1
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
2
|
Yang JS, Jang HJ, Sung KW, Rhie DJ, Yoon SH. Roles of metabotropic glutamate receptor 5 in low [Mg 2+] o-induced interictal epileptiform activity in rat hippocampal slices. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:413-422. [PMID: 39198222 PMCID: PMC11362004 DOI: 10.4196/kjpp.2024.28.5.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 09/01/2024]
Abstract
Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg2+ concentration ([Mg2+]o)-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg2+-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg2+]o-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca2+-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP3 receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg2+]o DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg2+]oinduced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca2+ from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.
Collapse
Affiliation(s)
- Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Wug Sung
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Duck-Joo Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
3
|
Ruiz-Reig N, Chehade G, Yerna X, Durá I, Gailly P, Tissir F. Aberrant generation of dentate gyrus granule cells is associated with epileptic susceptibility in p53 conditional knockout mice. Front Neurosci 2024; 18:1418973. [PMID: 39206115 PMCID: PMC11349535 DOI: 10.3389/fnins.2024.1418973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal apoptosis is a mechanism used to clear the cells of oxidative stress or DNA damage and refine the final number of neurons for a functional neuronal circuit. The tumor suppressor protein p53 is a key regulator of the cell cycle and serves as a checkpoint for eliminating neurons with high DNA damage, hyperproliferative signals or cellular stress. During development, p53 is largely expressed in progenitor cells. In the adult brain, p53 expression is restricted to the neurogenic niches where it regulates cell proliferation and self-renewal. To investigate the functional consequences of p53 deletion in the cortex and hippocampus, we generated a conditional mutant mouse (p53-cKO) in which p53 is deleted from pallial progenitors and their derivatives. Surprisingly, we did not find any significant change in the number of neurons in the mutant cortex or CA region of the hippocampus compared with control mice. However, p53-cKO mice exhibit more proliferative cells in the subgranular zone of the dentate gyrus and more granule cells in the granular cell layer. Glutamatergic synapses in the CA3 region are more numerous in p53-cKO mice compared with control littermates, which correlates with overexcitability and higher epileptic susceptibility in the mutant mice.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Georges Chehade
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Irene Durá
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fadel Tissir
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
4
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Boutonnet M, Carpena C, Bouquier N, Chastagnier Y, Font-Ingles J, Moutin E, Tricoire L, Chemin J, Perroy J. Voltage tunes mGlu 5 receptor function, impacting synaptic transmission. Br J Pharmacol 2024; 181:1793-1811. [PMID: 38369690 DOI: 10.1111/bph.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Carpena
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Joan Font-Ingles
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- SpliceBio, Barcelona, Spain
| | - Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine, Institut de biologie Paris Seine, Sorbonne universite, CNRS, INSERM, Paris, France
| | - Jean Chemin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
6
|
Hansen N, Rentzsch K, Hirschel S, Wiltfang J, Schott BH, Malchow B, Bartels C. Persisting Verbal Memory Encoding and Recall Deficiency after mGluR5 Autoantibody-Mediated Encephalitis. Brain Sci 2023; 13:1537. [PMID: 38002497 PMCID: PMC10669453 DOI: 10.3390/brainsci13111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Metabotropic glutamate receptors type 5 (mGluR5) play a central role in persistent forms of synaptic plasticity and memory formation. Antibodies to mGluR5 have been reported to be clinically associated with memory impairment. Here, we report on a patient with persistent amnestic cognitive impairment in a single cognitive domain after resolution of mGluR5-associated encephalitis. METHODS We report on the clinical data of a patient in our Department of Psychiatry and Psychotherapy who underwent several diagnostic investigations including a detailed neuropsychological examination, magnetic resonance imaging, and cerebrospinal fluid analysis involving the determination of neural autoantibodies. RESULTS A 54-year-old woman presented to our memory clinic with pleocytosis 4 months after remission of probable anti-mGluR5-mediated encephalitis, revealing initial pleocytosis and serum proof of anti-mGluR5 autoantibodies (1:32). A neuropsychological examination revealed mild cognitive impairment in verbal memory encoding and recall. The patient received immunotherapy with corticosteroids, and a subsequent cerebrospinal fluid analysis 1.5 months after the onset of encephalitis confirmed no further signs of inflammation. CONCLUSIONS Our results suggest that although immunotherapy resulted in the remission of anti-mGluR5 encephalitis, a verbal memory encoding and recall dysfunction persisted. It remains unclear whether the reason for the persistent verbal memory impairment is attributable to insufficiently long immunotherapy or initially ineffective immunotherapy. Because mGluR5 plays an essential role in persistent synaptic plasticity in the hippocampus, it is tempting to speculate that the mGluR5 antibody-antigen complex could lead to persistent cognitive dysfunction, still present after the acute CNS inflammation stage of encephalitis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Clinical Immunological Laboratory Prof. Stöcker, 23627 Groß Grönau, Germany
| | - Kristin Rentzsch
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany;
- Leibniz-Institute of Neurobiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (J.W.); (B.H.S.); (B.M.); (C.B.)
| |
Collapse
|
7
|
Chen TC, Lo YC, Li SJ, Lin YC, Chang CW, Liang YW, Laiman V, Hsiao TC, Chuang HC, Chen YY. Assessing traffic-related air pollution-induced fiber-specific white matter degradation associated with motor performance declines in aged rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115373. [PMID: 37619400 DOI: 10.1016/j.ecoenv.2023.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Fine particulate matter (PM2.5) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM2.5 exposure. Herein, 1.5-year-old Fischer 344 rats were exposed to clean air (control), high-efficiency particulate air (HEPA)-filtered ambient air (HEPA group), and ambient traffic-related PM2.5 (PM2.5 group, 9.933 ± 1.021 µg/m3) for 3 months. Rotarod test, DTI tractographic analysis, and immunohistochemistry were performed in the end of study period. Aged rats exposed to PM2.5 exhibited motor impairment with decreased fractional anisotropy and tyrosine hydroxylase expression in olfactory and nigrostriatal circuits, indicating disrupted white matter integrity and dopaminergic (DA) neuronal loss. Additionally, increased radial diffusivity and lower expression of myelin basic protein in PM2.5 group suggested ageing progression of demyelination exacerbated by PM2.5 exposure. Significant production of tumor necrosis factor-α was also observed after PM2.5 exposure, revealing potential inflammation of injury to multiple fiber tracts of DA pathways. Microstructural changes demonstrated potential links between PM2.5-induced inflammatory white matter demyelination and behavioral performance, with indication of pre-manifestation of DTI-based biomarkers for early detection of PD progression in the elderly.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta 55281, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Rd., Section 3, Wenshan Dist., Taipei 11696, Taiwan; National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK.
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan.
| |
Collapse
|
8
|
Saber Marouf B, Reboreda A, Theissen F, Kaushik R, Sauvage M, Dityatev A, Yoshida M. TRPC4 Channel Knockdown in the Hippocampal CA1 Region Impairs Modulation of Beta Oscillations in Novel Context. BIOLOGY 2023; 12:biology12040629. [PMID: 37106829 PMCID: PMC10135742 DOI: 10.3390/biology12040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Hippocampal local field potentials (LFP) are highly related to behavior and memory functions. It has been shown that beta band LFP oscillations are correlated with contextual novelty and mnemonic performance. Evidence suggests that changes in neuromodulators, such as acetylcholine and dopamine, during exploration in a novel environment underlie changes in LFP. However, potential downstream mechanisms through which neuromodulators may alter the beta band oscillation in vivo remain to be fully understood. In this paper, we study the role of the membrane cationic channel TRPC4, which is modulated by various neuromodulators through G-protein-coupled receptors, by combining shRNA-mediated TRPC4 knockdown (KD) with LFP measurements in the CA1 region of the hippocampus in behaving mice. We demonstrate that the increased beta oscillation power seen in the control group mice in a novel environment is absent in the TRPC4 KD group. A similar loss of modulation was also seen in the low-gamma band oscillations in the TRPC4 KD group. These results demonstrate that TRPC4 channels are involved in the novelty-induced modulation of beta and low-gamma oscillations in the CA1 region.
Collapse
Affiliation(s)
- Babak Saber Marouf
- Institute of Physiology, Medical Faculty, Otto-Von-Guericke University, 39120 Magdeburg, Germany
- Cognitive Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- FAM Department, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Antonio Reboreda
- Cognitive Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- FAM Department, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Frederik Theissen
- Cognitive Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- FAM Department, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Magdalena Sauvage
- FAM Department, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University (OvGU), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University (OvGU), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Motoharu Yoshida
- Cognitive Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- FAM Department, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
9
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
10
|
Nikolić D. Where is the mind within the brain? Transient selection of subnetworks by metabotropic receptors and G protein-gated ion channels. Comput Biol Chem 2023; 103:107820. [PMID: 36724606 DOI: 10.1016/j.compbiolchem.2023.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Perhaps the most important question posed by brain research is: How the brain gives rise to the mind. To answer this question, we have primarily relied on the connectionist paradigm: The brain's entire knowledge and thinking skills are thought to be stored in the connections; and the mental operations are executed by network computations. I propose here an alternative paradigm: Our knowledge and skills are stored in metabotropic receptors (MRs) and the G protein-gated ion channels (GPGICs). Here, mental operations are assumed to be executed by the functions of MRs and GPGICs. As GPGICs have the capacity to close or open branches of dendritic trees and axon terminals, their states transiently re-route neural activity throughout the nervous system. First, MRs detect ligands that signal the need to activate GPGICs. Next, GPGICs transiently select a subnetwork within the brain. The process of selecting this new subnetwork is what constitutes a mental operation - be it in a form of directed attention, perception or making a decision. Synaptic connections and network computations play only a secondary role, supporting MRs and GPGICs. According to this new paradigm, the mind emerges within the brain as the function of MRs and GPGICs whose primary function is to continually select the pathways over which neural activity will be allowed to pass. It is argued that MRs and GPGICs solve the scaling problem of intelligence from which the connectionism paradigm suffers.
Collapse
Affiliation(s)
- Danko Nikolić
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Germany; evocenta GmbH, Germany; Robots Go Mental UG, Germany.
| |
Collapse
|
11
|
Kreis A, Issa F, Yerna X, Jabbour C, Schakman O, de Clippele M, Tajeddine N, Pierrot N, Octave JN, Gualdani R, Gailly P. Conditional deletion of KCC2 impairs synaptic plasticity and both spatial and nonspatial memory. Front Mol Neurosci 2023; 16:1081657. [PMID: 37168681 PMCID: PMC10164999 DOI: 10.3389/fnmol.2023.1081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The postsynaptic inhibition through GABAA receptors (GABAAR) relies on two mechanisms, a shunting effect due to an increase in the postsynaptic membrane conductance and, in mature neurons, a hyperpolarization effect due to an entry of chloride into postsynaptic neurons. The second effect requires the action of the K+-Cl- cotransporter KCC2 which extrudes Cl- from the cell and maintains its cytosolic concentration very low. Neuronal chloride equilibrium seems to be dysregulated in several neurological and psychiatric conditions such as epilepsy, anxiety, schizophrenia, Down syndrome, or Alzheimer's disease. In the present study, we used the KCC2 Cre-lox knockdown system to investigate the role of KCC2 in synaptic plasticity and memory formation in adult mice. Tamoxifen-induced conditional deletion of KCC2 in glutamatergic neurons of the forebrain was performed at 3 months of age and resulted in spatial and nonspatial learning impairment. On brain slices, the stimulation of Schaffer collaterals by a theta burst induced long-term potentiation (LTP). The lack of KCC2 did not affect potentiation of field excitatory postsynaptic potentials (fEPSP) measured in the stratum radiatum (dendrites) but increased population spike (PS) amplitudes measured in the CA1 somatic layer, suggesting a reinforcement of the EPSP-PS potentiation, i.e., an increased ability of EPSPs to generate action potentials. At the cellular level, KCC2 deletion induced a positive shift in the reversal potential of GABAAR-driven Cl- currents (EGABA), suggesting an intracellular accumulation of chloride subsequent to the downregulation of KCC2. After treatment with bumetanide, an antagonist of the Na+-K+-Cl- cotransporter NKCC1, spatial memory impairment, chloride accumulation, and EPSP-PS potentiation were rescued in mice lacking KCC2. The presented results emphasize the importance of chloride equilibrium and GABA-inhibiting ability in synaptic plasticity and memory formation.
Collapse
|
12
|
Tang N, Tian W, Ma GY, Xiao X, Zhou L, Li ZZ, Liu XX, Li CY, Wu KH, Liu W, Wang XY, Gao YY, Yang X, Qi J, Li D, Liu Y, Chen WS, Gao J, Li XQ, Cao W. TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca 2+ leakage. Nat Commun 2022; 13:7455. [PMID: 36460692 PMCID: PMC9718841 DOI: 10.1038/s41467-022-35242-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Intracellular Ca2+ dysregulation is a key marker in septic cardiac dysfunction; however, regulation of the classic Ca2+ regulatory modules cannot successfully abolish this symptom. Here we show that the knockout of transient receptor potential canonical (TRPC) channel isoforms TRPC1 and TRPC6 can ameliorate LPS-challenged heart failure and prolong survival in mice. The LPS-triggered Ca2+ release from the endoplasmic reticulum both in cardiomyocytes and macrophages is significantly inhibited by Trpc1 or Trpc6 knockout. Meanwhile, TRPC's molecular partner - calmodulin - is uncoupled during Trpc1 or Trpc6 deficiency and binds to TLR4's Pococurante site and atypical isoleucine-glutamine-like motif to block the inflammation cascade. Blocking the C-terminal CaM/IP3R binding domain in TRPC with chemical inhibitor could obstruct the Ca2+ leak and TLR4-mediated inflammation burst, demonstrating a cardioprotective effect in endotoxemia and polymicrobial sepsis. Our findings provide insight into the pathogenesis of endotoxemic cardiac dysfunction and suggest a novel approach for its treatment.
Collapse
Affiliation(s)
- Na Tang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wen Tian
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Guang-Yuan Ma
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiong Xiao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Lei Zhou
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ze-Zhi Li
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Xiao Liu
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Chong-Yao Li
- grid.412262.10000 0004 1761 5538Department of Pharmacy, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi China
| | - Ke-Han Wu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wenjuan Liu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China
| | - Xue-Ying Wang
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Yuan-Yuan Gao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Jianzhao Qi
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ding Li
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Yang Liu
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wen-Sheng Chen
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China ,Department of Cardiovascular Surgery, Xi’an Gaoxin Hospital, Xi’an, Shaanxi China
| | - Jinming Gao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Qiang Li
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wei Cao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
13
|
Yang JS, Jeon S, Jang HJ, Yoon SH. Group 1 metabotropic glutamate receptor 5 is involved in synaptically-induced Ca 2+-spikes and cell death in cultured rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:531-540. [PMID: 36302627 PMCID: PMC9614404 DOI: 10.4196/kjpp.2022.26.6.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.
Collapse
Affiliation(s)
- Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Sujeong Jeon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
14
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
15
|
Baradaran-Heravi A, Bauer CC, Pickles IB, Hosseini-Farahabadi S, Balgi AD, Choi K, Linley DM, Beech DJ, Roberge M, Bon RS. Nonselective TRPC channel inhibition and suppression of aminoglycoside-induced premature termination codon readthrough by the small molecule AC1903. J Biol Chem 2022; 298:101546. [PMID: 34999117 PMCID: PMC8808171 DOI: 10.1016/j.jbc.2021.101546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 μM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Isabelle B Pickles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; School of Chemistry, University of Leeds, Leeds, UK
| | - Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah M Linley
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
16
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
17
|
Li W, Ehrich M. Effects of chlorpyrifos on transient receptor potential channels. Toxicol Lett 2022; 358:100-104. [DOI: 10.1016/j.toxlet.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023]
|
18
|
Kavuran Buran İ, Onalan Etem E, Tektemur A. Inhibition of TRPC1, TRPM4 and CHRNA6 Ion Channels Ameliorates Depression-Like Behavior in Rats. Behav Brain Res 2022; 423:113765. [DOI: 10.1016/j.bbr.2022.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
19
|
Kreis A, Desloovere J, Suelves N, Pierrot N, Yerna X, Issa F, Schakman O, Gualdani R, de Clippele M, Tajeddine N, Kienlen-Campard P, Raedt R, Octave JN, Gailly P. Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. Sci Rep 2021; 11:17600. [PMID: 34475508 PMCID: PMC8413381 DOI: 10.1038/s41598-021-97144-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The function of the amyloid precursor protein (APP) is not fully understood, but its cleavage product amyloid beta (Aβ) together with neurofibrillary tangles constitute the hallmarks of Alzheimer's disease (AD). Yet, imbalance of excitatory and inhibitory neurotransmission accompanied by loss of synaptic functions, has been reported much earlier and independent of any detectable pathological markers. Recently, soluble APP fragments have been shown to bind to presynaptic GABAB receptors (GABABRs), subsequently decreasing the probability of neurotransmitter release. In this body of work, we were able to show that overexpression of wild-type human APP in mice (hAPPwt) causes early cognitive impairment, neuronal loss, and electrophysiological abnormalities in the absence of amyloid plaques and at very low levels of Aβ. hAPPwt mice exhibited neuronal overexcitation that was evident in EEG and increased long-term potentiation (LTP). Overexpression of hAPPwt did not alter GABAergic/glutamatergic receptor components or GABA production ability. Nonetheless, we detected a decrease of GABA but not glutamate that could be linked to soluble APP fragments, acting on presynaptic GABABRs and subsequently reducing GABA release. By using a specific presynaptic GABABR antagonist, we were able to rescue hyperexcitation in hAPPwt animals. Our results provide evidence that APP plays a crucial role in regulating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Anna Kreis
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Jana Desloovere
- Faculty of Medicine and Health Sciences, Universiteit Gent, C. Heymanslaan 10, 9000, Gent, Belgium
| | - Nuria Suelves
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Nathalie Pierrot
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Farah Issa
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Marie de Clippele
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Nicolas Tajeddine
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Robrecht Raedt
- Faculty of Medicine and Health Sciences, Universiteit Gent, C. Heymanslaan 10, 9000, Gent, Belgium
| | - Jean-Noël Octave
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium.
| |
Collapse
|
20
|
Booker SA, Kind PC. Mechanisms regulating input-output function and plasticity of neurons in the absence of FMRP. Brain Res Bull 2021; 175:69-80. [PMID: 34245842 DOI: 10.1016/j.brainresbull.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The function of brain circuits relies on high-fidelity information transfer within neurons. Synaptic inputs arrive primarily at dendrites, where they undergo integration and summation throughout the somatodendritic domain, ultimately leading to the generation of precise patterns of action potentials. Emerging evidence suggests that the ability of neurons to transfer synaptic information and modulate their output is impaired in a number of neurodevelopmental disorders including Fragile X Syndrome. In this review we summarise recent findings that have revealed the pathophysiological and plasticity mechanisms that alter the ability of neurons in sensory and limbic circuits to reliably code information in the absence of FMRP. We examine which aspects of this transform may result directly from the loss of FMRP and those that a result from compensatory or homeostatic alterations to neuronal function. Dissection of the mechanisms leading to altered input-output function of neurons in the absence of FMRP and their effects on regulating neuronal plasticity throughout development could have important implications for potential therapies for Fragile X Syndrome, including directing the timing and duration of different treatment options.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Peter C Kind
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; National Centre for Biological Sciences (NCBS), Bangalore, India.
| |
Collapse
|
21
|
Kong Y, Huang L, Li W, Liu X, Zhou Y, Liu C, Zhang S, Xie F, Zhang Z, Jiang D, Zhou W, Ni R, Zhang C, Sun B, Wang J, Guan Y. The Synaptic Vesicle Protein 2A Interacts With Key Pathogenic Factors in Alzheimer's Disease: Implications for Treatment. Front Cell Dev Biol 2021; 9:609908. [PMID: 34277597 PMCID: PMC8282058 DOI: 10.3389/fcell.2021.609908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD), a serious neurodegenerative disease, is pathologically characterized by synaptic loss and dysfunction. Synaptic vesicle protein 2A (SV2A) is an indispensable vesicular protein specifically expressed in synapses and can be used as a biomarker for synaptic density. We found that the expression of SV2A was down-regulated in the hippocampus of AD patients, yet the relation of SV2A to other hallmarks of AD pathology such as amyloid precursor protein (APP), β-amyloid (Aβ), and Tau protein is not thoroughly clear. In addition, SV2A colocalized with APP and was down-regulated at Aβ deposition. Moreover, we found that SV2A deficiency leads to a simultaneous increase in Aβ and Tau hyperphosphorylation, while SV2A overexpression was associated with downregulation of β-site APP cleaving enzyme 1 and apolipoprotein E genes. In addition, evidence gained in the study points to the phosphatidylinositol 3-kinase signaling pathway as a possible mediator in SV2A regulation influencing the incidence and development of AD. With limited effective diagnostic methods for AD, a close interplay between SV2A and AD-related proteins demonstrated in our study may provide novel and innovative diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xuanting Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
23
|
Lau EOC, Damiani D, Chehade G, Ruiz-Reig N, Saade R, Jossin Y, Aittaleb M, Schakman O, Tajeddine N, Gailly P, Tissir F. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. eLife 2021; 10:e61974. [PMID: 33899739 PMCID: PMC8102060 DOI: 10.7554/elife.61974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.
Collapse
Affiliation(s)
- Eva On-Chai Lau
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Devid Damiani
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Georges Chehade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Rana Saade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Yves Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell BiologyBrusselsBelgium
| | | | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
- College of Health and Life Sciences, HBKUDohaQatar
| |
Collapse
|
24
|
Nakao A, Matsunaga Y, Hayashida K, Takahashi N. Role of Oxidative Stress and Ca 2+ Signaling in Psychiatric Disorders. Front Cell Dev Biol 2021; 9:615569. [PMID: 33644051 PMCID: PMC7905097 DOI: 10.3389/fcell.2021.615569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Psychiatric disorders are caused by complex and diverse factors, and numerous mechanisms have been proposed for the pathogenesis of these disorders. Accumulating evidence suggests that oxidative stress is one of the general factors involved in the pathogenesis/pathophysiology of major psychiatric disorders, including bipolar disorder, depression, anxiety disorder, and schizophrenia. Indeed, some clinical trials have shown improvement of the symptoms of these disorders by antioxidant supplementation. However, the molecular basis for the relationship between oxidative stress and the pathogenesis of psychiatric disorders remains largely unknown. In general, Ca2+ channels play central roles in neuronal functions, including neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation, and genes that encode Ca2+ channels have been found to be associated with psychiatric disorders. Notably, a class of Ca2+-permeable transient receptor potential (TRP) cation channels is activated by changes in cellular redox status, whereby these TRP channels can link oxidative stress to Ca2+ signals. Given the unique characteristic of redox-sensitive TRP channels, these channels could be a target for delineating the pathogenesis or pathophysiology of psychiatric disorders. In this review, we summarize the outcomes of clinical trials for antioxidant treatment in patients with psychiatric disorders and the current insights into the physiological/pathological significance of redox-sensitive TRP channels in the light of neural functions, including behavioral phenotypes, and discuss the potential role of TRP channels in the pathogenesis of psychiatric disorders. Investigation of redox-sensitive TRP channels may lead to the development of novel therapeutic strategies for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshihiro Matsunaga
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsumi Hayashida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Nobuaki Takahashi
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Fernández-Blanco Á, Dierssen M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int J Mol Sci 2020; 21:E9039. [PMID: 33261169 PMCID: PMC7730506 DOI: 10.3390/ijms21239039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.
Collapse
Affiliation(s)
- Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
26
|
Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun Biol 2020; 3:704. [PMID: 33230284 PMCID: PMC7683545 DOI: 10.1038/s42003-020-01437-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
TRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. Xanthine-based modulators include the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Here we report the structure of a small-molecule-bound TRPC1/4/5 channel-human TRPC5 in complex with the xanthine Pico145-to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.
Collapse
Affiliation(s)
- David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Katie J Simmons
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Rachel M Johnson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
29
|
Instant activation of TRP channels by NH 4 + promotes neuronal bursting and glutamate spikes in CA1 neurons. Curr Res Physiol 2020; 3:20-29. [PMID: 34746817 PMCID: PMC8562246 DOI: 10.1016/j.crphys.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022] Open
Abstract
Ammonia ( NH 4 + ) is a by-product of cell metabolism and may elicit subcellular effects with specific physiological responses. Chronic effects have been implicated in several neurological diseases and attributed to persistent elevation in blood ammonia levels transferred to the brain. In previous studies the activities of neurons and astrocytes have been examined at ammonia concentrations an order of magnitude higher than measured in the blood. The effects developed within several minutes. Here we focused upon acute responses of neurons to ammonia and whether they may occur at much lower doses. To this end, we combined patch-clamp in CA1 neurons with glutamate imaging in hippocampal slices. Particular attention was paid to the Rett syndrome that has been originally attributed to hyperammonemia. We compared the responses in the wild-type (WT) and model Rett mice (MECP2-null, RTT) to ammonia doses from 0.3 mM on. In both preparations NH 4 + promptly depolarized neurons and increased the ambient glutamate. The bursting activity emerged in WT and it was augmented in RTT. Searching for subcellular mechanisms we examined possible modulation of ion channels by ammonia. We did not find any changes in HCN- and Ca2+ currents, which substantially contribute to the bursting activity. The non-selective cation channels were markedly potentiated by ammonia. ASIC channels had a major contribution to the augmentation of neuronal activity by ammonia. Interestingly, their general blocker amiloride (100 μM) moderately excited CA1 cells akin to NH 4 + . In its presence subsequent ammonia effects were markedly compromised. Blockade of TRPC1 channels partially occluded NH 4 + effects. ASIC and TRPC1 blockers decreased the amplitude of excitatory postsynaptic currents (EPSC) and neuronal bursts, congruent with a postsynaptic location of the channels. Inhibition of TRPV1 channels potentiated the responses to NH 4 + . EPSC amplitudes did not change, but the frequency decreased, indicating presynaptic effects. All extracellular NH 4 + actions were observed at concentrations as low as 0.3 mM and the neurons reacted immediately after ammonia arrived the slice. We propose that a brief augmentation of neuronal activity by NH 4 + may occur either spontaneously during arousal or induced by inhalation of smelling salts.
Collapse
|
30
|
How TRPC Channels Modulate Hippocampal Function. Int J Mol Sci 2020; 21:ijms21113915. [PMID: 32486187 PMCID: PMC7312571 DOI: 10.3390/ijms21113915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a group of receptor-operated calcium-permeable nonselective cationic membrane channels of the TRP superfamily. They are largely expressed in the hippocampus and are able to modulate neuronal functions. Accordingly, they have been involved in different hippocampal functions such as learning processes and different types of memories, as well as hippocampal dysfunctions such as seizures. This review covers the mechanisms of activation of these channels, how these channels can modulate neuronal excitability, in particular the after-burst hyperpolarization, and in the persistent activity, how they control synaptic plasticity including pre- and postsynaptic processes and how they can interfere with cell survival and neurogenesis.
Collapse
|
31
|
Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. eNeuro 2020; 7:ENEURO.0322-19.2020. [PMID: 32327470 PMCID: PMC7262005 DOI: 10.1523/eneuro.0322-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied as the precursor of the β-amyloid (Aβ) peptide, the major component of the senile plaques found in the brain of Alzheimer’s disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain. It resembles a cell adhesion molecule or a membrane receptor, suggesting that its function relies on cell-cell interaction and/or activation of intracellular signaling pathways. In this respect, the APP intracellular domain (AICD) was reported to act as a transcriptional regulator. Here, we used a transcriptome-based approach to identify the genes transcriptionally regulated by APP in the rodent embryonic cortex and on maturation of primary cortical neurons. Surprisingly, the overall transcriptional changes were subtle, but a more detailed analysis pointed to genes clustered in neuronal-activity dependent pathways. In particular, we observed a decreased transcription of neuronal PAS domain protein 4 (NPAS4) in APP−/− neurons. NPAS4 is an inducible transcription factor (ITF) regulated by neuronal depolarization. The downregulation of NPAS4 co-occurs with an increased production of the inhibitory neurotransmitter GABA and a reduced expression of the GABAA receptors α1. CRISPR-Cas-mediated silencing of NPAS4 in neurons led to similar observations. Patch-clamp investigation did not reveal any functional decrease of GABAA receptors activity, but long-term potentiation (LTP) measurement supported an increased GABA component in synaptic transmission of APP−/− mice. Together, NPAS4 appears to be a downstream target involved in APP-dependent regulation of inhibitory synaptic transmission.
Collapse
|
32
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
33
|
Krolik A, Diamandakis D, Zych A, Stafiej A, Salinska E. The involvement of TRP channels in memory formation and task retrieval in a passive avoidance task in one-day old chicks. Neurobiol Learn Mem 2020; 171:107209. [PMID: 32147584 DOI: 10.1016/j.nlm.2020.107209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
An increase in the intracellular Ca2+ level in neurons is one of the main steps in the memory formation cascade. The increase results from extracellular Ca2+ influx by activation of ionotropic glutamate receptors and release from intracellular stores by the stimulation of IP3 receptors (IP3Rs) via group I metabotropic glutamate receptors (mGluR1/5). Recent data indicate an additional mechanism resulting in Ca2+ influx into neurons, triggered by intracellular signals that are directly connected to the activation of group I mGluRs. This influx occurs through transient receptor potential (TRP) channels, which are permeable to Na+, K+ and, mainly, Ca2+. These channels are activated by increases in intracellular Ca2+, diacylglycerol (DAC) and inositol 1,4,5-triphosphate (IP3) level resulting from a group I mGluR activation. The aim of the present study was to investigate the participation of TRP channels, especially from TRPC and TRPV groups, in memory consolidation and reconsolidation and memory retrieval processes in a passive avoidance task in one-day old chicks. TRP channels were blocked by the injection of the unspecific channel modulators SKF 96365 (2.5 µl 30 µM/hemisphere) and 2-APB (2.5 µl 10 µM/hemisphere) directly into the intermediate medial mesopallium (IMM) region of the chick brain immediately after initial training or after a reminder. The inhibition of specific TRP channels (TRPV1, TRPV3 or TRPC3) was achieved by the application of selective antibodies. Our results demonstrate that the inhibition of TRP channels by the application of both modulators disrupted memory consolidation, resulting in permanent task amnesia. The inhibition of the TRPV1, TRPC3 and TRPV3 channels by specific antibodies resulted in similar amnesia. Moreover, the inhibition of TRP channels by SKF 96365 and 2-APB at different time points after initial training or after the reminder also resulted in amnesia, indicating the role of TRP channels in memory retrieval. The inhibition of calcium influx through these channels resulted in permanent memory disruption, which suggests that the calcium signal generated by TRP channels is crucial for memory formation and retrieval processes. For the first time, the important role of TRPV3 channels in memory formation was demonstrated.
Collapse
Affiliation(s)
- Andrzej Krolik
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Diamandakis
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Zych
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Stafiej
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
34
|
Role of the TRPC1 Channel in Hippocampal Long-Term Depression and in Spatial Memory Extinction. Int J Mol Sci 2020; 21:ijms21051712. [PMID: 32138218 PMCID: PMC7084652 DOI: 10.3390/ijms21051712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the Trpc1 gene alters the extinction of spatial reference memory. mGluR-induced long-term depression, which is partially responsible for memory extinction, was impaired in these mice. Similar results were obtained in vitro and in vivo by inhibiting the channel by its most specific inhibitor, Pico145. Among the numerous known postsynaptic pathways activated by type I mGluR, we observed that the deletion of Trpc1 impaired the activation of ERK1/2 and the subsequent expression of Arc, an immediate early gene that plays a key role in AMPA receptors endocytosis and subsequent long-term depression.
Collapse
|
35
|
Kepura F, Braun E, Dietrich A, Plant TD. TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons. Cells 2020; 9:cells9020459. [PMID: 32085504 PMCID: PMC7072794 DOI: 10.3390/cells9020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
The cation channel subunit TRPC1 is strongly expressed in central neurons including neurons in the CA1 region of the hippocampus where it forms complexes with TRPC4 and TRPC5. To investigate the functional role of TRPC1 in these neurons and in channel function, we compared current responses to group I metabotropic glutamate receptor (mGluR I) activation and looked for major differences in dendritic morphology in neurons from TRPC1+/+ and TRPC1-/- mice. mGluR I stimulation resulted in the activation of a voltage-dependent nonselective cation current in both genotypes. Deletion of TRPC1 resulted in a modification of the shape of the current-voltage relationship, leading to an inward current increase. In current clamp recordings, the percentage of neurons that responded to depolarization in the presence of an mGluR I agonist with a plateau potential was increased in TRPC1-/- mice. There was also a small increase in the minor population of CA1 neurons that have more than one apical dendrite in TRPC1-/- mice. We conclude that TRPC1 has an inhibitory effect on receptor-operated nonselective cation channels in hippocampal CA1 neurons probably as a result of heterotetramer formation with other TRPC isoforms, and that TRPC1 deletion has only minor effects on dendritic morphology.
Collapse
Affiliation(s)
- Frauke Kepura
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Eva Braun
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Alexander Dietrich
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Tim D. Plant
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-28-65038
| |
Collapse
|
36
|
Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells. Cells 2020; 9:cells9020365. [PMID: 32033274 PMCID: PMC7072216 DOI: 10.3390/cells9020365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time. The application of the TRPC4 blocker ML204, TRPC5 blocker clemizole hydrochloride, and TRPC4 and 5 blocker Pico145, all significantly inhibited persistent firing. In addition, intracellular application of TRPC4 and TRPC5 antibodies significantly reduced persistent firing. Taken together these results indicate that TRPC4 and 5 channels support persistent firing in CA1 pyramidal neurons. Finally, we discuss possible scenarios causing these controversial observations on the role of TRPC channels in persistent firing.
Collapse
|
37
|
Kougioumoutzakis A, Pelletier JG, Laplante I, Khlaifia A, Lacaille JC. TRPC1 mediates slow excitatory synaptic transmission in hippocampal oriens/alveus interneurons. Mol Brain 2020; 13:12. [PMID: 31996247 PMCID: PMC6988362 DOI: 10.1186/s13041-020-0558-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal GABAergic interneurons play key roles in regulating principal cell activity and plasticity. Interneurons located in stratum oriens/alveus (O/A INs) receive excitatory inputs from CA1 pyramidal cells and express a Hebbian form of long-term potentiation (LTP) at their excitatory input synapses. This LTP requires the activation of metabotropic glutamate receptors 1a (mGluR1a) and Ca2+ entry via transient receptor potential (TRP) channels. However, the type of TRP channels involved in synaptic transmission at these synapses remains largely unknown. Using patch-clamp recordings, we show that slow excitatory postsynaptic currents (EPSCs) evoked in O/A INs are dependent on TRP channels but may be independent of phospholipase C. Using reverse transcription polymerase chain reaction (RT-PCR) we found that mRNA for TRPC 1, 3–7 was present in CA1 hippocampus. Using single-cell RT-PCR, we found expression of mRNA for TRPC 1, 4–7, but not TRPC3, in O/A INs. Using co-immunoprecipitation assays in HEK-293 cell expression system, we found that TRPC1 and TRPC4 interacted with mGluR1a. Co-immunoprecipitation in hippocampus showed that TRPC1 interacted with mGluR1a. Using immunofluorescence, we found that TRPC1 co-localized with mGluR1a in O/A IN dendrites, whereas TRPC4 localization appeared limited to O/A IN cell body. Down-regulation of TRPC1, but not TRPC4, expression in O/A INs using small interfering RNAs prevented slow EPSCs, suggesting that TRPC1 is an obligatory TRPC subunit for these EPSCs. Our findings uncover a functional role of TRPC1 in mGluR1a-mediated slow excitatory synaptic transmission onto O/A INs that could be involved in Hebbian LTP at these synapses.
Collapse
Affiliation(s)
- André Kougioumoutzakis
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Joe Guillaume Pelletier
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and GRSNC, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
38
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Bauer CC, Minard A, Pickles IB, Simmons KJ, Chuntharpursat-Bon E, Burnham MP, Kapur N, Beech DJ, Muench SP, Wright MH, Warriner SL, Bon RS. Xanthine-based photoaffinity probes allow assessment of ligand engagement by TRPC5 channels. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00126k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diazirine-containing photoaffinity probes, based on the potent and selective TRPC1/4/5 channel inhibitor Pico145, allowed the development of an assay to probe cellular interactions between TRPC5 protein and xanthine-based TRPC5 channel modulators.
Collapse
Affiliation(s)
- Claudia C. Bauer
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Aisling Minard
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Isabelle B. Pickles
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Katie J. Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| | | | | | - Nikil Kapur
- School of Mechanical Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | - David J. Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Stephen P. Muench
- School of Biomedical Sciences
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | - Megan H. Wright
- School of Chemistry
- University of Leeds
- Woodhouse Lane
- Leeds LS2 9JT
- UK
| | | | - Robin S. Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine
- LIGHT Laboratories
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|
40
|
Minard A, Bauer CC, Chuntharpursat‐Bon E, Pickles IB, Wright DJ, Ludlow MJ, Burnham MP, Warriner SL, Beech DJ, Muraki K, Bon RS. Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br J Pharmacol 2019; 176:3924-3938. [PMID: 31277085 PMCID: PMC6811774 DOI: 10.1111/bph.14791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The TRPC1, TRPC4, and TRPC5 proteins form homotetrameric or heterotetrameric, calcium-permeable cation channels that are involved in various disease states. Recent research has yielded specific and potent xanthine-based TRPC1/4/5 inhibitors. Here, we investigated the possibility of xanthine-based activators of these channels. EXPERIMENTAL APPROACH An analogue of the TRPC1/4/5 inhibitor Pico145, AM237, was synthesized and its activity was investigated using HEK cells overexpressing TRPC4, TRPC5, TRPC4-C1, TRPC5-C1, TRPC1:C4 or TRPC1:C5 channels, and in A498 cells expressing native TRPC1:C4 channels. TRPC1/4/5 channel activities were assayed by measuring intracellular concentration of Ca2+ ([Ca2+ ]i ) and by patch-clamp electrophysiology. Selectivity of AM237 was tested against TRPC3, TRPC6, TRPV4, or TRPM2 channels. KEY RESULTS AM237 potently activated TRPC5:C5 channels (EC50 15-20 nM in [Ca2+ ]i assay) and potentiated their activation by sphingosine-1-phosphate but suppressed activation evoked by (-)-englerin A (EA). In patch-clamp studies, AM237 activated TRPC5:C5 channels, with greater effect at positive voltages, but with lower efficacy than EA. Pico145 competitively inhibited AM237-induced TRPC5:C5 activation. AM237 did not activate TRPC4:C4, TRPC4-C1, TRPC5-C1, TRPC1:C5, and TRPC1:C4 channels, or native TRPC1:C4 channels in A498 cells, but potently inhibited EA-dependent activation of these channels with IC50 values ranging from 0.9 to 7 nM. AM237 (300 nM) did not activate or inhibit TRPC3, TRPC6, TRPV4, or TRPM2 channels. CONCLUSIONS AND IMPLICATIONS This study suggests the possibility for selective activation of TRPC5 channels by xanthine derivatives and supports the general principle that xanthine-based compounds can activate, potentiate, or inhibit these channels depending on subunit composition.
Collapse
Affiliation(s)
- Aisling Minard
- School of ChemistryUniversity of LeedsLeedsUK
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Claudia C. Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Eulashini Chuntharpursat‐Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Isabelle B. Pickles
- School of ChemistryUniversity of LeedsLeedsUK
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - David J. Wright
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Melanie J. Ludlow
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | | | - David J. Beech
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of PharmacyAichi‐Gakuin UniversityNagoyaJapan
| | - Robin S. Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
41
|
Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, Boehm U, Freichel M, Bruns D. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019; 17:e3000445. [PMID: 31536487 PMCID: PMC6773422 DOI: 10.1371/journal.pbio.3000445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5–τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity. Transient receptor potential (TRP) proteins can form non-selective cation channels, but their role in synaptic transmission is poorly understood. This study shows that calcium-permeable TRPC channels provide an additional calcium entry pathway at presynaptic sites and are efficient regulators of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Yvonne Schwarz
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| | | | | | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
42
|
Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of Calcium Regulation in Ischemic Neuron. Indian J Clin Biochem 2019; 34:246-253. [PMID: 31391713 PMCID: PMC6660593 DOI: 10.1007/s12291-019-00838-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) dysregulation is a major catalytic event. Ca2+ dysregulation leads to neuronal cell death and brain damage result in cerebral ischemia. Neurons are unable in maintaining calcium homeostasis. Ca2+ homeostasis imbalance results in increased calcium influx and impaired calcium extrusion across the plasma membrane. Ca2+ dysregulation is mediated by different cellular and biochemical mechanism, which leads to neuronal loss resulting stroke/cerebral ischemia. A better understanding of the Ca2+ dysregulation might help in the development of new treatments in order to reduce ischemic brain injury. An optimal concentration of Ca2+ does not lead to neurotoxicity in the ischemic neuron. Intracellular Ca2+ act as a trigger for acute neurotoxicity and this cause induction of long-lasting processes leading to necrotic and/or apoptotic post-ischemic delayed neuronal death or of compensatory, neuroprotective mechanisms has increased considerably. Moreover, routes of ischemic Ca2+ influx to neurons, involvement of intracellular Ca2+ stores and Ca2+ buffers, spatial and temporal relations between ischemia-induced increases in intracellular Ca2+ concentration and neurotoxicity will further increase our understanding about underlying mechanism and they can act as a target for the development of drugs. Here, in our article we are trying to provide a brief overview of various Ca2+ influx pathways involve in ischemic neuron and how ischemic neuron attempts to counterbalance this calcium overload.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vibha Pandey
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| |
Collapse
|
43
|
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 2019; 471:1045-1053. [PMID: 31222490 DOI: 10.1007/s00424-019-02289-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Kwangju, South Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
44
|
Xu J, Zhang W, Cui W, Shi B, Wang H. PKCα promotes insulin secretion via TRPC1 phosphorylation in INS-1E cells. Biosci Biotechnol Biochem 2019; 83:1676-1682. [PMID: 31094294 DOI: 10.1080/09168451.2019.1617106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinase C (PKC) is a class of phospholipid-dependent serine/threonine kinases that contribute to cell survival, migration, and invasion. Previous studies demonstrated that PKC participates in insulin secretion. However, the role of PKC in glucose-stimulated insulin secretion (GSIS) remains unclear. Herein, we demonstrated that PKC is an important mediator of insulin secretion and revealed a close relationship between PKC activation and insulin secretion in INS-1E cells. Meanwhile, the presence of PKCα was found to induce TRPC1 phosphorylation in INS-1E cells. TRPC1 phosphorylation levels increased by activating PKCα activity. Inhibition of PKCα activity reduced TRPC1 phosphorylation. Finally, we showed that TRPC1 could reverse the decrease in intracellular Ca2+ levels and reduced insulin secretion induced by treatment with PKCα inhibitor under high glucose conditions. In conclusion, our findings indicated that TRPC1 and PKCα are involved in promoting insulin secretion and that PKCα promotes insulin secretion via TRPC1 phosphorylation in INS-1E cells.
Collapse
Affiliation(s)
- Jing Xu
- a Department of Geriatric endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Wei Zhang
- b Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Wei Cui
- a Department of Geriatric endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Bingyin Shi
- c Department of endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Huifang Wang
- a Department of Geriatric endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
45
|
Egorov AV, Schumacher D, Medert R, Birnbaumer L, Freichel M, Draguhn A. TRPC channels are not required for graded persistent activity in entorhinal cortex neurons. Hippocampus 2019; 29:1038-1048. [PMID: 31002217 DOI: 10.1002/hipo.23094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Adaptive behavior requires the transient storage of information beyond the physical presence of external stimuli. This short-lasting form of memory involves sustained ("persistent") neuronal firing which may be generated by cell-autonomous biophysical properties of neurons or/and neural circuit dynamics. A number of studies from brain slices reports intrinsically generated persistent firing in cortical excitatory neurons following suprathreshold depolarization by intracellular current injection. In layer V (LV) neurons of the medial entorhinal cortex (mEC) persistent firing depends on the activation of cholinergic muscarinic receptors and is mediated by a calcium-activated nonselective cation current (ICAN ). The molecular identity of this conductance remains, however, unknown. Recently, it has been suggested that the underlying ion channels belong to the canonical transient receptor potential (TRPC) channel family and include heterotetramers of TRPC1/5, TRPC1/4, and/or TRPC1/4/5 channels. While this suggestion was based on pharmacological experiments and on effects of TRP-interacting peptides, an unambiguous proof based on TRPC channel-depleted animals is pending. Here, we used two different lines of TRPC channel knockout mice, either lacking TRPC1-, TRPC4-, and TRPC5-containing channels or lacking all seven members of the TRPC family. We report unchanged persistent activity in mEC LV neurons in these animals, ruling out that muscarinic-dependent persistent activity depends on TRPC channels.
Collapse
Affiliation(s)
- Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,School of Medical Sciences, Catholic University of Argentina, Institute of Biomedical Research (BIOMED UCA-CONICET), Buenos Aires, Argentina
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|