1
|
Prince N, Peralta Marzal LN, Roussin L, Monnoye M, Philippe C, Maximin E, Ahmed S, Salenius K, Lin J, Autio R, Adolfs Y, Pasterkamp RJ, Garssen J, Naudon L, Rabot S, Kraneveld AD, Perez-Pardo P. Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism. Gut Microbes 2025; 17:2447822. [PMID: 39773319 PMCID: PMC11730631 DOI: 10.1080/19490976.2024.2447822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jake Lin
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Xu J, Wang X, Xu W, Zhang Y, Pan L, Gao J. The protective effect of S-adenosylmethionine on chronic adolescent stress-induced depression-like behaviors by regulating gut microbiota. Eur J Pharmacol 2024; 982:176939. [PMID: 39182548 DOI: 10.1016/j.ejphar.2024.176939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The efficacy and tolerability of current antidepressants for adolescent depression are inadequate. S-adenosylmethionine (SAMe), known for its effectiveness and minimal side effects in adult depression, remains unstudied in adolescents. This study explored the potential of SAMe to address depression-like behaviors in juvenile rats induced by chronic unpredictable mild stress (CUMS), with a focus on gut microbiome interactions. Adolescent male Wistar rats were subjected to a 4-week CUMS regimen and received daily intraperitoneal injections of 300 mg/kg SAMe. Behavioral assessments included the sucrose preference test, elevated plus maze test, open field test, and Y-maze test. Histopathological changes of the hippocampus and colon were observed by Nissl staining and hematoxylin and eosin staining, respectively. Gut microbiome composition was analyzed using Accurate 16S absolute quantification sequencing. The results showed that SAMe significantly improved behavioral outcomes, reduced histopathological damages in hippocampal neurons and colon tissues, and modulated the gut microbiota of depressed rats. It favorably altered the ratio of Bacteroidetes to Firmicutes, decreased the absolute abundance of Deferribacteres, and adjusted levels of key microbial genera associated with depression-like behaviors. These results suggested that SAMe could effectively counter depression-like behaviors in CUMS-exposed adolescent rats by mitigating hippocampal neuronal and colon damage and modulating the gut microbiota. This supports SAMe as a viable and tolerable treatment option for adolescent depression, highlighting the importance of the gut-brain axis in therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Xinqi Wang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Wangwang Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Yang Zhang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Liangke Pan
- Qingdao No.9 High School, Shandong Province, Qingdao, Shandong, 266000, China
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
3
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
4
|
Stagaman K, Alexiev A, Sieler MJ, Hammer A, Kasschau KD, Truong L, Tanguay RL, Sharpton TJ. The zebrafish gut microbiome influences benzo[a]pyrene developmental neurobehavioral toxicity. Sci Rep 2024; 14:14618. [PMID: 38918492 PMCID: PMC11199668 DOI: 10.1038/s41598-024-65610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Alexandra Alexiev
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Austin Hammer
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
5
|
Zhang D, Lan Y, Zhang J, Cao M, Yang X, Wang X. Effects of early-life gut microbiota on the neurodevelopmental outcomes of preterm infants: a multi-center, longitudinal observational study in China. Eur J Pediatr 2024; 183:1733-1740. [PMID: 38231236 DOI: 10.1007/s00431-024-05423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
To prospectively investigate associations between the features of gut microbiota at the fourth week after birth in preterm infants and neurodevelopment from 1 month of corrected age to 6 months of corrected age (MCA). Seventy-seven preterm infants were recruited from three NICUs of three tertiary hospitals between Apr 2021 to Sep 2022. Stool samples were collected during the fourth week after birth. Illumina MiSeq high-throughput sequencing technology was used to detect the composition and diversity of gut microbiota. Neurodevelopment assessments of preterm infants were conducted at 1, 3, and 6 MCA using the Ages and Stages Questionnaire, the third edition (ASQ-3). Spearman correlation, a generalized linear mixed model (GLMM), and permutational multivariate analysis of variance (PERMANOVA) analysis were used to horizontally and prospectively explore the associations between gut microbial and ASQ-3 dimension scores at each time point. The GLMM showed no significant associations between the alpha diversity and neurodevelopmental trajectory from 1 to 6 MCA. The beta diversity was significantly associated with gross motor scores at 1, 3, and 6 MCA (R2 = 0.067, p = 0.001; R2 = 0.039, p = 0.020; R2 = 0.031, p = 0.047); communication scores at 3 MCA (R2 = 0.030, p = 0.040); and fine motor scores at 6 MCA (R2 = 0.035, p = 0.022). After adjusting for covariates, the GLMM showed that the relative abundance of Klebsiella was negatively associated with gross motor score trajectory from 1 to 6 MCA (β = - 1.449; 95% CI, - 2.275 to - 0.572; p = 0.001), while the relative abundance of Lactobacillus displayed a positive association (β = 1.421; 95% CI, 0.139 to 2.702; p = 0.030). Moreover, the relative abundance of Streptococcus was negatively associated with fine motor trajectory from 1 to 6 MCA (β = - 1.669; 95% CI, - 3.305 to - 0.033; p = 0.046). CONCLUSION Our results suggest a possible association between the neonatal gut microbial diversity; the relative abundance of Klebsiella, Streptococcus, and Lactobacillus; and neurodevelopment from 1 to 6 MCA. In the future, clinical staff can focus on the window period of gut microbiota colonization, and implement probiotics targeted at the dominant genera to improve the neurodevelopment of preterm infants. WHAT IS KNOWN • In the fields of biology and medicine, current studies suggest that gut microbiota may play an important role in the critical window period of neurodevelopment through the gut-brain axis pathway. • Extensive preclinical research has implied the vital role of the initial gut colonization in the long-term neurodevelopment of children. WHAT IS NEW • The early-life gut microbiota was associated with neurodevelopment in preterm infants within 6 months of corrected age (MCA).
Collapse
Affiliation(s)
- Dan Zhang
- School of Nursing, Wuhan University, No. 115, Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yancong Lan
- School of Nursing, Wuhan University, No. 115, Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Jun Zhang
- School of Nursing, Wuhan University, No. 115, Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China.
| | - Mi Cao
- School of Nursing, Wuhan University, No. 115, Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Xinyi Yang
- School of Nursing, Wuhan University, No. 115, Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Xia Wang
- Department of Pediatrics, Women and Children's Hospital, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Borghi E, Xynomilakis O, Ottaviano E, Ceccarani C, Viganò I, Tognini P, Vignoli A. Gut microbiota profile in CDKL5 deficiency disorder patients. Sci Rep 2024; 14:7376. [PMID: 38548767 PMCID: PMC10978852 DOI: 10.1038/s41598-024-56989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by global developmental delay, early-onset seizures, intellectual disability, visual and motor impairments. Unlike Rett Syndrome (RTT), CDD lacks a clear regression period. Patients with CDD frequently encounter gastrointestinal (GI) disturbances and exhibit signs of subclinical immune dysregulation. However, the underlying causes of these conditions remain elusive. Emerging studies indicate a potential connection between neurological disorders and gut microbiota, an area completely unexplored in CDD. We conducted a pioneering study, analyzing fecal microbiota composition in individuals with CDD (n = 17) and their healthy relatives (n = 17). Notably, differences in intestinal bacterial diversity and composition were identified in CDD patients. In particular, at genus level, CDD microbial communities were characterized by an increase in the relative abundance of Clostridium_AQ, Eggerthella, Streptococcus, and Erysipelatoclostridium, and by a decrease in Eubacterium, Dorea, Odoribacter, Intestinomonas, and Gemmiger, pointing toward a dysbiotic profile. We further investigated microbiota changes based on the severity of GI issues, seizure frequency, sleep disorders, food intake type, impairment in neuro-behavioral features and ambulation capacity. Enrichment in Lachnoclostridium and Enterobacteriaceae was observed in the microbiota of patients with more severe GI symptoms, while Clostridiaceae, Peptostreptococcaceae, Coriobacteriaceae, Erysipelotrichaceae, Christensenellaceae, and Ruminococcaceae were enriched in patients experiencing daily epileptic seizures. Our findings suggest a potential connection between CDD, microbiota and symptom severity. This study marks the first exploration of the gut-microbiota-brain axis in subjects with CDD. It adds to the growing body of research emphasizing the role of the gut microbiota in neurodevelopmental disorders and opens doors to potential interventions that target intestinal microbes with the aim of improving the lives of patients with CDD.
Collapse
Affiliation(s)
- Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Ornella Xynomilakis
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Dipartimento di Scienze Biomediche e Cliniche, Università Degli Studi di Milano, 20157, Milan, Italy
| | | | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Ilaria Viganò
- Epilepsy Center-Child Neuropsychiatric Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Paola Tognini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Milan, Italy
| |
Collapse
|
7
|
Merlo G, Bachtel G, Sugden SG. Gut microbiota, nutrition, and mental health. Front Nutr 2024; 11:1337889. [PMID: 38406183 PMCID: PMC10884323 DOI: 10.3389/fnut.2024.1337889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The human brain remains one of the greatest challenges for modern medicine, yet it is one of the most integral and sometimes overlooked aspects of medicine. The human brain consists of roughly 100 billion neurons, 100 trillion neuronal connections and consumes about 20-25% of the body's energy. Emerging evidence highlights that insufficient or inadequate nutrition is linked to an increased risk of brain health, mental health, and psychological functioning compromise. A core component of this relationship includes the intricate dynamics of the brain-gut-microbiota (BGM) system, which is a progressively recognized factor in the sphere of mental/brain health. The bidirectional relationship between the brain, gut, and gut microbiota along the BGM system not only affects nutrient absorption and utilization, but also it exerts substantial influence on cognitive processes, mood regulation, neuroplasticity, and other indices of mental/brain health. Neuroplasticity is the brain's capacity for adaptation and neural regeneration in response to stimuli. Understanding neuroplasticity and considering interventions that enhance the remarkable ability of the brain to change through experience constitutes a burgeoning area of research that has substantial potential for improving well-being, resilience, and overall brain health through optimal nutrition and lifestyle interventions. The nexus of lifestyle interventions and both academic and clinical perspectives of nutritional neuroscience emerges as a potent tool to enhance patient outcomes, proactively mitigate mental/brain health challenges, and improve the management and treatment of existing mental/brain health conditions by championing health-promoting dietary patterns, rectifying nutritional deficiencies, and seamlessly integrating nutrition-centered strategies into clinical care.
Collapse
Affiliation(s)
- Gia Merlo
- Department of Psychiatry, New York University Grossman School of Medicine and Rory Meyers College of Nursing, New York, NY, United States
| | | | - Steven G. Sugden
- Department of Psychiatry, The University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Hayes K, Janssen P, Payne BA, Jevitt C, Johnston W, Johnson P, Butler M. Oral Probiotic Supplementation in Pregnancy to Reduce Group B Streptococcus Colonisation (OPSiP trial): study protocol for a double-blind parallel group randomised placebo trial. BMJ Open 2024; 14:e076455. [PMID: 38316588 PMCID: PMC10860072 DOI: 10.1136/bmjopen-2023-076455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Group B streptococcus (GBS), or Streptococcus agalactiae, remains a leading cause of neonatal morbidity and mortality. Canadian guidelines advise universal maternal screening for GBS colonisation in pregnancy in conjunction with selective antibiotic therapy. This results in over 1000 pregnant individuals receiving antibiotic therapy to prevent one case of early-onset neonatal GBS disease, and over 20 000 pregnant individuals receiving antibiotic therapy to prevent one neonatal death. Given the growing concern regarding the risk of negative sequela from antibiotic exposure, it is vital that alternative approaches to reduce maternal GBS colonisation are explored.Preliminary studies suggest some probiotic strains could confer protection in pregnancy against GBS colonisation. METHODS AND ANALYSIS This double-blind parallel group randomised trial aims to recruit 450 pregnant participants in Vancouver, BC, Canada and will compare GBS colonisation rates in those who have received a daily oral dose of three strains of probiotics with those who have received a placebo. The primary outcome will be GBS colonisation status, measured using a vaginal/rectal swab obtained between 35 weeks' gestation and delivery. Secondary outcomes will include maternal antibiotic exposure and urogenital infections. Analysis will be on an intention-to-treat basis. PATIENT OR PUBLIC INVOLVEMENT There was no patient or public involvement in the design of the study protocol. ETHICS AND DISSEMINATION This study protocol received ethics approval from the University of British Columbia's Clinical Research Ethics Board, Dublin City University and Health Canada. Findings will be presented at research rounds, conferences and in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT03407157.
Collapse
Affiliation(s)
- Kelly Hayes
- BCCHR, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Nursing, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Patricia Janssen
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth A Payne
- Paediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Clinical Research, Women's Health Research Institute, Vancouver, BC, Canada
| | - Cecilia Jevitt
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Will Johnston
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michelle Butler
- Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
9
|
Bonham KS, Fahur Bottino G, McCann SH, Beauchemin J, Weisse E, Barry F, Cano Lorente R, Huttenhower C, Bruchhage M, D’Sa V, Deoni S, Klepac-Ceraj V. Gut-resident microorganisms and their genes are associated with cognition and neuroanatomy in children. SCIENCE ADVANCES 2023; 9:eadi0497. [PMID: 38134274 PMCID: PMC10745691 DOI: 10.1126/sciadv.adi0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Emerging evidence implicates gut microbial metabolism in neurodevelopmental disorders, but its influence on typical neurodevelopment has not been explored in detail. We investigated the relationship between the microbiome and neuroanatomy and cognition of 381 healthy children, demonstrating that differences in microbial taxa and genes are associated with overall cognitive function and the size of brain regions. Using a combination of statistical and machine learning models, we showed that species including Alistipes obesi, Blautia wexlerae, and Ruminococcus gnavus were enriched or depleted in children with higher cognitive function scores. Microbial metabolism of short-chain fatty acids was also associated with cognitive function. In addition, machine models were able to predict the volume of brain regions from microbial profiles, and taxa that were important in predicting cognitive function were also important for predicting individual brain regions and specific subscales of cognitive function. These findings provide potential biomarkers of neurocognitive development and may enable development of targets for early detection and intervention.
Collapse
Affiliation(s)
- Kevin S. Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | | | | | | | - Elizabeth Weisse
- Department of Psychology, University of Stavanger, Stavanger, Norway
| | | | | | | | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Associate Member, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Muriel Bruchhage
- Department of Psychology, University of Stavanger, Stavanger, Norway
| | - Viren D’Sa
- Rhode Island Hospital, Providence, RI, USA
| | - Sean Deoni
- Rhode Island Hospital, Providence, RI, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
10
|
Qu C, Xu QQ, Yang W, Zhong M, Yuan Q, Xian YF, Lin ZX. Gut dysbiosis aggravates cognitive deficits, amyloid pathology and lipid metabolism dysregulation in a transgenic mouse model of Alzheimer's disease. J Pharm Anal 2023; 13:1526-1547. [PMID: 38223452 PMCID: PMC10785152 DOI: 10.1016/j.jpha.2023.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 01/16/2024] Open
Abstract
Gut dysbiosis, a well-known risk factor to triggers the progression of Alzheimer's disease (AD), is strongly associated with metabolic disturbance. Trimethylamine N-oxide (TMAO), produced in the dietary choline metabolism, has been found to accelerate neurodegeneration in AD pathology. In this study, the cognitive function and gut microbiota of TgCRND8 (Tg) mice of different ages were evaluated by Morris water maze task (MWMT) and 16S rRNA sequencing, respectively. Young pseudo germ-free (PGF) Tg mice that received faecal microbiota transplants from aged Tg mice and wild-type (WT) mice were selected to determine the role of the gut microbiota in the process of neuropathology. Excessive choline treatment for Tg mice was used to investigate the role of abnormal choline metabolism on the cognitive functions. Our results showed that gut dysbiosis, neuroinflammation response, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and cyclin-dependent kinase 5 (CDK5)/transcription 3 (STAT3) activation occurred in Tg mice age-dependently. Disordered microbiota of aged Tg mice accelerated AD pathology in young Tg mice, with the activation of CDK5/STAT3 signaling in the brains. On the contrary, faecal microbiota transplantation from WT mice alleviated the cognitive deficits, attenuated neuroinflammation, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and suppressed CDK5/STAT3 pathway activation in Tg mice. Moreover, excessive choline treatment was also shown to aggravate the cognitive deficits, Aβ deposition, neuroinflammation and CDK5/STAT3 pathway activation. These findings provide a novel insight into the interaction between gut dysbiosis and AD progression, clarifying the important roles of gut microbiota-derived substances such as TMAO in AD neuropathology.
Collapse
Affiliation(s)
- Chang Qu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Lin CK, Tseng YC, Hsu HY, Tsai TH, Huang KH. Association between early-life antibiotics use and the risk of attention-deficit/hyperactivity disorder: A real-world evidence study. Early Hum Dev 2023; 187:105897. [PMID: 37922778 DOI: 10.1016/j.earlhumdev.2023.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Recently, children using antibiotics showed an increased incidence of neurodevelopmental disorders. AIMS The purpose of this study was to investigate the association between antibiotics use and the risk of ADHD in children. STUDY DESIGN Population-based retrospective cohort study. SUBJECTS The Taiwan National Health Insurance Research Database was used to collect data of children. Prevalence of antibiotics use was analyzed in the children (age, <2 years) included in this study. There were 1,601,689 children included in this study between 2004 and 2012. OUTCOME MEASURES The risk of developing ADHD was estimated using the Cox proportional hazards model. RESULTS 71.25 % of children used at least one antibiotic, and the mean follow-up period was 7.07 years. After controlling for other related influencing factors, children who used antibiotics had a 1.12 times higher risk of ADHD than those who did not. The risk of ADHD increased through the use of penicillin and cephalosporin regardless of the duration of antibiotics use. CONCLUSIONS Antibiotics use in children-especially penicillin and cephalosporin-was associated with a higher risk of ADHD.
Collapse
Affiliation(s)
- Chih-Kang Lin
- Department of Pharmacy, Cheng Ching General Hospital, Taichung 400620, Taiwan
| | - Ya-Chun Tseng
- Department of Pediatrics, Cheng Ching General Hospital, Taichung 400620, Taiwan
| | - Hsing-Yu Hsu
- Department of Pharmacy, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan.
| |
Collapse
|
12
|
Li M, Yang H, Shao C, Liu Y, Wen S, Tang L. Application of Dominant Gut Microbiota Promises to Replace Fecal Microbiota Transplantation as a New Treatment for Alzheimer's Disease. Microorganisms 2023; 11:2854. [PMID: 38137998 PMCID: PMC10745325 DOI: 10.3390/microorganisms11122854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have confirmed that the pathophysiological progression of Alzheimer's disease (AD) is closely related to changes in the intestinal microbiota; thus, modifying the intestinal microbiota has emerged as a new way to treat AD. Effective interventions for gut microbiota include the application of probiotics and other measures such as fecal microbiota transplantation (FMT). However, the application of probiotics ignores that the intestine is a complete microecosystem with competition among microorganisms. FMT also has issues when applied to patient treatment. In a previous study, we found that eight species of bacteria that are isolated with high frequency in the normal intestinal microbiota (i.e., intestinal dominant microbiota) have biological activities consistent with the effects of FMT. In this article, we confirmed that the treatment of intestinal dominant microbiota significantly restored intestinal microbiota abundance and composition to normal levels in APP/PS1 mice; downregulated brain tissue pro-inflammatory cytokines (IL-1β and IL-6) and amyloid precursor protein (APP) and β-site APP cleavage enzyme 1 (BACE1) expression levels; and reduced the area of Aβ plaque deposition in the brain hippocampus. Our study provides a new therapeutic concept for the treatment of AD, adjusting the intestinal microecological balance through dominant intestinal microbiota may be an alternative to FMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (M.L.); (H.Y.); (C.S.); (Y.L.); (S.W.)
| |
Collapse
|
13
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
14
|
Huang Y, Li N, Yang C, Lin Y, Wen Y, Zheng L, Zhao C. Honeybee as a food nutrition analysis model of neural development and gut microbiota. Neurosci Biobehav Rev 2023; 153:105372. [PMID: 37652394 DOI: 10.1016/j.neubiorev.2023.105372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Research on the relationships between the gut microbiota and the neurophysiology and behavior of animals has grown exponentially in just a few years. Insect behavior may be controlled by molecular mechanisms that are partially homologous to those in mammals, and swarming insects may be suitable as experiment models in these types of investigations. All core gut bacteria in honeybees can be cultivated in vitro. Certain gut microflora of bees can be genetically engineered or sterilized and colonized. The bee gut bacteria model is established more rapidly and has a higher flux than other sterile animal models. It may help elucidate the pathogenesis of intestinal diseases and identify effective molecular therapeutic targets against them. In the present review, we focused on the contributions of the honeybee model in learning cognition and microbiome research. We explored the relationship between honeybee behavior and neurodevelopment and the factors determining the mechanisms by which the gut microbiota affects the host. In particular, we concentrated on the correlation between gut microbiota and brain development. Finally, we examined strategies for the effective use of simple animal models in animal cognition and microbiome research.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Lin
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Gialeli G, Panagopoulou O, Liosis G, Siahanidou T. Potential Epigenetic Effects of Human Milk on Infants' Neurodevelopment. Nutrients 2023; 15:3614. [PMID: 37630804 PMCID: PMC10460013 DOI: 10.3390/nu15163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The advantages of human milk feeding, especially in preterm babies, are well recognized. Infants' feeding with breast milk lowers the likelihood of developing a diverse range of non-communicable diseases later in life and it is also associated with improved neurodevelopmental outcomes. Although the precise mechanisms through which human milk feeding is linked with infants' neurodevelopment are still unknown, potential epigenetic effects of breast milk through its bioactive components, including non-coding RNAs, stem cells and microbiome, could at least partly explain this association. Micro- and long-non-coding RNAs, enclosed in milk exosomes, as well as breast milk stem cells, survive digestion, reach the circulation and can cross the blood-brain barrier. Certain non-coding RNAs potentially regulate genes implicated in brain development and function, whereas nestin-positive stem cells can possibly differentiate into neural cells or/and act as epigenetic regulators in the brain. Furthermore, breast milk microbiota contributes to the establishment of infant's gut microbiome, which is implicated in brain development via epigenetic modifications and key molecules' regulation. This narrative review provides an updated analysis of the relationship between breast milk feeding and infants' neurodevelopment via epigenetics, pointing out how breast milk's bioactive components could have an impact on the neurodevelopment of both full-term and preterm babies.
Collapse
Affiliation(s)
- Giannoula Gialeli
- First Department of Pediatrics, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.G.); (O.P.)
| | - Ourania Panagopoulou
- First Department of Pediatrics, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.G.); (O.P.)
| | - Georgios Liosis
- Neonatal Intensive Care Unit, “Elena Venizelou” General and Maternal Hospital, 11521 Athens, Greece;
| | - Tania Siahanidou
- First Department of Pediatrics, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.G.); (O.P.)
| |
Collapse
|
16
|
Lu X, Fan Y, Peng Y, Pan W, Du D, Xu X, Li N, He T, Nie J, Shi P, Ge F, Liu D, Chen Y, Guan X. Gegen-Qinlian decoction alleviates anxiety-like behaviors in methamphetamine-withdrawn mice by regulating Akkermansia and metabolism in the colon. Chin Med 2023; 18:85. [PMID: 37455317 DOI: 10.1186/s13020-023-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Anxiety is a prominent withdrawal symptom of methamphetamine (Meth) addiction. Recently, the gut microbiota has been regarded as a promising target for modulating anxiety. Gegen-Qinlian decoction (GQD) is a classical Traditional Chinese Medicine applied in interventions of various gut disorders by balancing the gut microbiome. We aim to investigate whether GQD could alleviate Meth withdrawal anxiety through balancing gut microbiota and gut microenvironment. METHODS Meth withdrawal anxiety models were established in mice. GQD were intragastric administrated into Meth-withdrawn mice and controls. Gut permeability and inflammatory status were examined in mice. Germ-free (GF) and antibiotics-treated (Abx) mice were used to evaluate the role of gut bacteria in withdrawal anxiety. Gut microbiota was profiled with 16s rRNA sequencing in feces. Metabolomics in colon tissue and in Akkermansia culture medium were performed. RESULTS Meth withdrawal enhanced anxiety-like behaviors in wild-type mice, and altered gut permeability, and inflammatory status, while GQD treatment during the withdrawal period efficiently alleviated anxiety-like behaviors and improved gut microenvironment. Next, we found Germ-free (GF) and antibiotics-treated (Abx) mice did not develop anxiety-like behaviors by Meth withdrawal, indicating the essential role of gut bacteria in Meth withdrawal induced anxiety. Then, it was observed that gut microbiota was greatly affected in Meth-withdrawn mice, especially the reduction in Akkermansia. GQD can rescue the gut microbiota and reverse Akkermansia abundance in Meth-withdrawn mice. Meanwhile, GQD can also restore the Meth-impaired Akkermansia growth in vitro. Further, GQD restored several common metabolite levels both in colon in vivo and in Akkermansia in vitro. CONCLUSIONS We revealed a novel effect of GQD on Meth withdrawal anxiety and identified its pharmacological target axis as "Akkermansia-Akkermansia metabolites-gut metabolites-gut microenvironment". Our findings indicated that targeting gut bacteria with TCM, such as GQD, might be a promising therapeutic strategy for addiction and related withdrawal symptoms.
Collapse
Affiliation(s)
- Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Teng He
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pengbo Shi
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yugen Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Mohamed FJ, Vijayakumar V, Manavalan N, Maheshkumar K. Screening and validation of the iris manifestation among patients with hemiplegia - an observational study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:497-503. [PMID: 36594449 DOI: 10.1515/jcim-2022-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Understanding and validating the science behind traditional diagnostic methods is a niche area to be explored. Iris diagnosis is one such valuable diagnostic tool used in Naturopathy. In the current study, we have assessed and documented the iris changes observed among patients with hemiplegia with respect to the iridology chart. METHODS We recruited 35 patients with hemiplegia which includes both genders. Iris image was captured by Angel Kiss New 5.0MP Iridology Camera with Pro Iris Analysis Software. Lesion characters, such as open lesion, closed lesion, spot, furrow, radii solaris, intestinal crypts etc., in the iris were noted along with its various characteristics in an excel sheet in numerical order for analysis. RESULTS Majority of the included patients were male (n=30) and the mean age of the patients was 46 years. The most common iris lesions noted were radii solaris and intestinal crypt in the cerebrum and cerebellum regions. Other notable lesions include open lesion, closed lesion, brown spot, hole and nerve ring. ROC analysis for selected iris lesions showed that intestinal crypt (AUC=0.82, p=0.01) and radii solaris (AUC=0.62, p=0.04) to be potential markers for hemiplegia. CONCLUSIONS Two common lesions observed in patients with hemiplegia are radii solaris and intestinal crypt, corresponding to the cerebrum and cerebellum regions of the iris. Future studies with larger sample size would help warrant our current findings, and also the possible application of iris diagnosis as an early diagnostic marker for hemiplegia.
Collapse
Affiliation(s)
- Fathima Jebin Mohamed
- Department of Obstetrics and Gynaecology, Govt. Yoga & Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Venugopal Vijayakumar
- Department of Yoga, Govt. Yoga & Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Narayanaswamy Manavalan
- Department of Naturopathy, Govt. Yoga & Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Kuppusamy Maheshkumar
- Department of Physiology, Govt. Yoga & Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai 600106, India
| |
Collapse
|
18
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
19
|
Mancini VO, Brook J, Hernandez C, Strickland D, Christophersen CT, D'Vaz N, Silva D, Prescott S, Callaghan B, Downs J, Finlay‐Jones A. Associations between the human immune system and gut microbiome with neurodevelopment in the first 5 years of life: A systematic scoping review. Dev Psychobiol 2023; 65:e22360. [PMID: 36811373 PMCID: PMC10107682 DOI: 10.1002/dev.22360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
The aim of this review was to map the literature assessing associations between maternal or infant immune or gut microbiome biomarkers and child neurodevelopmental outcomes within the first 5 years of life. We conducted a PRISMA-ScR compliant review of peer-reviewed, English-language journal articles. Studies reporting gut microbiome or immune system biomarkers and child neurodevelopmental outcomes prior to 5 years were eligible. Sixty-nine of 23,495 retrieved studies were included. Of these, 18 reported on the maternal immune system, 40 on the infant immune system, and 13 on the infant gut microbiome. No studies examined the maternal microbiome, and only one study examined biomarkers from both the immune system and the gut microbiome. Additionally, only one study included both maternal and infant biomarkers. Neurodevelopmental outcomes were assessed from 6 days to 5 years. Associations between biomarkers and neurodevelopmental outcomes were largely nonsignificant and small in effect size. While the immune system and gut microbiome are thought to have interactive impacts on the developing brain, there remains a paucity of published studies that report biomarkers from both systems and associations with child development outcomes. Heterogeneity of research designs and methodologies may also contribute to inconsistent findings. Future studies should integrate data across biological systems to generate novel insights into the biological underpinnings of early development.
Collapse
Affiliation(s)
- Vincent O. Mancini
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Juliet Brook
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | | | - Deborah Strickland
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Claus T. Christophersen
- WA Human Microbiome Collaboration Centre, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Nina D'Vaz
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Desiree Silva
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Susan Prescott
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Bridget Callaghan
- Brain and Body LabUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Jenny Downs
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| | - Amy Finlay‐Jones
- Early Neurodevelopment and Mental HealthTelethon Kids InstituteNedlandsWestern AustraliaAustralia
| |
Collapse
|
20
|
Mázala-de-Oliveira T, Jannini de Sá YAP, Carvalho VDF. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Mem Inst Oswaldo Cruz 2023; 118:e220197. [PMID: 36946851 PMCID: PMC10027071 DOI: 10.1590/0074-02760220197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.
Collapse
Affiliation(s)
| | | | - Vinicius de Frias Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
- + Corresponding author:
| |
Collapse
|
21
|
Xavier J, Anu M, Fathima AS, Ravichandiran V, Kumar N. Intriguing Role of Gut-Brain Axis on Cognition with an Emphasis on Interaction with Papez Circuit. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1146-1163. [PMID: 35702801 DOI: 10.2174/1871527321666220614124145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The gut microbiome is a complicated ecosystem of around a hundred billion symbiotic bacteria cells. Bidirectional communication between the gut and the brain is facilitated by the immune system, the enteric nervous system, the vagus nerve, and microbial compounds such as tryptophan metabolites and short-chain fatty acids (SCFAs). The current study emphasises the relationship of the gut-brain axis with cognitive performance and elucidates the underlying biological components, with a focus on neurotransmitters such as serotonin, indole derivatives, and catecholamine. These biological components play important roles in both the digestive and brain systems. Recent research has linked the gut microbiome to a variety of cognitive disorders, including Alzheimer's (AD). The review describes the intriguing role of the gut-brain axis in recognition memory depending on local network connections within the hippocampal as well as other additional hippocampal portions of the Papez circuit. The available data from various research papers show how the gut microbiota might alter brain function and hence psychotic and cognitive illnesses. The role of supplementary probiotics is emphasized for the reduction of brain-related dysfunction as a viable strategy in handling cognitive disorders. Further, the study elucidates the mode of action of probiotics with reported adverse effects.
Collapse
Affiliation(s)
- Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - M Anu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - A S Fathima
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
22
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
23
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
24
|
MahmoudianDehkordi S, Bhattacharyya S, Brydges CR, Jia W, Fiehn O, Rush AJ, Dunlop BW, Kaddurah-Daouk R. Gut Microbiome-Linked Metabolites in the Pathobiology of Major Depression With or Without Anxiety—A Role for Bile Acids. Front Neurosci 2022; 16:937906. [PMID: 35937867 PMCID: PMC9350527 DOI: 10.3389/fnins.2022.937906] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome may play a role in the pathogenesis of neuropsychiatric diseases including major depressive disorder (MDD). Bile acids (BAs) are steroid acids that are synthesized in the liver from cholesterol and further processed by gut-bacterial enzymes, thus requiring both human and gut microbiome enzymatic processes in their metabolism. BAs participate in a range of important host functions such as lipid transport and metabolism, cellular signaling and regulation of energy homeostasis. BAs have recently been implicated in the pathophysiology of Alzheimer's and several other neuropsychiatric diseases, but the biochemical underpinnings of these gut microbiome-linked metabolites in the pathophysiology of depression and anxiety remains largely unknown. Method Using targeted metabolomics, we profiled primary and secondary BAs in the baseline serum samples of 208 untreated outpatients with MDD. We assessed the relationship of BA concentrations and the severity of depressive and anxiety symptoms as defined by the 17-item Hamilton Depression Rating Scale (HRSD17) and the 14-item Hamilton Anxiety Rating Scale (HRSA-Total), respectively. We also evaluated whether the baseline metabolic profile of BA informs about treatment outcomes. Results The concentration of the primary BA chenodeoxycholic acid (CDCA) was significantly lower at baseline in both severely depressed (log2 fold difference (LFD) = −0.48; p = 0.021) and highly anxious (LFD = −0.43; p = 0.021) participants compared to participants with less severe symptoms. The gut bacteria-derived secondary BAs produced from CDCA such as lithocholic acid (LCA) and several of its metabolites, and their ratios to primary BAs, were significantly higher in the more anxious participants (LFD's range = [0.23, 1.36]; p's range = [6.85E-6, 1.86E-2]). The interaction analysis of HRSD17 and HRSA-Total suggested that the BA concentration differences were more strongly correlated to the symptoms of anxiety than depression. Significant differences in baseline CDCA (LFD = −0.87, p = 0.0009), isoLCA (LFD = −1.08, p = 0.016) and several BA ratios (LFD's range [0.46, 1.66], p's range [0.0003, 0.049]) differentiated treatment failures from remitters. Conclusion In patients with MDD, BA profiles representing changes in gut microbiome compositions are associated with higher levels of anxiety and increased probability of first-line treatment failure. If confirmed, these findings suggest the possibility of developing gut microbiome-directed therapies for MDD characterized by gut dysbiosis.
Collapse
Affiliation(s)
- Siamak MahmoudianDehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | - Christopher R. Brydges
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Wei Jia
- HKBU Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Psychiatry, Health Sciences Center, Texas Tech University, Odessa, Ukraine
- Duke-National University of Singapore, Singapore, Singapore
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Boadie W. Dunlop
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
- Duke Institute of Brain Sciences, Duke University, Durham, NC, United States
- Rima Kaddurah-Daouk
| |
Collapse
|
25
|
Sachdeva P, Mehdi I, Kaith R, Ahmad F, Anwar MS. Potential natural products for the management of autism spectrum disorder. IBRAIN 2022; 8:365-376. [PMID: 37786737 PMCID: PMC10528773 DOI: 10.1002/ibra.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/04/2023]
Abstract
Autism in a broader sense is a neurodevelopmental disorder, which frequently occurs during early childhood and can last for a lifetime. This condition is primarily defined by difficulties with social engagement, with individuals displaying repetitive and stereotyped behaviors. Numerous neuroanatomical investigations on autistic children have revealed that their brains grow atypically, resulting in atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech therapy, and occupational therapy have all been used to address autism-related behavioral problems. While widely prescribed antidepressant drugs, antipsychotics, anticonvulsants, and stimulants have demonstrated response in autistic individuals. However, these medications do not fully reverse the core symptoms associated with autism spectrum disorder (ASD). The adverse reactions of ASD medicines and an increased risk of developing various other problems, such as obesity, dyslipidemia, diabetes mellitus, and thyroid disorders, prompted the researchers to investigate herbal medicines for the treatment of autistic individuals. Clinical trials are now being done to establish the efficacy of alternative techniques based on natural substances and to understand better the context in which they may be used to treat autism. This review of literature will look at crucial natural compounds derived from animals and plants that have shown promise as safe and effective autism treatment strategies.
Collapse
Affiliation(s)
- Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Intizaar Mehdi
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Rohit Kaith
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Md Sheeraz Anwar
- Department of PsychologyUniversity of CampaniaLuigi VanvitelliCasertaItaly
| |
Collapse
|
26
|
Arija V, Jardí C, Bedmar C, Díaz A, Iglesias-Vázquez L, Canals J. Supplementation of Infant Formula and Neurodevelopmental Outcomes: a Systematic Review. Curr Nutr Rep 2022; 11:283-300. [PMID: 35334102 DOI: 10.1007/s13668-022-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF THE REVIEW The aim is to examine data from clinical trials and prospective longitudinal studies that evaluate the effect of infant formula supplements on the cognitive function of children. RECENT FINDINGS A total of 300 articles from 2000 to 2021 were selected. The most researched IF supplements were initially long-chain polyunsaturated fatty acids (LC-PUFA), some proteins and, recently, milk fat globule membrane (MFGM). Supplementation of IF with LC-PUFA led to some positive effects on specific cognitive functions or no effect; however, there was no consistent benefit for cognitive function. Modifying the amount of proteins did not affect the children's neuropsychological tests. Supplementation of IF with MFGM and its components had beneficial effects on child cognitive development in the short term, but no effect was observed in the long term. Further studies are needed to confirm the safety of supplementation on the development of cognitive function in children fed with infant formula.
Collapse
Affiliation(s)
- Victoria Arija
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), URV, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Cristina Jardí
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), URV, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Cristina Bedmar
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), URV, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Andrés Díaz
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), URV, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Lucía Iglesias-Vázquez
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), URV, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Josefa Canals
- Faculty of Medicine and Health Science, Rovira I Virgili University, Tarragona, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- Faculty of Education Sciences and Psychology, Rovira I Virgili University, URV, Ctra. Valls s/n. 43007, Tarragona, Spain.
| |
Collapse
|
27
|
Zeng C, Qiu Y, Li S, Teng Z, Xiang H, Chen J, Wu X, Cao T, Zhang S, Chen Q, Wu H, Cai H. Effect of Probiotic Supplements on Oxidative Stress Biomarkers in First-Episode Bipolar Disorder Patients: A Randomized, Placebo-Controlled Trial. Front Pharmacol 2022; 13:829815. [PMID: 35559241 PMCID: PMC9086965 DOI: 10.3389/fphar.2022.829815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Currently no study has examined the effects of probiotic administration on the symptoms of anxiety, depression, and mania, as well as their correlations with the biomarkers of oxidative stress in patients with bipolar disorder (BPD). The aim of this study is to determine the effects of probiotic supplementation on plasma oxidative stress-related biomarkers and different domains of clinical symptom in patients suffering from BPD. Methods: Eighty first-episode drug-naive patients with BPD were recruited. The subjects were randomized to receive psychotropic drugs supplementing with either probiotic or placebo and scheduled to evaluate with follow-ups for clinical symptom improvements and changes in the oxidative stress biomarkers. The Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Young Mania Rating Scale were used to assess the clinical symptomatology. The panel of plasma oxidative stress biomarkers were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) at baseline and for 3 months of follow-up, i.e., at post-treatment month 1, 2, and 3. Results: After 3 months of intervention, decreased levels of plasma lysophosphatidylcholines (LPCs) were found in both placebo and probiotic groups. However, six other oxidative stress biomarkers (i.e., creatine, inosine, hypoxanthine, choline, uric acid, allantoic acid) increased in BPD patients after the two types of therapies. In addition, a positive correlation between changes of LPC (18:0) and YMRS scale was found in BPD patients and this association only existed in the probiotic group. Additionally, the mania symptom greatly alleviated (pretreatment-posttreatment, odds ratio = 0.09, 95%CI = 0.01, 0.64, p= 0.016) in patients who received probiotic supplements as compared with the placebo group. Conclusion: The changes in plasma biomarkers of oxidative stress in patients with BPD have a potential to be trait-like markers, and serve as prognostic indexes for bipolar patients. Daily intakes of probiotics have advantageous effects on BPD patients with certain clinical symptoms, especially manic symptoms. The treatment may be a promising adjunctive therapeutic strategy for BPD patients in manic episode.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
28
|
Yadav M, Kapoor A, Verma A, Ambatipudi K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3929-3947. [PMID: 35324181 DOI: 10.1021/acs.jafc.2c00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aparna Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
29
|
Nieto-Ruiz A, García-Santos JA, Verdejo-Román J, Diéguez E, Sepúlveda-Valbuena N, Herrmann F, Cerdó T, De-Castellar R, Jiménez J, Bermúdez MG, Pérez-García M, Miranda MT, López-Sabater MC, Catena A, Campoy C. Infant Formula Supplemented With Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids, and Synbiotics Is Associated With Neurocognitive Function and Brain Structure of Healthy Children Aged 6 Years: The COGNIS Study. Front Nutr 2022; 9:820224. [PMID: 35356726 PMCID: PMC8959863 DOI: 10.3389/fnut.2022.820224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adequate nutrient intake during the first few months of life plays a critical role on brain structure and function development. Objectives To analyze the long-term effects of an experimental infant formula (EF) on neurocognitive function and brain structure in healthy children aged 6 years compared to those fed with a standard infant formula or breastfed. Methods The current study involved 108 healthy children aged 6 years and participating in the COGNIS Study. At 0-2 months, infants were randomized to receive up to 18 months of life a standard infant formula (SF) or EF enriched with milk fat globule membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics. Furthermore, a reference group of breastfed (BF) infants were also recruited. Children were assessed using neurocognitive tests and structural Magnetic Resonance Imaging (MRI) at 6 years old. Results Experimental infant formula (EF) children showed greater volumes in the left orbital cortex, higher vocabulary scores and IQ, and better performance in an attention task than BF children. EF children also presented greater volumes in parietal regions than SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas were found in children from the EF group than those fed with SF or BF groups. Further correlation analyses suggest that higher volumes and cortical thickness of different parietal and frontal regions are associated with better cognitive development in terms of language (verbal comprehension) and executive function (working memory). Finally, arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake during the first 18 months of life seem to be associated with changes in the brain structures at 6 years old. Conclusions Supplemented infant formula with MFGM components, LC-PUFAs, and synbiotics seems to be associated to long-term effects on neurocognitive development and brain structure in children at 6 years old. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier: NCT02094547.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - José A. García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Tomás Cerdó
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- Carlos III Health Institute, Madrid, Spain
| | | | | | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
| | - M. Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada, Granada, Spain
| | - M. Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Barcelona, Spain
- National Network of Research in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (Barcelona's Node), Madrid, Spain
| | - Andrés Catena
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain
| |
Collapse
|
30
|
Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, Miani M, Patterson E, Pot B, Shortt C, Vauzour D. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 2022; 79:80. [PMID: 35044528 PMCID: PMC8770392 DOI: 10.1007/s00018-021-04060-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.
Collapse
Affiliation(s)
| | - Lucie Geurts
- International Life Sciences Institute, European Branch, Brussels, Belgium.
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | | | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | | | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
31
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Lupori L, Cornuti S, Mazziotti R, Borghi E, Ottaviano E, Cas MD, Sagona G, Pizzorusso T, Tognini P. The gut microbiota of environmentally enriched mice regulates visual cortical plasticity. Cell Rep 2022; 38:110212. [PMID: 35021093 DOI: 10.1016/j.celrep.2021.110212] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.
Collapse
Affiliation(s)
| | - Sara Cornuti
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Raffaele Mazziotti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | | | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, 50100 Florence, Italy; Institute of Neuroscience, National Research Council, 56124 Pisa, Italy
| | - Paola Tognini
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
33
|
Liu L, Wang H, Chen X, Zhang Y, Li W, Rao X, Liu Y, Zhao L, Pu J, Gui S, Yang D, Fang L, Xie P. Integrative Analysis of Long Non-coding RNAs, Messenger RNAs, and MicroRNAs Indicates the Neurodevelopmental Dysfunction in the Hippocampus of Gut Microbiota-Dysbiosis Mice. Front Mol Neurosci 2022; 14:745437. [PMID: 35087377 PMCID: PMC8787131 DOI: 10.3389/fnmol.2021.745437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder is caused by gene–environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the underlying mechanisms remain elusive. Herein, the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls were detected, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level, and in further to explore the microbial-regulated pathological mechanisms of depression. As a result, 200 mRNAs, 358 lncRNAs, and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differential mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting these differential mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, a microbial-regulated lncRNA–miRNA–mRNA network based on RNA–RNA interactions was constructed. Subsequently, according to the competitive endogenous RNAs (ceRNA) hypothesis and the biological functions of these intersected genes, two neurodevelopmental ceRNA sub-networks implicating in depression were identified, one including two lncRNAs (4930417H01Rik and AI480526), one miRNA (mmu-miR-883b-3p) and two mRNAs (Adcy1 and Nr4a2), and the other including six lncRNAs (5930412G12Rik, 6430628N08Rik, A530013C23Rik, A930007I19Rik, Gm15489, and Gm16251), one miRNA (mmu-miR-377-3p) and three mRNAs (Six4, Stx16, and Ube3a), and these molecules could be recognized as potential genetic and epigenetic biomarkers in microbial-associated depression. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Peng Xie,
| |
Collapse
|
34
|
Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, Zhang CM, Liang Y, Srinath A, Zhang X, Xia J, Olszewski M, Zhang X, Schipma MJ, Chang EB, Tanzi RE, Gilbert JA, Sisodia SS. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J Exp Med 2022; 219:e20200895. [PMID: 34854884 PMCID: PMC8647415 DOI: 10.1084/jem.20200895] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated that lifelong antibiotic (ABX) perturbations of the gut microbiome in male APPPS1-21 mice lead to reductions in amyloid β (Aβ) plaque pathology and altered phenotypes of plaque-associated microglia. Here, we show that a short, 7-d treatment of preweaned male mice with high-dose ABX is associated with reductions of Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes at 9 wk of age in male mice only. More importantly, fecal microbiota transplantation (FMT) from transgenic (Tg) or WT male donors into ABX-treated male mice completely restored Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes. Transcriptomic studies revealed significant differences between vehicle versus ABX-treated male mice and FMT from Tg mice into ABX-treated mice largely restored the transcriptome profiles to that of the Tg donor animals. Finally, colony-stimulating factor 1 receptor (CSF1R) inhibitor-mediated depletion of microglia in ABX-treated male mice failed to reduce cerebral Aβ amyloidosis. Thus, microglia play a critical role in driving gut microbiome-mediated alterations of cerebral Aβ deposition.
Collapse
Affiliation(s)
- Hemraj B. Dodiya
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Holly L. Lutz
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | - Ian Q. Weigle
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL
| | | | | | | | - Yingxia Liang
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Abhinav Srinath
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xulun Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Jessica Xia
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Monica Olszewski
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xiaoqiong Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | | | - Eugene B. Chang
- Department of Digestive Diseases, The University of Chicago, Chicago, IL
| | | | - Jack A. Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | | |
Collapse
|
35
|
Sgro M, Kodila ZN, Brady RD, Reichelt AC, Mychaisuk R, Yamakawa GR. Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. Sleep 2021; 45:6425072. [PMID: 34757429 DOI: 10.1093/sleep/zsab268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zoe N Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Richelle Mychaisuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
37
|
Predictive Value of Gut Microbiome for Cognitive Impairment in Patients with Hypertension. DISEASE MARKERS 2021; 2021:1683981. [PMID: 34659587 PMCID: PMC8514967 DOI: 10.1155/2021/1683981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
A connection exists between hypertension (HTN) and cognitive impairment (CI) or gut microbiota (GM) and neuropsychiatric disease. However, the link between GM and HTNCI has not been illustrated. This study endeavoured to profile the landscape of GM in HTNCI patients and evaluate the value of GM as HTNCI biomarkers. We recruited 128 patients with hypertension and assigned them to two groups of different MoCA scores. Clinical and biological data were recorded. GM composition was illustrated with 16S ribosomal RNA sequencing, and the dominant species were identified by linear discriminant analysis Effect Size (LEfSe). It showed higher abundance of TM7 and lower abundances of Veillonella and Peptoniphilus in the HTNCI group than in the HTN without cognitive impairment (HTNnCI) group. We next clarified the link between GM and MoCA scores or HTNCI factors. KEGG analysis revealed the involvement of decreased bile secretion. An evident correlation showed up between HTNCI and Veillonella abundance (P = 0.0340). We concluded that some representative GM species, especially Veillonella, could predict cognitive impairment in hypertension patients, making them potential benchmarks of HTNCI.
Collapse
|
38
|
Petersen AH, Osler M, Ekstrøm CT. Data-Driven Model Building for Life-Course Epidemiology. Am J Epidemiol 2021; 190:1898-1907. [PMID: 33778840 DOI: 10.1093/aje/kwab087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Life-course epidemiology is useful for describing and analyzing complex etiological mechanisms for disease development, but existing statistical methods are essentially confirmatory, because they rely on a priori model specification. This limits the scope of causal inquiries that can be made, because these methods are suited mostly to examine well-known hypotheses that do not question our established view of health, which could lead to confirmation bias. We propose an exploratory alternative. Instead of specifying a life-course model prior to data analysis, our method infers the life-course model directly from the data. Our proposed method extends the well-known Peter-Clark (PC) algorithm (named after its authors) for causal discovery, and it facilitates including temporal information for inferring a model from observational data. The extended algorithm is called temporal PC. The obtained life-course model can afterward be perused for interesting causal hypotheses. Our method complements classical confirmatory methods and guides researchers in expanding their models in new directions. We showcase the method using a data set encompassing almost 3,000 Danish men followed from birth until age 65 years. Using this data set, we inferred life-course models for the role of socioeconomic and health-related factors on development of depression.
Collapse
|
39
|
AKTAS B, ASLIM B. Neuropathy in COVID-19 associated with dysbiosis-related inflammation. Turk J Biol 2021; 45:390-403. [PMID: 34803442 PMCID: PMC8573843 DOI: 10.3906/biy-2105-53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut-lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut-lung and gut-brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.
Collapse
Affiliation(s)
- Busra AKTAS
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, BurdurTurkey
| | - Belma ASLIM
- Department of Biology, Faculty of Sciences, Gazi University, AnkaraTurkey
| |
Collapse
|
40
|
Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:ijms22136981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
|
41
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
42
|
Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. Int J Mol Sci 2021; 22:ijms22073723. [PMID: 33918462 PMCID: PMC8038247 DOI: 10.3390/ijms22073723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is the set of microorganisms that colonize the gastrointestinal tract of living creatures, establishing a bidirectional symbiotic relationship that is essential for maintaining homeostasis, for their growth and digestive processes. Growing evidence supports its involvement in the intercommunication system between the gut and the brain, so that it is called the gut-brain-microbiota axis. It is involved in the regulation of the functions of the Central Nervous System (CNS), behavior, mood and anxiety and, therefore, its implication in the pathogenesis of neuropsychiatric disorders. In this paper, we focused on the possible correlations between the gut microbiota and Bipolar Disorder (BD), in order to determine its role in the pathogenesis and in the clinical management of BD. Current literature supports a possible relationship between the compositional alterations of the intestinal microbiota and BD. Moreover, due to its impact on psychopharmacological treatment absorption, by acting on the composition of the microbiota beneficial effects can be obtained on BD symptoms. Finally, we discussed the potential of correcting gut microbiota alteration as a novel augmentation strategy in BD. Future studies are necessary to better clarify the relevance of gut microbiota alterations as state and disease biomarkers of BD.
Collapse
|
43
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S, Zito MC, Macri R, Palma E, Muscoli C, Mollace V. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. Front Neurosci 2021; 15:616883. [PMID: 33833660 PMCID: PMC8021727 DOI: 10.3389/fnins.2021.616883] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Different bacterial families colonize most mucosal tissues in the human organism such as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial species, collectively called "microbiota." Co-metabolism between the microbiota and the host system is generated and the symbiotic relationship is mutually beneficial. The balance that is achieved between the microbiota and the host organism is fundamental to the organization of the immune system. Scientific studies have highlighted a direct correlation between the intestinal microbiota and the brain, establishing the existence of the gut microbiota-brain axis. Based on this theory, the microbiota acts on the development, physiology, and cognitive functions of the brain, although the mechanisms involved have not yet been fully interpreted. Similarly, a close relationship between alteration of the intestinal microbiota and the onset of several neurological pathologies has been highlighted. This review aims to point out current knowledge as can be found in literature regarding the connection between intestinal dysbiosis and the onset of particular neurological pathologies such as anxiety and depression, autism spectrum disorder, and multiple sclerosis. These disorders have always been considered to be a consequence of neuronal alteration, but in this review, we hypothesize that these alterations may be non-neuronal in origin, and consider the idea that the composition of the microbiota could be directly involved. In this direction, the following two key points will be highlighted: (1) the direct cross-talk that comes about between neurons and gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we consider the microbiota a valuable target for reducing or modulating the incidence of certain neurological diseases?
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
44
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
45
|
Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms 2021; 9:341. [PMID: 33572211 PMCID: PMC7914750 DOI: 10.3390/microorganisms9020341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The milk fat globule membrane (MFGM), the component that surrounds fat globules in milk, and its constituents have gained significant attention for their gut function, immune-boosting properties, and cognitive-development roles. The MFGM can directly interact with probiotic bacteria, such as bifidobacteria and lactic acid bacteria (LAB), through interactions with bacterial surface proteins. With these interactions in mind, increasing evidence supports a synergistic effect between MFGM and probiotics to benefit human health at all ages. This important synergy affects the survival and adhesion of probiotic bacteria through gastrointestinal transit, mucosal immunity, and neurocognitive behavior in developing infants. In this review, we highlight the current understanding of the co-supplementation of MFGM and probiotics with a specific emphasis on their interactions and colocalization in dairy foods, supporting in vivo and clinical evidence, and current and future potential applications.
Collapse
Affiliation(s)
| | | | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| |
Collapse
|
46
|
Hamad AF, Alessi-Severini S, Mahmud S, Brownell M, Kuo IF. Prenatal antibiotic exposure and risk of attention-deficit/hyperactivity disorder: a population-based cohort study. CMAJ 2021; 192:E527-E535. [PMID: 32575031 DOI: 10.1503/cmaj.190883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal microbiota composition induced by prenatal exposure to antibiotics has been proposed as a potential contributor to the development of attention-deficit/hyperactivity disorder (ADHD). We examined the association between prenatal antibiotic exposure and risk of ADHD. METHODS We conducted a population-based retrospective cohort study of children born in Manitoba, Canada, between 1998 and 2017 and their mothers. We defined exposure as the mother having filled 1 or more antibiotic prescriptions during pregnancy. The outcome was diagnosis of ADHD in the offspring, as identified in administrative databases. We estimated hazard ratios (HRs) using Cox proportional hazards regression in the overall cohort, in a separate cohort matched on high-dimensional propensity scores and in a sibling cohort. RESULTS In the overall cohort, consisting of 187 605 children, prenatal antibiotic dispensation was associated with increased risk of ADHD (HR 1.22, 95% confidence interval [CI] 1.18-1.26). Similar results were observed in the matched cohort of 129 674 children (HR 1.20, 95% CI 1.15-1.24) but not in the sibling cohort (HR 1.06, 95% CI 0.99-1.13). Two negative-control analyses indicated a positive association with ADHD despite the lack of a reasonable biological mechanism, which suggested that the observed association between prenatal antibiotic dispensation and risk of ADHD was likely due to confounding. INTERPRETATION In our study, prenatal antibiotic exposure was not associated with increased risk of ADHD in children. Although the risk was higher in the overall and matched cohorts, it was likely overestimated because of unmeasured confounding. Future studies are warranted to examine other factors affecting microbiota composition in association with risk of ADHD.
Collapse
Affiliation(s)
- Amani F Hamad
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Silvia Alessi-Severini
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Salaheddin Mahmud
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Marni Brownell
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - I Fan Kuo
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man.
| |
Collapse
|
47
|
Eshraghi RS, Davies C, Iyengar R, Perez L, Mittal R, Eshraghi AA. Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. J Clin Med 2020; 10:jcm10010027. [PMID: 33374296 PMCID: PMC7794774 DOI: 10.3390/jcm10010027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the gut microbiome has gained considerable interest as one of the major contributors to the pathogenesis of multi-system inflammatory disorders. Several studies have suggested that the gut microbiota plays a role in modulating complex signaling pathways, predominantly via the bidirectional gut-brain-axis (GBA). Subsequent in vivo studies have demonstrated the direct role of altered gut microbes and metabolites in the progression of neurodevelopmental diseases. This review will discuss the most recent advancements in our understanding of the gut microbiome’s clinical significance in regulating blood-brain barrier (BBB) integrity, immunological function, and neurobiological development. In particular, we address the potentially causal role of GBA dysregulation in the pathophysiology of autism spectrum disorder (ASD) through compromising the BBB and immunological abnormalities. A thorough understanding of the complex signaling interactions between gut microbes, metabolites, neural development, immune mediators, and neurobiological functionality will facilitate the development of targeted therapeutic modalities to better understand, prevent, and treat ASD.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Correspondence:
| | - Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Iyengar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Linda Perez
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
48
|
The Effects of an Infant Formula Enriched with Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids and Synbiotics on Child Behavior up to 2.5 Years Old: The COGNIS Study. Nutrients 2020; 12:nu12123825. [PMID: 33333767 PMCID: PMC7765166 DOI: 10.3390/nu12123825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023] Open
Abstract
Although early life nutrition influences brain development and mental health, the long-term effects of supplemented infant formula on children´s behavior remain unclear. We analyzed the effects of a bioactive nutrients-enriched-infant formula on children’s behavior up to 2.5 years, compared to a standard infant formula or breastfeeding. Current analysis involved 70 children who were fed a standard infant formula (SF, n = 29) or a bioactive compounds enriched-infant formula (EF, n = 41), during their first 18 months of life, and 33 breastfed (BF) children (reference group) participating in the COGNIS study. Behavioral problems were evaluated using the Child Behavior Checklist at 18 months and 2.5 years. Different statistical analyses were performed using SPSS. EF children aged 2.5 years presented fewer pathological affective problems than SF children. Besides, SF children were classified more frequently as bordering on internalizing problems than BF children. Rates of externalizing problems were increased in SF infants compared to EF and BF infants. Higher maternal IQ was found to have beneficial effects on internalizing and total problem rate in their offspring at 18 months of life; finally, higher maternal educational level was related with fewer ADHD problems in children at 18 months, as well as internalizing, externalizing, total and anxiety problems in children aged 2.5 years. Our analysis suggests that enriched infant formula fed infants seem to show fewer behavioral problems up to 2.5 years compared to a standard infant formula-fed infants. In addition to type of early feeding, maternal IQ and educational level seem to play a key role on children behavioral development.
Collapse
|
49
|
Yu R, Wen S, Wang Q, Wang C, Zhang L, Wu X, Li J, Kong L. Mulberroside A repairs high fructose diet-induced damage of intestinal epithelial and blood-brain barriers in mice: A potential for preventing hippocampal neuroinflammatory injury. J Neurochem 2020; 157:1979-1991. [PMID: 33205422 DOI: 10.1111/jnc.15242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Our previous studies showed that high fructose diet (HFrD)-driven gut dysbiosis caused fecal short-chain fatty acids (SCFAs) reduction and intestinal epithelial barrier (IEB) damage in mice, which might play an important role in hippocampal neuroinflammatory injury. Mulberroside A is reported to have neuroprotective effects in animal experiments, while the underlying mechanisms are not yet fully elucidated. Here, we investigated whether and how mulberroside A prevented HFrD-induced neuroinflammatory injury. HFrD-fed mice were treated orally with mulberroside A (20 and 40 mg/kg) for 8 weeks. Mulberroside A was found to inhibit hippocampal neuroinflammation and neurogenesis reduction in HFrD-fed mice. It reshaped gut dysbiosis, increased fecal and serum SCFAs contents, reactivated signaling of the colonic NLR family, pyrin domain containing 6 (NLRP6) inflammasome, and up-regulated Muc2 expression to prevent IEB damage, as well as subsequently, reduced serum endotoxin levels in this animal model. Additionally, mulberroside A inhibited oxidative stress in colon of HFrD-fed mice and hydrogen peroxide (H2 O2 )-stimulated Caco-2 cells. Blood-brain barrier (BBB) structure defects were also observed in HFrD-driven hippocampal neuroinflammatory injury of mice. Interestingly, mulberroside A maintained astrocyte morphology and up-regulated tight junction proteins to repair BBB structure defects in hippocampus dentate gyrus (DG). Our results demonstrated that mulberroside A was capable of preventing HFrD-induced damage of IEB and BBB in mice, which might contribute to the suppression of hippocampal neuroinflammatory injury.
Collapse
Affiliation(s)
- Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Shiyu Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Qiaona Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Congying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Liping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Jianmei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
50
|
Gorbovskaya I, Kanji S, Liu JCW, MacKenzie NE, Agarwal SM, Marshe VS, Sriretnakumar V, Verdu EF, Bercik P, De Palma G, Hahn MK, Müller DJ. Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology 2020; 79:5-12. [PMID: 30928978 DOI: 10.1159/000494696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Emerging evidence suggests an important role of the human gut microbiome in psychiatry and neurodevelopmental disorders. An increasing body of literature based on animal studies has reported that the gut microbiome influences brain development and behavior by interacting with the gut-brain axis. Furthermore, as the gut microbiome has an important role in metabolism and is known to interact with pharmaceuticals, recent evidence suggests a role for the microbiome in antipsychotic-induced metabolic side effects in animals and humans. PURPOSE Here we present the protocol for a two-phase study investigating the gut microbiome in healthy controls and in patients with schizophrenia treated with antipsychotics. METHODS Phase I of our study involves humans exclusively. We recruit 25 patients who are chronically treated with clozapine and compare them with 25 healthy controls matched for age, sex, BMI, and smoking status. A second cohort consists of 25 patients newly starting on clozapine, and a third cohort includes 25 antipsychotic-naive patients. The patients in the second cohort and third cohort are prospectively assessed for up to 6 and 12 weeks, respectively. Phase II of this study will incorporate microbiota humanized mouse models to examine the influence of human fecal transplant on metabolic parameters and the gut-brain axis. Progress and Future Directions: We are underway with the first participants enrolled in all phase I treatment cohorts. This study will contribute to elucidating the role of the gut microbiome in schizophrenia and metabolic side effects. In addition, its results may help to explore potential therapeutic targets for antipsychotic-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilona Gorbovskaya
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Kanji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jonathan C W Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Sri Mahavir Agarwal
- Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Victoria S Marshe
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Venuja Sriretnakumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret K Hahn
- Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada, .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada, .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|