1
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu JW, Zhang ZQ, Zhu ZC, Li K, Xu Q, Zhang J, Cheng XW, Li H, Sun Y, Wang JJ, Hu LL, Xiong ZQ, Zhu Y. Loss of TET Activity in the Postnatal Mouse Brain Perturbs Synaptic Gene Expression and Impairs Cognitive Function. Neurosci Bull 2024; 40:1699-1712. [PMID: 39395911 DOI: 10.1007/s12264-024-01302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/13/2024] [Indexed: 10/14/2024] Open
Abstract
Conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins leads to the accumulation of 5hmC in the central nervous system; however, the role of 5hmC in the postnatal brain and how its levels and target genes are regulated by TETs remain elusive. We have generated mice that lack all three Tet genes specifically in postnatal excitatory neurons. These mice exhibit significantly reduced 5hmC levels, altered dendritic spine morphology within brain regions crucial for cognition, and substantially impaired spatial and associative memories. Transcriptome profiling combined with epigenetic mapping reveals that a subset of genes, which display changes in both 5hmC/5mC levels and expression patterns, are involved in synapse-related functions. Our findings provide insight into the role of postnatally accumulated 5hmC in the mouse brain and underscore the impact of 5hmC modification on the expression of genes essential for synapse development and function.
Collapse
Affiliation(s)
- Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ze-Qiang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Chuan Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Kui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China
- Lingang Laboratory, Shanghai, 201602, China
| | - Qiwu Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China
- Lingang Laboratory, Shanghai, 201602, China
| | - Jing Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Xue-Wen Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Han Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ji-Jun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lu-Lu Hu
- Fudan University Institutes of Biomedical Sciences, Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zhi-Qi Xiong
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 20031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201602, China.
| | - Yongchuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
4
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Tompkins J, Lizhar E, Shokrani A, Wu X, Berley J, Kamali D, Hussey D, Cerneckis J, Kang TH, Wang J, Tsark W, Zeng D, Godatha S, Natarajan R, Riggs A. Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion. CELL REPORTS METHODS 2023; 3:100465. [PMID: 37323577 PMCID: PMC10261899 DOI: 10.1016/j.crmeth.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease.
Collapse
Affiliation(s)
- Joshua Tompkins
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Lizhar
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alireza Shokrani
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Jordan Berley
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Diba Kamali
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Deborah Hussey
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jonas Cerneckis
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tae Hyuk Kang
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Walter Tsark
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Defu Zeng
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Swetha Godatha
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Arthur Riggs
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Jorge-Torres OC, Esteller M, Abian O, Velazquez-Campoy A. Unexpected thermodynamic signature for the interaction of hydroxymethylated DNA with MeCP2. Int J Biol Macromol 2023; 232:123373. [PMID: 36702223 DOI: 10.1016/j.ijbiomac.2023.123373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Hydroxymethylated cytosine (5hmC) is a stable DNA epigenetic mark recognized by methyl-CpG binding protein 2 (MeCP2), which acts as a transcriptional regulator and a global chromatin-remodeling element. Because 5hmC triggers a gene regulation response markedly different from that produced by methylated cytosine (5mC), both modifications must affect DNA structure and/or DNA interaction with MeCP2 differently. MeCP2 is a six-domain intrinsically disordered protein (IDP) with two domains responsible for dsDNA binding: methyl-CpG binding domain (MBD) and intervening domain (ID). Here we report the detailed thermodynamic characterization of the interaction of hmCpG-DNA with MeCP2. We find that hmCpG-DNA interacts with MeCP2 in a distinctly different mode with a particular thermodynamic signature, compared to methylated or unmethylated DNA. In addition, we find evidence for Rett syndrome-associated mutations altering the interaction of MeCP2 with dsDNA in a cytosine modification-specific manner which may correlate with disease onset time and clinical severity score.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units GBsC-CSIC-BIFI and ICVV-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units GBsC-CSIC-BIFI and ICVV-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units GBsC-CSIC-BIFI and ICVV-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), l'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units GBsC-CSIC-BIFI and ICVV-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units GBsC-CSIC-BIFI and ICVV-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
7
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Cheng S, Wang W, Zhu Z, Zhao M, Li H, Liu D, Pan F. Involvement of brain-derived neurotrophic factor methylation in the prefrontal cortex and hippocampus induced by chronic unpredictable mild stress in male mice. J Neurochem 2023; 164:624-642. [PMID: 36453259 DOI: 10.1111/jnc.15735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS). Depression-like behaviors, BDNF promoter IV methylation, expression of DNA methyltransferases (DNMTs), demethylation machinery enzymes, BDNF protein levels, and neuronal development in the prefrontal cortex (PFC) and hippocampus (HIP) were assessed in adolescent and adult mice. The DNMT inhibitor, 5-Aza-2-deoxycytidine (5-AzaD), was used as an intervention. Stress in adolescence induces behavioral dysfunction, elevated methylation levels of BDNF promoter IV, changes in the expression of DNMT, and demethylation machinery enzymes in adolescent and adult mice. Additionally, the stress in adolescence induced lower levels of BDNF and abnormal hippocampal doublecortin (DCX) expression in adolescent and adult mice. However, DNMT inhibitor treatment in adolescent-stressed mice relieved the abnormal behaviors, normalized the methylation level of BDNF promoter IV, BDNF protein expression, expression of DNMTs, and demethylation machinery enzymes, and improved the neuronal development of adult mice. These results suggest that stress in adolescence induces short- and long-term hypermethylation of BDNF promoter IV, which is regulated by DNMTs, and leads to the development of depression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Hannao Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
9
|
Spandole-Dinu S, Catrina AM, Voinea OC, Andone A, Radu S, Haidoiu C, Călborean O, Popescu DM, Suhăianu V, Baltag O, Tuță L, Roșu G. Pilot Study of the Long-Term Effects of Radiofrequency Electromagnetic Radiation Exposure on the Mouse Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3025. [PMID: 36833719 PMCID: PMC9961585 DOI: 10.3390/ijerph20043025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The increasing radiofrequency (RF) electromagnetic radiation pollution resulting from the development and use of technologies utilizing RF has sparked debate about the possible biological effects of said radiation. Of particular concern is the potential impact on the brain, due to the close proximity of communication devices to the head. The main aim of this study was to examine the effects of long-term exposure to RF on the brains of mice in a real-life scenario simulation compared to a laboratory setting. The animals were exposed continuously for 16 weeks to RF using a household Wi-Fi router and a laboratory device with a frequency of 2.45 GHz, and were compared to a sham-exposed group. Before and after exposure, the mice underwent behavioral tests (open-field test and Y-maze); at the end of the exposure period, the brain was harvested for histopathological analysis and assessment of DNA methylation levels. Long-term exposure of mice to 2.45 GHz RF radiation increased their locomotor activity, yet did not cause significant structural or morphological changes in their brains. Global DNA methylation was lower in exposed mice compared to sham mice. Further research is needed to understand the mechanisms behind these effects and to understand the potential effects of RF radiation on brain function.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Ana-Maria Catrina
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Oana Cristina Voinea
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
- Pathology Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Andone
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Speranța Radu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Cerasela Haidoiu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Călborean
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Diana Mihaela Popescu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Vladimir Suhăianu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Baltag
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Leontin Tuță
- Center of Excellence in Communications and Information Technology, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| | - Georgiana Roșu
- Department of Military Systems and Equipment, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| |
Collapse
|
10
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
11
|
Islam M, Strawn M, Behura SK. Fetal origin of sex‐bias brain aging. FASEB J 2022; 36:e22463. [DOI: 10.1096/fj.202200255rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Monica Strawn
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Susanta K. Behura
- Division of Animal Sciences University of Missouri Columbia Missouri USA
- MU Institute for Data Science and Informatics University of Missouri Columbia Missouri USA
- Interdisciplinary Neuroscience Program University of Missouri Columbia Missouri USA
| |
Collapse
|
12
|
Kim B, Sasaki A, Murphy K, Matthews SG. DNA methylation signatures in human neonatal blood following maternal antenatal corticosteroid treatment. Transl Psychiatry 2022; 12:132. [PMID: 35354798 PMCID: PMC8967826 DOI: 10.1038/s41398-022-01902-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal corticosteroids (ACS) are used to treat women at risk of preterm birth to improve neonatal survival. Though affected children may be at long-term risk of neurobehavioural disorders, the driving mechanisms remain unknown. Animal studies have shown that ACS exposure can lead to overlapping changes in DNA methylation between the blood and the brain, identifying gene pathways for neurodevelopment, which highlights the potential to examine peripheral blood as a surrogate for inaccessible human brain tissue. We hypothesized that differential methylation will be identified in blood of term-born neonates following ACS. Mother-infant dyads that received ACS were retrospectively identified through the Ontario Birth Study at Sinai Health Complex and matched to untreated controls for maternal age, BMI, parity and foetal sex (n = 14/group). Genome-wide methylation differences were examined at single-nucleotide resolution in DNA extracted from dried bloodspot cards using reduced representative bisulfite sequencing approaches. 505 differentially methylated CpG sites (DMCs) were identified, wherein 231 were hypermethylated and 274 were hypomethylated. These sites were annotated to 219 genes, of which USP48, SH3PXD2A, NTM, CAMK2N2, MAP6D1 were five of the top ten genes with known neurological function. Collectively, the set of hypermethylated genes were enriched for pathways of transcription regulation, while pathways of proteasome activity were enriched among the set of hypomethylated genes. This study is the first to identify DNA methylation changes in human neonatal blood following ACS. Understanding the epigenetic changes that occur in response to ACS will support future investigations to delineate the effects of prenatal glucocorticoid exposure on human development.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kellie Murphy
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021; 9:biomedicines9091092. [PMID: 34572278 PMCID: PMC8470044 DOI: 10.3390/biomedicines9091092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.
Collapse
|
14
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Mariani Wigley ILC, Mascheroni E, Peruzzo D, Giorda R, Bonichini S, Montirosso R. Neuroimaging and DNA Methylation: An Innovative Approach to Study the Effects of Early Life Stress on Developmental Plasticity. Front Psychol 2021; 12:672786. [PMID: 34079501 PMCID: PMC8165202 DOI: 10.3389/fpsyg.2021.672786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation plays a key role in neural cell fate and provides a molecular link between early life stress and later-life behavioral phenotypes. Here, studies that combine neuroimaging methods and DNA methylation analysis in pediatric population with a history of adverse experiences were systematically reviewed focusing on: targeted genes and neural correlates; statistical models used to examine the link between DNA methylation and neuroimaging data also considering early life stress and behavioral outcomes. We identified 8 studies that report associations between DNA methylation and brain structure/functions in infants, school age children and adolescents faced with early life stress condition (e.g., preterm birth, childhood maltreatment, low socioeconomic status, and less-than optimal caregiving). Results showed that several genes were investigated (e.g., OXTR, SLC6A4, FKBP5, and BDNF) and different neuroimaging techniques were performed (MRI and f-NIRS). Statistical model used ranged from correlational to more complex moderated mediation models. Most of the studies (n = 5) considered DNA methylation and neural correlates as mediators in the relationship between early life stress and behavioral phenotypes. Understanding what role DNA methylation and neural correlates play in interaction with early life stress and behavioral outcomes is crucial to promote theory-driven studies as the future direction of this research fields.
Collapse
Affiliation(s)
| | - Eleonora Mascheroni
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
17
|
Rizzardi LF, Hickey PF, Idrizi A, Tryggvadóttir R, Callahan CM, Stephens KE, Taverna SD, Zhang H, Ramazanoglu S, Hansen KD, Feinberg AP. Human brain region-specific variably methylated regions are enriched for heritability of distinct neuropsychiatric traits. Genome Biol 2021; 22:116. [PMID: 33888138 PMCID: PMC8061076 DOI: 10.1186/s13059-021-02335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Peter F. Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Colin M. Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Sean D. Taverna
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
| | - Sinan Ramazanoglu
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - GTEx Consortium
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| |
Collapse
|
18
|
Diddens J, Coussement L, Frankl-Vilches C, Majumdar G, Steyaert S, Ter Haar SM, Galle J, De Meester E, De Keulenaer S, Van Criekinge W, Cornil CA, Balthazart J, Van Der Linden A, De Meyer T, Vanden Berghe W. DNA Methylation Regulates Transcription Factor-Specific Neurodevelopmental but Not Sexually Dimorphic Gene Expression Dynamics in Zebra Finch Telencephalon. Front Cell Dev Biol 2021; 9:583555. [PMID: 33816458 PMCID: PMC8017237 DOI: 10.3389/fcell.2021.583555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Song learning in zebra finches (Taeniopygia guttata) is a prototypical example of a complex learned behavior, yet knowledge of the underlying molecular processes is limited. Therefore, we characterized transcriptomic (RNA-sequencing) and epigenomic (RRBS, reduced representation bisulfite sequencing; immunofluorescence) dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the critical period for song learning (20 and 65 dph). We identified extensive transcriptional neurodevelopmental changes during postnatal telencephalon development. DNA methylation was very low, yet increased over time, particularly in song control nuclei. Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by differential CpG and CpH DNA methylation. However, a strong association between DNA methylation and age-dependent gene expression was found for various transcription factors (i.e., OTX2, AR, and FOS) involved in neurodevelopment. Incomplete dosage compensation, independent of DNA methylation, was found to be largely responsible for sexually dimorphic gene expression, with dosage compensation increasing throughout life. In conclusion, our results indicate that DNA methylation regulates neurodevelopmental gene expression dynamics through steering transcription factor activity, but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.
Collapse
Affiliation(s)
- Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis Coussement
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gaurav Majumdar
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Steyaert
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Sita M Ter Haar
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Jeroen Galle
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Criekinge
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Annemie Van Der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim De Meyer
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Sales AJ, Maciel IS, Suavinha ACDR, Joca SRL. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Mol Neurobiol 2021; 58:777-794. [PMID: 33025509 DOI: 10.1007/s12035-020-02145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. AIM This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). METHODS Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6 mg/kg or RG108 0.6 mg/kg) or vehicle (1 ml/kg), 1 h or 7 days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2 μl/side). RESULTS We found that both 5-AzaD and RG108 acutely and 7 days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2 mg/kg) and RG108 (0.2 mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. CONCLUSION These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- FMRP-USP, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Izaque S Maciel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica C D R Suavinha
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- FCFRP-USP, Av Café, sn, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
20
|
Davaa G, Hong JY, Kim TU, Lee SJ, Kim SY, Hong K, Hyun JK. Exercise Ameliorates Spinal Cord Injury by Changing DNA Methylation. Cells 2021; 10:143. [PMID: 33445717 PMCID: PMC7828206 DOI: 10.3390/cells10010143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.
Collapse
Affiliation(s)
- Ganchimeg Davaa
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (G.D.); (J.Y.H.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Jin Young Hong
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (G.D.); (J.Y.H.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Tae Uk Kim
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea; (T.U.K.); (S.J.L.); (S.Y.K.)
| | - Seong Jae Lee
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea; (T.U.K.); (S.J.L.); (S.Y.K.)
| | - Seo Young Kim
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea; (T.U.K.); (S.J.L.); (S.Y.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Korea;
| | - Jung Keun Hyun
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (G.D.); (J.Y.H.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea; (T.U.K.); (S.J.L.); (S.Y.K.)
- Wiregene, Co., Ltd., Cheonan 31116, Korea
| |
Collapse
|
21
|
Kasamatsu T, Imamura K. Ocular dominance plasticity: Molecular mechanisms revisited. J Comp Neurol 2020; 528:3039-3074. [PMID: 32737874 DOI: 10.1002/cne.25001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Ocular dominance plasticity (ODP) is a type of cortical plasticity operating in visual cortex of mammals that are endowed with binocular vision based on the competition-driven disparity. Earlier, a molecular mechanism was proposed that catecholamines play an important role in the maintenance of ODP in kittens. Having survived the initial test, the hypothesis was further advanced to identify noradrenaline (NA) as a key factor that regulates ODP in the immature cortex. Later, the ODP-promoting effect of NA is extended to the adult with age-related limitations. Following the enhanced NA availability, the chain events downstream lead to the β-adrenoreceptor-induced cAMP accumulation, which in turn activates the protein kinase A. Eventually, the protein kinase translocates to the cell nucleus to activate cAMP responsive element binding protein (CREB). CREB is a cellular transcription factor that controls the transcription of various genes, underpinning neuronal plasticity and long-term memory. In the advent of molecular genetics in that various types of new tools have become available with relative ease, ODP research has lightly adopted in the rodent model the original concepts and methodologies. Here, after briefly tracing the strategic maturation of our quest, the review moves to the later development of the field, with the emphasis placed around the following issues: (a) Are we testing ODP per se? (b) What does monocular deprivation deprive of the immature cortex? (c) The critical importance of binocular competition, (d) What is the adult plasticity? (e) Excitation-Inhibition balance in local circuits, and (f) Species differences in the animal models.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- Smith-Kettlewell Eye Research Institute, San Francisco, California, USA
| | - Kazuyuki Imamura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
| |
Collapse
|
22
|
Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes (Basel) 2020; 11:genes11070742. [PMID: 32635190 PMCID: PMC7397264 DOI: 10.3390/genes11070742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression in the brain is dramatically regulated by a variety of stimuli. While the role of neural activity has been extensively studied, less is known about the effects of metabolism and nutrition on transcriptional control mechanisms in the brain. Extracellular signals are integrated at the chromatin level through dynamic modifications of epigenetic marks, which in turn fine-tune gene transcription. In the last twenty years, it has become clear that epigenetics plays a crucial role in modulating central nervous system functions and finally behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation, both during development and adulthood. We will provide an overview of maternal nutrition effects on brain methylation and behavior in offspring. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, the possible role played by the metabolic status in modulating DNA hydroxymethylation, which is particularly abundant in neural tissue, will be considered.
Collapse
|
23
|
Sugden K, Hannon EJ, Arseneault L, Belsky DW, Corcoran DL, Fisher HL, Houts RM, Kandaswamy R, Moffitt TE, Poulton R, Prinz JA, Rasmussen LJH, Williams BS, Wong CCY, Mill J, Caspi A. Patterns of Reliability: Assessing the Reproducibility and Integrity of DNA Methylation Measurement. PATTERNS 2020; 1:S2666-3899(20)30014-3. [PMID: 32885222 PMCID: PMC7467214 DOI: 10.1016/j.patter.2020.100014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA methylation plays an important role in both normal human development and risk of disease. The most utilized method of assessing DNA methylation uses BeadChips, generating an epigenome-wide “snapshot” of >450,000 observations (probe measurements) per assay. However, the reliability of each of these measurements is not equal, and little consideration is paid to consequences for research. We correlated repeat measurements of the same DNA samples using the Illumina HumanMethylation450K and the Infinium MethylationEPIC BeadChips in 350 blood DNA samples. Probes that were reliably measured were more heritable and showed consistent associations with environmental exposures, gene expression, and greater cross-tissue concordance. Unreliable probes were less replicable and generated an unknown volume of false negatives. This serves as a lesson for working with DNA methylation data, but the lessons are equally applicable to working with other data: as we advance toward generating increasingly greater volumes of data, failure to document reliability risks harming reproducibility. Measurements of DNA methylation made using BeadChip probes are differentially reliable Unreliable probes were less heritable, less replicable, and less functionally relevant This has serious implications for reporting and evaluating DNA methylation findings Reliability joins replicability and reproducibility to make three fundamental Rs of STEM
Although DNA methylation data are used widely by researchers in many fields, the reliability of these data are surprisingly variable. Our findings remind us that, in an age of increasingly big data, research is only as robust as its foundations. We hope that our findings will improve the integrity of DNA methylation studies. We also hope that our findings serve as a cautionary reminder for those generating and implementing big data of any type: reliability is a fundamental aspect of replicability. Conducting analysis with reliable data will improve chances of replicable findings, which might lead to more actionable targets for further research. To the extent that reliable data improve replicability, the knock-on effect will be more public confidence in research and less effort spent trying to replicate findings that are bound to fail.
Collapse
Affiliation(s)
- Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Eilis J Hannon
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Louise Arseneault
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Daniel W Belsky
- Department of Epidemiology & Butler Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Helen L Fisher
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Renate M Houts
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA
| | - Radhika Kandaswamy
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, University of Otago, Dunedin, New Zealand
| | - Joseph A Prinz
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Line J H Rasmussen
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Clinical Research Centre, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Benjamin S Williams
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chloe C Y Wong
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Jonathan Mill
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Okido MM, Bettiol H, Barbieri MA, Marcolin AC, Quintana SM, Cardoso VC, Del-Ben CM, Cavalli RC. Can increased resistance to uterine artery flow be a risk factor for adverse neurodevelopmental outcomes in childhood? A prospective cohort study. J OBSTET GYNAECOL 2019; 40:784-791. [PMID: 31790313 DOI: 10.1080/01443615.2019.1666094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A prospective cohort study was conducted to determine whether an increased uterine artery pulsatility index (UtA-PI) in the second trimester of pregnancy is a risk factor for neurodevelopmental outcomes in children 2-3 years of age. A group of pregnant women with a UtA-PI below the 90th percentile (P90) and a second group with a UtA-PI ≥ P90 in the second trimester were included in this study. The children of these women were evaluated during their second or third year of life using the Bayley III Screening Test. A total of 858 pregnancies with UtA-PI < P90 and 96 pregnancies with UtA-PI ≥ 90 were studied. The differences between the groups related to UtA-PI ≥ 90 were detected in relation to the variables of the Caucasian ethnicity, hypertension, newborn weight and stay in the intensive care unit after birth. However, adjusted neurodevelopmental outcomes did not differ between the groups: OR 0.53 (95% CI 0.27-1.04%). This study failed to demonstrate that the UtA-PI is a risk factor for adverse neurodevelopment in children.Impact statementWhat is already known on this subject? Early interventions in children at high risk for neurodevelopmental deficiency have proved to be beneficial. The complications associated with gestation and delivery negatively influence neurodevelopment. Several studies have shown that some adverse pregnancy outcomes such as preeclampsia, foetal growth restriction and foetal death can be predicted by increased resistance to flow in the uterine artery in the second trimester. However, there are no studies evaluating the association of the uterine artery with neurodevelopmental results.What do the results of this study add? This study concludes that neurodevelopment is influenced by multiple environmental and intrinsic factors and cannot be predicted by only one variable, such as the uterine artery blood flow. The brain has repair mechanisms to attenuate insults that occur during gestation and delivery.What are the implications of these findings for clinical practice and/or further research? This study was unable to demonstrate that blood flow in the uterine artery is a risk factor for neurodevelopment. Different, larger studies should be conducted by combining other factors with the uterine artery in an algorithm to allow the early identification of children at risk for neurodevelopmental impairment.
Collapse
Affiliation(s)
- M M Okido
- Department of Obstetrics and Gynaecology, University of São Paulo, Ribeirão Preto, Brazil
| | - H Bettiol
- Department of Puericulture and Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - M A Barbieri
- Department of Puericulture and Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - A C Marcolin
- Department of Obstetrics and Gynaecology, University of São Paulo, Ribeirão Preto, Brazil
| | - S M Quintana
- Department of Obstetrics and Gynaecology, University of São Paulo, Ribeirão Preto, Brazil
| | - V C Cardoso
- Department of Puericulture and Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - C M Del-Ben
- Department of Neurology, Psychiatry and Medical Psychology, University of São Paulo, Ribeirão Preto, Brazil
| | - R C Cavalli
- Department of Obstetrics and Gynaecology, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Wheeler RV, Franklin TB. The importance of the epigenome for social-related neural circuits. Epigenomics 2019; 11:1557-1560. [PMID: 31701758 DOI: 10.2217/epi-2019-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ryan V Wheeler
- Department of Psychology & Neuroscience, The Social Lab, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tamara B Franklin
- Department of Psychology & Neuroscience, The Social Lab, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
26
|
Selective demethylation of two CpG sites causes postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. Clin Epigenetics 2019; 11:149. [PMID: 31661019 PMCID: PMC6819446 DOI: 10.1186/s13148-019-0732-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Programmed epigenetic modifications occurring at early postnatal brain developmental stages may have a long-lasting impact on brain function and complex behavior throughout life. Notably, it is now emerging that several genes that undergo perinatal changes in DNA methylation are associated with neuropsychiatric disorders. In this context, we envisaged that epigenetic modifications during the perinatal period may potentially drive essential changes in the genes regulating brain levels of critical neuromodulators such as D-serine and D-aspartate. Dysfunction of this fine regulation may contribute to the genesis of schizophrenia or other mental disorders, in which altered levels of D-amino acids are found. We recently demonstrated that Ddo, the D-aspartate degradation gene, is actively demethylated to ultimately reduce D-aspartate levels. However, the role of epigenetics as a mechanism driving the regulation of appropriate D-ser levels during brain development has been poorly investigated to date. METHODS We performed comprehensive ultradeep DNA methylation and hydroxymethylation profiling along with mRNA expression and HPLC-based D-amino acids level analyses of genes controlling the mammalian brain levels of D-serine and D-aspartate. DNA methylation changes occurring in specific cerebellar cell types were also investigated. We conducted high coverage targeted bisulfite sequencing by next-generation sequencing and single-molecule bioinformatic analysis. RESULTS We report consistent spatiotemporal modifications occurring at the Dao gene during neonatal development in a specific brain region (the cerebellum) and within specific cell types (astrocytes) for the first time. Dynamic demethylation at two specific CpG sites located just downstream of the transcription start site was sufficient to strongly activate the Dao gene, ultimately promoting the complete physiological degradation of cerebellar D-serine a few days after mouse birth. High amount of 5'-hydroxymethylcytosine, exclusively detected at relevant CpG sites, strongly evoked the occurrence of an active demethylation process. CONCLUSION The present investigation demonstrates that robust and selective demethylation of two CpG sites is associated with postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. A single-molecule methylation approach applied at the Dao locus promises to identify different cell-type compositions and functions in different brain areas and developmental stages.
Collapse
|
27
|
Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D. Photoperiod-induced neurotransmitter plasticity declines with aging: An epigenetic regulation? J Comp Neurol 2019; 528:199-210. [PMID: 31343079 DOI: 10.1002/cne.24747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.
Collapse
Affiliation(s)
- Rory Pritchard
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.,Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Helene Chen
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Ben Romoli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
28
|
Lim WJ, Kim KH, Kim JY, Kim HJ, Kim M, Park JL, Yoon S, Oh JH, Cho JW, Kim YS, Kim N. Investigation of Gene Expression and DNA Methylation From Seven Different Brain Regions of a Crab-Eating Monkey as Determined by RNA-Seq and Whole-Genome Bisulfite Sequencing. Front Genet 2019; 10:694. [PMID: 31428131 PMCID: PMC6690020 DOI: 10.3389/fgene.2019.00694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
The crab-eating monkey is widely used in biomedical research for pharmacological experiments. Epigenetic regulation in the brain regions of primates involves complex patterns of DNA methylation. Previous studies of methylated CpG-binding domains using microarray technology or peak identification of sequence reads mostly focused on developmental stages or disease, rather than normal brains. To identify correlations between gene expression and DNA methylation levels that may be related to transcriptional regulation, we generated RNA-seq and whole-genome bisulfite sequencing data from seven different brain regions from a single crab-eating monkey. We identified 92 genes whose expression levels were significantly correlated, positively or negatively, with DNA methylation levels. Among them, 11 genes exhibited brain region-specific characteristics, and their expression patterns were strongly correlated with DNA methylation level. Nine genes (SLC2A5, MCM5, DRAM1, TTC12, DHX40, COR01A, LRAT, FLVCR2, and PTER) had effects on brain and eye function and development, and two (LHX6 and MEST) were previously identified as genes in which DNA methylation levels change significantly in the promoter region and are therefore considered brain epigenetic markers. Furthermore, we characterized DNA methylation of repetitive elements at the whole genome through repeat annotation at single-base resolution. Our results reveal the diverse roles of DNA methylation at single-base resolution throughout the genome and reflect the epigenetic variations in adult brain tissues.
Collapse
Affiliation(s)
- Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mirang Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seokjoo Yoon
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Jung-Hwa Oh
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Jae-Woo Cho
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
29
|
Wong CCY, Smith RG, Hannon E, Ramaswami G, Parikshak NN, Assary E, Troakes C, Poschmann J, Schalkwyk LC, Sun W, Prabhakar S, Geschwind DH, Mill J. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum Mol Genet 2019; 28:2201-2211. [PMID: 31220268 PMCID: PMC6602383 DOI: 10.1093/hmg/ddz052] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylationacross a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism.
Collapse
Affiliation(s)
- Chloe C Y Wong
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gokul Ramaswami
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Neelroop N Parikshak
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elham Assary
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Claire Troakes
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Inserm, Université de Nantes, Nantes, France
| | | | - Wenjie Sun
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
30
|
Chistiakov DA, Chekhonin VP. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals. World J Biol Psychiatry 2019; 20:258-277. [PMID: 28441915 DOI: 10.1080/15622975.2017.1322714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Methods: Literature search of public databases such as PubMed/MEDLINE and Scopus. Results: Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. Conclusions: The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Vladimir P Chekhonin
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia.,b Department of Medical Nanobiotechnology , Pirogov Russian State Medical University (RSMU) , Moscow , Russia
| |
Collapse
|
31
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Varrault A, Journot L, Bouschet T. Cerebral Cortex Generated from Pluripotent Stem Cells to Model Corticogenesis and Rebuild Cortical Circuits: In Vitro Veritas? Stem Cells Dev 2019; 28:361-369. [PMID: 30661489 DOI: 10.1089/scd.2018.0233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organoids and cells generated in vitro from pluripotent stem cells (PSCs) are considered to be robust models of development and a conceivable source of transplants for putative cell therapy. However, a fundamental question about organoids and cells generated from PSCs is as follows: do they faithfully reproduce the in vivo tissue they are supposed to mimic and replace? This question is particularly relevant to complex tissues such as the cerebral cortex. In this review, we have tackled this issue by comparing cerebral cortices generated in vitro from PSCs to the in vivo cortex, with a particular focus on their respective cellular composition, molecular and epigenetic signatures, and brain connectivity. In short, in vitro cortex generated from PSCs reproduces most of the cardinal features of the in vivo cortex, including temporal corticogenesis and connectivity when PSC-derived cortical cells are grafted in recipient mouse cortex. However, compared to in vivo cortex, in vitro cortex lacks microglia and blood vessels and is less mature. Recent experiments show that the brain of the transplanted host provides these missing cell types together with an environment that promotes the synaptic maturation of the cortical transplant. Taken together, these data suggest that corticogenesis is largely intrinsic and well recapitulated in vitro, while the full maturation of cortical cells requires additional environmental clues. Finally, we propose some lines of work to improve corticogenesis from PSCs as a tool to model corticogenesis and rebuild cortical circuits.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Taylor RM, Smith R, Collins CE, Evans TJ, Hure AJ. Dietary intake and food sources of one-carbon metabolism nutrients in preschool aged children. Eur J Clin Nutr 2018; 73:1179-1193. [PMID: 30538300 PMCID: PMC6760623 DOI: 10.1038/s41430-018-0376-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is hypothesised that epigenetic mechanisms including DNA methylation may underlie the relationship between early-life nutrition and child cognitive outcomes. This study aimed to identify dietary patterns associated with the intake of one-carbon metabolism nutrients in children aged 2-3 years. METHODS A validated 120-item semi-quantitative food frequency questionnaires at 2-3 years of age were used to estimate the intake of one-carbon metabolism nutrients (methionine, folate, choline and vitamins B2, B6, B12) and to quantify mean number of serves consumed of the food groups specified by the Australian Guide to Healthy Eating (AGHE). Descriptive statistics were used to analyse the contribution of each food group and food items to the total intake of one-carbon metabolism nutrients. Linear regression was used to test for linear trends in food group servings by nutrient intake quintiles. RESULTS No child (n = 60) from the Women And Their Children's Health (WATCH) study consumed the recommended number of serves for all AGHE food groups. Dairy and alternatives (18-44%), discretionary foods (6-33%) and meat and alternatives (6-31%) were the main sources of most one-carbon metabolism nutrients. Most child intakes of one-carbon metabolism nutrients exceeded the nutrient reference values (NRVs), except for the intake of choline, for which the mean intake was 9% below the adequate intake (AI). CONCLUSION Dairy and alternatives, discretionary foods and meat and alternatives food groups contributed significantly to the children's intake of one-carbon metabolism nutrients. The children generally had low intakes of meat and alternative foods, which may explain their inadequate intake of choline.
Collapse
Affiliation(s)
- Rachael M Taylor
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.
| | - Roger Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Clare E Collins
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tiffany-Jane Evans
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Clinical Research Design IT and Statistical Support (CReDITSS) Unit, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Alexis J Hure
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre for Generational, Health and Ageing, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
34
|
Lux V. Epigenetic Programming Effects of Early Life Stress: A Dual-Activation Hypothesis. Curr Genomics 2018; 19:638-652. [PMID: 30532644 PMCID: PMC6225448 DOI: 10.2174/1389202919666180307151358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic processes during early brain development can function as 'developmental switches' that contribute to the stability of long-term effects of early environmental influences by programming central feedback mechanisms of the HPA axis and other neural networks. In this thematic review, we summarize accumulated evidence for a dual-activation of stress-related and sensory networks underlying the epigenetic programming effects of early life stress. We discuss findings indicating epigenetic programming of stress-related genes with impact on HPA axis function, the interaction of epigenetic mechanisms with neural activity in stress-related neural networks, epigenetic effects of glucocorticoid exposure, and the impact of stress on sensory development. Based on these findings, we propose that the combined activation of stress-related neural networks and stressor-specific sensory networks leads to both neural and hormonal priming of the epigenetic machinery, which sensitizes these networks for developmental programming effects. This allows stressor-specific adaptations later in life, but may also lead to functional mal-adaptations, depending on timing and intensity of the stressor. Finally, we discuss methodological and clinical implications of the dual-activation hypothesis. We emphasize that, in addition to modifications in stress-related networks, we need to account for functional modifications in sensory networks and their epigenetic underpinnings to elucidate the long-term effects of early life stress.
Collapse
Affiliation(s)
- Vanessa Lux
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
35
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
36
|
Epigenetic Regulation in Neurodegenerative Diseases. Trends Neurosci 2018; 41:587-598. [PMID: 29885742 DOI: 10.1016/j.tins.2018.05.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Mechanisms of epigenetic regulation, including DNA methylation, chromatin remodeling, and histone post-translational modifications, are involved in multiple aspects of neuronal function and development. Recent discoveries have shed light on critical functions of chromatin in the aging brain, with an emerging realization that the maintenance of a healthy brain relies heavily on epigenetic mechanisms. Here, we present recent advances, with a focus on histone modifications and the implications for several neurodegenerative diseases including Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). We highlight common and unique epigenetic mechanisms among these situations and point to emerging therapeutic approaches.
Collapse
|
37
|
Singh G, Singh V, Wang ZX, Voisin G, Lefebvre F, Navenot JM, Evans B, Verma M, Anderson DW, Schneider JS. Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure. Toxicol Lett 2018; 290:63-72. [PMID: 29571894 DOI: 10.1016/j.toxlet.2018.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner.
Collapse
Affiliation(s)
- G Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - V Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - G Voisin
- Atelerics S.E.N.C, Montreal, QC, Canada
| | - F Lefebvre
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - J-M Navenot
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - B Evans
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Verma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Affiliation(s)
- Nasser H Zawia
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
39
|
Vivian CJ, Brinker AE, Graw S, Koestler DC, Legendre C, Gooden GC, Salhia B, Welch DR. Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Res 2017; 77:6202-6214. [PMID: 28663334 DOI: 10.1158/0008-5472.can-17-1473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations and polymorphisms contribute to many complex diseases, including cancer. Using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s)-designated Mitochondrial Nuclear Exchange (MNX)-we showed that mtDNA could alter mammary tumor metastasis. Because retrograde and anterograde communication exists between the nuclear and mitochondrial genomes, we hypothesized that there are differential mtDNA-driven changes in nuclear (n)DNA expression and DNA methylation. Genome-wide nDNA methylation and gene expression were measured in harvested brain tissue from paired wild-type and MNX mice. Selective differential DNA methylation and gene expression were observed between strains having identical nDNA, but different mtDNA. These observations provide insights into how mtDNA could be altering epigenetic regulation and thereby contribute to the pathogenesis of metastasis. Cancer Res; 77(22); 6202-14. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Vivian
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona
| | - Amanda E Brinker
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas. .,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
40
|
Mazziotti R, Baroncelli L, Ceglia N, Chelini G, Sala GD, Magnan C, Napoli D, Putignano E, Silingardi D, Tola J, Tognini P, Arthur JSC, Baldi P, Pizzorusso T. Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nat Commun 2017; 8:15488. [PMID: 28534484 PMCID: PMC5457514 DOI: 10.1038/ncomms15488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are known to mediate post-transcriptional gene regulation, but their role in postnatal brain development is still poorly explored. We show that the expression of many miRNAs is dramatically regulated during functional maturation of the mouse visual cortex with miR-132/212 family being one of the top upregulated miRNAs. Age-downregulated transcripts are significantly enriched in miR-132/miR-212 putative targets and in genes upregulated in miR-132/212 null mice. At a functional level, miR-132/212 deletion affects development of receptive fields of cortical neurons determining a specific impairment of binocular matching of orientation preference, but leaving orientation and direction selectivity unaltered. This deficit is associated with reduced depth perception in the visual cliff test. Deletion of miR-132/212 from forebrain excitatory neurons replicates the binocular matching deficits. Thus, miR-132/212 family shapes the age-dependent transcriptome of the visual cortex during a specific developmental window resulting in maturation of binocular cortical cells and depth perception.
Collapse
Affiliation(s)
- Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Nicholas Ceglia
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
| | - Gabriele Chelini
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
| | - Debora Napoli
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Davide Silingardi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Jonida Tola
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Paola Tognini
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, California 92697, USA
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, California 92697, USA
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
| |
Collapse
|
41
|
Asimes A, Torcaso A, Pinceti E, Kim CK, Zeleznik-Le NJ, Pak TR. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring. Alcohol 2017; 60:179-189. [PMID: 27817987 DOI: 10.1016/j.alcohol.2016.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring.
Collapse
|
42
|
Nelson EE. Learning through the ages: How the brain adapts to the social world across development. COGNITIVE DEVELOPMENT 2017. [DOI: 10.1016/j.cogdev.2017.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Effect of Clozapine on DNA Methylation in Peripheral Leukocytes from Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2017; 18:ijms18030632. [PMID: 28335437 PMCID: PMC5372645 DOI: 10.3390/ijms18030632] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clozapine is an atypical antipsychotic, that is established as the treatment of choice for treatment-resistant schizophrenia (SCZ). To date, no study investigating comprehensive DNA methylation changes in SCZ patients treated with chronic clozapine has been reported. The purpose of the present study is to reveal the effects of clozapine on DNA methylation in treatment-resistant SCZ. We conducted a genome-wide DNA methylation profiling in peripheral leukocytes (485,764 CpG dinucleotides) from treatment-resistant SCZ patients treated with clozapine (n = 21) in a longitudinal study. Significant changes in DNA methylation were observed at 29,134 sites after one year of treatment with clozapine, and these genes were enriched for “cell substrate adhesion” and “cell matrix adhesion” gene ontology (GO) terms. Furthermore, DNA methylation changes in the CREBBP (CREB binding protein) gene were significantly correlated with the clinical improvements. Our findings provide insights into the action of clozapine in treatment-resistant SCZ.
Collapse
|
44
|
Biergans SD, Claudianos C, Reinhard J, Galizia CG. DNA methylation mediates neural processing after odor learning in the honeybee. Sci Rep 2017; 7:43635. [PMID: 28240742 PMCID: PMC5378914 DOI: 10.1038/srep43635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) - regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees' relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees' primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network.
Collapse
Affiliation(s)
- Stephanie D Biergans
- Queensland Brain Institute, The University of Queensland, Australia.,Neurobiologie, Universität Konstanz, Germany
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Faculty of Medicine, Nursing Health and Sciences, Monash University, Australia
| | - Judith Reinhard
- Queensland Brain Institute, The University of Queensland, Australia
| | | |
Collapse
|
45
|
Holman L, Trontti K, Helanterä H. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol Lett 2017; 12:20151038. [PMID: 26814223 DOI: 10.1098/rsbl.2015.1038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals.
Collapse
Affiliation(s)
- Luke Holman
- Division of Ecology, Evolution & Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kalevi Trontti
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki 00014, Finland Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland Tvärminne Zoological Station, J. A. Palménin tie 260, Hanko 10900, Finland
| |
Collapse
|
46
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
47
|
Abstract
This article reviews thermodynamic relationships in the brain in an attempt to consolidate current research in systems neuroscience. The present synthesis supports proposals that thermodynamic information in the brain can be quantified to an appreciable degree of objectivity, that many qualitative properties of information in systems of the brain can be inferred by observing changes in thermodynamic quantities, and that many features of the brain's anatomy and architecture illustrate relatively simple information-energy relationships. The brain may provide a unique window into the relationship between energy and information.
Collapse
Affiliation(s)
- Sterling Street
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, AthensGA, USA
| |
Collapse
|
48
|
Vierci G, Pannunzio B, Bornia N, Rossi FM. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex. J Exp Neurosci 2016; 10:49-64. [PMID: 27891053 PMCID: PMC5117113 DOI: 10.4137/jen.s39888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/21/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022] Open
Abstract
Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment). We found that AcH3-AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3-AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3-AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3-H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC.
Collapse
Affiliation(s)
- Gabriela Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Bruno Pannunzio
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francesco M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
49
|
van de Leemput J, Hess JL, Glatt SJ, Tsuang MT. Genetics of Schizophrenia: Historical Insights and Prevailing Evidence. ADVANCES IN GENETICS 2016; 96:99-141. [PMID: 27968732 DOI: 10.1016/bs.adgen.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia's (SZ's) heritability and familial transmission have been known for several decades; however, despite the clear evidence for a genetic component, it has been very difficult to pinpoint specific causative genes. Even so genetic studies have taught us a lot, even in the pregenomic era, about the molecular underpinnings and disease-relevant pathways. Recurring themes emerged revealing the involvement of neurodevelopmental processes, glutamate regulation, and immune system differential activation in SZ etiology. The recent emergence of epigenetic studies aimed at shedding light on the biological mechanisms underlying SZ has provided another layer of information in the investigation of gene and environment interactions. However, this epigenetic insight also brings forth another layer of complexity to the (epi)genomic landscape such as interactions between genetic variants, epigenetic marks-including cross-talk between DNA methylation and histone modification processes-, gene expression regulation, and environmental influences. In this review, we seek to synthesize perspectives, including limitations and obstacles yet to overcome, from genetic and epigenetic literature on SZ through a qualitative review of risk factors and prevailing hypotheses. Encouraged by the findings of both genetic and epigenetic studies to date, as well as the continued development of new technologies to collect and interpret large-scale studies, we are left with a positive outlook for the future of elucidating the molecular genetic mechanisms underlying SZ and other complex neuropsychiatric disorders.
Collapse
Affiliation(s)
- J van de Leemput
- University of California, San Diego, La Jolla, CA, United States
| | - J L Hess
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - S J Glatt
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - M T Tsuang
- University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Arshavsky YI. Neurons versus Networks: The Interplay between Individual Neurons and Neural Networks in Cognitive Functions. Neuroscientist 2016; 23:341-355. [PMID: 27660240 DOI: 10.1177/1073858416670124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The main paradigm of cognitive neuroscience is the connectionist concept postulating that the higher nervous activity is performed through interactions of neurons forming complex networks, whereas the function of individual neurons is restricted to generating electrical potentials and transmitting signals to other cells. In this article, I describe the observations from three fields-neurolinguistics, physiology of memory, and sensory perception-that can hardly be explained within the constraints of a purely connectionist concept. Rather, these examples suggest that cognitive functions are determined by specific properties of individual neurons and, therefore, are likely to be accomplished primarily at the intracellular level. This view is supported by the recent discovery that the brain's ability to create abstract concepts of particular individuals, animals, or places is performed by neurons ("concept cells") sparsely distributed in the medial temporal lobe.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- 1 BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|