarding the plasma lipids most associated with progression from MCI to AD, our analysis detected phosphatidyl-ethanolamine plasmalogen PE(P-36:4), TG(59:12), TG(46:0), and TG(O-62:7). Furthermore, TG(O-62:7) was the lipid that was most strongly associated with the rate of progression. In conclusion, our results indicate that neutral and ether-linked lipids are involved in the pathophysiological processes of AD and the progression from MCI to AD dementia, suggesting the involvement of lipid-mediated antioxidant mechanisms in AD.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain.
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain.
| | - Anna Carnes
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain.
- Institut Català de la Salut, Lleida, Spain.
- Research Support Unit Lleida, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain.
| |
Collapse
|
32
|
Bhattarai K, Rajaganapathy S, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N. Using artificial intelligence to learn optimal regimen plan for Alzheimer's disease. J Am Med Inform Assoc 2023; 30:1645-1656. [PMID: 37463858 PMCID: PMC10531148 DOI: 10.1093/jamia/ocad135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude data from electronic health records. METHODS In this study, we selected 1736 patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We focused on the two most frequent concomitant diseases-depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension, AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State Exam (MMSE) scores as rewards. RESULTS Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician's policy (mean -3.03 and -2.93 vs. -2.93, respectively) for smaller datasets but had higher rewards for larger datasets (mean -4.68 and -2.82 vs. -4.57, respectively). CONCLUSIONS Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities.
Collapse
Affiliation(s)
| | | | - Trisha Das
- University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Yejin Kim
- University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | - Xiaoqian Jiang
- University of Texas Health Science Center, Houston, Texas, USA
| | | |
Collapse
|
33
|
Langella S, Barksdale NG, Vasquez D, Aguillon D, Chen Y, Su Y, Acosta-Baena N, Acosta-Uribe J, Baena AY, Garcia-Ospina G, Giraldo-Chica M, Tirado V, Muñoz C, Ríos-Romenets S, Guzman-Martínez C, Oliveira G, Yang HS, Vila-Castelar C, Pruzin JJ, Ghisays V, Arboleda-Velasquez JF, Kosik KS, Reiman EM, Lopera F, Quiroz YT. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer's disease. Nat Commun 2023; 14:5120. [PMID: 37612284 PMCID: PMC10447560 DOI: 10.1038/s41467-023-40775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) is genetically determined, but variability in age of symptom onset suggests additional factors may influence cognitive trajectories. Although apolipoprotein E (APOE) genotype and educational attainment both influence dementia onset in sporadic AD, evidence for these effects in ADAD is limited. To investigate the effects of APOE and educational attainment on age-related cognitive trajectories in ADAD, we analyzed data from 675 Presenilin-1 E280A mutation carriers and 594 non-carriers. Here we show that age-related cognitive decline is accelerated in ADAD mutation carriers who also have an APOE e4 allele compared to those who do not and delayed in mutation carriers who also have an APOE e2 allele compared to those who do not. Educational attainment is protective and moderates the effect of APOE on cognition. Despite ADAD mutation carriers being genetically determined to develop dementia, age-related cognitive decline may be influenced by other genetic and environmental factors.
Collapse
Affiliation(s)
| | - N Gil Barksdale
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Vasquez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Juliana Acosta-Uribe
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ana Y Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Garcia-Ospina
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Muñoz
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Silvia Ríos-Romenets
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Guzman-Martínez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Oliveira
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Sik Yang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
34
|
Dakterzada F, Benítez ID, Targa A, Carnes A, Pujol M, Jové M, Mínguez O, Vaca R, Sánchez-de-la-Torre M, Barbé F, Pamplona R, Piñol-Ripoll G. Cerebrospinal fluid lipidomic fingerprint of obstructive sleep apnoea in Alzheimer's disease. Alzheimers Res Ther 2023; 15:134. [PMID: 37550750 PMCID: PMC10408111 DOI: 10.1186/s13195-023-01278-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated. In this context, we examined the cerebrospinal fluid (CSF) lipidome of patients with suspected OSA to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the effect of OSA on AD. METHODS The study included 91 consecutive AD patients who underwent overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥ 30/h). The next morning, CSF samples were collected and analysed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform. RESULTS The CSF levels of 11 lipid species were significantly different between AD patients with (N = 38) and without (N = 58) severe OSA. Five lipids (including oxidized triglyceride OxTG(57:2) and four unknown lipids) were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Our analyses revealed a 4-lipid signature (including oxidized ceramide OxCer(40:6) and three unknown lipids) that provided an accuracy of 0.80 (95% CI: 0.71-0.89) in the detection of severe OSA. These lipids increased the discriminative power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.85 (0.71-0.93). CONCLUSIONS Our results reveal a CSF lipidomic fingerprint that allows the identification of AD patients with severe OSA. Our findings suggest that an increase in central nervous system lipoxidation may be the principal mechanism underlying the association between OSA and AD.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Santa Maria University Hospital, IRBLleida, Rovira Roure No. 44, Lleida, 25198, Spain
| | - Iván D Benítez
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Anna Carnes
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Santa Maria University Hospital, IRBLleida, Rovira Roure No. 44, Lleida, 25198, Spain
| | - Montse Pujol
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Olga Mínguez
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Rafi Vaca
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Department of Nursing and Physiotherapy, Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, IRBLleida, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Ferran Barbé
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Santa Maria University Hospital, IRBLleida, Rovira Roure No. 44, Lleida, 25198, Spain.
| |
Collapse
|
35
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
36
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
37
|
Hawash ZAS, Yassien EM, Alotaibi BS, El-Moslemany AM, Shukry M. Assessment of Anti-Alzheimer Pursuit of Jambolan Fruit Extract and/or Choline against AlCl 3 Toxicity in Rats. TOXICS 2023; 11:509. [PMID: 37368609 DOI: 10.3390/toxics11060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Jambolan fruit extract and choline were investigated for Aluminum tri chloride (AlCl3)-induced Alzheimer's disease in rats. Thirty-six male "Sprague Dawley" rats weighing (150 ± 10 g) were allocated into six groups; the first group was fed a baseline diet and served as a negative control. Alzheimer's disease (AD) was induced in Group 2 rats by oral administration of AlCl3 (17 mg/kg body weight) dissolved in distilled water (served as a positive control). Rats in Group 3 were orally supplemented concomitantly with both 500 mg/kg BW of an ethanolic extract of jambolan fruit once daily for 28 days and AlCl3 (17 mg/kg body weight). Group 4: Rivastigmine (RIVA) aqueous infusion (0.3 mg/kg BW/day) was given orally to rats as a reference drug concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight) for 28 days. Group 5 rats were orally treated with choline (1.1 g/kg) concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight). Group 6 was given 500 mg/kg of jambolan fruit ethanolic extract and 1.1 g/kg of choline orally to test for additive effects concurrently with oral supplementation of AlCl3 (17 mg/kg bw) for 28 days. Body weight gain, feed intake, feed efficiency ratio, and relative brain, liver, kidney, and spleen weight were calculated after the trial. Brain tissue assessment was analyzed for antioxidant/oxidant markers, biochemical analysis in blood serum, a phenolic compound in Jambolan fruits extracted by high-performance liquid chromatography (HPLC), and histopathology of the brain. The results showed that Jambolan fruit extract and choline chloride improved brain functions, histopathology, and antioxidant enzyme activity compared with the positive group. In conclusion, administering jambolan fruit extract and choline can lower the toxic impacts of aluminum chloride on the brain.
Collapse
Affiliation(s)
- Zeinab Abdel Salam Hawash
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Ensaf M Yassien
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira M El-Moslemany
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
38
|
Price RS. Exploring what progress is being made in the development of health promotion material for vascular dementia: A systematic review of the evidence. Aging Med (Milton) 2023; 6:184-194. [PMID: 37287679 PMCID: PMC10242248 DOI: 10.1002/agm2.12253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/09/2023] Open
Abstract
A systematic review conducted by Price and Keady (Journal of Nursing and Healthcare of Chronic Illness, 2, 88 and 2010) demonstrated that there was a dearth of health-promoting literature available for people diagnosed with vascular dementia. The correlation between health behavior and the onset of cardiovascular change that can lead to vascular dementia had demonstrated a need for health education and health-promoting information to be made accessible to vulnerable populations to ameliorate the risk of cognitive decline because of cardiovascular disease. Dementia is a progressive and life-limiting condition and with limited treatment options and a lack of progress in identifying a way to delay onset or even cure the condition. Focus must be targeted towards risk reduction strategies that serve to reduce onset and decline and limit the global burden on not only the individual with the condition and their carers but also to the health and social care economy. To identify the progress that has been made in developing health-promoting literature and patient education guidance since 2010 a systematic literature review was undertaken. Using thematic analysis, CINAHL, MEDLINE, and psych INFO databases were accessed and following PRISMA guidelines an inclusion and exclusion criteria was developed in order to locate peer-reviewed articles. Titles and abstracts were reviewed to identify a match with key terms, and from 133 screened abstracts eight studies met the inclusion requirements. From the eight studies, thematic analysis was implemented to identify shared understanding of experiences relating to health promotion in vascular dementia. The methodology for the study was replicated from the authors' previous systematic review in 2010. Five key themes were identified in the literature (Healthy heart healthy brain; Risk factors; Risk reduction/modification; Interventions; Absence of targeted health promotion). From what little evidence was available to review the thematic analysis has demonstrated developments in knowledge into the link between the onset of cognitive impairment and vascular dementia because of compromised cardiovascular health. Modifying health behavior has become essential in ameliorating the risk of vascular cognitive decline. With these developments the synthesis of the literature demonstrates that even with these insights there continues to be a lack of targeted material that individuals can access to understand the link between cardiovascular health and cognitive decline. It is recognized that maximizing cardiovascular health has the potential to lessen the risk of vascular cognitive impairment and vascular dementia developing and progressing yet targeted health promoting material remains lacking. With the developments in understanding the causal links between poor cardiovascular health, vascular cognitive impairment, and vascular dementia progress now needs to be made in developing targeted health promotion material for individuals to access to share this knowledge to reduce the potential onset and subsequent burden of dementia.
Collapse
|
39
|
Gul S, Attaullah S, Alsugoor MH, Bawazeer S, Shah SA, Khan S, Salahuddin HS, Ullah M. Folicitin abrogates scopolamine induced oxidative stress, hyperlipidemia mediated neuronal synapse and memory dysfunction in mice. Heliyon 2023; 9:e16930. [PMID: 37416682 PMCID: PMC10320035 DOI: 10.1016/j.heliyon.2023.e16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
No effective drug treatment is available for Alzheimer disease, thus the need arise to develop efficient drugs for its treatment. Natural products have pronounced capability in treating Alzheimer disease therefore current study aimed to evaluate the neuro-protective capability of folicitin against scopolamine-induced Alzheimer disease neuropathology in mice. Experimental mice were divided into four groups i.e. control (single dose of 250 μL saline), scopolamine-administered group (1 mg/kg administered for three weeks), scopolamine plus folicitin-administered group (scopolamine 1 mg/kg administration for three weeks followed by folicitin administration for last two weeks) and folicitin-administered group (20 mg/kg administered for 5 alternate days). Results of behavioral tests and Western blot indicated that folicitin has the capability of recovering the memory against scopolamine-induced memory impairment by reducing the oxidative stress through up-regulating the endogenous antioxidant system like nuclear factor erythroid 2-related factor and Heme oxygenase-1 while prohibiting phosphorylated c-Jun N-terminal kinase. Similarly, folicitin also improved the synaptic dysfunction by up-regulating SYP and PSD95. Scopolamine-induced hyperglycemia and hyperlipidemia were abolished by folicitin as evidenced through random blood glucose test, glucose tolerance test and lipid profile test. All these results revealed that folicitin being a potent anti-oxidant is capable of improving synaptic dysfunction and reducing oxidative stress through Nrf-2/HO-1 pathway, thus plays a key role in treating Alzheimer disease as well as possess hyperglycemic and hyperlipidemic effect. Furthermore, a detailed study is suggested.
Collapse
Affiliation(s)
- Seema Gul
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mahdi H. Alsugoor
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sami Bawazeer
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Shahid Ali Shah
- Neuro Molecular Medicine Research Centre (NMMRC), Ring Road, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | | | - Mujeeb Ullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Verovnik B, Khachatryan E, Šuput D, Van Hulle MM. Effects of risk factors on longitudinal changes in brain structure and function in the progression of AD. Alzheimers Dement 2023; 19:2666-2676. [PMID: 36807765 DOI: 10.1002/alz.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Past research on Alzheimer's disease (AD) has focused on biomarkers, cognition, and neuroimaging as primary predictors of its progression, albeit additional ones have recently gained attention. When turning to the prediction of the progression from one stage to another, one could benefit from the joint assessment of imaging-based biomarkers and risk/protective factors. METHODS We included 86 studies that fulfilled our inclusion criteria. RESULTS Our review summarizes and discusses the results of 30 years of longitudinal research on brain changes assessed with neuroimaging and the risk/protective factors and their effect on AD progression. We group results into four sections: genetic, demographic, cognitive and cardiovascular, and lifestyle factors. DISCUSSION Given the complex nature of AD, including risk factors could prove invaluable for a better understanding of AD progression. Some of these risk factors are modifiable and could be targeted by potential future treatments.
Collapse
Affiliation(s)
- Barbara Verovnik
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elvira Khachatryan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Ávila-Villanueva M, Dolado AM, Fernández-Blázquez M. How to Prevent and/or Revert Alzheimer's Disease Continuum During Preclinical Phases. J Alzheimers Dis Rep 2023; 7:505-512. [PMID: 37313496 PMCID: PMC10259072 DOI: 10.3233/adr220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/15/2023] Open
Abstract
The development of Alzheimer's disease (AD) follows three consecutive phases: namely preclinical, prodromal or mild cognitive impairment (MCI), and dementia. In addition, the preclinical phase can be divided into subphases related to the presence of biomarkers that appear at different points before the onset of MCI. Indeed, an early risk factor could promote the appearance of additional ones through a continuum. The presence of various risk factors may trigger specific biomarkers. In this review, we comment on how modifiable risk factors for AD may be reverted, thus correlating with a possible decrease in the specific biomarkers for the disease. Finally, we discuss the development of a suitable AD prevention strategy by targeting modifiable risk factors, thereby increasing the level of "precision medicine" in healthcare systems worldwide.
Collapse
Affiliation(s)
- Marina Ávila-Villanueva
- Research in Alzheimer’s Disease, Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Alberto Marcos Dolado
- Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Fernández-Blázquez
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Chandrashekar DV, Steinberg RA, Han D, Sumbria RK. Alcohol as a Modifiable Risk Factor for Alzheimer's Disease-Evidence from Experimental Studies. Int J Mol Sci 2023; 24:9492. [PMID: 37298443 PMCID: PMC10253673 DOI: 10.3390/ijms24119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can modulate cerebral AD pathology include Toll-like receptors, protein kinase-B (Akt)/mammalian target of rapamycin (mTOR) pathway, cyclic adenosine monophosphate (cAMP) response element-binding protein phosphorylation pathway, glycogen synthase kinase 3-β, cyclin-dependent kinase-5, insulin-like growth factor type-1 receptor, modulation of β-amyloid (Aβ) synthesis and clearance, microglial mediated, and brain endothelial alterations. Besides these brain-centric pathways, alcohol-mediated liver injury may significantly affect brain Aβ levels through alterations in the peripheral-to-central Aβ homeostasis. This article reviews published experimental studies (cell culture and AD rodent models) to summarize the scientific evidence and probable mechanisms (both cerebral and hepatic) by which alcohol promotes or protects against AD progression.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Huang YH, Pan MH, Yang HI. The association between Gabapentin or Pregabalin use and the risk of dementia: an analysis of the National Health Insurance Research Database in Taiwan. Front Pharmacol 2023; 14:1128601. [PMID: 37324474 PMCID: PMC10266423 DOI: 10.3389/fphar.2023.1128601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: Previous studies have shown that gabapentin or pregabalin use is associated with cognitive decline. Herein, we aimed to evaluate the association between gabapentin or pregabalin use and the risk of dementia. Methods: In this retrospective, population-based matched cohort study, all research data were collected from the 2005 Longitudinal Health Insurance Database, which contains data of 2 million people randomly selected from the National Health Insurance Research Database of Taiwan in 2005. The study extracted data from 1 January 2000, to 31 December 2017. Adult patients taking gabapentin or pregabalin were included in the exposure group, and patients not using gabapentin or pregabalin matched to exposure subjects in a 1:5 ratio by propensity scores composed of age, sex and index date were included in the non-exposure group. Results: A total of 206,802 patients were enrolled in the study. Of them, 34,467 gabapentin- or pregabalin-exposure and 172,335 non-exposure patients were used for analysis. The mean follow-up day (±standard deviation) after the index date was 1724.76 (±1282.32) and 1881.45 (±1303.69) in the exposure and non-exposure groups, respectively; the incidence rates of dementia were 980.60 and 605.48 per 100,000 person-years, respectively. The multivariate-adjusted hazard ratio of risk of dementia for gabapentin or pregabalin exposure versus the matched non-exposed group was 1.45 (95% confidence interval [CI], 1.36-1.55). The risk of dementia increased with higher cumulative defined daily doses during the follow-up period. Moreover, the stratification analysis revealed that the risk of dementia associated with gabapentin or pregabalin exposure was significant in all age subgroups; however, it was higher in younger patients (age <50) than in the older patients (hazard ratio, 3.16; 95% CI, 2.23-4.47). Conclusion: Patients treated with gabapentin or pregabalin had an increased risk of dementia. Therefore, these drugs should be used with caution, particularly in susceptible individuals.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- College of Medicine, Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- College of Medicine, Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institue of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Kerr NR, Kelty TJ, Mao X, Childs TE, Kline DD, Rector RS, Booth FW. Selective breeding for physical inactivity produces cognitive deficits via altered hippocampal mitochondrial and synaptic function. Front Aging Neurosci 2023; 15:1147420. [PMID: 37077501 PMCID: PMC10106691 DOI: 10.3389/fnagi.2023.1147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.
Collapse
Affiliation(s)
- Nathan R. Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
45
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
46
|
Kim M, Kwasny MJ, Bailey SC, Benavente JY, Zheng P, Bonham M, Luu HQ, Cecil P, Agyare P, O'Conor R, Curtis LM, Hur S, Yeh F, Lovett RM, Russell A, Luo Y, Zee PC, Wolf MS. MidCog study: a prospective, observational cohort study investigating health literacy, self-management skills and cognitive function in middle-aged adults. BMJ Open 2023; 13:e071899. [PMID: 36822802 PMCID: PMC9950895 DOI: 10.1136/bmjopen-2023-071899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION The lack of definitive means to prevent or treat cognitive impairment or dementia is driving intense efforts to identify causal mechanisms. Recent evidence suggests clinically meaningful declines in cognition might present as early as middle age. Studying cognitive changes in middle adulthood could elucidate modifiable factors affecting later cognitive and health outcomes, yet few cognitive ageing studies include this age group. The purpose of the MidCog study is to begin investigations of less-studied and potentially modifiable midlife determinants of later life cognitive outcomes. METHODS AND ANALYSIS MidCog is a prospective cohort study of adults ages 35-64, with two in-person interviews 2.5 years apart. Data will be collected from interviews, electronic health records and pharmacy fill data. Measurements will include health literacy, self-management skills, cognitive function, lifestyle and health behaviours, healthcare use, health status and chronic disease outcomes. Associations of health literacy and self-management skills with health behaviours and cognitive/health outcomes will be examined in a series of regression models, and moderating effects of modifiable psychosocial factors.Finally, MidCog data will be linked to an ongoing, parallel cohort study of older adults recruited at ages 55-74 in 2008 ('LitCog'; ages 70-90 in 2023), to explore associations between age, health literacy, self-management skills, chronic diseases, health status and cognitive function among adults ages 35-90. ETHICS AND DISSEMINATION The Institutional Review Board at Northwestern University has approved the MidCog study protocol (STU00214736). Results will be published in peer-reviewed journals and summaries will be provided to the funders of the study as well as patients.
Collapse
Affiliation(s)
- Minjee Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mary J Kwasny
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stacy C Bailey
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Julia Y Benavente
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pauline Zheng
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Morgan Bonham
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Han Q Luu
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patrick Cecil
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Prophecy Agyare
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel O'Conor
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laura M Curtis
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott Hur
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Fangyu Yeh
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca M Lovett
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Russell
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phyllis C Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael S Wolf
- Center for Applied Health Research on Aging, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
47
|
Bhattarai K, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N. Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.26.23285064. [PMID: 36747733 PMCID: PMC9901063 DOI: 10.1101/2023.01.26.23285064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Alzheimer's Disease (AD) is a progressive neurological disorder with no specific curative medications. While only a few medications are approved by FDA (i.e., donepezil, galantamine, rivastigmine, and memantine) to relieve symptoms (e.g., cognitive decline), sophisticated clinical skills are crucial to optimize the appropriate regimens given the multiple coexisting comorbidities in this patient population. Objective Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude records from Electronic Health Records (EHR). Methods In this study, we withdraw 1,736 patients fulfilling our criteria, from the Alzheimer's Disease Neuroimaging Initiative(ADNI) database. We focused on the two most frequent concomitant diseases, depression, and hypertension, thus resulting in five main cohorts, 1) whole data, 2) AD-only, 3) AD-hypertension, 4) AD-depression, and 5) AD-hypertension-depression. We modeled the treatment learning into an RL problem by defining the three factors (i.e., states, action, and reward) in RL in multiple strategies, where a regression model and a decision tree are developed to generate states, six main medications extracted (i.e., no drugs, cholinesterase inhibitors, memantine, hypertension drugs, a combination of cholinesterase inhibitors and memantine, and supplements or other drugs) are for action, and Mini-Mental State Exam (MMSE) scores are for reward. Results Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. With the smallest data samples, the optimal-policy (i.e., policy iteration and Q-learning) gained a lesser reward than the clinician's policy (mean -2.68 and -2.76 vs . -2.66, respectively), but it gained more reward once the data size increased (mean -3.56 and -2.48 vs . -3.57, respectively). Conclusions Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path toward the development of RL-based decision support systems which could facilitate the daily practice to manage Alzheimer's disease with comorbidities.
Collapse
Affiliation(s)
- Kritib Bhattarai
- Department of Computer Science, Luther College Decorah, IA, United States
| | - Trisha Das
- Department of Computer Science, University of Illinois Urbana-Champaign Champaign, Champaign, IL, United States
| | - Yejin Kim
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | | | - Qiying Dai
- Mayo Clinic Rochester, MN, United States
| | | | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Nansu Zong
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
48
|
Thwarting Alzheimer's Disease through Healthy Lifestyle Habits: Hope for the Future. Neurol Int 2023; 15:162-187. [PMID: 36810468 PMCID: PMC9944470 DOI: 10.3390/neurolint15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that slowly disintegrates memory and thinking skills. Age is known to be the major risk factor in AD, but there are several nonmodifiable and modifiable causes. The nonmodifiable risk factors such as family history, high cholesterol, head injuries, gender, pollution, and genetic aberrations are reported to expediate disease progression. The modifiable risk factors of AD that may help prevent or delay the onset of AD in liable people, which this review focuses on, includes lifestyle, diet, substance use, lack of physical and mental activity, social life, sleep, among other causes. We also discuss how mitigating underlying conditions such as hearing loss and cardiovascular complications could be beneficial in preventing cognitive decline. As the current medications can only treat the manifestations of AD and not the underlying process, healthy lifestyle choices associated with modifiable factors is the best alternative strategy to combat the disease.
Collapse
|
49
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
50
|
Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration. PLoS One 2023; 18:e0262792. [PMID: 36701399 PMCID: PMC9879510 DOI: 10.1371/journal.pone.0262792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.
Collapse
|