1
|
Garcia A, Cohen RA, Langer KG, O'Neal AG, Porges EC, Woods AJ, Williamson JB. Semantic processing in older adults is associated with distributed neural activation which varies by association and abstractness of words. GeroScience 2024; 46:6195-6212. [PMID: 38822124 PMCID: PMC11493883 DOI: 10.1007/s11357-024-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The extent to which the neural systems underlying semantic processes degrade with advanced age remains unresolved, which motivated the current study of neural activation on functional magnetic resonance imaging (fMRI) during semantic judgments of associated vs. unassociated, semantic vs. rhyme, and abstract vs. rhyme word pairs. Thirty-eight older adults, 55-85 years of age, performed semantic association decision tasks in a mixed event-related block fMRI paradigm involving binary judgments as to whether word pairs were related (i.e., semantically associated). As hypothesized, significantly greater activation was evident during processing of associated (vs. unassociated) word pairs in cortical areas implicated in semantic processing, including the angular gyrus, temporal cortex, and inferior frontal cortex. Cortical areas showed greater activation to unassociated (vs. associated) word pairs, primarily within a large occipital cluster. Greater activation was evident in cortical areas when response to semantic vs. phonemic word pairs. Contrasting activation during abstract vs. concrete semantic processing revealed areas of co-activation to both semantic classes, and areas that had greater response to either abstract or concrete word pairs. Neural activation across conditions did not vary as a function of greater age, indicating only minimal age-associated perturbation in neural activation during semantic processing. Therefore, the response of the semantic hubs, semantic control, and secondary association areas appear to be largely preserved with advanced age among older adults exhibiting successful cognitive aging. These findings may provide a useful clinical contrast if compared to activation among adults experiencing cognitive decline due Alzheimer's, frontal-temporal dementia, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Garcia
- Behavioral Sciences Department, James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA.
| | - Kailey G Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alexandria G O'Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John B Williamson
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Wang X, Ke Y, Cao Z, Fu Y, Cheng Y, Liu D, Chen H, Guo K, Li Y, Yang M, Zhao Q. Exosomes activate hippocampal microglia in atrial fibrillation through long-distance heart-brain communication. BMC Cardiovasc Disord 2024; 24:627. [PMID: 39516720 PMCID: PMC11549811 DOI: 10.1186/s12872-024-04274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND There is growing evidence that atrial fibrillation (AF) is a risk factor for cognitive impairment (CI) and dementia in the presence or absence of stroke. The purpose of this study was to explore the mechanism of CI caused by AF. METHODS Eighteen male canines were randomly divided into a sham group, a pacing group, and a pacing + GW4869 group. An experimental model of AF was established by rapid atrial pacing (450 beats/min) for 2 weeks, and the sham group received pacemaker implantation without atrial pacing. The GW4869 group received an intravenous GW4869 injection (0.3 mg/kg, once a day) during pacing. All canines were locally injected with Ad-CD63-RFP in epicardial adipose tissue (EAT) to trace the exosomes. Ultracentrifugation was employed to isolate EAT-derived exosomes, followed by RNA sequencing and quantitative real-time PCR (qRT-PCR) to assess RNA in both exosomes and hippocampal tissue. The miRanda database was used to predict the targeting relationships between miRNA and mRNA, which were further validated by luciferase reporter assays. Western blot analysis was conducted to detect exosomal markers (CD63, CD81, TSG101) in EAT exosomes, while immunofluorescence was used to detect Ad-CD63-RFP signals in both EAT and hippocampal tissues, as well as microglial activation marker IBA-1. To further explore the effects of exosomes on microglial cells, in vitro experiments using brain microvascular endothelial cells (bEnd3) and microglial cells (BV2) were conducted. IBA-1 expression and RNA levels in BV2 cells were analyzed by immunofluorescence and qRT-PCR, respectively. RESULTS After 14 days of pacing of the canine atrium, compared to the sham group, both the pacing and GW4869 groups exhibited an increased number of AF inductions, along with prolonged AF duration. The fluorescence intensity of Ad-CD63-RFP and the microglial activation marker IBA-1 were markedly greater in the hippocampus. RNA sequencing showed that the differentially expressed gene cfa-miR-22e in EAT exosomes was upregulated, and its target gene IL33 was downregulated in the hippocampus. qRT-PCR showed that the levels of cfa-miR-22e were increased in both EAT exosomes and the hippocampus, while the expression of IL-33, a target of cfa-miR-22e, was decreased in the hippocampus. The administration of GW4869 abolished these effects. The in vitro results from bEnd3 and BV2 cell experiments were consistent with the conclusions drawn from the in vivo studies. CONCLUSION Our study indicated that the exosomes secreted by EAT in canines with AF can penetrate the BBB and activate microglia in the hippocampus through the cfa-miR-22e/IL33 signalling pathway.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
- Cardiovascular Department, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yuanjia Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanni Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Kexin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Hong Y, Tian Z, Ji Z, Yang J, Wang C. A systematic review of the effect and mechanism of Daoyin therapy on improving mild cognitive impairment in older adults. Ageing Res Rev 2024; 101:102526. [PMID: 39368667 DOI: 10.1016/j.arr.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Age-related cognitive decline is a pervasive problem in the aging population. Daoyin therapy is a mind-body movement characteristic of traditional Chinese medicine (TCM). Increasing evidence has reported its usefulness in improving cognitive function among different populations. However, there is no systematic review to assess the effect and mechanism of Daoyin therapy on mild cognitive dysfunction (MCI) in older adults. OBJECTIVE To systematically review the evidence on the effect and mechanism of Daoyin therapy on MCI in older adults. RESULTS Taichi, Baduanjin, and Yijinjing can improve cognitive function. Qigong and Wuqinxi can enhance the physical and cognitive functions related to balance, muscle strength, physical endurance, postural control, and flexibility. Taichi, Baduanjin, and Wuqinxi can improve the cognitive function of older adults and alleviate the symptoms associated with MCI through multiple mechanisms. The underlying mechanisms include activating the expression of signals and changing their connections in different brain regions, increasing brain capacity, and regulating brain-derived neurotropic and inflammatory factors. CONCLUSION In summary, the existing evidence from RCTs suggests that traditional Daoyin therapy, such as Taichi, Baduanjin, and Wuqinxi, is a promising strategy that can improve cognitive function and delay the onset of dementia in older adults with MCI by altering structural and neural activities and modulating other factors.
Collapse
Affiliation(s)
- Yanfang Hong
- Hunan University, Changsha City, Hunan Province, China
| | - Zuguo Tian
- Hunan University, Changsha City, Hunan Province, China.
| | - Zhenfeng Ji
- Hunan University, Changsha City, Hunan Province, China
| | - Jia Yang
- Hunan University, Changsha City, Hunan Province, China
| | - Chaochao Wang
- Hunan University, Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Cevallos SB, Jerves AX, Vinueza C, Hernandez D, Ávila C, Auquilla A, Alvear Ó. Morphological characterization of the hippocampus: a first database in Ecuador. Front Hum Neurosci 2024; 18:1387212. [PMID: 39494388 PMCID: PMC11528375 DOI: 10.3389/fnhum.2024.1387212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction The hippocampal volume is a well-known biomarker to detect and diagnose neurological, psychiatric, and psychological diseases. However, other morphological descriptors are not analyzed. Furthermore, not available databases, or studies, were found with information related to the hippocampal morphology from Latin-American patients living in the Andean highlands. Methods The hippocampus is manually segmented by two medical imaging specialists on normal brain magnetic resonance images. Then, its morphological qualitative and quantitative descriptors (volume, sphericity, roundness, diameter, volume-surface ratio, and aspect ratio) are computed via 3D digital level-set-based mathematical representation. Furthermore, other morphological descriptors and their possible correlation with the hippocampal volume is analyzed. Results We introduce a first database with the hippocampus' morphological characterization of 63 patients from Quito, Ecuador, male and female, aged between 18 and 95 years old. Discussion This study provides new research opportunities to neurologists, psychologists, and psychiatrists, to further understand the hippocampal morphology of Andean and Latin American patients.
Collapse
Affiliation(s)
| | - Alex X. Jerves
- Fundación INSPIRE, INSπRE, Quito, Ecuador
- Unidad Académica de Informática, Ciencias de la Computación, e Innovación Tecnológica, Universidad Católica de Cuenca, Cuenca, Ecuador
| | - Clayreth Vinueza
- Facultad de Medicina, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro Radiológico, Medimágenes, Quito, Ecuador
| | | | - Carlos Ávila
- Universidad UTE, Facultad de Ciencias, Ingeniería y Construcción, Carrera de Ingeniería Civil, Quito, Ecuador
| | - Andrés Auquilla
- Department of Computer Science, University of Cuenca, Cuenca, Ecuador
| | | |
Collapse
|
5
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Yatagan Sevim G, Alkan E, Taporoski TP, Krieger JE, Pereira AC, Evans SL. Effects of glycaemic control on memory performance, hippocampal volumes and depressive symptomology. Diabetol Metab Syndr 2024; 16:219. [PMID: 39261923 PMCID: PMC11389280 DOI: 10.1186/s13098-024-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Diabetes and poor glycaemic control have been shown to negatively impact cognitive abilities, while also raising risk of both mood disorders and brain structural atrophy. Sites of atrophy include the hippocampus, which has been implicated in both memory performance and depression. The current study set out to better characterise the associations between poor glycaemic control, memory performance, and depression symptoms, and investigate whether loss of hippocampal volume could represent a neuropathological mechanism underlying these. METHODS 1331 participants (60.9% female, age range 18-88 (Mean = 44.02), 6.5% with likely diabetes) provided HbA1c data (as an index of glycaemic control), completed a word list learning task, and a validated depression scale. A subsample of 392 participants underwent structural MRI; hippocampal volumes were extracted using FreeSurfer. RESULTS Partial correlation analyses (controlling for age, gender, and education) showed that, in the full sample, poorer glycaemic control was related to lower word list memory performance. In the MRI sub-sample, poorer glycaemic control was related to higher depressive symptoms, and lower hippocampal volumes. Total hippocampus volume partially mediated the association between HbA1c levels and depressive symptoms. CONCLUSIONS Results emphasise the impact of glycaemic control on memory, depression and hippocampal volume and suggest hippocampal volume loss could be a pathophysiological mechanism underlying the link between HbA1c and depression risk; inflammatory and stress-hormone related processes might have a role in this.
Collapse
Affiliation(s)
- Gulin Yatagan Sevim
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, UK
| | - Tamara P Taporoski
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Jose E Krieger
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Alex C Pereira
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Simon L Evans
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
7
|
Ho SK, Hsiao IT, Lin KJ, Wu YM, Wu KY. Relationships among tumor necrosis factor-alpha levels, beta-amyloid accumulation, and hippocampal atrophy in patients with late-life major depressive disorder. Brain Behav 2024; 14:e70016. [PMID: 39236111 PMCID: PMC11376440 DOI: 10.1002/brb3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by hippocampal volume reduction, impacting cognitive function. Inflammation, particularly elevated tumor necrosis factor-alpha (TNF-α) levels, is consistently implicated in MDD pathophysiology. This study investigates the relationships between TNF-α levels, hippocampal volume, beta-amyloid (Aβ) burden, and cognitive abilities in MDD patients, aiming to illuminate the complex interplay among inflammatory markers, pathology indicators, structural brain alterations, and cognitive performance in non-demented MDD individuals. METHOD Fifty-two non-demented MDD patients, comprising 25 with mild cognitive impairment (MCI), were recruited along with 10 control subjects. Each participant underwent a thorough assessment encompassing TNF-α blood testing, 18F-florbetapir positron emission tomography, magnetic resonance imaging scans, and neuropsychological testing. Statistical analyses, adjusted for age and education, were performed to investigate the associations between TNF-α levels, adjusted hippocampal volume (HVa), global Aβ burden, and cognitive performance. RESULTS MCI MDD patients displayed elevated TNF-α levels and reduced HVa relative to controls. Correlation analyses demonstrated inverse relationships between TNF-α level and HVa in MCI MDD, all MDD, and all subjects groups. Both TNF-α level and HVa exhibited significant correlations with processing speed across all MDD and all subjects. Notably, global 18F-florbetapir standardized uptake value ratio did not exhibit significant correlations with TNF-α level, HVa, and cognitive measures. CONCLUSION This study highlights elevated TNF-α levels and reduced hippocampal volume in MCI MDD patients, indicating a potential association between peripheral inflammation and structural brain alterations in depression. Furthermore, our results suggest that certain cases of MDD may be affected by non-amyloid-mediated process, which impacts their TNF-α and hippocampal volume. These findings emphasize the importance of further investigating the complex interplay among inflammation, neurodegeneration, and cognitive function in MDD.
Collapse
Affiliation(s)
- Szu-Kai Ho
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Callow DD, Spira AP, Bakker A, Smith JC. Sleep Quality Moderates the Associations between Cardiorespiratory Fitness and Hippocampal and Entorhinal Volume in Middle-Aged and Older Adults. Med Sci Sports Exerc 2024; 56:1740-1746. [PMID: 38742864 PMCID: PMC11326995 DOI: 10.1249/mss.0000000000003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION/PURPOSE As individuals age, the entorhinal cortex (ERC) and hippocampus-crucial structures for memory-tend to atrophy, with related cognitive decline. Simultaneously, lifestyle factors that can be modified, such as exercise and sleep, have been separately linked to slowing of brain atrophy and functional decline. However, the synergistic impact of fitness and sleep on susceptible brain structures in aging adults remains uncertain. METHODS We examined both independent and interactive associations of fitness and subjective sleep quality with regard to ERC thickness and hippocampal volume in 598 middle-aged and older adults from the Human Connectome Lifespan Aging Project. Cardiorespiratory fitness was assessed using the 2-min walk test, whereas subjective sleep quality was measured with the continuous Pittsburgh Sleep Quality Index global score. High-resolution structural magnetic resonance imaging was used to examine mean ERC thickness and bilateral hippocampal volume. Through multiple linear regression analyses, we investigated the moderating effects of subjective sleep quality on the association between fitness and brain structure, accounting for age, sex, education, body mass index, gait speed, and subjective physical activity. RESULTS We found that greater cardiorespiratory fitness, but not subjective sleep quality, was positively associated with bilateral hippocampal volume and ERC thickness. Notably, significant interaction effects suggest that poor subjective sleep quality was associated with a weaker association between fitness and both hippocampal volume and ERC thickness. CONCLUSIONS Findings suggest the potential importance of both cardiorespiratory fitness and subjective sleep quality in preserving critical, age-vulnerable brain structures. Interventions targeting brain health should consider potential combined effects of sleep and fitness on brain health.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD
| |
Collapse
|
9
|
Hardcastle C, Kraft JN, Hausman HK, O'Shea A, Albizu A, Evangelista ND, Boutzoukas EM, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, Porges E, DeKosky ST, Hishaw GA, Wu SS, Marsiske M, Cohen R, Alexander GE, Woods AJ. Learning ratio performance on a brief visual learning and memory test moderates cognitive training gains in Double Decision task in healthy older adults. GeroScience 2024; 46:3929-3943. [PMID: 38457007 PMCID: PMC11226577 DOI: 10.1007/s11357-024-01115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there was variability in the achievement of cognitive gains after cognitive training across studies, suggesting moderating factors. Learning trials of visual and verbal learning tasks recruit similar cognitive abilities and have overlapping neural correlates with speed-of-processing/working memory tasks and therefore could serve as potential moderators of cognitive training gains. This study explored the association between the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) learning with a commercial UFOV task called Double Decision. Through a secondary analysis of a clinical trial, we assessed the moderation of HVLT-R and BVMT-R learning on Double Decision improvement after a 3-month speed-of-processing/attention and working memory cognitive training intervention in a sample of 75 cognitively healthy older adults. Multiple linear regressions showed that better baseline Double Decision performance was significantly associated with better BVMT-R learning (β = - .303). This association was not significant for HVLT-R learning (β = - .142). Moderation analysis showed that those with poorer BVMT-R learning improved the most on the Double Decision task after cognitive training. This suggests that healthy older adults who perform below expectations on cognitive tasks related to the training task may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes and efficacy of the intervention.
Collapse
Affiliation(s)
- Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Bregman-Yemini N, Nitzan K, Franko M, Doron R. Connecting the emotional-cognitive puzzle: The role of tyrosine kinase B (TrkB) receptor isoform imbalance in age-related emotional and cognitive impairments. Ageing Res Rev 2024; 99:102349. [PMID: 38823488 DOI: 10.1016/j.arr.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Age-related cognitive and affective disorders pose significant public health challenges. Notably, emotional and cognitive symptoms co-occur across multiple age-associated conditions like normal aging, Alzheimer's disease (AD), and mood disorders such as depression and anxiety. While the intricate interplay underlying this relationship remains poorly understood, this article highlights the possibility that an imbalance between full-length (TrkB.FL) and truncated (TrkB.T1) isoforms of tyrosine kinase receptor TrkB in the neurotrophic system may significantly affect age-associated emotional and cognitive functions, by altering brain-derived neurotrophic factor (BDNF) signaling, integral to neuronal health, cognitive functions and mood regulation. While the contribution of this imbalance to pathogenesis awaits full elucidation, this review evaluates its potential mediating role, linking emotional and cognitive decline across age-related disorders The interplay between TrkB.T1 and TrkB.FL isoforms may be considered as a pivotal shared regulator underlying this complex relationship. The current review aims to synthesize current knowledge on TrkB isoform imbalance, specifically its contribution to age-related cognitive decline and mood disorders. By examining shared pathogenic pathways between aging, cognitive decline, and mood disorders through the lens of TrkB signaling, this review uncovers potential therapeutic targets not previously considered, offering a fresh perspective on combating age-related mental health issues as well as cognitive deficits.
Collapse
Affiliation(s)
- Noa Bregman-Yemini
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, The Hebrew University, Israel
| | - Keren Nitzan
- Department of Education and Psychology, The Open University, Israel
| | - Motty Franko
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, Ben-Gurion University, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Israel.
| |
Collapse
|
11
|
Niu Z, Haley AP, Clark AL, Duarte A. Age exacerbates the negative effect of depression on executive functioning in racial and ethnic minorities. Brain Imaging Behav 2024:10.1007/s11682-024-00898-3. [PMID: 38850388 DOI: 10.1007/s11682-024-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Age and depression may interact to produce a "double jeopardy" for cognitive impairment, and executive functioning, in cognitively unimpaired aging. Few studies have considered middle age or the ethnoracial diversity of subjects, despite evidence of more severe cognitive outcomes in historically minoritized people. In this pilot study, we investigated the impact of age on depression-related cognitive impairment and the underlying brain volumes in middle-aged non-Hispanic White adults (116), and Hispanic and Black adults (60), with a total number of 176 adults. The result shows a significant interaction between age and depression for executive functioning, specifically for middle-aged Hispanic and Black adults, but not non-Hispanic White adults. Prefrontal cortex volumes, which were reduced in the Black and Hispanic compared to the non-Hispanic White adults, partially mediated the relationship between depression level and executive functioning, across age and ethnoracial group. Collectively, these results suggest that the negative impact of depression on executive functioning and Prefrontal cortex volumes integrity may be exacerbated by age and that historically minoritized people may be particularly sensitive to this double jeopardy.
Collapse
Affiliation(s)
- Zhimei Niu
- Department of Psychology, University of Texas at Austin, 108 Dean Keeton Street, Austin, TX, 78712, USA.
| | - Andreana P Haley
- Department of Psychology, University of Texas at Austin, 108 Dean Keeton Street, Austin, TX, 78712, USA
| | - Alexandra L Clark
- Department of Psychology, University of Texas at Austin, 108 Dean Keeton Street, Austin, TX, 78712, USA
| | - Audrey Duarte
- Department of Psychology, University of Texas at Austin, 108 Dean Keeton Street, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Kok DE, Saunders R, Nelson A, Smith D, Ford D, Mathers JC, McKay JA. Influence of maternal folate depletion on Art3 DNA methylation in the murine adult brain; potential consequences for brain and neurocognitive health. Mutagenesis 2024; 39:196-204. [PMID: 38417824 PMCID: PMC11040152 DOI: 10.1093/mutage/geae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
The developmental origins of health and disease hypothesis suggest early-life environment impacts health outcomes throughout the life course. In particular, epigenetic marks, including DNA methylation, are thought to be key mechanisms through which environmental exposures programme later-life health. Adequate maternal folate status before and during pregnancy is essential in the protection against neural tube defects, but data are emerging that suggest early-life folate exposures may also influence neurocognitive outcomes in childhood and, potentially, thereafter. Since folate is key to the supply of methyl donors for DNA methylation, we hypothesize that DNA methylation may be a mediating mechanism through which maternal folate influences neurocognitive outcomes. Using bisulphite sequencing, we measured DNA methylation of five genes (Art3, Rsp16, Tspo, Wnt16, and Pcdhb6) in the brain tissue of adult offspring of dams who were depleted of folate (n = 5, 0.4 mg folic acid/kg diet) during pregnancy (~19-21 days) and lactation (mean 22 days) compared with controls (n = 6, 2 mg folic acid/kg diet). Genes were selected as methylation of their promoters had previously been found to be altered by maternal folate intake in mice and humans across the life course, and because they have potential associations with neurocognitive outcomes. Maternal folate depletion was significantly associated with Art3 gene hypomethylation in subcortical brain tissue of adult mice at 28 weeks of age (mean decrease 6.2%, P = .03). For the other genes, no statistically significant differences were found between folate depleted and control groups. Given its association with neurocognitive outcomes, we suggest Art3 warrants further study in the context of lifecourse brain health. We have uncovered a potential biomarker that, once validated in accessible biospecimens and human context, may be useful to track the impact of early-life folate exposure on later-life neurocognitive health, and potentially be used to develop and monitor the effects of interventions.
Collapse
Affiliation(s)
- Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen Stippeneng 4, 6708 WE Wageningen Wageningen Campus l Building 124 (Helix), Wageningen, The Netherlands
| | - Rachael Saunders
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Darren Smith
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Dianne Ford
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Room M2.060, 2nd floor William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jill A McKay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
14
|
Jockwitz C, Krämer C, Dellani P, Caspers S. Differential predictability of cognitive profiles from brain structure in older males and females. GeroScience 2024; 46:1713-1730. [PMID: 37730943 PMCID: PMC10828131 DOI: 10.1007/s11357-023-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Structural brain imaging parameters may successfully predict cognitive performance in neurodegenerative diseases but mostly fail to predict cognitive abilities in healthy older adults. One important aspect contributing to this might be sex differences. Behaviorally, older males and females have been found to differ in terms of cognitive profiles, which cannot be captured by examining them as one homogenous group. In the current study, we examined whether the prediction of cognitive performance from brain structure, i.e. region-wise grey matter volume (GMV), would benefit from the investigation of sex-specific cognitive profiles in a large sample of older adults (1000BRAINS; N = 634; age range 55-85 years). Prediction performance was assessed using a machine learning (ML) approach. Targets represented a) a whole-sample cognitive component solution extracted from males and females, and b) sex-specific cognitive components. Results revealed a generally low predictability of cognitive profiles from region-wise GMV. In males, low predictability was observed across both, the whole sample as well as sex-specific cognitive components. In females, however, predictability differences across sex-specific cognitive components were observed, i.e. visual working memory (WM) and executive functions showed higher predictability than fluency and verbal WM. Hence, results accentuated that addressing sex-specific cognitive profiles allowed a more fine-grained investigation of predictability differences, which may not be observable in the prediction of the whole-sample solution. The current findings not only emphasize the need to further investigate the predictive power of each cognitive component, but they also emphasize the importance of sex-specific analyses in older adults.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Speh A, Kramberger MG, Winblad B, Bäckman L, Qiu C, Laukka EJ. Change in cardiovascular health and rate of cognitive decline in older adults: a 15-year population-based study. BMC Geriatr 2024; 24:263. [PMID: 38500037 PMCID: PMC10949596 DOI: 10.1186/s12877-024-04856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Previous research on associations between cardiovascular health, measured at a single timepoint, and rate of age-related cognitive decline shows divergent findings dependent on the participants' age and the health metric studied. The aim of this study was to add to the knowledge in this field by investigating whether change in cardiovascular health, assessed with Life's Simple 7 (LS7) score, is associated with rate of cognitive change in young-old and old-old adults. METHODS The study included 1022 participants aged ≥ 60 years from the Swedish National Study on Aging and Care-Kungsholmen (SNAC-K), who underwent repeated neuropsychological testing (episodic memory, semantic memory, verbal fluency, and perceptual speed) across up to 15 years. LS7, composed of seven cardiovascular health metrics (smoking, diet, physical activity, body mass index, plasma glucose, total serum cholesterol, and blood pressure), was assessed at baseline and at the 6-year follow-up. Change in LS7 was calculated as the difference between baseline and 6 years (range - 5 to 8 points) and categorised into worse (-5 to -2 points), stable (-1 to 1 points), and improved (2 to 8 points). Change in cognitive performance as a function of LS7 change categories was estimated using linear mixed-effects models. RESULTS Participants were classified as stable (67.1%), improved (21.0%), or worse (11.8%) according to changes in LS7 score. Both the worse and improved categories were associated with faster cognitive decline. Age-stratified analyses revealed that worsening of LS7 was clearly associated with faster cognitive decline in the old-old (≥ 78 years), whereas improvement tended be associated with faster cognitive decline in the young-old (< 78 years) group. CONCLUSIONS Change in cardiovascular health in old age may lead to accelerated cognitive decline, particularly in late senescence. These results suggest that it is important to monitor and maintain cardiovascular health status in very old adults.
Collapse
Affiliation(s)
- Andreja Speh
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet- Stockholm University, Tomtebodavägen 18A, Solna, Stockholm, Sweden.
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Milica G Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Bäckman
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet- Stockholm University, Tomtebodavägen 18A, Solna, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet- Stockholm University, Tomtebodavägen 18A, Solna, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet- Stockholm University, Tomtebodavägen 18A, Solna, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
16
|
Daniel E, Deng F, Patel SK, Sedrak MS, Young J, Kim H, Razavi M, Sun CL, Root JC, Ahles TA, Dale W, Chen BT. Effect of chemotherapy on hippocampal volume and shape in older long-term breast cancer survivors. Front Aging Neurosci 2024; 16:1347721. [PMID: 38524113 PMCID: PMC10957749 DOI: 10.3389/fnagi.2024.1347721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose The objective of this study was to assess changes in hippocampal volume and shape in older long-term breast cancer survivors who were exposed to chemotherapy 5-15 years prior. Methods This study recruited female long-term breast cancer survivors aged 65 years or older with a history of chemotherapy (C+), age-matched breast cancer survivors who did not receive chemotherapy (C-), and healthy controls (HC). The participants were recruited 5-15 years after chemotherapy at time point 1 (TP1) and were followed up for 2 years at time point 2 (TP2). Assessments included hippocampal volume and shape from brain MRI scans and neuropsychological (NP) tests. Results At TP1, each of the three groups was comprised of 20 participants. The C+ group exhibited a hippocampal volume loss estimated in proportion with total intracranial volume (ICV) in both the left and right hemispheres from TP1 to TP2. Regarding the hippocampal shape at TP1, the C+ group displayed inward changes compared to the control groups. Within the C+ group, changes in right hippocampal volume adjusted with ICV were positively correlated with crystalized composite scores (R = 0.450, p = 0.044). Additionally, in C+ groups, chronological age was negatively correlated with right hippocampal volume adjusted with ICV (R = -0.585, p = 0.007). Conclusion The observed hippocampal volume reduction and inward shape deformation within the C+ group may serve as neural basis for cognitive changes in older long-term breast cancer survivors with history of chemotherapy treatment.
Collapse
Affiliation(s)
- Ebenezer Daniel
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Frank Deng
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Sunita K. Patel
- Department of Population Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Mina S. Sedrak
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, United States
| | - Jonathan Young
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Heeyoung Kim
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA, United States
| | - Marianne Razavi
- Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Can-Lan Sun
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA, United States
| | - James C. Root
- Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tim A. Ahles
- Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - William Dale
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA, United States
- Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
17
|
Wang J, Hill‐Jarrett T, Buto P, Pederson A, Sims KD, Zimmerman SC, DeVost MA, Ferguson E, Lacar B, Yang Y, Choi M, Caunca MR, La Joie R, Chen R, Glymour MM, Ackley SF. Comparison of approaches to control for intracranial volume in research on the association of brain volumes with cognitive outcomes. Hum Brain Mapp 2024; 45:e26633. [PMID: 38433682 PMCID: PMC10910271 DOI: 10.1002/hbm.26633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Most neuroimaging studies linking regional brain volumes with cognition correct for total intracranial volume (ICV), but methods used for this correction differ across studies. It is unknown whether different ICV correction methods yield consistent results. Using a brain-wide association approach in the MRI substudy of UK Biobank (N = 41,964; mean age = 64.5 years), we used regression models to estimate the associations of 58 regional brain volumetric measures with eight cognitive outcomes, comparing no correction and four ICV correction approaches. Approaches evaluated included: no correction; dividing regional volumes by ICV (proportional approach); including ICV as a covariate in the regression (adjustment approach); and regressing the regional volumes against ICV in different normative samples and using calculated residuals to determine associations (residual approach). We used Spearman-rank correlations and two consistency measures to quantify the extent to which associations were inconsistent across ICV correction approaches for each possible brain region and cognitive outcome pair across 2320 regression models. When the association between brain volume and cognitive performance was close to null, all approaches produced similar estimates close to the null. When associations between a regional volume and cognitive test were not null, the adjustment and residual approaches typically produced similar estimates, but these estimates were inconsistent with results from the crude and proportional approaches. For example, when using the crude approach, an increase of 0.114 (95% confidence interval [CI]: 0.103-0.125) in fluid intelligence was associated with each unit increase in hippocampal volume. However, when using the adjustment approach, the increase was 0.055 (95% CI: 0.043-0.068), while the proportional approach showed a decrease of -0.025 (95% CI: -0.035 to -0.014). Different commonly used methods to correct for ICV yielded inconsistent results. The proportional method diverges notably from other methods and results were sometimes biologically implausible. A simple regression adjustment for ICV produced biologically plausible associations.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | | | - Peter Buto
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Annie Pederson
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Kendra D. Sims
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Scott C. Zimmerman
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michelle A. DeVost
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Erin Ferguson
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Benjamin Lacar
- Bakar Computational Health Sciences InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yulin Yang
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Minhyuk Choi
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michelle R. Caunca
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ruijia Chen
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - M. Maria Glymour
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Sarah F. Ackley
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
18
|
Jauregi Zinkunegi A, Bruno D, Betthauser TJ, Koscik RL, Asthana S, Chin NA, Hermann BP, Johnson SC, Mueller KD. A comparison of story-recall metrics to predict hippocampal volume in older adults with and without cognitive impairment. Clin Neuropsychol 2024; 38:453-470. [PMID: 37349970 PMCID: PMC10739621 DOI: 10.1080/13854046.2023.2223389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Objective: Process-based scores of episodic memory tests, such as the recency ratio (Rr), have been found to compare favourably to, or to be better than, most conventional or "traditional" scores employed to estimate memory ability in older individuals (Bock et al., 2021; Bruno et al., 2019). We explored the relationship between process-based scores and hippocampal volume in older adults, while comparing process-based to traditional story recall-derived scores, to examine potential differences in their predictive abilities. Methods: We analysed data from 355 participants extracted from the WRAP and WADRC databases, who were classified as cognitively unimpaired, or exhibited mild cognitive impairment (MCI) or dementia. Story Recall was measured with the Logical Memory Test (LMT) from the Weschler Memory Scale Revised, collected within twelve months of the magnetic resonance imaging scan. Linear regression analyses were conducted with left or right hippocampal volume (HV) as outcomes separately, and with Rr, Total ratio, Immediate LMT, or Delayed LMT scores as predictors, along with covariates. Results: Higher Rr and Tr scores significantly predicted lower left and right HV, while Tr showed the best model fit of all, as indicated by AIC. Traditional scores, Immediate LMT and Delayed LMT, were significantly associated with left and right HV, but were outperformed by both process-based scores for left HV, and by Tr for right HV. Conclusions: Current findings show the direct relationship between hippocampal volume and all the LMT scores examined here, and that process-based scores outperform traditional scores as markers of hippocampal volume.
Collapse
Affiliation(s)
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, UK
| | - Tobey J. Betthauser
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Nathaniel A. Chin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Department of Neurology, University of Wisconsin – Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Kimberly D. Mueller
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Sosa S, Bringas G, Urrutia N, Peñalver AI, López D, González E, Fernández A, Hernández ZM, Viña A, Peña Y, Batista JF, Valenzuela C, León K, Crombet T, Rodríguez T, Pérez L. NeuroEPO plus (NeuralCIM ®) in mild-to-moderate Alzheimer's clinical syndrome: the ATHENEA randomized clinical trial. Alzheimers Res Ther 2023; 15:215. [PMID: 38093366 PMCID: PMC10716956 DOI: 10.1186/s13195-023-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND NeuroEPO plus is a recombinant human erythropoietin without erythropoietic activity and shorter plasma half-life due to its low sialic acid content. NeuroEPO plus prevents oxidative damage, neuroinflammation, apoptosis and cognitive deficit in an Alzheimer's disease (AD) models. The aim of this study was to assess efficacy and safety of neuroEPO plus. METHODS This was a double-blind, randomized, placebo-controlled, phase 2-3 trial involving participants ≥ 50 years of age with mild-to-moderate AD clinical syndrome. Participants were randomized in a 1:1:1 ratio to receive 0.5 or 1.0 mg of neuroEPO plus or placebo intranasally 3 times/week for 48 weeks. The primary outcome was change in the 11-item cognitive subscale of the AD Assessment Scale (ADAS-Cog11) score from baseline to 48 weeks (range, 0 to 70; higher scores indicate greater impairment). Secondary outcomes included CIBIC+, GDS, MoCA, NPI, Activities of Daily Living Scales, cerebral perfusion, and hippocampal volume. RESULTS A total of 174 participants were enrolled and 170 were treated (57 in neuroEPO plus 0.5 mg, 56 in neuroEPO plus 1.0 mg and 57 in placebo group). Mean age, 74.0 years; 121 (71.2%) women and 85% completed the trial. The median change in ADAS-Cog11 score at 48 weeks was -3.0 (95% CI, -4.3 to -1.7) in the 0.5 mg neuroEPO plus group, -4.0 (95% CI, -5.9 to -2.1) in the 1.0 mg neuroEPO plus group and 4.0 (95% CI, 1.9 to 6.1) in the placebo group. The difference of neuroEPO plus 0.5 mg vs. placebo was 7.0 points (95% CI, 4.5-9.5) P = 0.000 and between the neuroEPO plus 1.0 mg vs. placebo was 8.0 points (95% CI, 5.2-10.8) P = 0.000. NeuroEPO plus treatment induced a statistically significant improvement in some of clinical secondary outcomes vs. placebo including CIBIC+, GDS, MoCA, NPI, and the brain perfusion. CONCLUSIONS Among participants with mild-moderate Alzheimer's disease clinical syndrome, neuroEPO plus improved the cognitive evaluation at 48 weeks, with a very good safety profile. Larger trials are warranted to determine the efficacy and safety of neuroEPO plus in Alzheimer's disease. TRIAL REGISTRATION https://rpcec.sld.cu Identifier: RPCEC00000232.
Collapse
Affiliation(s)
- Saily Sosa
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Giosmany Bringas
- National Institute of Neurology (INN), Calle 29 esquina D, Vedado, Havana, CP 10 400, Cuba
| | - Nelky Urrutia
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Ana Ivis Peñalver
- National Institute of Neurology (INN), Calle 29 esquina D, Vedado, Havana, CP 10 400, Cuba
| | - Danay López
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Evelio González
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Ana Fernández
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Zenaida Milagros Hernández
- Center of Neurological Restoration (CIREN), Calle 216 esquina 13, Siboney, Playa, Havana, CP 11 600, Cuba
| | - Ariel Viña
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Yamile Peña
- Center for Clinical Investigation, CENTIS, Calle 45 No. 4501, esquina a 34, Reparto Kolhy, Havana, CP 11 300, Cuba
| | - Juan Felipe Batista
- Center for Clinical Investigation, CENTIS, Calle 45 No. 4501, esquina a 34, Reparto Kolhy, Havana, CP 11 300, Cuba
| | - Carmen Valenzuela
- Institute of Cybernetics, Mathematics and Physics (ICIMAF), Calle 15 #551 entre C y D, Plaza de la Revolución, Vedado, Havana, CP 10 400, Cuba
| | - Kalet León
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Tania Crombet
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Teresita Rodríguez
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Leslie Pérez
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba.
| |
Collapse
|
20
|
Du L, Hermann BP, Jonaitis EM, Cody KA, Rivera-Rivera L, Rowley H, Field A, Eisenmenger L, Christian BT, Betthauser TJ, Larget B, Chappell R, Janelidze S, Hansson O, Johnson SC, Langhough R. Harnessing cognitive trajectory clusterings to examine subclinical decline risk factors. Brain Commun 2023; 5:fcad333. [PMID: 38107504 PMCID: PMC10724051 DOI: 10.1093/braincomms/fcad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.
Collapse
Affiliation(s)
- Lianlian Du
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Neurology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Karly Alex Cody
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Leonardo Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Howard Rowley
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bradley T Christian
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bret Larget
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rick Chappell
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund 205 02, Sweden
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca Langhough
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
21
|
Henze GI, Konzok J, Kudielka BM, Wüst S, Nichols TE, Kreuzpointner L. Associations between cortisol stress responses and limbic volume and thickness in young adults: An exploratory study. Eur J Neurosci 2023; 58:3962-3980. [PMID: 37806665 DOI: 10.1111/ejn.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
The investigation of the relationship between neural measures of limbic structures and hypothalamic pituitary adrenal axis responses to acute stress exposure in healthy young adults has so far focused in particular on task-based and resting state functional connectivity studies. Thus, the present study examined the association between limbic volume and thickness measures and acute cortisol responses to the psychosocial stress paradigm ScanSTRESS. Using Permutation Analysis of Linear Models controlling for sex, age and total brain volume, the associations between (sex-specific) cortisol increases and human connectome project style anatomical variables of limbic structures (i.e. volume and thickness) were investigated in 66 healthy and young (18-33 years) subjects (35 men, 31 women taking oral contraceptives). In addition, exploratory (sex-specific) bivariate correlations between cortisol increases and structural measures were conducted. The present data provide interesting new insights into the involvement of striato-limbic structures in psychosocial stress processing, suggesting that acute cortisol stress responses are also associated with mere structural measures of the human brain. Thus, our preliminary findings suggest that not only situation- and context-dependent reactions of the limbic system (i.e. blood oxygenation level-dependent reactions) are related to acute (sex-specific) cortisol stress responses but also basal and somewhat more constant structural measures. Our study hereby paves the way for further analyses in this context and highlights the relevance of the topic.
Collapse
Affiliation(s)
- Gina-Isabelle Henze
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | | | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
22
|
Tian J, Guo L, Wang T, Jia K, Swerdlow RH, Zigman JM, Du H. Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline. JCI Insight 2023; 8:166175. [PMID: 37212281 DOI: 10.1172/jci.insight.166175] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as "acyl-ghrelin") marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology and
| | - Lan Guo
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology and
| | - Kun Jia
- Department of Pharmacology and Toxicology and
| | - Russell H Swerdlow
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M Zigman
- Departments of Internal Medicine and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heng Du
- Department of Pharmacology and Toxicology and
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Zhang Y, Pan J, Liu Y, Zhang X, Cheng K. Effects of Ficus pandurata Hance var. angustifolia Cheng Flavonoids on Intestinal Barrier and Cognitive Function by Regulating Intestinal Microbiota. Foods 2023; 12:foods12081682. [PMID: 37107477 PMCID: PMC10137925 DOI: 10.3390/foods12081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
More and more evidence has supported the interaction between circadian rhythms and intestinal microbes, which provides new insights into how dietary nutrition can improve host health. Our research showed that Ficus pandurata Hance var. angustifolia Cheng flavonoids (FCF) ameliorated the pathological damage of colon and abnormal intestinal microflora structure in mice with circadian clock disorder and improved their exploration and memory behaviors. Mechanism studies have shown that FCF is involved in regulating metabolic pathways and related metabolites, regulating the expression of related tight junction proteins in the colon and the levels of Aβ and inflammatory factors in the hippocampus. Further analysis found that these metabolites showed a certain correlation with intestinal flora and played a certain role in alleviating intestinal physiological damage and cognitive decline.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Kejun Cheng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| |
Collapse
|
24
|
Noroozian M, Kormi-Nouri R, Nyberg L, Persson J. Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence. Cereb Cortex 2023; 33:3080-3097. [PMID: 35802485 DOI: 10.1093/cercor/bhac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25-80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure.
Collapse
Affiliation(s)
- Maryam Noroozian
- Department of Psychiatry, School of Medicine, South Kargar Str., Tehran 13185/1741, Iran
| | - Reza Kormi-Nouri
- School of Law, Psychology and Social Work, Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
| | - Jonas Persson
- School of Law, Psychology and Social Work, Center for Lifespan Developmental Research (LEADER), Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
- Aging Research Center (ARC), Stockholm University and Karolinska Institute, Tomtebodavägen 18A, Solna 171 65, Sweden
| |
Collapse
|
25
|
Hu X, Meier M, Pruessner J. Challenges and opportunities of diagnostic markers of Alzheimer's disease based on structural magnetic resonance imaging. Brain Behav 2023; 13:e2925. [PMID: 36795041 PMCID: PMC10013953 DOI: 10.1002/brb3.2925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVES This article aimed to carry out a narrative literature review of early diagnostic markers of Alzheimer's disease (AD) based on both micro and macro levels of pathology, indicating the shortcomings of current biomarkers and proposing a novel biomarker of structural integrity that associates the hippocampus and adjacent ventricle together. This could help to reduce the influence of individual variety and improve the accuracy and validity of structural biomarker. METHODS This review was based on presenting comprehensive background of early diagnostic markers of AD. We have compiled those markers into micro level and macro level, and discussed the advantages and disadvantages of them. Eventually the ratio of gray matter volume to ventricle volume was put forward. RESULTS The costly methodologies and related high patient burden of "micro" biomarkers (cerebrospinal fluid biomarkers) hinder the implementation in routine clinical examination. In terms of "macro" biomarkers- hippocampal volume (HV), there is a large variation of it among population, which undermines its validity Considering the gray matter atrophies while the adjacent ventricular volume enlarges, we assume the hippocampal to ventricle ratio (HVR) is a more reliable marker than HV alone the emerging evidence showed hippocampal to ventricle ratio predicts memory functions better than HV alone in elderly sample. CONCLUSIONS The ratio between gray matter structures and adjacent ventricular volumes counts as a promising superior diagnostic marker of early neurodegeneration.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Maria Meier
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Jens Pruessner
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Liu Y, Bilen M, McNicoll MM, Harris RA, Fong BC, Iqbal MA, Paul S, Mayne J, Walker K, Wang J, Figeys D, Slack RS. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer's disease. Cell Death Dis 2023; 14:138. [PMID: 36801910 PMCID: PMC9938901 DOI: 10.1038/s41419-023-05650-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.
Collapse
Affiliation(s)
- Yubing Liu
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Maria Bilen
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Marie-Michelle McNicoll
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Richard A. Harris
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Bensun C. Fong
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Mohamed Ariff Iqbal
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Smitha Paul
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Janice Mayne
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Krystal Walker
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Jing Wang
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada ,grid.412687.e0000 0000 9606 5108Regenerative Medicine Program, Ottawa Hospital Research Institute, K1H 8L6 Ottawa, Canada
| | - Daniel Figeys
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Ruth S. Slack
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| |
Collapse
|
27
|
Sugimoto H, Sekiguchi T, Otake-Matsuura M. Association between social comparison orientation and hippocampal properties in older adults: A multimodal MRI study. Soc Neurosci 2023; 17:544-557. [PMID: 36692233 DOI: 10.1080/17470919.2023.2166580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Social comparison orientation (SCO) refers to the tendency to compare oneself with others and has two distinct dimensions: one about opinions and the other about abilities. Although dissociable neural mechanisms underlying the two dimensions of social comparison can be assumed, little is known about how each dimension of SCO is associated with cognitive and brain health among older adults. To investigate this, we analyzed the SCO scale questionnaire data, neuropsychological assessment data, and multimodal MRI data collected from 90 community-dwelling older adults. We found that global cognitive performance was positively correlated with the score of the opinion subscale but not with the score of the ability subscale and the total score. Similarly, hippocampal volume was positively correlated with opinion score alone. Additionally, the resting-state functional connectivity between the hippocampal seed and the default mode network showed a positive correlation only with the opinion score. Moreover, fractional anisotropy in the hippocampal cingulum was positively correlated with opinion score only. These findings suggest that global cognition and hippocampal properties in older age are associated with the SCO of opinion, which could reflect a regular habit of performing the types of cognitively demanding activities involved in evaluation of self and other opinions.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | | | | |
Collapse
|
28
|
Wang X, Si K, Gu W, Wang X. Mitigating effects and mechanisms of Tai Chi on mild cognitive impairment in the elderly. Front Aging Neurosci 2023; 14:1028822. [PMID: 36760710 PMCID: PMC9906996 DOI: 10.3389/fnagi.2022.1028822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Mild cognitive impairment (MCI) is a major public health concern that endangers health and decreases the quality of life of the elderly around the world. A recent clinical guideline has recommended regular exercise (twice per week) for patients with MCI as part of an overall approach to management. Tai Chi, a form of light-to-moderate-intensity mind-body exercise, is particularly suitable for seniors. This review aims to summarize epidemiological studies related to the effects of Tai Chi on symptom remission in older adults with MCI and reveal the potential mechanisms. Evidence suggested that Tai Chi can improve cognitive functions and alleviate the accompanying symptoms of MCI in the elderly potentially by activating the expression of signals in different brain regions, altering their connectivity, increasing the brain volume, and modulating brain-derived neurotropic and inflammation factors. Studies comparing various types of Tai Chi may contribute to the identification of paradigms that have appropriate intensities and difficulty and exert good effects on older people with MCI. In addition, studies are warranted to determine the frequency and duration of training that can optimize the beneficial effects of Tai Chi on MCI.
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Keyi Si
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
29
|
Yang Y, Wang F, Andrade-Machado R, De Vito A, Wang J, Zhang T, Liu H. Disrupted functional connectivity patterns of the left inferior frontal gyrus subregions in benign childhood epilepsy with centrotemporal spikes. Transl Pediatr 2022; 11:1552-1561. [PMID: 36247884 PMCID: PMC9561512 DOI: 10.21037/tp-22-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Benign epilepsy with centrotemporal spikes (BECTS) is one of the most common pediatric epileptic syndromes. Recent studies have shown that BECTS can lead to significant language dysfunction. Although research supports the role of the left inferior frontal gyrus (LIFG) in BECTS, it is unclear whether the subregions of the LIFG show different change patterns in patients with this syndrome. METHODS Using resting-state functional magnetic resonance imaging (fMRI) data in a group of 49 BECTS patients and 49 healthy controls, we investigated whether the BECTS patients show abnormal connectivity patterns of the LIFG subregions. RESULTS Compared with healthy controls, the BECTS patients exhibited higher connectivity between the following: the inferior frontal sulcus (IFS) and the right anterior cingulate cortex (ACC), and the ventral area 44 (A44v) region and the left hippocampus/parahippocampus. Also, a decreased connectivity was found between the IFS and the left inferior temporal gyrus (ITG). No other significant differences in functional connectivity were found in the other 4 functional subregions of the LIFG in the BECTS. CONCLUSIONS These findings provide evidence for BECTS-related functional connectivity patterns of the LIFG subregions and suggest that different subregions may be involved in different neural circuits associated with language function in the BECTS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China.,Department of Radiology, Suining Central Hospital, Suining, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - René Andrade-Machado
- Epilepsy Fellow at Children Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
30
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
31
|
Ludyga S, Held S, Rappelt L, Donath L, Klatt S. A network meta-analysis comparing the effects of exercise and cognitive training on executive function in young and middle-aged adults. Eur J Sport Sci 2022:1-11. [PMID: 35848068 DOI: 10.1080/17461391.2022.2099765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn young and middle-aged adults, executive function is associated with success in work-life and mental health. Physical activity with and without cognitive training has the potential to benefit executive function, but its relative effectiveness remains unclear. This network meta-analysis compares the effectiveness of different exercise and cognitive training types and their combination on executive function in young and middle-aged adults. PubMed, Web of Science, MEDLINE, Cochrane, PsycINFO, and SPORTDiscus were searched for experimental studies that compared pre- to posttest changes in inhibitory control and/ or working memory between one or more intervention groups and a control group. Interventions were ranked on their relative effectiveness using P-scores. Study quality was rated using the PEDro scale. Forty-six studies were included and yielded 30 and 70 pair-wise effect sizes for the inhibitory control and working memory networks, respectively. With one exception, all studies were of high quality. Combined exercise and working memory training induced the greatest benefits for working memory (standardized mean differences, SMD = 0.59), whereas training a single executive function (SMD = 0.32) was most effective for inhibitory control. The effectiveness of working memory training (SMD ≥ 0.27) and coordinative exercise (SMD ≥ 0.20 to 0.29) ranked second and third for both executive function outcomes. In contrast, the effectiveness of endurance exercise was comparable to active controls on both networks. In young and middle-aged adults, exercise with coordinative demands seems to have an effectiveness similar to working memory training. The combination of exercise and cognitive training further increases executive function benefits.
Collapse
Affiliation(s)
| | - Steffen Held
- German Sport University; Department of Intervention Research in Exercise Training
| | - Ludwig Rappelt
- German Sport University; Department of Intervention Research in Exercise Training
| | - Lars Donath
- German Sport University; Department of Intervention Research in Exercise Training
| | - Stefanie Klatt
- German Sport University; Department of Cognitive and Team/Racket Sport Research
| |
Collapse
|
32
|
Boutzoukas EM, O'Shea A, Kraft JN, Hardcastle C, Evangelista ND, Hausman HK, Albizu A, Van Etten EJ, Bharadwaj PK, Smith SG, Song H, Porges EC, Hishaw A, DeKosky ST, Wu SS, Marsiske M, Alexander GE, Cohen R, Woods AJ. Higher white matter hyperintensity load adversely affects pre-post proximal cognitive training performance in healthy older adults. GeroScience 2022; 44:1441-1455. [PMID: 35278154 PMCID: PMC9213634 DOI: 10.1007/s11357-022-00538-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive training has shown promise for improving cognition in older adults. Age-related neuroanatomical changes may affect cognitive training outcomes. White matter hyperintensities are one common brain change in aging reflecting decreased white matter integrity. The current study assessed (1) proximal cognitive training performance following a 3-month randomized control trial and (2) the contribution of baseline whole-brain white matter hyperintensity load, or total lesion volume (TLV), on pre-post proximal training change. Sixty-two healthy older adults were randomized to either adaptive cognitive training or educational training control interventions. Repeated-measures analysis of covariance revealed two-way group × time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (total training composite) and sub-composite (processing speed training composite, working memory training composite) measures compared to education training counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on processing speed training sub-composite (β = -0.19, p = 0.04), but not other composite measures. These findings demonstrate the utility of cognitive training for improving post-intervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appears to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Collapse
Affiliation(s)
- Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alex Hishaw
- Department Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Botdorf M, Canada KL, Riggins T. A meta-analysis of the relation between hippocampal volume and memory ability in typically developing children and adolescents. Hippocampus 2022; 32:386-400. [PMID: 35301771 PMCID: PMC9313816 DOI: 10.1002/hipo.23414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
Memory is supported by a network of brain regions, with the hippocampus serving a critical role in this cognitive process. Previous meta-analyses on the association between hippocampal structure and memory have largely focused on adults. Multiple studies have since suggested that hippocampal volume is related to memory performance in children and adolescents; however, the strength and direction of this relation varies across reports, and thus, remains unclear. To further understand this brain-behavior relation, we conducted a meta-analysis to investigate the association between hippocampal volume (assessed as total volume) and memory during typical development. Across 25 studies and 61 memory outcomes with 1357 participants, results showed a small, but significant, positive association between total hippocampal volume and memory performance. Estimates of the variability across studies in the relation between total volume and memory were not explained by differences in memory task type (delayed vs. immediate; relational vs. nonrelational), participant age range, or the method of normalization of hippocampal volumes. Overall, findings suggest that larger total hippocampal volume relates to better memory performance in children and adolescents and that this relation is similar across the memory types and age ranges assessed. To facilitate enhanced generalization across studies in the future, we discuss considerations for the field moving forward.
Collapse
Affiliation(s)
- Morgan Botdorf
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey L. Canada
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Tracy Riggins
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
34
|
Thapaliya K, Staines D, Marshall-Gradisnik S, Su J, Barnden L. Volumetric differences in hippocampal subfields and associations with clinical measures in myalgic encephalomyelitis/chronic fatigue syndrome. J Neurosci Res 2022; 100:1476-1486. [PMID: 35355311 PMCID: PMC9321967 DOI: 10.1002/jnr.25048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients suffer from a cognitive and memory dysfunction. Because the hippocampus plays a key role in both cognition and memory, we tested for volumetric differences in the subfields of the hippocampus in ME/CFS. We estimated hippocampal subfield volumes for 25 ME/CFS patients who met Fukuda criteria only (ME/CFSFukuda), 18 ME/CFS patients who met the stricter ICC criteria (ME/CFSICC), and 25 healthy controls (HC). Group comparisons with HC detected extensive differences in subfield volumes in ME/CFSICC but not in ME/CFSFukuda. ME/CFSICC patients had significantly larger volume in the left subiculum head (p < 0.001), left presubiculum head (p = 0.0020), and left fimbria (p = 0.004). Correlations of hippocampus subfield volumes with clinical measures were stronger in ME/CFSICC than in ME/CFSFukuda patients. In ME/CFSFukuda patients, we detected positive correlations between fatigue and hippocampus subfield volumes and a negative correlation between sleep disturbance score and the right CA1 body volume. In ME/CFSICC patients, we detected a strong negative relationship between fatigue and left hippocampus tail volume. Strong negative relationships were also detected between pain and SF36 physical scores and two hippocampal subfield volumes (left: GC‐ML‐DG head and CA4 head). Our study demonstrated that volumetric differences in hippocampal subfields have strong statistical inference for patients meeting the ME/CFSICC case definition and confirms hippocampal involvement in the cognitive and memory problems of ME/CFSICC patients.
Collapse
Affiliation(s)
- Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jiasheng Su
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
35
|
Říha P, Brabenec L, Mareček R, Rektor I, Rektorová I. The reduction of hippocampal volume in Parkinson's disease. J Neural Transm (Vienna) 2022; 129:575-580. [PMID: 35122140 DOI: 10.1007/s00702-021-02451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The volume of the hippocampus decreases more slowly than the volume of the cortex during normal aging. We explored changes in the hippocampus-to-cortex volume (HV:CTV) ratio with increasing age in non-demented Parkinson's disease (PD) patients as compared to healthy controls (HC). We also evaluated the association between the HV:CTV ratio and cognitive outcomes. Altogether 130 participants without dementia aged 51-88 years were consecutively enrolled, including 54 PD patients (mean age 67, standard deviation (SD) 8 years) and 76 HC (mean age 69, SD 7 years). All participants underwent structural magnetic resonance examination and psychological evaluation. Hippocampal and cortex volumes were determined from T1 and FLAIR scans using FreeSurfer software, and the HV:CTV ratio was calculated. Regression lines for age-dependence of the HV:CTV ratio for PD and HC groups were calculated. We further assessed the association between the HV:CTV ratio and cognitive tests examining hippocampus-related cognitive functions. PD patients and age-matched HC showed a significant difference in age-dependence of HV:CTV ratio (p value = 0.012), with a decreasing slope in PD and increasing slope in HC. In the PD group, a significant correlation (R = 0.561, p = 0.024) was observed between the HV:CTV ratio and the Digit Symbol-Coding test. The reduction of HV:CTV ratio is accelerated in pathological aging due to PD pathology. The HV:CTV ratio was associated with impaired processing speed, i.e., the cognitive function that is linked to subcortical alterations of both associated basal ganglia circuitry and the hippocampus.
Collapse
Affiliation(s)
- Pavel Říha
- First Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Luboš Brabenec
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radek Mareček
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- Movement Disorders Center, First Department of Neurology, Medical Faculty of Masaryk UniversitySt. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic. .,CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Irena Rektorová
- Movement Disorders Center, First Department of Neurology, Medical Faculty of Masaryk UniversitySt. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
36
|
Indahlastari A, Albizu A, Kraft JN, O'Shea A, Nissim NR, Dunn AL, Carballo D, Gordon MP, Taank S, Kahn AT, Hernandez C, Zucker WM, Woods AJ. Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimul 2021; 14:1205-1215. [PMID: 34371212 PMCID: PMC8892686 DOI: 10.1016/j.brs.2021.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Working memory decline has been associated with normal aging. The frontal brain structure responsible for this decline is primarily located in the prefrontal cortex (PFC). Our previous neuroimaging study demonstrated a significant change in functional connectivity between the left dorsolateral PFC (DLPFC) and left ventrolateral PFC (VLPFC) when applying 2 mA tDCS in MRI scanner during an N-Back task. These regions were part of the working memory network. The present study is the first study that utilizes individualized finite element models derived from older adults' MRI to predict significant changes of functional connectivity observed from an acute tDCS application. METHODS Individualized head models from 15 healthy older adults (mean age = 71.3 years) were constructed to create current density maps. Each head model was segmented into 11 tissue types: white matter, gray matter, CSF, muscle, blood vessels, fat, eyes, air, skin, cancellous, and cortical bone. Electrodes were segmented from T1-weighted images and added to the models. Computed median and maximum current density values in the left DLPFC and left VLPFC regions of interest (ROIs) were correlated with beta values as functional connectivity metrics measured in different timepoint (baseline, during stimulation) and stimulation condition (active and sham). MAIN RESULTS Positive significant correlations (R2 = 0.523 for max J, R2 = 0.367 for median J, p < 0.05) were found between the beta values and computed current densities in the left DLPFC ROIs for active stimulation, but no significant correlation was found during sham stimulation. We found no significant correlation between connectivity and current densities computed in the left VLPFC for both active and sham stimulation. CONCLUSIONS The amount of current within the left DLPFC ROIs was found positively correlated with changes in functional connectivity between left DLPFC and left VLPFC during active 2 mA stimulation. Future work may include expansion of number of participants to further test the accuracy of tDCS models used to predict tDCS-induced functional connectivity changes within the working memory network.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ayden L Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Daniela Carballo
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael P Gordon
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Shreya Taank
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alex T Kahn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cindy Hernandez
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - William M Zucker
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
37
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|