1
|
Acutain MF, Baez MV. Reduced expression of GluN2A induces a delay in neuron maturation. J Neurochem 2024; 168:4001-4013. [PMID: 38037434 DOI: 10.1111/jnc.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
NMDA receptors (NMDARs) play an important role in synaptic plasticity both in physiological and pathological conditions. GluN2A and GluN2B are the most expressed NMDAR regulatory subunits, in the hippocampus and other cognitive-related brain structures. GluN2B is characteristic of immature structures and GluN2A of mature ones. Changes in GluN2A expression were associated with complex phenotypes that led to complex neurodevelopmental disorders, including the occurrence of seizures. However, little is known about the role of GluN2A in these phenotypes. In this work, we reduced GluN2A expression in mature neuronal cultures and observed an altered GluN2A/GluN2B ratio. Furthermore, those neurons exhibit an increase in immature dendritic spines and dendritic branching, as well as an increased response to glutamate stimulus. This phenotype (considering GluN2A/GluN2B ratio, index branching and glutamate response) resembles those observed at immature neuronal stages in vitro. We propose that this immature phenotype led to a higher response to glutamate stimulus which, in vivo, would be the basis of reduced threshold for seizure onset in GluN2A-pathological conditions.
Collapse
Affiliation(s)
- María Florencia Acutain
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
| | - María Verónica Baez
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
- 1UA de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, UBA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
3
|
Khodadadi M, Pirzad Jahromi G, Meftahi GH, Khodadadi H, Hadipour M, Ezami M. Crocin nano-chitosan-coated compound mitigates hippocampal blood-brain barrier disruption, anxiety, and cognitive deficits in chronic immobilization stress-induced rats. Heliyon 2024; 10:e39203. [PMID: 39640648 PMCID: PMC11620202 DOI: 10.1016/j.heliyon.2024.e39203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Stressful conditions can disrupt the central nervous system's normal homeostasis and physiological functions, resulting in blood-brain barrier malfunction, memory and learning impairment, anxiety, etc. Crocin is a long-investigated natural compound that has been documented to have anti-inflammation and neuroprotective effects, albeit it comes with some limitations such as low stability and bioavailability. Therefore, we aimed to overcome crocin's limitations by coating crocin with a nano-carrier (chitosan) in the chronic immobilization stress-induced rat model. Crocin was encapsulated into chitosan nanoparticles by a modified method. A total of 35 male Wistar rats were selected as our study subjects (220-250 g) which were randomly divided into 5 groups (control, stress, nanoparticle, crocin, and chitosan). Chronic immobilization stress was induced by placing rats for 2 h into a plastic bottle with specific measurements (for 14 consecutive days) to prevent animals from moving. To evaluate the memory and learning changes, we used the Barnes maze test and the Passive avoidance test followed by the evaluation of the N-methyl-D-aspartate |(NMDA) receptor subunits genes (GRIN1 and GRIN2A) expression. Anxiety levels were evaluated by elevated plus maze test. Furthermore, the changes in the expression of genes responsible for encoding the tight junction proteins of BBB including ZO1, CLDN5, and OCLN were assessed by RT-PCR. Compared to intact crocin, the administration of crocin nano-chitosan-coated compound resulted in significant improvement of specific memory and learning indicators as well as a significant reduction of anxiety levels in chronic immobilization stress-induced rats. Finally, we observed that treatment with the crocin nano-chitosan-coated compound can elevate the expression levels of the genes responsible for encoding NMDA receptor subunits, and the genes responsible for encoding the tight junction proteins of blood-brain barriers in the hippocampus.
Collapse
Affiliation(s)
- Mohsen Khodadadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khodadadi
- The Polish Academy of Sciences, Institute of Genetics and Animal Biotechnology, Warsaw, Poland
| | | | - Masoud Ezami
- Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Chvojkova M, Kolar D, Kovacova K, Cejkova L, Misiachna A, Hakenova K, Gorecki L, Horak M, Korabecny J, Soukup O, Vales K. Pro-cognitive effects of dual tacrine derivatives acting as cholinesterase inhibitors and NMDA receptor antagonists. Biomed Pharmacother 2024; 176:116821. [PMID: 38823278 DOI: 10.1016/j.biopha.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.
Collapse
Affiliation(s)
- Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic.
| | - David Kolar
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Katarina Kovacova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava 4 842 15, Slovak Republic
| | - Lada Cejkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2 12843, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
6
|
Asadi Rizi A, Amjad L, Shahrani M, Amini Khoei H. A Systematic Review of the Role of Gummosin in Improving Memory in the Scopolamine Impaired Memory Model. ARCHIVES OF RAZI INSTITUTE 2024; 79:248-263. [PMID: 39463714 PMCID: PMC11512176 DOI: 10.32592/ari.2024.79.2.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 10/29/2024]
Abstract
In this study, the role of gummosin in improving memory in the scopolamine memory impairment model was systematically examined. Memory and learning are the most developed and complex functions of the nervous system. Learning is the acquisition of new information that occurs as a change in behavior, and memory is the ability to store and retrieve learned information. In other words, memory is a combination of various processes of information acquisition, consolidation, storage and retrieval. The processes of memory consolidation and storage are the result of a series of time-dependent neurobiological events that occur after the initial formation of memory. In addition, this fluctuation of processes related to memory storage can fully occur shortly after the initial learning experience. Memory is a direct result of learning ,as it stores and retrieves learned experiences and information. The results of our study show that scopolamine leads to impaired memory, learning and synaptic plasticity, which is associated with a change in the expression of various genes and a reduction in the number of hippocampal neurons. The disorders that occurred in the rats of the scopolamine group confirm the model used in this study to induce memory and learning deficits, which is consistent with previous studies confirming the model used to induce Alzheimer's disease. The results of the behavioral tests in this study showed that, consistent with previous work, scopolamine caused a significant increase in anxiety behavior that was associated with a decrease in time spent in the central area compared to the control group, while donepezil injection resulted in a decrease in anxiety behavior. The time spent in the central area was increased compared to the scopolamine group.
Collapse
Affiliation(s)
- A Asadi Rizi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - L Amjad
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - M Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - H Amini Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Shin H, Sharma R, Neupane C, Pham TL, Park SE, Lee SY, Kim HW, Bae YM, Stern JE, Park JB. Tonic NMDAR Currents of NR2A-Containing NMDARs Represent Altered Ambient Glutamate Concentration in the Supraoptic Nucleus. eNeuro 2024; 11:ENEURO.0279-23.2023. [PMID: 38176904 PMCID: PMC10863629 DOI: 10.1523/eneuro.0279-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.
Collapse
Affiliation(s)
- Hyunjin Shin
- Department of Physiology & Medical Science, College of Medicine & Brain Research Institute, Chungnam National University, Daejeon 35015, South Korea
| | - Ramesh Sharma
- Department of Physiology & Medical Science, College of Medicine & Brain Research Institute, Chungnam National University, Daejeon 35015, South Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Thuy Linh Pham
- Department of Physiology & Medical Science, College of Medicine & Brain Research Institute, Chungnam National University, Daejeon 35015, South Korea
| | - Su Eun Park
- Department of Physiology & Medical Science, College of Medicine & Brain Research Institute, Chungnam National University, Daejeon 35015, South Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Woo Kim
- Department of Physiology & Medical Science, College of Medicine & Brain Research Institute, Chungnam National University, Daejeon 35015, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Javier E Stern
- Neuroscience Institute and Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30302
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Burnyasheva AO, Stefanova NA, Kolosova NG, Telegina DV. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer's Disease Signs Development. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1972-1986. [PMID: 38462444 DOI: 10.1134/s0006297923120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.
Collapse
Affiliation(s)
- Alena O Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
10
|
Inhibition of hippocampal palmitoyl acyltransferase activity impairs spatial learning and memory consolidation. Neurobiol Learn Mem 2023; 200:107733. [PMID: 36804592 DOI: 10.1016/j.nlm.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.
Collapse
|
11
|
The Expression of Cellular Prion Protein, PrPC, Favors pTau Propagation and Blocks NMDAR Signaling in Primary Cortical Neurons. Cells 2023; 12:cells12020283. [PMID: 36672218 PMCID: PMC9856489 DOI: 10.3390/cells12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The N-methyl-D-aspartate receptor (NMDAR) is a target in current treatments for Alzheimer's disease (AD). The human prion protein (PrPC) has an important role in the pathophysiology of AD. We hypothesized that PrPC modulates NMDA signaling, thus being a process associated with Alzheimer's disease. METHODS NMDAR signaling was characterized in the absence or presence of PrPC in cAMP level determination, mitogen-activated protein kinase (MAPK) pathway and label-free assays in homologous and heterologous systems. Bioluminescence resonance energy transfer was used to detect the formation of NMDAR-PrPC complexes. AXIS™ Axon Isolation Devices were used to determine axonal transport of Tau and pTau proteins in cortical primary neurons in the absence or presence of PrPC. Finally, proximity ligation assays were used to quantify NMDA-PrPC complex formation in neuronal primary cultures isolated from APPSw/Ind transgenic mice, an Alzheimer's disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). RESULTS We discovered a direct interaction between the PrPC and the NMDAR and we found a negative modulation of NMDAR-mediated signaling due to the NMDAR-PrPC interaction. In mice primary neurons, we identified NMDA-PrPC complexes where PrPC was capable of blocking NMDAR-mediated effects. In addition, we observed how the presence of PrPC results in increased neurotoxicity and neuronal death. Similarly, in microglial primary cultures, we observed that PrPC caused a blockade of the NMDA receptor link to the MAPK signaling cascade. Interestingly, a significant increase in NMDA-PrPC macromolecular complexes was observed in cortical neurons isolated from the APPSw,Ind transgenic model of AD. CONCLUSIONS PrPC can interact with the NMDAR, and the interaction results in the alteration of the receptor functionality. NMDAR-PrPC complexes are overexpressed in neurons of APPSw/Ind mouse brain. In addition, PrPC exacerbates axonal transport of Tau and pTau proteins.
Collapse
|
12
|
Sarkar I, Snippe-Strauss M, Tenenhaus Zamir A, Benhos A, Richter-Levin G. Individual behavioral profiling as a translational approach to assess treatment efficacy in an animal model of post-traumatic stress disorder. Front Neurosci 2022; 16:1071482. [PMID: 36620437 PMCID: PMC9815535 DOI: 10.3389/fnins.2022.1071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
A major challenge in treating post-traumatic stress disorder (PTSD) continues to be the large variability in responsiveness to pharmacotherapy. Only 20-30% of patients experience total remission to a specific treatment, while others demonstrate either partial remission or no response. However, this heterogeneity in response to pharmacotherapy has not been adequately addressed in animal models, since these analyze the averaged group effects, ignoring the individual variability to treatment response, which seriously compromises the translation power of such models. Here we examined the possibility of employing an "individual behavioral profiling" approach, originally developed to differentiate between "affected" and "exposed-unaffected" individuals in an animal model of PTSD, to also enable dissociating "responders" or "non-responders" after SSRI (fluoxetine) treatment. Importantly, this approach does not rely on a group averaged response to a single behavioral parameter, but considers a cluster of behavioral parameters, to individually characterize an animal as either "responder" or "non-responder" to the treatment. The main variable to assess drug efficacy thus being the proportion of "responders" following treatment. Alteration in excitatory/inhibitory (E/I) balance has been proposed as being associated with stress-related psychopathology. Toward a functional proof of concept for our behaviorally-based characterization approach, we examined the expression patterns of α1 and α2 subunits of GABAA receptor, and GluN1 and GluN2A subunits of the NMDAR receptor in the ventral hippocampus, as well as electrophysiologically local circuit activity in the dorsal dentate gyrus (DG). We demonstrate that with both parameters, treatment "responders" differed from treatment "non-responders," confirming the functional validity of the behavior-based categorization. The results suggest that the ability to respond to fluoxetine treatment may be linked to the ability to modulate excitation-inhibition balance in the hippocampus. We propose that employing the "individual behavioral profiling" approach, and the resultant novel variable of the proportion of "recovered" individuals following treatment, offers an effective translational tool to assess pharmacotherapy treatment efficacy in animal models of stress and trauma-related psychopathology.
Collapse
Affiliation(s)
- Ishita Sarkar
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | | | - Amir Benhos
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel,School of Psychological Sciences, University of Haifa, Haifa, Israel,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel,*Correspondence: Gal Richter-Levin,
| |
Collapse
|
13
|
Sadeghi MA, Hemmati S, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Targeting neuronal nitric oxide synthase and the nitrergic system in post-traumatic stress disorder. Psychopharmacology (Berl) 2022; 239:3057-3082. [PMID: 36029333 DOI: 10.1007/s00213-022-06212-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
RATIONALE Current pharmacological approaches to treatment of post-traumatic stress disorder (PTSD) lack adequate effectiveness. As a result, identifying new molecular targets for drug development is necessary. Furthermore, fear learning and memory in PTSD can undergo different phases, such as fear acquisition, consolidation, and extinction. Each phase may involve different cellular pathways and brain regions. As a result, effective management of PTSD requires mindfulness of the timing of drug administration. One of the molecular targets currently under intense investigation is the N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR). However, despite the therapeutic efficacy of drugs targeting NMDAR, their translation into clinical use has been challenging due to their various side effects. One possible solution to this problem is to target signaling proteins downstream to NMDAR to improve targeting specificity. One of these proteins is the neuronal nitric oxide synthase (nNOS), which is activated following calcium influx through the NMDAR. OBJECTIVE In this paper, we review the literature on the pharmacological modulation of nNOS in animal models of PTSD to evaluate its therapeutic potential. Furthermore, we attempt to decipher the inconsistencies observed between the findings of these studies based on the specific phase of fear learning which they had targeted. RESULTS Inhibition of nNOS may inhibit fear acquisition and recall, while not having a significant effect on fear consolidation and extinction. However, it may improve extinction consolidation or reconsolidation blockade. CONCLUSIONS Modulation of nNOS has therapeutic potential against PTSD and warrants further development for use in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA, Napoli AJ, Burgess HA, Wollmuth LP, Sirotkin HI. Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 2022; 13:38. [PMID: 36138431 PMCID: PMC9502958 DOI: 10.1186/s13229-022-00516-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), like many neurodevelopmental disorders, has complex and varied etiologies. Advances in genome sequencing have identified multiple candidate genes associated with ASD, including dozens of missense and nonsense mutations in the NMDAR subunit GluN2B, encoded by GRIN2B. NMDARs are glutamate-gated ion channels with key synaptic functions in excitatory neurotransmission. How alterations in these proteins impact neurodevelopment is poorly understood, in part because knockouts of GluN2B in rodents are lethal. METHODS Here, we use CRISPR-Cas9 to generate zebrafish lacking GluN2B (grin2B-/-). Using these fish, we run an array of behavioral tests and perform whole-brain larval imaging to assay developmental roles and functions of GluN2B. RESULTS We demonstrate that zebrafish GluN2B displays similar structural and functional properties to human GluN2B. Zebrafish lacking GluN2B (grin2B-/-) surprisingly survive into adulthood. Given the prevalence of social deficits in ASD, we assayed social preference in the grin2B-/- fish. Wild-type fish develop a strong social preference by 3 weeks post fertilization. In contrast, grin2B-/- fish at this age exhibit significantly reduced social preference. Notably, the lack of GluN2B does not result in a broad disruption of neurodevelopment, as grin2B-/- larvae do not show alterations in spontaneous or photic-evoked movements, are capable of prey capture, and exhibit learning. Whole-brain imaging of grin2B-/- larvae revealed reduction of an inhibitory neuron marker in the subpallium, a region linked to ASD in humans, but showed that overall brain size and E/I balance in grin2B-/- is comparable to wild type. LIMITATIONS Zebrafish lacking GluN2B, while useful in studying developmental roles of GluN2B, are unlikely to model nuanced functional alterations of human missense mutations that are not complete loss of function. Additionally, detailed mammalian homologies for larval zebrafish brain subdivisions at the age of whole-brain imaging are not fully resolved. CONCLUSIONS We demonstrate that zebrafish completely lacking the GluN2B subunit of the NMDAR, unlike rodent models, are viable into adulthood. Notably, they exhibit a highly specific deficit in social behavior. As such, this zebrafish model affords a unique opportunity to study the roles of GluN2B in ASD etiologies and establish a disease-relevant in vivo model for future studies.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Emma J Keegan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Gabrielle R Moody
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Ashwin A Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Amalia J Napoli
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
15
|
Vrijdag XCE, van Waart H, Sames C, Mitchell SJ, Sleigh JW. Does hyperbaric oxygen cause narcosis or hyperexcitability? A quantitative EEG analysis. Physiol Rep 2022; 10:e15386. [PMID: 35859332 PMCID: PMC9300958 DOI: 10.14814/phy2.15386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Divers breathe higher partial pressures of oxygen at depth than at the surface. The literature and diving community are divided on whether or not oxygen is narcotic. Conversely, hyperbaric oxygen may induce dose-dependent cerebral hyperexcitability. This study evaluated whether hyperbaric oxygen causes similar narcotic effects to nitrogen, and investigated oxygen's hyperexcitability effect. Twelve human participants breathed "normobaric" air and 100% oxygen, and "hyperbaric" 100% oxygen at 142 and 284 kPa, while psychometric performance, electroencephalography (EEG), and task load perception were measured. EEG was analyzed with functional connectivity and temporal complexity algorithms. The spatial functional connectivity, estimated using mutual information, was summarized with the global efficiency network measure. Temporal complexity was calculated with a "default-mode-network (DMN) complexity" algorithm. Hyperbaric oxygen-breathing caused no change in EEG global efficiency or in the psychometric test. However, oxygen caused a significant reduction of DMN complexity and a reduction in task load perception. Hyperbaric oxygen did not cause the same changes in EEG global efficiency seen with hyperbaric air, which likely related to a narcotic effect of nitrogen. Hyperbaric oxygen seemed to disturb the time evolution of EEG patterns that could be taken as evidence of early oxygen-induced cortical hyperexcitability. These findings suggest that hyperbaric oxygen is not narcotic and will help inform divers' decisions on suitable gas mixtures.
Collapse
Affiliation(s)
| | - Hanna van Waart
- Department of AnaesthesiologyUniversity of AucklandAucklandNew Zealand
| | - Chris Sames
- Slark Hyperbaric UnitWaitemata District Health BoardAucklandNew Zealand
| | - Simon J. Mitchell
- Department of AnaesthesiologyUniversity of AucklandAucklandNew Zealand
- Slark Hyperbaric UnitWaitemata District Health BoardAucklandNew Zealand
- Department of AnaesthesiaAuckland City HospitalAucklandNew Zealand
| | - Jamie W. Sleigh
- Department of AnaesthesiologyUniversity of AucklandAucklandNew Zealand
- Department of AnaesthesiaWaikato HospitalHamiltonNew Zealand
| |
Collapse
|
16
|
Keith RE, Ogoe RH, Dumas TC. Behind the scenes: Are latent memories supported by calcium independent plasticity? Hippocampus 2022; 32:73-88. [PMID: 33905147 PMCID: PMC8548406 DOI: 10.1002/hipo.23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) can be considered to be the de facto "plasticity" receptors in the brain due to their central role in the activity-dependent modification of neuronal morphology and synaptic transmission. Since the 1980s, research on NMDARs has focused on the second messenger properties of calcium and the downstream signaling pathways that mediate alterations in neural form and function. Recently, NMDARs were shown to drive activity-dependent synaptic plasticity without calcium influx. How this "nonionotropic" plasticity occurs in vitro is becoming clearer, but research on its involvement in behavior and cognition is in its infancy. There is a partial overlap in the downstream signaling molecules that are involved in ionotropic and nonionotropic NMDAR-dependent plasticity. Given this, and prior studies of the cognitive impacts of ionotropic NMDAR plasticity, a preliminary model explaining how NMDAR nonionotropic plasticity affects learning and memory can be established. We hypothesize that nonionotropic NMDAR plasticity takes part in latent memory encoding in immature rodents through nonassociative depression of synaptic efficacy, and possibly shrinking of dendritic spines. Further, the late postnatal alteration in NMDAR composition in the hippocampus appears to reduce nonionotropic signaling and remove a restriction on memory retrieval. This framework substantially alters the canonical model of NMDAR involvement in spatial cognition and hippocampal maturation and provides novel and exciting inroads for future studies.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia
| | - Richard H. Ogoe
- Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia,Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| |
Collapse
|
17
|
Phillips TJ, Aldrich SJ. Peri-adolescent exposure to (meth)amphetamine in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:1-51. [PMID: 34801166 DOI: 10.1016/bs.irn.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimentation with psychoactive drugs is often initiated in the peri-adolescent period, but knowledge of differences in the outcomes of peri-adolescent- vs adult-initiated exposure is incomplete. We consider the existing animal research in this area for (meth)amphetamines. Established for a number of phenotypes, is lower sensitivity of peri-adolescents than adults to acute effects of (meth)amphetamines, including neurotoxic effects of binge-level exposure. More variable are data for long-term consequences of peri-adolescent exposure on motivational and cognitive traits. Moreover, investigations often exclude an adult-initiated exposure group critical for answering questions about outcomes unique to peri-adolescent initiation. Despite this, it is clear from the animal research that (meth)amphetamine exposure during the peri-adolescent period, whether self- or other-administered, impacts brain motivational circuitry and cognitive function, and alters adult sensitivity to other drugs and natural rewards. Such consequences occurring in humans have the potential to predispose toward unfortunate and potentially disastrous family, social and livelihood outcomes.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - S J Aldrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
18
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2021; 475:230-245. [PMID: 34656223 PMCID: PMC8592269 DOI: 10.1016/j.neuroscience.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-d-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
19
|
Zhang Y, Ren L, Min S, Lv F, Yu J. Effects of N-Methyl-D-aspartate receptor (NMDAR) and Ca 2+/calmodulin-dependent protein kinase IIα (CaMKIIα) on learning and memory impairment in depressed rats with different charge by modified electroconvulsive shock. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1320. [PMID: 34532457 PMCID: PMC8422109 DOI: 10.21037/atm-21-3690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022]
Abstract
Background With the development of modified electroshock therapy (MECT), it has become necessary to increase the electric quantity in order to achieve a good antidepressant effect, but this increase will lead to more serious learning and memory impairment. The purpose of this study was to investigate the intrinsic mechanism of cognitive impairment induced by high-energy electroconvulsive shock (MECS, an animal model of MECT). Methods Rats were randomly divided into 6 groups: control (C, n=6), M0, M60, M120, M180, and M240 groups (MECS at 0, 60, 120, 180, and 240 mC stimulation intensity after 80 mg/kg propofol, with 12 rats in each group). Their depression-like behavior and learning and memory ability were evaluated by sucrose preference test (SPT), open field test (OFT), and Morris water maze test (MWM). The expression of phospho-NMDA receptor 1 (GluN1), GluN2A, GluN2B, Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα), p-T305-CaMKII, and postsynaptic densities-95 (PSD-95) in hippocampus were detected by western blot. The co-expression of CaMKIIα and GluN2B subunit was detected by co-immunoprecipitation (CO-IP). Results The chronic unpredictable mild stresses (CUMS) procedure successfully induced depression-like behavior in rats, which was improved in varying degrees after MECS. The results showed that the expression of GluN1, GluN2A, GluN2B, and PSD-95 decreased with the increase of charge, while p-T305-CaMKII increased, which led to the deterioration of learning and memory ability, but the expression change of CaMKIIα was not statistically significant. Conclusions Increase in the MECS charge adjusts the synaptic plasticity by changing the binding amount of CaMKIIα and its subunit GluN2B and the level of CaMKII autophosphorylation, thereby impairing learning and memory functions.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Yeung JHY, Walby JL, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Glutamatergic receptor expression changes in the Alzheimer's disease hippocampus and entorhinal cortex. Brain Pathol 2021; 31:e13005. [PMID: 34269494 PMCID: PMC8549033 DOI: 10.1111/bpa.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's Disease (AD) is the leading form of dementia worldwide. Currently, the pathological mechanisms underlying AD are not well understood. Although the glutamatergic system is extensively implicated in its pathophysiology, there is a gap in knowledge regarding the expression of glutamate receptors in the AD brain. This study aimed to characterize the expression of specific glutamate receptor subunits in post‐mortem human brain tissue using immunohistochemistry and confocal microscopy. Free‐floating immunohistochemistry and confocal laser scanning microscopy were used to quantify the density of glutamate receptor subunits GluA2, GluN1, and GluN2A in specific cell layers of the hippocampal sub‐regions, subiculum, entorhinal cortex, and superior temporal gyrus. Quantification of GluA2 expression in human post‐mortem hippocampus revealed a significant increase in the stratum (str.) moleculare of the dentate gyrus (DG) in AD compared with control. Increased GluN1 receptor expression was found in the str. moleculare and hilus of the DG, str. oriens of the CA2 and CA3, str. pyramidale of the CA2, and str. radiatum of the CA1, CA2, and CA3 subregions and the entorhinal cortex. GluN2A expression was significantly increased in AD compared with control in the str. oriens, str. pyramidale, and str. radiatum of the CA1 subregion. These findings indicate that the expression of glutamatergic receptor subunits shows brain region‐specific changes in AD, suggesting possible pathological receptor functioning. These results provide evidence of specific glutamatergic receptor subunit changes in the AD hippocampus and entorhinal cortex, indicating the requirement for further research to elucidate the pathophysiological mechanisms it entails, and further highlight the potential of glutamatergic receptor subunits as therapeutic targets.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joshua L Walby
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Acutain MF, Griebler Luft J, Vazquez CA, Popik B, Cercato MC, Epstein A, Salvetti A, Jerusalinsky DA, de Oliveira Alvares L, Baez MV. Reduced Expression of Hippocampal GluN2A-NMDAR Increases Seizure Susceptibility and Causes Deficits in Contextual Memory. Front Neurosci 2021; 15:644100. [PMID: 33897358 PMCID: PMC8064689 DOI: 10.3389/fnins.2021.644100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors are heterotetramers composed of two GluN1 obligatory subunits and two regulatory subunits. In cognitive-related brain structures, GluN2A and GluN2B are the most abundant regulatory subunits, and their expression is subjected to tight regulation. During development, GluN2B expression is characteristic of immature synapses, whereas GluN2A is present in mature ones. This change in expression induces a shift in GluN2A/GluN2B ratio known as developmental switch. Moreover, modifications in this relationship have been associated with learning and memory, as well as different pathologies. In this work, we used a specific shRNA to induce a reduction in GluN2A expression after the developmental switch, both in vitro in primary cultured hippocampal neurons and in vivo in adult male Wistar rats. After in vitro characterization, we performed a cognitive profile and evaluated seizure susceptibility in vivo. Our in vitro results showed that the decrease in the expression of GluN2A changes GluN2A/GluN2B ratio without altering the expression of other regulatory subunits. Moreover, rats expressing the anti-GluN2A shRNA in vivo displayed an impaired contextual fear-conditioning memory. In addition, these animals showed increased seizure susceptibility, in terms of both time and intensity, which led us to conclude that deregulation in GluN2A expression at the hippocampus is associated with seizure susceptibility and learning–memory mechanisms.
Collapse
Affiliation(s)
- Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Jordana Griebler Luft
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cecila Alejandra Vazquez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Bruno Popik
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Magalí C Cercato
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Diana A Jerusalinsky
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Maria Verónica Baez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina.,1° U.A. Departamento de Histologia, Embriología, Biologia Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Karantysh GV, Fomenko MP, Menzheritskii AM, Prokof’ev VN, Ryzhak GA, Butenko EV. Effect of Pinealon on Learning and Expression of NMDA Receptor Subunit Genes in the Hippocampus of Rats with Experimental Diabetes. NEUROCHEM J+ 2020. [DOI: 10.1134/s181971242003006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Yeung JHY, Calvo-Flores Guzmán B, Palpagama TH, Ethiraj J, Zhai Y, Tate WP, Peppercorn K, Waldvogel HJ, Faull RLM, Kwakowsky A. Amyloid-beta 1-42 induced glutamatergic receptor and transporter expression changes in the mouse hippocampus. J Neurochem 2020; 155:62-80. [PMID: 32491248 DOI: 10.1111/jnc.15099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the leading type of dementia worldwide. With an increasing burden of an aging population coupled with the lack of any foreseeable cure, AD warrants the current intense research effort on the toxic effects of an increased concentration of beta-amyloid (Aβ) in the brain. Glutamate is the main excitatory brain neurotransmitter and it plays an essential role in the function and health of neurons and neuronal excitability. While previous studies have shown alterations in expression of glutamatergic signaling components in AD, the underlying mechanisms of these changes are not well understood. This is the first comprehensive anatomical study to characterize the subregion- and cell layer-specific long-term effect of Aβ1-42 on the expression of specific glutamate receptors and transporters in the mouse hippocampus, using immunohistochemistry with confocal microscopy. Outcomes are examined 30 days after Aβ1-42 stereotactic injection in aged male C57BL/6 mice. We report significant decreases in density of the glutamate receptor subunit GluA1 and the vesicular glutamate transporter (VGluT) 1 in the conus ammonis 1 region of the hippocampus in the Aβ1-42 injected mice compared with artificial cerebrospinal fluid injected and naïve controls, notably in the stratum oriens and stratum radiatum. GluA1 subunit density also decreased within the dentate gyrus dorsal stratum moleculare in Aβ1-42 injected mice compared with artificial cerebrospinal fluid injected controls. These changes are consistent with findings previously reported in the human AD hippocampus. By contrast, glutamate receptor subunits GluA2, GluN1, GluN2A, and VGluT2 showed no changes in expression. These findings indicate that Aβ1-42 induces brain region and layer specific expression changes of the glutamatergic receptors and transporters, suggesting complex and spatial vulnerability of this pathway during development of AD neuropathology. Read the Editorial Highlight for this article on page 7. Cover Image for this issue: https://doi.org/10.1111/jnc.14763.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jayarjun Ethiraj
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Zhai
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
25
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
26
|
Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. iScience 2019; 19:927-939. [PMID: 31518901 PMCID: PMC6742927 DOI: 10.1016/j.isci.2019.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022] Open
Abstract
NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to synaptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction. Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial memory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive behavior. LTP induces trafficking of Rph3A at synapses and formation of GluN2A/Rph3A complex Disruption of Rph3A/GluN2A complex leads to LTP impairment Rph3A/GluN2A complex is needed for modifications of dendritic spines induced by LTP Disruption of Rph3A/GluN2A complex leads to spatial memory impairment
Collapse
|
27
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
28
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2019; 404:338-352. [PMID: 30742964 PMCID: PMC6455963 DOI: 10.1016/j.neuroscience.2019.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 02/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-D-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Megan Josey
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Johnny A Kenton
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM; New, Mexico, Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM.
| |
Collapse
|
29
|
Aparisi Rey A, Karaulanov E, Sharopov S, Arab K, Schäfer A, Gierl M, Guggenhuber S, Brandes C, Pennella L, Gruhn WH, Jelinek R, Maul C, Conrad A, Kilb W, Luhmann HJ, Niehrs C, Lutz B. Gadd45α modulates aversive learning through post-transcriptional regulation of memory-related mRNAs. EMBO Rep 2019; 20:embr.201846022. [PMID: 30948457 PMCID: PMC6549022 DOI: 10.15252/embr.201846022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Gadd45α‐regulated transcripts show unusually long 3′ untranslated regions (3′UTRs) that are destabilized in Gadd45a‐deficient mice via a transcription‐independent mechanism, leading to reduced levels of the corresponding proteins in synaptosomes. Moreover, Gadd45α can bind specifically to these memory‐related mRNAs. Our study reveals a new function for extended 3′UTRs in memory consolidation and identifies Gadd45α as a novel regulator of mRNA stability.
Collapse
Affiliation(s)
- Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Stephan Guggenhuber
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Brandes
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luigi Pennella
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany .,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
30
|
PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. J Neurosci 2019; 39:1828-1841. [PMID: 30622166 DOI: 10.1523/jneurosci.2270-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Collapse
|
31
|
Kang S, Ha S, Park H, Nam E, Suh WH, Suh YH, Chang KA. Effects of a Dehydroevodiamine-Derivative on Synaptic Destabilization and Memory Impairment in the 5xFAD, Alzheimer's Disease Mouse Model. Front Behav Neurosci 2018; 12:273. [PMID: 30483077 PMCID: PMC6243640 DOI: 10.3389/fnbeh.2018.00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023] Open
Abstract
Carboxy-dehydroevodiamine·HCl (cx-DHED) is a derivative of DHED, which improves memory impairment. Carboxyl modification increases solubility in water, indicating that its bioavailability is higher than that of DHED. Cx-DHED is expected to have better therapeutic effects on Alzheimer's disease (AD) than DHED. In this study, we investigated the therapeutic effects of cx-DHED and the underlying mechanism in 5xFAD mice, transgenic (Tg) mouse model of AD model mice. In several behavioral tests, such as Y-maze, passive avoidance, and Morris water maze test, memory deficits improved significantly in cx-DHED-treated transgenic (Tg) mice compared with vehicle-treated Tg mice. We also found that AD-related pathologies, including amyloid plaque deposition and tau phosphorylation, were reduced after the treatment of Tg mice with cx-DHED. We determined the levels of synaptic proteins, such as GluN1, GluN2A, GluN2B, PSD-95 and Rabphilin3A, and Rab3A in the brains of mice of each group and found that GluN2A and PSD-95 were significantly increased in the brains of cx-DHED-treated Tg mice when compared with the brains of Tg-vehicle mice. These results suggest that cx-DHED has therapeutic effects on 5xFAD, AD model mice through the improvement of synaptic stabilization.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Sungji Ha
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST Gachon University, Incheon, South Korea
| | - Eunjoo Nam
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University Philadelphia, PA, United States
| | - Yoo-Hun Suh
- Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST Gachon University, Incheon, South Korea
| |
Collapse
|
32
|
Sanders EM, Nyarko-Odoom AO, Zhao K, Nguyen M, Liao HH, Keith M, Pyon J, Kozma A, Sanyal M, McHail DG, Dumas TC. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition. ACTA ACUST UNITED AC 2018; 25:264-272. [PMID: 29764972 PMCID: PMC5959228 DOI: 10.1101/lm.047290.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).
Collapse
Affiliation(s)
- Erin M Sanders
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Akua O Nyarko-Odoom
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Kevin Zhao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Michael Nguyen
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Hong Hong Liao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Keith
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Jane Pyon
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Alyssa Kozma
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mohima Sanyal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.,Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
33
|
Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl) 2018; 235:1463-1477. [PMID: 29492616 DOI: 10.1007/s00213-018-4858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aging is characterized by a decrease in N-methyl-D-aspartate receptors (NMDARs) in the hippocampus, which might be one of the factors involved in the age-dependent cognitive decline. D-Cycloserine (DCS), a partial agonist of the NMDAR glycine recognition site, could improve memory deficits associated to neurodegenerative disorders and cognitive deficits observed in normal aging. OBJECTIVES AND METHODS The aim of the present study was to explore whether DCS would reverse age-dependent memory deficits and decreases in NMDA receptor subunits (GluN1, GluN2A, and GluN2B) and the presynaptic protein synaptophysin in Wistar rats. We investigated the effects of pre-training infusions of DCS (10 μg/hemisphere) in the ventral hippocampus on two hippocampal-dependent learning tasks, the social transmission of food preference (STFP), and the Morris water maze (MWM). RESULTS The results revealed that infusions of DCS administered before the acquisition sessions rescued deficits in the STFP retention and MWM reversal learning in old rats. DCS also significantly increased the hippocampal levels of synaptophysin in old rats, which correlated with STFP and MWM performance in all tests. Moreover, although the levels of the GluN1 subunit correlated with the MWM acquisition and reversal, DCS did not enhance the expression of such synaptic protein. CONCLUSIONS The present behavioral results support the role of DCS as a cognitive enhancer and suggest that enhancing the function of NMDARs and synaptic plasticity in the hippocampus may be related to improvement in social memory and spatial learning reversal in aged animals.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mireia Tarrés-Gatius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition. Neural Plast 2018; 2018:5093048. [PMID: 29706992 PMCID: PMC5863338 DOI: 10.1155/2018/5093048] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/17/2017] [Accepted: 01/04/2018] [Indexed: 01/16/2023] Open
Abstract
NMDA ionotropic glutamate receptors (NMDARs) are crucial in activity-dependent synaptic changes and in learning and memory. NMDARs are composed of two GluN1 essential subunits and two regulatory subunits which define their pharmacological and physiological profile. In CNS structures involved in cognitive functions as the hippocampus and prefrontal cortex, GluN2A and GluN2B are major regulatory subunits; their expression is dynamic and tightly regulated, but little is known about specific changes after plasticity induction or memory acquisition. Data strongly suggest that following appropriate stimulation, there is a rapid increase in surface GluN2A-NMDAR at the postsynapses, attributed to lateral receptor mobilization from adjacent locations. Whenever synaptic plasticity is induced or memory is consolidated, more GluN2A-NMDARs are assembled likely using GluN2A from a local translation and GluN1 from local ER. Later on, NMDARs are mobilized from other pools, and there are de novo syntheses at the neuron soma. Changes in GluN1 or NMDAR levels induced by synaptic plasticity and by spatial memory formation seem to occur in different waves of NMDAR transport/expression/degradation, with a net increase at the postsynaptic side and a rise in expression at both the spine and neuronal soma. This review aims to put together that information and the proposed hypotheses.
Collapse
|
35
|
Diaz A, Treviño S, Vázquez-Roque R, Venegas B, Espinosa B, Flores G, Fernández-G JM, Montaño LF, Guevara J. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse 2017; 71:e21987. [PMID: 28545157 DOI: 10.1002/syn.21987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/24/2022]
Abstract
The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17β-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Rubén Vázquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Berenice Venegas
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias INER, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | | | - Luis F Montaño
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|