1
|
Sebastianelli G, Atalar AÇ, Cetta I, Farham F, Fitzek M, Karatas-Kursun H, Kholodova M, Kukumägi KH, Montisano DA, Onan D, Pantovic A, Skarlet J, Sotnikov D, Caronna E, Pozo-Rosich P. Insights from triggers and prodromal symptoms on how migraine attacks start: The threshold hypothesis. Cephalalgia 2024; 44:3331024241287224. [PMID: 39380339 DOI: 10.1177/03331024241287224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND The prodrome or premonitory phase is the initial phase of a migraine attack, and it is considered as a symptomatic phase in which prodromal symptoms may occur. There is evidence that attacks start 24-48 hours before the headache phase. Individuals with migraine also report several potential triggers for their attacks, which may be mistaken for premonitory symptoms and hinder migraine research. METHODS This review aims to summarize published studies that describe contributions to understanding the fine difference between prodromal/premonitory symptoms and triggers, give insights for research, and propose a way forward to study these phenomena. We finally aim to formulate a theory to unify migraine triggers and prodromal symptoms. For this purpose, a comprehensive narrative review of the published literature on clinical, neurophysiological and imaging evidence on migraine prodromal symptoms and triggers was conducted using the PubMed database. RESULTS Brain activity and network connectivity changes occur during the prodromal phase. These changes give rise to prodromal/premonitory symptoms in some individuals, which may be falsely interpreted as triggers at the same time as representing the early manifestation of the beginning of the attack. By contrast, certain migraine triggers, such as stress, hormone changes or sleep deprivation, acting as a catalyst in reducing the migraine threshold, might facilitate these changes and increase the chances of a migraine attack. Migraine triggers and prodromal/premonitory symptoms can be confused and have an intertwined relationship with the hypothalamus as the central hub for integrating external and internal body signals. CONCLUSIONS Differentiating migraine triggers and prodromal symptoms is crucial for shedding light on migraine pathophysiology and improve migraine management.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Arife Çimen Atalar
- Neurology Department, Health Sciences University, Istanbul Physical Therapy and Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilaria Cetta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fatemeh Farham
- Department of Headache, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medicine Sciences, Tehran, Iran
| | - Mira Fitzek
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hulya Karatas-Kursun
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkiye
| | - Marharyta Kholodova
- Department of Neurology and Neurosurgery, Medical Center "Dobrobut-Clinic" LLC, Kyiv, Ukraine
| | | | - Danilo Antonio Montisano
- Headache Center, Neuroalgology Dpt - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Aleksandar Pantovic
- Neurology Clinic, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jeva Skarlet
- Western Tallinn Central Hospital, Tallinn, Estonia
| | - Dmytro Sotnikov
- Department Neurosurgery and Neurology, Sumy State University, Medical Center "Neuromed", Sumy, Ukraine
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Research Group, Departament de Medicina, Vall d'Hebron Institute of Research, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Research Group, Departament de Medicina, Vall d'Hebron Institute of Research, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Pola P, Frezza A, Gavioli EC, Calò G, Ruzza C. Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ-NOP Receptor System. Brain Sci 2024; 14:936. [PMID: 39335430 PMCID: PMC11431041 DOI: 10.3390/brainsci14090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Exposure to physical and psychological stress modulates pain transmission in a dual manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named stress-induced hyperalgesia (SIH). SIH is a clinically relevant phenomenon since it has been well documented that physical and psychological stress exacerbates pain in patients with several chronic pain syndromes, including migraine. The availability of animal models of SIA and SIH is of high importance for understanding the biological mechanisms leading to these phenomena and for the identification of pharmacological targets useful to alleviate the burden of stress-exacerbated chronic pain. Among these targets, the nociceptin/orphanin FQ (N/OFQ)-N/OFQ peptide (NOP) receptor system has been identified as a key modulator of both pain transmission and stress susceptibility. This review describes first the experimental approaches to induce SIA and SIH in rodents. The second part of the manuscript summarizes the scientific evidence that suggests the N/OFQ-NOP receptor system as a player in the stress-pain interaction and candidates NOP antagonists as useful drugs to mitigate the detrimental effects of stress exposure on pain perception.
Collapse
Affiliation(s)
- Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Frezza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Fernández-García R, Melguizo-Ibáñez E, Zurita-Ortega F, Ubago-Jiménez JL. Development and validation of a mental hyperactivity questionnaire for the evaluation of chronic stress in higher education. BMC Psychol 2024; 12:392. [PMID: 39010177 PMCID: PMC11251370 DOI: 10.1186/s40359-024-01889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Examination and understanding of neural hyperactivity are some of the greatest scientific challenges faced in the present day. For this reason, the present study aimed to examine this phenomenon in the context of higher education. METHOD Likewise, this work will enable an instrument to be created to appropriately and reliably estimate neural hyperactivity associated with chronic stress in university students undertaking a Physiotherapy degree. RESULTS Analysis of content validity was carried out according to agreement and consensus between nineteen experts with Education Science or Psychology degrees, via the Delphi method. On the other hand, face validity was established by administering the questionnaire to a sample of 194 university students aged between 18 and 45 years (M = 30.48%; SD = 13.152). CONCLUSION The final self-report measure, denominated mental hyperactivity, was composed of 10 items which showed adequate fit with regards to face and content validity (α = 0.775). Confirmatory factor analysis confirmed that the questionnaire was unidimensional.
Collapse
Affiliation(s)
- Rubén Fernández-García
- Department of Nursing, Physiotherapy and Medicine, University of Almería, La Cañada de San Urbano, Carretera Sacramento s/n, Almería, 04120, Spain
| | - Eduardo Melguizo-Ibáñez
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain.
| | - Félix Zurita-Ortega
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain
| | - José Luis Ubago-Jiménez
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain
| |
Collapse
|
4
|
Winzenried ET, Everett AC, Saito ER, Miller RM, Johnson T, Neal E, Boyce Z, Smith C, Jensen C, Kimball S, Brantley A, Melendez G, Moffat D, Davis E, Aponik L, Crofts T, Dabney B, Edwards JG. Effects of a True Prophylactic Treatment on Hippocampal and Amygdala Synaptic Plasticity and Gene Expression in a Rodent Chronic Stress Model of Social Defeat. Int J Mol Sci 2023; 24:11193. [PMID: 37446371 PMCID: PMC10342862 DOI: 10.3390/ijms241311193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory-e.g., the amygdala and hippocampus-are dysregulated in PTSD, the pathophysiology of the disorder is not well defined and therefore, pharmacological interventions are extremely limited. Because stress hormones norepinephrine and cortisol (corticosterone in rats) are heavily implicated in the disorder, we explored whether preemptively and systemically antagonizing β-adrenergic and glucocorticoid receptors with propranolol and mifepristone are sufficient to mitigate pathological changes in synaptic plasticity, gene expression, and anxiety induced by a modified social defeat (SD) stress protocol. Young adult, male Sprague Dawley rats were initially pre-screened for anxiety. The rats were then exposed to SD and chronic light stress to induce anxiety-like symptoms. Drug-treated rats were administered propranolol and mifepristone injections prior to and continuing throughout SD stress. Using competitive ELISAs on plasma, field electrophysiology at CA1 of the ventral hippocampus (VH) and the basolateral amygdala (BLA), quantitative RT-PCR, and behavior assays, we demonstrate that our SD stress increased anxiety-like behavior, elevated long-term potentiation (LTP) in the VH and BLA, and altered the expression of mineralocorticoid, glucocorticoid, and glutamate receptors. These measures largely reverted to control levels with the administration of propranolol and mifepristone. Our findings indicate that SD stress increases LTP in the VH and BLA and that prophylactic treatment with propranolol and mifepristone may have the potential in mitigating these and other stress-induced effects.
Collapse
Affiliation(s)
| | - Anna C. Everett
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Erin R. Saito
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Roxanne M. Miller
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Taylor Johnson
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Eliza Neal
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Zachary Boyce
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Chloe Jensen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Spencer Kimball
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Adam Brantley
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Gabriel Melendez
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Devin Moffat
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Erin Davis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Lyndsey Aponik
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Crofts
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Bryson Dabney
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey G. Edwards
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Yamanaka G, Hayashi K, Morishita N, Takeshita M, Ishii C, Suzuki S, Ishimine R, Kasuga A, Nakazawa H, Takamatsu T, Watanabe Y, Morichi S, Ishida Y, Yamazaki T, Go S. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:ijms24098343. [PMID: 37176049 PMCID: PMC10178908 DOI: 10.3390/ijms24098343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The role of neuroinflammation in the pathophysiology of migraines is increasingly being recognized, and cytokines, which are important endogenous substances involved in immune and inflammatory responses, have also received attention. This review examines the current literature on neuroinflammation in the pathogenesis of migraine. Elevated TNF-α, IL-1β, and IL-6 levels have been identified in non-invasive mouse models with cortical spreading depolarization (CSD). Various mouse models to induce migraine attack-like symptoms also demonstrated elevated inflammatory cytokines and findings suggesting differences between episodic and chronic migraines and between males and females. While studies on human blood during migraine attacks have reported no change in TNF-α levels and often inconsistent results for IL-1β and IL-6 levels, serial analysis of cytokines in jugular venous blood during migraine attacks revealed consistently increased IL-1β, IL-6, and TNF-α. In a study on the interictal period, researchers reported higher levels of TNF-α and IL-6 compared to controls and no change regarding IL-1β levels. Saliva-based tests suggest that IL-1β might be useful in discriminating against migraine. Patients with migraine may benefit from a cytokine perspective on the pathogenesis of migraine, as there have been several encouraging reports suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chiako Ishii
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Rie Ishimine
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Haruka Nakazawa
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
6
|
Medina-Rodriguez EM, Rice KC, Jope RS, Beurel E. Comparison of inflammatory and behavioral responses to chronic stress in female and male mice. Brain Behav Immun 2022; 106:180-197. [PMID: 36058417 PMCID: PMC9561002 DOI: 10.1016/j.bbi.2022.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating disease with a high worldwide prevalence. Despite its greater prevalence in women, male animals are used in most preclinical studies of depression even though there are many sex differences in key components of depression, such as stress responses and immune system functions. In the present study, we found that chronic restraint stress-induced depressive-like behaviors are quite similar in male and female mice, with both sexes displaying increased immobility time in the tail suspension test and reduced social interactions, and both sexes exhibited deficits in working and spatial memories. However, in contrast to the similar depressive-like behaviors developed by male and female mice in response to stress, they displayed different patterns of pro-inflammatory cytokine increases in the periphery and the brain, different changes in microglia, and different changes in the expression of Toll-like receptor 4 in response to stress. Treatment with (+)-naloxone, a Toll-like receptor 4 antagonist that previously demonstrated anti-depressant-like effects in male mice, was more efficacious in male than female mice in reducing the deleterious effects of stress, and its effects were not microbiome-mediated. Altogether, these results suggest differential mechanisms to consider in potential sex-specific treatments of depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
7
|
Merdasi PG, Dezfouli RA, Mazaheri S, Haghparast A. Blocking the dopaminergic receptors in the hippocampal dentate gyrus reduced the stress-induced analgesia in persistent inflammatory pain in the rat. Physiol Behav 2022; 253:113848. [PMID: 35597308 DOI: 10.1016/j.physbeh.2022.113848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Although the dentate gyrus (DG) as a component of the hippocampal formation has been well known for its role in memory, various studies showed a diverse population of unique cell types and various inputs and outputs in this region. Besides, brain dopamine is known for its roles in reward, motivation, pleasure, and being involved in the pain process. Further, previous studies demonstrated the participation of DG dopaminergic receptors in antinociception induced by lateral hypothalamus stimulation. This study aimed to investigate the role of DG dopaminergic receptors (D1- and D2-like dopamine receptors) in stress-induced analgesia (SIA) using the formalin test as a persistent inflammatory pain model. One hundred two male Wistar rats were unilaterally implanted with a cannula into the DG. Animals received an intra-DG infusion of SCH23390 (0.25, 1, and 4 μg/rat), or Sulpiride (0.25, 1, and 4 μg/rat) as D1- and D2-like dopamine receptor antagonists, respectively, five min before exposure to forced swim stress (FSS). Ten minutes after FSS termination, 2.5% formalin solution as an inflammatory agent was subcutaneously injected into the plantar surface of the hind paw, and the pain score was quantified for one hour. The findings revealed that exposure to FSS produced SIA, though this FSS-induced analgesia was attenuated in the early and late phase of the formalin test by intra-DG microinjection of SCH23390 or Sulpiride. These results suggested that both D1- and D2-like dopamine receptors in the DG have a considerable role in analgesia induced by FSS.
Collapse
Affiliation(s)
- Pooriya Ghanbari Merdasi
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Abdi Dezfouli
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Mazaheri
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
8
|
Demartini C, Greco R, Francavilla M, Zanaboni AM, Tassorelli C. Modelling migraine-related features in the nitroglycerin animal model: trigeminal hyperalgesia is associated with affective status and motor behavior. Physiol Behav 2022; 256:113956. [PMID: 36055415 DOI: 10.1016/j.physbeh.2022.113956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent attacks of pain and other associated symptoms. Emotional-affective aspects are important components of pain, but so far they have been little explored in animal models of migraine. In this study, we aimed to explore the correlation between trigeminal hyperalgesia and affective status or behavioral components in a migraine-specific animal model. Male Sprague-Dawley rats were treated with nitroglycerin (10 mg/kg, i.p.) or its vehicle. Four hours later, anxiety, motor/exploratory behavior and grooming (a nociception index) were evaluated with the open field test. Rats were then exposed to formalin in the orofacial region to evaluate trigeminal hyperalgesia. The data analysis shows an inverse correlation between trigeminal hyperalgesia and motor or exploratory behavior, and a positive association with anxiety-like behavior or self-grooming. These findings further expand on the translational value of the migraine-specific model based on nitroglycerin administration and prompt additional parameters that can be investigated to explore migraine disease in its complexity.
Collapse
Affiliation(s)
- Chiara Demartini
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
9
|
Hasegawa M, Piriyaprasath K, Otake M, Kamimura R, Saito I, Fujii N, Yamamura K, Okamoto K. Effect of daily treadmill running exercise on masseter muscle nociception associated with social defeat stress in mice. Eur J Oral Sci 2022; 130:e12882. [DOI: 10.1111/eos.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mana Hasegawa
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Department of Restorative Dentistry Faculty of Dentistry Naresuan University Phitsanulok Thailand
| | - Masanori Otake
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Rantaro Kamimura
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Isao Saito
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kensuke Yamamura
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| |
Collapse
|
10
|
Viero FT, Rodrigues P, Frare JM, Da Silva NAR, Ferreira MDA, Da Silva AM, Pereira GC, Ferreira J, Pillat MM, Bocchi GV, Nassini R, Geppetti P, Trevisan G. Unpredictable Sound Stress Model Causes Migraine-Like Behaviors in Mice With Sexual Dimorphism. Front Pharmacol 2022; 13:911105. [PMID: 35784726 PMCID: PMC9243578 DOI: 10.3389/fphar.2022.911105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Migraine represents one of the major causes of disability worldwide and is more prevalent in women; it is also related to anxiety symptoms. Stress, such as sound stress, is a frequently reported trigger in migraine patients, but the underlying mechanisms are not fully understood. However, it is known that patients with migraine have higher levels of plasma inflammatory cytokines and calcitonin gene-related peptide (CGRP). Stress mediated by unpredictable sound is already used as a model of painful sensitization, but migraine-like behaviors and sexual dimorphism have not yet been evaluated. This study characterized nociception and anxiety-related symptoms after the induction of sound stress in mice. C57BL/6 mice (20-30 g) were exposed to unpredictable sound stress for 3 days, nonconsecutive days. We observed enhanced plasma corticosterone levels on day 1 after stress induction. First, 7 days after the last stress session, mice developed hind paw and periorbital mechanical allodynia, grimacing pain behavior, anxiety-like symptoms, and reduced exploratory behavior. The nociceptive and behavioral alterations detected in this model were mostly shown in female stressed mice at day 7 post-stress. In addition, on day 7 post-stress nociception, these behaviors were consistently abolished by the CGRP receptor antagonist olcegepant (BIBN4096BS, 100 mg/kg by intraperitoneal route) in female and male stressed mice. We also demonstrated an increase in interleukine-6 (IL-6), tumor necrosis factor (TNF-α), and CGRP levels in stressed mice plasma, with female mice showing higher levels compared to male mice. This stress paradigm allows further preclinical investigation of mechanisms contributing to migraine-inducing pain.
Collapse
Affiliation(s)
- Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Julia Maria Frare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | - Ana Merian Da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Micheli Mainardi Pillat
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Guilherme Vargas Bocchi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Romina Nassini
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence (UNIFI), Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence (UNIFI), Florence, Italy
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
11
|
Watanabe M, Kopruszinski CM, Moutal A, Ikegami D, Khanna R, Chen Y, Ross S, Mackenzie K, Stratton J, Dodick DW, Navratilova E, Porreca F. Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine. Brain 2022; 145:2894-2909. [PMID: 35325034 PMCID: PMC9890468 DOI: 10.1093/brain/awac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/17/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.
Collapse
Affiliation(s)
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Yanxia Chen
- Present address: The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Ross
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kimberly Mackenzie
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - Jennifer Stratton
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Frank Porreca
- Correspondence to: Frank Porreca, PhD Department of Pharmacology University of Arizona College of Medicine Tucson AZ 85724, USA E-mail:
| |
Collapse
|
12
|
Raoof M, Amanpour S, Roghani A, Abbasnejad M, Kooshki R, Askari-Zahabi K, Mohamadi-Jorjafki E, Majdzadeh B, Aarab G, Lobbezoo F. The effects of neonatal maternal deprivation and chronic unpredictable stresses on migraine-like behaviors in adult rats. Neurosci Lett 2022; 772:136444. [PMID: 35007689 DOI: 10.1016/j.neulet.2022.136444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress is known to cause migraine. This study investigates the effects of neonatal maternal deprivation (MD) and chronic unpredictable stress (CUS) on migraine in rats. METHODS Seventy rats were randomly divided into ten groups (five groups of each sex, and seven rats/group). The groups included: untreated intact, nitroglycerin (NTG) only, NTG + MD, NTG + CUS (10 weeks after birth), and NTG + MD + CUS. For the induction of MD, pups were separated from their mothers from postnatal day 2 to day 14. The CUS was conducted by daily exposure to different stressors for 2 weeks. For the induction of migraine after stress, NTG (5 mg/kg/IP) was administered every second day for 9 days. Afterward, NTG-related symptoms, including climbing behavior, facial rubbing, body grooming, freezing behavior, and head-scratching, were recorded for 90 min. Statistical differences between the groups were analyzed by one-way and two-way ANOVA followed by the Newman-Keuls test. RESULTS Migraine symptoms, including increased head-scratching, facial rubbing, and decreased climbing behavior, were more significant in females than in males. Head scratching and facial rubbing increased in stressed females, but not in males as compared to NTG-treated rats. Body grooming was significantly decreased in MD males compared to the NTG group. The effects of NTG in MD + CUS on the rats did not differ from those in the MD or CUS groups. CONCLUSIONS MD and CUS had a sex-related aggravating effect on the development of migraine, while the combination of MD and CUS had no additive migraine-aggravating effect.
Collapse
Affiliation(s)
- Maryam Raoof
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Sara Amanpour
- Department of Oral Pathology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Roghani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Khadijeh Askari-Zahabi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elham Mohamadi-Jorjafki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Baharosadat Majdzadeh
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghizlane Aarab
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Stubberud A, Buse DC, Kristoffersen ES, Linde M, Tronvik E. Is there a causal relationship between stress and migraine? Current evidence and implications for management. J Headache Pain 2021; 22:155. [PMID: 34930118 PMCID: PMC8685490 DOI: 10.1186/s10194-021-01369-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this narrative review is to examine the literature investigating a causal relationship between stress and migraine and evaluate its implications for managing migraine. METHODS PubMed, PsycINFO and CINAHL were searched from 1988 to August 2021, identifying 2223 records evaluating the relationship between stress and migraine. Records were systematically screened. All potentially relevant records were thematically categorized into six mechanistic groups. Within each group the most recent reports providing new insights were cited. RESULTS First, studies have demonstrated an association of uncertain causality between high stress loads from stressful life events, daily hassles or other sources, and the incidence of new-onset migraine. Second, major stressful life events seem to precede the transformation from episodic to chronic migraine. Third, there is some evidence for changes in levels of stress as a risk factor for migraine attacks. Research also suggests there may be a reversed causality or that stress-trigger patterns are too individually heterogeneous for any generalized causality. Fourth, migraine symptom burden seems to increase in a setting of stress, partially driven by psychiatric comorbidity. Fifth, stress may induce sensitization and altered cortical excitability, partially explaining attack triggering, development of chronic migraine, and increased symptom burden including interictal symptom burden such as allodynia, photophobia or anxiety. Finally, behavioral interventions and forecasting models including stress variables seem to be useful in managing migraine. CONCLUSION The exact causal relationships in which stress causes incidence, chronification, migraine attacks, or increased burden of migraine remains unclear. Several individuals benefit from stress-oriented therapies, and such therapies should be offered as an adjuvant to conventional treatment and to those with a preference. Further understanding the relationship between stress, migraine and effective therapeutic options is likely to be improved by characterizing individual patterns of stress and migraine, and may in turn improve therapeutics.
Collapse
Affiliation(s)
- Anker Stubberud
- Department of Neuromedicine and Movement Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
- National Advisory Unit on Headaches, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Espen Saxhaug Kristoffersen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Department of General Practice, University of Oslo, Oslo, Norway
| | - Mattias Linde
- Department of Neuromedicine and Movement Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- National Advisory Unit on Headaches, Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Erling Tronvik
- Department of Neuromedicine and Movement Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- National Advisory Unit on Headaches, Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
14
|
Okamoto K, Hasegawa M, Piriyaprasath K, Kakihara Y, Saeki M, Yamamura K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:231-241. [PMID: 34815817 PMCID: PMC8593658 DOI: 10.1016/j.jdsr.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic pain in temporomandibular disorder (TMD) is a common health problem. Cumulating evidence indicates that the etiology of TMD pain is complex with multifactorial experience that could hamper the developments of treatments. Preclinical research is a resource to understand the mechanism for TMD pain, whereas limitations are present as a disease-specific model. It is difficult to incorporate multiple risk factors associated with the etiology that could increase pain responses into a single animal. This article introduces several rodent models which are often employed in the preclinical studies and discusses their validities for TMD pain after the elucidations of the neural mechanisms based on the clinical reports. First, rodent models were classified into two groups with or without inflammation in the deep craniofacial tissues. Next, the characteristics of each model and the procedures to identify deep craniofacial pain were discussed. Emphasis was directed on the findings of the effects of chronic psychological stress, a major risk factor for chronic pain, on the deep craniofacial nociception. Preclinical models have provided clinically relevant information, which could contribute to better understand the basis for TMD pain, while efforts are still required to bridge the gap between animal and human studies.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan.,Division of Dental Clinical Education, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| |
Collapse
|
15
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
16
|
Eller OC, Yang X, Fuentes IM, Pierce AN, Jones BM, Brake AD, Wang R, Dussor G, Christianson JA. Voluntary Wheel Running Partially Attenuates Early Life Stress-Induced Neuroimmune Measures in the Dura and Evoked Migraine-Like Behaviors in Female Mice. Front Physiol 2021; 12:665732. [PMID: 34122137 PMCID: PMC8194283 DOI: 10.3389/fphys.2021.665732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex neurological disorder that affects three times more women than men and can be triggered by endogenous and exogenous factors. Stress is a common migraine trigger and exposure to early life stress increases the likelihood of developing chronic pain disorders later in life. Here, we used our neonatal maternal separation (NMS) model of early life stress to investigate whether female NMS mice have an increased susceptibility to evoked migraine-like behaviors and the potential therapeutic effect of voluntary wheel running. NMS was performed for 3 h/day during the first 3 weeks of life and initial observations were made at 12 weeks of age after voluntary wheel running (Exercise, -Ex) or sedentary behavior (-Sed) for 4 weeks. Mast cell degranulation rates were significantly higher in dura mater from NMS-Sed mice, compared to either naïve-Sed or NMS-Ex mice. Protease activated receptor 2 (PAR2) protein levels in the dura were significantly increased in NMS mice and a significant interaction of NMS and exercise was observed for transient receptor potential ankyrin 1 (TRPA1) protein levels in the dura. Behavioral assessments were performed on adult (>8 weeks of age) naïve and NMS mice that received free access to a running wheel beginning at 4 weeks of age. Facial grimace, paw mechanical withdrawal threshold, and light aversion were measured following direct application of inflammatory soup (IS) onto the dura or intraperitoneal (IP) nitroglycerin (NTG) injection. Dural IS resulted in a significant decrease in forepaw withdrawal threshold in all groups of mice, while exercise significantly increased grimace score across all groups. NTG significantly increased grimace score, particularly in exercised mice. A significant effect of NMS and a significant interaction effect of exercise and NMS were observed on hindpaw sensitivity following NTG injection. Significant light aversion was observed in NMS mice, regardless of exercise, following NTG. Finally, exercise significantly reduced calcitonin gene-related peptide (CGRP) protein level in the dura of NMS and naïve mice. Taken together, these findings suggest that while voluntary wheel running improved some measures in NMS mice that have been associated with increased migraine susceptibility, behavioral outcomes were not impacted or even worsened by exercise.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaofang Yang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Isabella M. Fuentes
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Angela N. Pierce
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Physiology, Kansas City University of Medicine and Biosciences, Joplin, MO, United States
| | - Brittni M. Jones
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron D. Brake
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ruipeng Wang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
de Sousa Lima JL, de Oliveira Cavalcante AM, Chagas AKO, Leite GDO, Campos AR. Audiovisual overstimulation in childhood and adolescence promotes hyperactive behaviour in adult mice. Physiol Behav 2021; 233:113348. [PMID: 33545208 DOI: 10.1016/j.physbeh.2021.113348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
There is a discussion about the impact of technological development on behavioural aspects, a nuance that the present study aimed to assess. p21, p26 and p36 mice were subjected to audio (70 db) and visual stimulation (flashing lights) for 2 or 6 h per day until p64. Naive animals were included. From p74 onwards, the animals were subjected to tests to assess their locomotion, depression, anxiety, aggressiveness, and nociception behaviours. Weight assessment was also performed. The animals that received stimulation for 2 h a day since p21 showed a decrease in rearing and grooming behaviour in the open field test, as well as in the mechanical orofacial sensitivity. Animals that received stimulation for 6 h daily since p21 showed increased locomotor activity in the open field test. Animals that received stimulation for 2 h a day since p26 showed an increase in locomotor activity and a decrease in grooming behaviour in the open field test, in addition to a reduction in the number of entries in the closed arm of the elevated plus maze. Animals stimulated from p26 for 6 h daily increased the reaction time to the thermal stimulus. Animals that received stimulation for 2 h daily since p36 showed an increase in locomotor activity and a decrease in grooming behaviour in the open field test. Taken together, these findings suggest that audiovisual overstimulation during critical periods of brain development may have adverse effects compatible with hyperactivity in adulthood.
Collapse
|
18
|
Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain 2021; 161:2539-2550. [PMID: 32541386 DOI: 10.1097/j.pain.0000000000001953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here, we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days after stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. After return to baseline, the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, because nitric oxide donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent because it was no longer present at 35 days after stress. Finally, mice received either the calcitonin gene-related peptide monoclonal antibody ALD405 (10 mg/kg) 24 hours before SNP or a coinjection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.
Collapse
|
19
|
Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan K. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 2020; 130:6005-6020. [PMID: 33044227 PMCID: PMC7598047 DOI: 10.1172/jci134793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Edema is an important target for clinical intervention after traumatic brain injury (TBI). We used in vivo cellular resolution imaging and electrophysiological recording to examine the ionic mechanisms underlying neuronal edema and their effects on neuronal and network excitability after controlled cortical impact (CCI) in mice. Unexpectedly, we found that neuronal edema 48 hours after CCI was associated with reduced cellular and network excitability, concurrent with an increase in the expression ratio of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2. Treatment with the CCC blocker bumetanide prevented neuronal swelling via a reversal in the NKCC1/KCC2 expression ratio, identifying altered chloride flux as the mechanism of neuronal edema. Importantly, bumetanide treatment was associated with increased neuronal and network excitability after injury, including increased susceptibility to spreading depolarizations (SDs) and seizures, known agents of clinical worsening after TBI. Treatment with mannitol, a first-line edema treatment in clinical practice, was also associated with increased susceptibility to SDs and seizures after CCI, showing that neuronal volume reduction, regardless of mechanism, was associated with an excitability increase. Finally, we observed an increase in excitability when neuronal edema normalized by 1 week after CCI. We conclude that neuronal swelling may exert protective effects against damaging excitability in the aftermath of TBI and that treatment of edema has the potential to reverse these effects.
Collapse
Affiliation(s)
| | | | - Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - K.C. Brennan
- Department of Neurology, School of Medicine, and
| |
Collapse
|
20
|
Pace SA, Christensen C, Schackmuth MK, Wallace T, McKlveen JM, Beischel W, Morano R, Scheimann JR, Wilson SP, Herman JP, Myers B. Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress. Neurobiol Stress 2020; 13:100274. [PMID: 33344727 PMCID: PMC7739189 DOI: 10.1016/j.ynstr.2020.100274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress is a major risk-factor for psychiatric disorders such as generalized anxiety and major depressive disorder. Human imaging studies have identified structural and functional abnormalities in the prefrontal cortex of subjects with depression and anxiety disorders, particularly Brodmann's area 25 (BA25). Further, deep brain stimulation of BA25 reduces symptoms of treatment-resistant depression. The rat homolog of BA25 is the infralimbic cortex (IL), which is critical for cognitive appraisal, executive function, and physiological stress reactivity. Previous studies indicate that the IL undergoes stress-induced changes in excitatory/inhibitory balance culminating in reduced activity of glutamate output neurons. However, the regulatory role of IL glutamate output in mood-related behaviors after chronic variable stress (CVS) is unknown. Here, we utilized a lentiviral-packaged small-interfering RNA to reduce translation of vesicular glutamate transporter 1 (vGluT1 siRNA), thereby constraining IL glutamate output. This viral-mediated gene transfer was used in conjunction with a quantitative anatomical analysis of cells expressing the stable immediate-early gene product FosB/ΔFosB, which accumulates in response to repeated neural activation. Through assessment of FosB/ΔFosB-expressing neurons across the frontal lobe in adult male rats, we mapped regions altered by chronic stress and determined the coordinating role of the IL in frontal cortical plasticity. Specifically, CVS-exposed rats had increased density of FosB/ΔFosB-expressing cells in the IL and decreased density in the insula. The latter effect was dependent on IL glutamate output. Next, we examined the interaction of CVS and reduced IL glutamate output in behavioral assays examining coping, anxiety-like behavior, associative learning, and nociception. IL glutamate knockdown decreased immobility during the forced swim test compared to GFP controls, both in rats exposed to CVS as well as rats without previous stress exposure. Further, vGluT1 siRNA prevented CVS-induced avoidance behaviors, while also reducing risk aversion and passive coping. Ultimately, this study identifies the necessity of IL glutamatergic output for regulating frontal cortical neural activity and behavior following chronic stress. These findings also highlight how disruption of excitatory/inhibitory balance within specific frontal cortical cell populations may impact neurobehavioral adaptation and lead to stress-related disorders.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M. McKlveen
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Will Beischel
- Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jessie R. Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven P. Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - James P. Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Calpe-López C, García-Pardo MP, Martínez-Caballero MA, Santos-Ortíz A, Aguilar MA. Behavioral Traits Associated With Resilience to the Effects of Repeated Social Defeat on Cocaine-Induced Conditioned Place Preference in Mice. Front Behav Neurosci 2020; 13:278. [PMID: 31998090 PMCID: PMC6962131 DOI: 10.3389/fnbeh.2019.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
The relationship between stress and drug use is well demonstrated. Stress-induced by repeated social defeat (RSD) enhances the conditioned place preference (CPP) induced by cocaine in mice. The phenomenon of resilience understood as the ability of subjects to overcome the negative effects of stress is the focus of increasing interest. Our aim is to characterize the behavior of resilient animals with respect to the effects of RSD on the CPP induced by cocaine. To this end, 25 male C57BL/6 mice were exposed to stress by RSD during late adolescence, while other 15 male mice did not undergo stress (controls). On the 2 days following the last defeat, all the animals carried out the elevated plus maze (EPM) and Hole Board, Social Interaction, Tail Suspension and Splash tests. Three weeks later, all the animals performed the CPP paradigm with a low dose of cocaine (1 mg/kg). Exposure to RSD decreased all measurements related to the open arms of the EPM. It also reduced social interaction, immobility in the tail suspension test (TST) and grooming in the splash test. RSD exposure also increased the sensitivity of the mice to the rewarding effects of cocaine, since only defeated animals acquired CPP. Several behavioral traits were related to resilience to the potentiating effect of RSD on cocaine CPP. Mice that showed less submission during defeat episodes, a lower percentage of time in the open arms of the EPM, low novelty-seeking, high social interaction, greater immobility in the TST and a higher frequency of grooming were those that were resilient to the long-term effects of social defeat on cocaine reward since they behaved like controls and did not develop CPP. These results suggest that the behavioral profile of resilient defeated mice is characterized by an active coping response during episodes of defeat, a greater concern for potential dangers, less reactivity in a situation of inevitable moderate stress and fewer depressive-like symptoms after stress. Determining the neurobehavioral substrates of resilience is the first step towards developing behavioral or pharmacological interventions that increase resilience in individuals at a high risk of suffering from stress.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Pilar García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - Maria Angeles Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alejandra Santos-Ortíz
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Asunción Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Pietrobon D, Brennan KC. Genetic mouse models of migraine. J Headache Pain 2019; 20:79. [PMID: 31299902 PMCID: PMC6734414 DOI: 10.1186/s10194-019-1029-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Mouse models of rare monogenic forms of migraine provide a unique experimental system to study the cellular and circuit mechanisms of the primary brain dysfunctions causing a migraine disorder. Here, we discuss the migraine-relevant phenotypes and the migraine-relevant functional alterations in the brain of five genetic mouse models of migraine, four of which carry mutations derived from patients with familial hemiplegic migraine (FHM) and the fifth carry a mutation from patients with both phenotypically normal MA and familial advanced sleep phase syndrome (FASPS). We focus on the latter mouse model, in which a ubiquitous serine-threonine kinase is mutated, and on two mouse models of pure FHM, in which a voltage-gated calcium channel controlling neurotransmitter release at most brain synapses and a Na/K ATPase that is expressed mainly in astrocytes in the adult brain are mutated, respectively. First, we describe the behavioral phenotypes of the genetic animal models and review the evidence that an increased susceptibility to experimentally induced cortical spreading depression (CSD) is a key migraine-relevant phenotype common to the five models. Second, we review the synaptic alterations in the cerebral cortex of the genetic models of migraine and discuss the mechanisms underlying their increased susceptibility to CSD. Third, we review the alterations in the trigeminovascular pain pathway and discuss possible implications for migraine pain mechanisms. Finally, we discuss the insights into migraine pathophysiology obtained from the genetic models of migraine, in particular regarding the mechanisms that make the brain of migraineurs susceptible to the ignition of “spontaneous” CSDs. Although the reviewed functional studies support the view of migraine as a disorder of the brain characterized by dysfunctional regulation of the excitatory/inhibitory balance in specific neuronal circuits, much work remains to be done in the genetic mouse models e.g. to identfy the relevant dysfunctional circuits and to establish whether and how the alterations in the function of specific circuits (in the cerebral cortex and/or other brain areas) are state-dependent and may, in certain conditions, favor CSD ignition and the migraine attack.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131, Padova, Italy. .,CNR Institute of Neuroscience, 35131, Padova, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
23
|
Balkaya M, Seidel JL, Sadeghian H, Qin T, Chung DY, Eikermann-Haerter K, van den Maagdenberg AMJM, Ferrari MD, Ayata C. Relief Following Chronic Stress Augments Spreading Depolarization Susceptibility in Familial Hemiplegic Migraine Mice. Neuroscience 2019; 415:1-9. [PMID: 31299346 DOI: 10.1016/j.neuroscience.2019.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
Cortical spreading depolarization (CSD) is the electrophysiological substrate of migraine aura, and a putative trigger of trigeminovascular activation and migraine headache. Many migraineurs report stress or relief after a stress triggers an attack. We tested whether various stress conditions might modulate CSD susceptibility and whether this is dependent on genetic factors. Male and female wild type and familial hemiplegic migraine type1 (FHM1) knock-in mice heterozygous for the S218L missense mutation were subjected to acute or chronic stress, or chronic stress followed by relief (36 h). Acute stress was induced by restraint and exposure to bright light and white noise (3 h). Chronic stress was induced for 28 days by two cycles of repeated exposure of mice to a rat (7 days), physical restraint (3 days), and forced swimming (3 days). Electrical CSD threshold and KCl-induced (300 mM) CSD frequency were determined in occipital cortex in vivo at the end of each protocol. Relief after chronic stress reduced the electrical CSD threshold and increased the frequency of KCl-induced CSDs in FHM1 mutants only. Acute or chronic stress without relief did not affect CSD susceptibility in either strain. Stress status did not affect CSD propagation speed, duration or amplitude. In summary, relief after chronic stress, but not acute or chronic stress alone, augments CSD in genetically susceptible mice. Therefore, enhanced CSD susceptibility may explain why, in certain patients, migraine attacks typically occur during a period of stress relief such as weekends or holidays.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jessica L Seidel
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arn M J M van den Maagdenberg
- Department of Neurology Leiden University Medical Center, Leiden 2300, RC, the Netherlands; Human Genetics, Leiden University Medical Center, Leiden 2300, RC, the Netherlands
| | - Michel D Ferrari
- Department of Neurology Leiden University Medical Center, Leiden 2300, RC, the Netherlands
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
24
|
Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain 2019; 20:45. [PMID: 31046659 PMCID: PMC6734429 DOI: 10.1186/s10194-019-1001-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of near-complete depolarization of neurons and glial cells across the cortex. SD is thought to contribute to the underlying pathophysiology of migraine aura, and possibly also an intrinsic brain activity causing migraine headache. Experimental models of SD have recapitulated multiple migraine-related phenomena and are considered highly translational. In this review, we summarize conventional and novel methods to trigger SD, with specific focus on optogenetic methods. We outline physiological triggers that might affect SD susceptibility, review a multitude of physiological, biochemical, and behavioral consequences of SD, and elaborate their relevance to migraine pathophysiology. The possibility of constructing a recurrent episodic or chronic migraine model using SD is also discussed.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|