1
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
2
|
Jones T, Raman R, Puhl AC, Lane TR, Riabova O, Kazakova E, Makarov V, Ekins S. Discovery of Dual Targeting GSK-3β/HIV-1 Reverse Transcriptase Inhibitors as Neuroprotective Antiviral Agents. ACS Chem Neurosci 2025; 16:77-84. [PMID: 39663760 DOI: 10.1021/acschemneuro.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Glycogen synthase kinase-3 beta (GSK-3β or GSK-3B) is a serine-threonine kinase involved in various pathways and cellular processes. Alteration in GSK-3β activity is associated with several neurological diseases including Alzheimer's disease (AD), bipolar disorder, and rare diseases like Rett syndrome. GSK-3β is also implicated in HIV-associated dementia (HAD), as it is upregulated in HIV-1-infected cells and plays a role in neuronal dysfunction. Therefore, a small molecule that can inhibit both GSK-3β and HIV-1 reverse transcriptase could offer neuroprotective therapy for patients suffering from HIV-1. Despite this, there are no known GSK-3β inhibitors currently approved, thus prompting us to screen our panel of various antiviral compounds against this kinase to better understand its structure-activity relationship. We show for the first time that the approved drugs, etravirine and rilpivirine, possess GSK-3β activity (IC50 619 nM and 502 nM, respectively). We have also identified 3 lead molecules exhibiting IC50 < 1 μM (11726169, 12326205, and 12326207), with compound 11726169 being the most potent in vitro GSK-3β inhibitor (IC50 = 12.1 nM). We also describe the generation of machine learning models for GSK-3β inhibition and their validation with our data as an external test set and propose their use for the future optimization of such inhibitors.
Collapse
Affiliation(s)
- Thane Jones
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
3
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
5
|
Vasilopoulou F, Pocock J, Bitan G, Hermann DM. Editorial: Extracellular vesicles: emerging roles in the aged and neurodegenerative brain. Front Cell Neurosci 2024; 18:1522499. [PMID: 39717388 PMCID: PMC11663929 DOI: 10.3389/fncel.2024.1522499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Foteini Vasilopoulou
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
7
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
8
|
D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M, Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 2024; 201:106663. [PMID: 39251030 DOI: 10.1016/j.nbd.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
The functionality of the central nervous system (CNS) relies on the connection, integration, and the exchange of information among neural cells. The crosstalk among glial cells and neurons is pivotal for a series of neural functions, such as development of the nervous system, electric conduction, synaptic transmission, neural circuit establishment, and brain homeostasis. Glial cells are crucial players in the maintenance of brain functionality in physiological and disease conditions. Neuroinflammation is a common pathological process in various brain disorders, such as neurodegenerative diseases, and infections. Glial cells, including astrocytes, microglia, and oligodendrocytes, are the main mediators of neuroinflammation, as they can sense and respond to brain insults by releasing pro-inflammatory or anti-inflammatory factors. Recent evidence indicates that extracellular vesicles (EVs) are pivotal players in the intercellular communication that underlies physiological and pathological processes. In particular, glia-derived EVs play relevant roles in modulating neuroinflammation, either by promoting or inhibiting the activation of glial cells and neurons, or by facilitating the clearance or propagation of pathogenic proteins. The involvement of EVs in neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Multiple Sclerosis (MS)- which share hallmarks such as neuroinflammation and oxidative stress to DNA damage, alterations in neurotrophin levels, mitochondrial impairment, and altered protein dynamics- will be dissected, showing how EVs act as pivotal cell-cell mediators of toxic stimuli, thereby propagating degeneration and cell death signaling. Thus, this review focuses on the EVs secreted by microglia, astrocytes, oligodendrocytes and in neuroinflammatory conditions, emphasizing on their effects on neurons and on central nervous system functions, considering both their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo".
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| |
Collapse
|
9
|
Rai P, Bergmann A. Unraveling the intricate link between cell death and neuroinflammation using Drosophila as a model. Front Cell Dev Biol 2024; 12:1479864. [PMID: 39411483 PMCID: PMC11474694 DOI: 10.3389/fcell.2024.1479864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Protein aggregation is a common pathological occurrence in neurodegenerative diseases. This often leads to neuroinflammation, which exacerbates the aggregation and progression of diseases like Parkinson's and Alzheimer's. Here, we focus on immune responses and neurotoxicity in a Parkinson's disease model in Drosophila. Mutations in the SNCA gene that encodes the alpha (α)-Synuclein protein have been linked to familial Parkinson's disease, disrupting autophagy regulation in neuronal cells and promoting the formation of Lewy bodies, a hallmark of Parkinson's pathology. This results in the loss of dopaminergic neurons, manifesting as movement disorders. α-Synuclein aggregation triggers innate immune responses by activating microglial cells, leading to phagocytic activity and the expression of neuroprotective antimicrobial peptides (AMPs). However, sustained AMP expression or chronic inflammation resulting from inadequate microglial phagocytosis can induce neuronal toxicity and apoptosis, leading to severe dopaminergic neuron loss. This review underscores the mechanistic connection between immune response pathways and α-Synuclein-mediated neurodegeneration using Drosophila models. Furthermore, we extensively explore factors influencing neuroinflammation and key immune signaling pathways implicated in neurodegenerative diseases, particularly Parkinson's disease. Given the limited success of traditional treatments, recent research has focused on therapies targeting inflammatory signaling pathways. Some of these approaches have shown promising results in animal models and clinical trials. We provide an overview of current therapeutic strategies showing potential in treating neurodegenerative diseases, offering new avenues for future research and treatment development.
Collapse
|
10
|
Koss KM, Son T, Li C, Hao Y, Cao J, Churchward MA, Zhang ZJ, Wertheim JA, Derda R, Todd KG. Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. J Neurochem 2024; 168:3386-3414. [PMID: 37171455 PMCID: PMC10640667 DOI: 10.1111/jnc.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types. Surveying glia were untreated, reactive were induced with a lipopolysaccharide treatment, recovery was modeled with a potent anti-inflammatory treatment dexamethasone, and priming was determined by subsequently challenging the cells with interferon gamma. Microglial function was profiled by determining the secretion of cytokines and nitric oxide, and expression of inducible nitric oxide synthase. After incubation with the SX7 phage library, populations of SX7-positive microglia and/or astrocytes were collected using fluorescence-activated cell sorting, SX7 phage was amplified in Escherichia coli culture, and phage DNA was sequenced via next-generation sequencing. Binding validation was done with synthesized peptides via in-cell westerns. Fifty-eight unique peptides were discovered, and their potential functions were assessed using a basic local alignment search tool. Peptides potentially originated from proteins ranging in function from a variety of supportive glial roles, including synapse support and pruning, to inflammatory incitement including cytokine and interleukin activation, and potential regulation in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K M Koss
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - T Son
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - C Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - Y Hao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - J Cao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Alberta, Edmonton, Canada
| | - Z J Zhang
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - J A Wertheim
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - R Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Tiwari P, Elgazzaz M, Lazartigues E, Hanif K. Effect of Diminazene Aceturate, an ACE2 activator, on platelet CD40L signaling induced glial activation in rat model of hypertension. Int Immunopharmacol 2024; 139:112654. [PMID: 38996777 DOI: 10.1016/j.intimp.2024.112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Hypertension causes platelet activation and adhesion in the brain resulting in glial activation and neuroinflammation. Further, activation of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR) axis of central Renin-Angiotensin System (RAS), is known to reduce glial activation and neuroinflammation, thereby exhibiting anti-hypertensive and anti-neuroinflammatory properties. Therefore, in the present study, the role of ACE2/Ang (1-7)/MasR axis was studied on platelet-induced glial activation and neuroinflammation using Diminazene Aceturate (DIZE), an ACE2 activator, in astrocytes and microglial cells as well as in rat model of hypertension. We found that the ACE2 activator DIZE, independently of its BP-lowering properties, efficiently prevented hypertension-induced glial activation, neuroinflammation, and platelet CD40-CD40L signaling via upregulation of ACE2/Ang (1-7)/MasR axis. Further, DIZE decreased platelet deposition in the brain by reducing the expression of adhesion molecules on the brain endothelium. Activation of ACE2 also reduced hypertension-induced endothelial dysfunction by increasing eNOS bioavailability. Interestingly, platelets isolated from hypertensive rats or activated with ADP had significantly increased sCD40L levels and induced significantly more glial activation than platelets from DIZE treated group. Therefore, injection of DIZE pre-treated ADP-activated platelets into normotensive rats strongly reduced glial activation compared to ADP-treated platelets. Moreover, CD40L-induced glial activation, CD40 expression, and NFкB-NLRP3 inflammatory signaling are reversed by DIZE. Furthermore, the beneficial effects of ACE2 activation, DIZE was found to be significantly blocked by MLN4760 (ACE2 inhibitor) as well as A779 (MasR antagonist) treatments. Hence, our study demonstrated that ACE2 activation reduced the platelet CD40-CD40L induced glial activation and neuroinflammation, hence imparted neuroprotection.
Collapse
Affiliation(s)
- Priya Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mona Elgazzaz
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595199. [PMID: 38826305 PMCID: PMC11142088 DOI: 10.1101/2024.05.21.595199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cellcell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
13
|
Carata E, Muci M, Mariano S, Panzarini E. BV2 Microglial Cell Activation/Polarization Is Influenced by Extracellular Vesicles Released from Mutated SOD1 NSC-34 Motoneuron-like Cells. Biomedicines 2024; 12:2069. [PMID: 39335582 PMCID: PMC11428949 DOI: 10.3390/biomedicines12092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Microglia-mediated neuroinflammation is a key player in the pathogenesis of amyotrophic lateral sclerosis (ALS) as it can contribute to the progressive degeneration of motor neurons (MNs). Here, we investigated the role of mSOD1 NSC-34 MN-like cell-derived extracellular vesicles (EVs) in inducing the activation of BV2 microglial cells. NSC-34-released EVs were isolated by culture medium differential ultracentrifugation to obtain two fractions, one containing small EVs (diameter < 200 nm) and the other containing large EVs (diameter > 200 nm). BV2 cells were incubated with the two EV fractions for 12, 24, and 48 h to evaluate 1) the state of microglial inflammation through RT-PCR of IL-1β, IL-6, IL-4, and IL-10 and 2) the expression of proteins involved in inflammasome activation (IL-β and caspase 1), cell death (caspase 3), and glial cell recruitment (CXCR1), and presence of the TGFβ cytokine receptor (TGFβ-R2). The obtained results suggest a mSOD1 type-dependent polarization of BV2 cells towards an early neurotoxic phenotype and a late neuroprotective status, with an appearance of mixed M1 and M2 microglia subpopulations. A significant role in driving microglial cell activation is played by the TGFβ/CX3CR1 axis. Therefore, targeting the dysregulated microglial response and modulating neuroinflammation could hold promise as a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
14
|
Koutroulis I, Kratimenos P, Hoptay C, O’Brien WN, Sanidas G, Byrd C, Triantafyllou M, Goldstein E, Jablonska B, Bharadwaj M, Gallo V, Freishtat R. Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy. iScience 2024; 27:110573. [PMID: 39165840 PMCID: PMC11334791 DOI: 10.1016/j.isci.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that results in high mortality and long-term sequela. The central nervous system (CNS) is susceptible to injury from infectious processes, which can lead to clinical symptoms of septic encephalopathy (SE). SE is linked to a profound energetic deficit associated with immune dysregulation. Here, we show that intravenous administration of adipose tissue mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) in septic mice improved disease outcomes by reducing SE clinical severity, restoring aerobic metabolism, and lowering pro-inflammatory cytokines in the cerebellum, a key region affected by SE. Our high throughput analysis showed that MSC-derived sEVs partially reversed sepsis-induced transcriptomic changes, highlighting the potential association of miRNA regulators in the cerebellum of MSC-derived sEV-treated mice with miRNAs identified in sEV cargo. MSC-derived sEVs could serve as a promising therapeutic agent in SE through their favorable immunometabolic properties.
Collapse
Affiliation(s)
- Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Panagiotis Kratimenos
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pediatrics, Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Claire Hoptay
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Wade N. O’Brien
- Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - Georgios Sanidas
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Chad Byrd
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Evan Goldstein
- Augusta University Medical College of Georgia, Augusta, GA 30912, USA
| | - Beata Jablonska
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Vittorio Gallo
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| |
Collapse
|
15
|
Chae S, Lee HJ, Lee HE, Kim J, Jeong YJ, Lin Y, Kim HY, Leriche G, Ehrlich RS, Lingl SC, Seo MD, Lee YH, Yang J, Kim JI, Hoe HS. The dopamine analogue CA140 alleviates AD pathology, neuroinflammation, and rescues synaptic/cognitive functions by modulating DRD1 signaling or directly binding to Abeta. J Neuroinflammation 2024; 21:200. [PMID: 39129007 PMCID: PMC11317008 DOI: 10.1186/s12974-024-03180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aβ/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aβ/tau fibrillation, Aβ plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100β and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aβ/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.
Collapse
Affiliation(s)
- Sehyun Chae
- Neurovascular Unit, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Hyun-Ju Lee
- Neurodegenerative Unit, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Ha-Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Ulsan, 44919, Republic of Korea
| | - Jieun Kim
- Neurodegenerative Unit, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Yoo Joo Jeong
- Neurodegenerative Unit, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yuxi Lin
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Ochang, ChungBuk, 28119, Republic of Korea
| | - Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Ulsan, 44919, Republic of Korea
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Rachel S Ehrlich
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Sascha Castro Lingl
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Min-Duk Seo
- College of Pharmacy and Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Young-Ho Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Ochang, ChungBuk, 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi , 17546, Republic of Korea
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA.
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Ulsan, 44919, Republic of Korea.
| | - Hyang-Sook Hoe
- Neurodegenerative Unit, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea.
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
| |
Collapse
|
16
|
He Y, Jin W, Wan H, Zhang L, Yu L. Research progress on immune-related therapeutic targets of brain injury caused by cerebral ischemia. Cytokine 2024; 180:156651. [PMID: 38761715 DOI: 10.1016/j.cyto.2024.156651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. The innate immune response occurs immediately after cerebral ischemia, resulting in adaptive immunity. More and more experimental evidence has proved that the immune response caused by cerebral ischemia plays an important role in early brain injury and later the recovery of brain injury. Innate immune cells and adaptive cells promote the occurrence of cerebral ischemic injury but also protect brain cells. A large number of studies have shown that cytokines and immune-related substances also have dual functions of promoting injury, reducing injury, or promoting injury recovery in the later stage of cerebral ischemia. They can be an important target for treating cerebral ischemic recovery. Therefore, this study discussed the immune cells, cytokines, and immune-related substances with dual roles in cerebral ischemia and summarized the therapeutic targets of cerebral ischemia. To explore more effective methods to treat cerebral ischemia, promote the recovery of brain function, and improve the prognosis of patients.
Collapse
Affiliation(s)
- Yuejia He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Memo C, Parisse P, Amoriello R, Pachetti M, Palandri A, Casalis L, Ballerini C, Ballerini L. Extracellular vesicles released by LPS-stimulated spinal organotypic slices spread neuroinflammation into naïve slices through connexin43 hemichannel opening and astrocyte aberrant calcium dynamics. Front Cell Neurosci 2024; 18:1433309. [PMID: 39049826 PMCID: PMC11266295 DOI: 10.3389/fncel.2024.1433309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Neuroinflammation is a hallmark of multiple neurodegenerative diseases, shared by all pathological processes which primarily impact on neurons, including Central Nervous System (CNS) injuries. In reactive CNS, activated glia releases extracellular vesicles (EVs), nanosized membranous particles known to play a key role in intercellular communication. EVs mediate neuroinflammatory responses and might exacerbate tissue deterioration, ultimately influencing neurodegenerative disease progression. Methods We treated spinal cord organotypic slices with LPS, a ligand extensively used to induce sEVs release, to mimic mild inflammatory conditions. We combine atomic force microscopy (AFM), nanoparticle tracking (NTA) and western blot (WB) analysis to validate the isolation and characterisation of sEVs. We further use immunofluorescence and confocal microscopy with live calcium imaging by GCaMP6f reporter to compare glial reactivity to treatments with sEVs when isolated from resting and LPS treated organ slices. Results In our study, we focus on CNS released small EVs (sEVs) and their impact on the biology of inflammatory environment. We address sEVs local signalling within the CNS tissue, in particular their involvement in inflammation spreading mechanism(s). sEVs are harvested from mouse organotypic spinal cord cultures, an in vitro model which features 3D complexity and retains spinal cord resident cells. By confocal microscopy and live calcium imaging we monitor glial responses in naïve spinal slices when exposed to sEVs isolated from resting and LPS treated organ slices. Discussion We show that sEVs, only when released during LPS neuroinflammation, recruit naïve astrocytes in the neuroinflammation cycle and we propose that such recruitment be mediated by EVs hemichannel (HC) permeability.
Collapse
Affiliation(s)
- Christian Memo
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Pietro Parisse
- Nanoinnovation Lab, ELETTRA Synchrotron Light Source, Basovizza, Italy
- CNR-IOM, Basovizza, Italy
| | - Roberta Amoriello
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Firenze, Italy
| | - Maria Pachetti
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Anabela Palandri
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Loredana Casalis
- Nanoinnovation Lab, ELETTRA Synchrotron Light Source, Basovizza, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Firenze, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| |
Collapse
|
19
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered glia-neuron communication in Alzheimer's Disease affects WNT, p53, and NFkB Signaling determined by snRNA-seq. Cell Commun Signal 2024; 22:317. [PMID: 38849813 PMCID: PMC11157763 DOI: 10.1186/s12964-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. METHODS Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. RESULTS Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not significantly differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. CONCLUSIONS Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vishal H Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
20
|
López-Teros M, Alarcón-Aguilar A, Castillo-Aragón A, Königsberg M, Luna-López A. Cytokine profiling in senescent and reactive astrocytes: A systematic review. Neurobiol Aging 2024; 138:28-35. [PMID: 38522384 DOI: 10.1016/j.neurobiolaging.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Astrocytes play an important role in neuroinflammation by producing proinflammatory molecules. In response to various stressful stimuli, astrocytes can become senescent or reactive, both are present in age-associated cognitive impairment and other neurodegenerative diseases, and contribute to neuroinflammation. However, there are no studies that compare the cytokines secreted by these types of astrocytes in the brain during aging. Hence, we aimed to broaden the picture of the secretory profiles and to differentiate the variability between them. Therefore, a systematic review was conducted following the guidelines of the "Reporting Items for Systematic Review and Meta-Analyses". Only three studies that met the inclusion terms evaluated age-related cytokine secretion, however, no evaluation of senescence or gliosis was performed. Consequently, to increase the spectrum of the review, studies where those phenotypes were induced and cytokines determined were included. Although some cytokines were common for gliosis and senescence, some interesting differences were also found. The dissimilarities in cytokines secretion between these phenotypes could be studied in the future as potential markers.
Collapse
Affiliation(s)
- Michel López-Teros
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico; Posgrado en Biología Experimental. Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Alejandra Castillo-Aragón
- Centro de Investigación en Nutrición y Salud-Instituto de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico.
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, Mexico.
| |
Collapse
|
21
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered Glia-Neuron Communication in Alzheimer's Disease Affects WNT, p53, and NFkB Signaling Determined by snRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569304. [PMID: 38076822 PMCID: PMC10705421 DOI: 10.1101/2023.11.29.569304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. Methods Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. Results Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. Conclusions Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
22
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
23
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
25
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
26
|
Houldsworth A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun 2024; 6:fcad356. [PMID: 38214013 PMCID: PMC10783645 DOI: 10.1093/braincomms/fcad356] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Neurological disorders include a variety of conditions, including Alzheimer's disease, motor neuron disease and Parkinson's disease, affecting longevity and quality of life, and their pathogenesis is associated with oxidative stress. Several of the chronic neurodegenerative pathologies of the CNS share some common features, such as oxidative stress, inflammation, synapse dysfunctions, protein misfolding and defective autophagia. Neuroinflammation can involve the activation of mast cells, contributing to oxidative stress, in addition to other sources of reactive oxygen species. Antioxidants can powerfully neutralize reactive oxygen species and free radicals, decreasing oxidative damage. Antioxidant genes, like the manganese superoxide dismutase enzyme, can undergo epigenetic changes that reduce their expression, thus increasing oxidative stress in tissue. Alternatively, DNA can be altered by free radical damage. The epigenetic landscape of these genes can change antioxidant function and may result in neurodegenerative disease. This imbalance of free radical production and antioxidant function increases the reactive oxygen species that cause cell damage in neurons and is often observed as an age-related event. Increased antioxidant expression in mice is protective against reactive oxygen species in neurons as is the exogenous supplementation of antioxidants. Manganese superoxide dismutase requires manganese for its enzymic function. Antioxidant therapy is considered for age-related neurodegenerative diseases, and a new mimetic of a manganese superoxide dismutase, avasopasem manganese, is described and suggested as a putative treatment to reduce the oxidative stress that causes neurodegenerative disease. The aim of this narrative review is to explore the evidence that oxidative stress causes neurodegenerative damage and the role of antioxidant genes in inhibiting reactive oxygen species damage. Can the neuronal environment of oxidative stress, causing neuroinflammation and neurodegeneration, be reduced or reversed?
Collapse
|
27
|
Mendes-Oliveira J, Campos FL, Ferreira SA, Tomé D, Fonseca CP, Baltazar G. Endogenous GDNF Is Unable to Halt Dopaminergic Injury Triggered by Microglial Activation. Cells 2023; 13:74. [PMID: 38201277 PMCID: PMC10778367 DOI: 10.3390/cells13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Overactivation of microglial cells seems to play a crucial role in the degeneration of dopaminergic neurons occurring in Parkinson's disease. We have previously demonstrated that glial cell line-derived neurotrophic factor (GDNF) present in astrocytes secretome modulates microglial responses induced by an inflammatory insult. Therefore, astrocyte-derived soluble factors may include relevant molecular players of therapeutic interest in the control of excessive neuroinflammatory responses. However, in vivo, the control of neuroinflammation is more complex as it depends on the interaction between different types of cells other than microglia and astrocytes. Whether neurons may interfere in the astrocyte-microglia crosstalk, affecting the control of microglial reactivity exerted by astrocytes, is unclear. Therefore, the present work aimed to disclose if the control of microglial responses mediated by astrocyte-derived factors, including GDNF, could be affected by the crosstalk with neurons, impacting GDNF's ability to protect dopaminergic neurons exposed to a pro-inflammatory environment. Also, we aimed to disclose if the protection of dopaminergic neurons by GDNF involves the modulation of microglial cells. Our results show that the neuroprotective effect of GDNF was mediated, at least in part, by a direct action on microglial cells through the GDNF family receptor α-1. However, this protective effect seems to be impaired by other mediators released in response to the neuron-astrocyte crosstalk since neuron-astrocyte secretome, in contrast to astrocytes secretome, was unable to protect dopaminergic neurons from the injury triggered by lipopolysaccharide-activated microglia. Supplementation with exogenous GDNF was needed to afford protection of dopaminergic neurons exposed to the inflammatory environment. In conclusion, our results revealed that dopaminergic protective effects promoted by GDNF involve the control of microglial reactivity. However, endogenous GDNF is insufficient to confer dopaminergic neuron protection against an inflammatory insult. This reinforces the importance of further developing new therapeutic strategies aiming at providing GDNF or enhancing its expression in the brain regions affected by Parkinson's disease.
Collapse
Affiliation(s)
- Julieta Mendes-Oliveira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Filipa L. Campos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Susana A. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Diogo Tomé
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Carla P. Fonseca
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Graça Baltazar
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
28
|
Nordengen K, Kirsebom BE, Richter G, Pålhaugen L, Gísladóttir B, Siafarikas N, Nakling A, Rongve A, Bråthen G, Grøntvedt GR, Gonzalez F, Waterloo K, Sharma K, Karikari T, Vromen EM, Tijms BM, Visser PJ, Selnes P, Kramberger MG, Winblad B, Blennow K, Fladby T. Longitudinal cerebrospinal fluid measurements show glial hypo- and hyperactivation in predementia Alzheimer's disease. J Neuroinflammation 2023; 20:298. [PMID: 38093257 PMCID: PMC10720118 DOI: 10.1186/s12974-023-02973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Brain innate immune activation is associated with Alzheimer's disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles. METHODS We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aβ42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A-/T-/N-, A+/T-/N-, A+/T+ or N+, or A-/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group. RESULTS Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A-/T+ or N+, compared to A-/T-/N-). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T-/N- cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01). CONCLUSIONS Immune hypoactivation and reduced neuron-microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Grit Richter
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Nikias Siafarikas
- Department of Old Age Psychiatry, Akershus University Hospital, Lørenskog, Norway
| | - Arne Nakling
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Arvid Rongve
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna, Haugesund, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Fernando Gonzalez
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Kulbhushan Sharma
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Karikari
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburg, PA, USA
| | - Eleonora M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Pieter J Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Milicia G Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
29
|
Wickstead ES, Elliott BT, Pokorny S, Biggs C, Getting SJ, McArthur S. Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFκB Activity. Int J Mol Sci 2023; 24:15996. [PMID: 37958978 PMCID: PMC10649357 DOI: 10.3390/ijms242115996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
- Icahn School of Medicine at Mount Sinai, Department of Neurology, Simon Hess Medical and Science Building, New York, NY 10029, USA
| | - Bradley T. Elliott
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Sarah Pokorny
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| | - Christopher Biggs
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Stephen J. Getting
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
30
|
Schmitz I, da Silva A, Bobermin LD, Gonçalves CA, Steiner J, Quincozes-Santos A. The Janus face of antipsychotics in glial cells: Focus on glioprotection. Exp Biol Med (Maywood) 2023; 248:2120-2130. [PMID: 38230521 PMCID: PMC10800129 DOI: 10.1177/15353702231222027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Antipsychotics are commonly prescribed to treat several neuropsychiatric disorders, including schizophrenia, mania in bipolar disorder, autism spectrum disorder, delirium, and organic or secondary psychosis, for example, in dementias such as Alzheimer's disease. There is evidence that typical antipsychotics such as haloperidol are more effective in reducing positive symptoms than negative symptoms and/or cognitive deficits. In contrast, atypical antipsychotic agents have gained popularity over typical antipsychotics, due to fewer extrapyramidal side effects and their theoretical efficacy in controlling both positive and negative symptoms. Although these therapies focus on neuron-based therapeutic schemes, glial cells have been recognized as important regulators of the pathophysiology of neuropsychiatric disorders, as well as targets to improve the efficacy of these drugs. Glial cells (astrocytes, oligodendrocytes, and microglia) are critical for the central nervous system in both physiological and pathological conditions. Astrocytes are the most abundant glial cells and play important roles in brain homeostasis, regulating neurotransmitter systems and gliotransmission, since they express a wide variety of functional receptors for different neurotransmitters. In addition, converging lines of evidence indicate that psychiatric disorders are commonly associated with the triad neuroinflammation, oxidative stress, and excitotoxicity, and that glial cells may contribute to the gliotoxicity process. Conversely, glioprotective molecules attenuate glial damage by generating specific responses that can protect glial cells themselves and/or neurons, resulting in improved central nervous system (CNS) functioning. In this regard, resveratrol is well-recognized as a glioprotective molecule, including in clinical studies of schizophrenia and autism. This review will provide a summary of the dual role of antipsychotics on neurochemical parameters associated with glial functions and will highlight the potential activity of glioprotective molecules to improve the action of antipsychotics.
Collapse
Affiliation(s)
- Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg 39120, Germany
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
31
|
Loonen AJ. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav Immun Health 2023; 33:100687. [PMID: 37810262 PMCID: PMC10550815 DOI: 10.1016/j.bbih.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The term extrapyramidal disorders is most often used for conditions such as Parkinson's disease or Huntington's disease, but also refers to a group of extrapyramidal side effects of antipsychotics (EPS), such as tardive dyskinesia (TD). After a brief description of some clinical features of TD, this article summarizes the relatively scarce results of research on a possible link between mainly cytokine levels and TD. This data was found by systematically searching Pubmed and Embase. The limitations of these types of studies are a major obstacle to interpretation. After describing relevant aspects of the neuroinflammatory response and the neuroanatomical backgrounds of EPS, a new hypothesis for the origin of TD is presented with emphasis on dysfunctions in the striosomal compartment of the striatum and the dorsal diencephalic connection system (DDCS). It is postulated that (partly immunologically-induced) increase in oxidative stress and the dopamine-dependent immune response in classic TD proceed primarily via the DDCS, which itself is activated from evolutionarily older parts of the forebrain. Neuroinflammatory responses in the choroid plexus of the third ventricle may contribute due to its proximity to the habenula. It is concluded that direct evidence for a possible role of inflammatory processes in the mechanism of TD is still lacking because research on this is still too much of a niche, but there are indications that warrant further investigation.
Collapse
Affiliation(s)
- Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| |
Collapse
|
32
|
Li Z, Gong P, Zhang M, Li C, Xiao P, Yu M, Wang X, An L, Bi F, Song X, Wang X. Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury. Brain Res Bull 2023; 204:110807. [PMID: 37923146 DOI: 10.1016/j.brainresbull.2023.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Multi-parametric magnetic resonance imaging (MRI) can provide comprehensive and valuable information for precise diagnosis and treatment evaluation of a number of diseases. In this study, the neuroprotective effects of melatonin (Mel) on a rat model of cerebral ischemia/reperfusion injury (CIRI) were assessed by multi-parametric MRI combined with histopathological techniques for longitudinal monitoring of the lesion microenvironment. METHODS Sixty Sprague Dawley (SD) rats were randomly divided into three groups: the Sham, CIRI and CIRI + Mel groups. At multiple time points after ischemia, MRI scanning was performed on a 7.0 Tesla MRI scanner. Multi-parametric MRI includes T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and chemical exchange saturation transfer (CEST)-MRI. CEST effects were calculated by the Lorentzian difference method, 3.5 ppm indicates amide protons of mobile proteins/peptide (Amide-CEST) and 2.0 ppm indicates amine protons (Guan-CEST). Multiple histopathological techniques were used to examine the histopathological changes and explore the therapeutic effects of Mel. RESULTS T2WI and DWI-MRI could localize the infarct foci and areas in CIRI rats, which was further validated by staining, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) staining. After Mel treatment, T2WI and DWI-MRI showed smaller infarct volume, and neurons displayed improved morphology with less apoptosis rates. Notably, Amide-CEST and Guan-CEST signal decreased as early as 2 h after CIRI (all P <0.001), reflecting the change of pH after ischemia. After Mel treatment, both Amide-CEST and Guan-CEST signal increased in ischemic cortex and striatum compared with control group (all P < 0.001). The immunofluorescence staining and western blotting analysis suggested the expression of M2 microglia increased after Mel treatment; While,after Mel treatment the inflammatory factor interleukin-1β (IL-1β) decreased compared with control CIRI rats. CONCLUSIONS Multi-parametric MRI was shown to be an effective method to monitor the brain damage in a rat model of CIRI and assess the therapeutic effects of Mel treatment. Amide-CEST and Guan-CEST were especially sensitive to the changes in brain microenvironment during the early stage after CIRI. Furthermore, the neuroprotective effect of Mel treatment is associated with its promotion of the microglia polarized to M2 type in CIRI rats.
Collapse
Affiliation(s)
- Zhen Li
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China; Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ping Gong
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Mengbei Zhang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China; Department of Radiology, Zibo Central Hospital, Zibo 255020, Shandong Province, China
| | - Chen Li
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Peilun Xiao
- Department of Anatomy, School of Basic Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Miao Yu
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Lin An
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Fangfang Bi
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China.
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China; Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China.
| |
Collapse
|
33
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
34
|
Corraliza-Gomez M, Bermejo T, Lilue J, Rodriguez-Iglesias N, Valero J, Cozar-Castellano I, Arranz E, Sanchez D, Ganfornina MD. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer's disease and brain aging. J Neuroinflammation 2023; 20:233. [PMID: 37817156 PMCID: PMC10566021 DOI: 10.1186/s12974-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-β management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain.
| | - Teresa Bermejo
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | | | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Jorge Valero
- Institute of Neuroscience of Castilla y León-INCyL, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Irene Cozar-Castellano
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Eduardo Arranz
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maria Dolores Ganfornina
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
35
|
Zelenka L, Jarek M, Pägelow D, Geffers R, van Vorst K, Fulde M. Crosstalk of Highly Purified Microglia and Astrocytes in the Frame of Toll-like Receptor (TLR)2/1 Activation. Neuroscience 2023; 526:256-266. [PMID: 37391121 DOI: 10.1016/j.neuroscience.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/02/2023]
Abstract
The major immune cells of the central nervous systems (CNS) are microglia and astrocytes, subsets of the glial cell population. The crosstalk between glia via soluble signaling molecules plays an indispensable role for neuropathologies, brain development as well as homeostasis. However, the investigation of the microglia-astrocyte crosstalk has been hampered due to the lack of suitable glial isolation methods. In this study, we investigated for the first time the crosstalk between highly purified Toll-like receptor (TLR)2-knock out (TLR2-KO) and wild-type (WT) microglia and astrocytes. We examined the crosstalk of TLR2-KO microglia and astrocytes in the presence of WT supernatants of the respective other glial cell type. Interestingly, we observed a significant TNF release by TLR2-KO astrocytes, which were activated with Pam3CSK4-stimulated WT microglial supernatants, strongly indicating a crosstalk between microglia and astrocytes after TLR2/1 activation. Furthermore, transcriptome analysis using RNA-seq revealed a wide range of significant up- and down-regulated genes such as Cd300, Tnfrsf9 or Lcn2, which might be involved in the molecular conversation between microglia and astrocytes. Finally, co-culturing microglia and astrocytes confirmed the prior results by demonstrating a significant TNF release by WT microglia co-cultured with TLR2-KO astrocytes. Our findings suggest a molecular TLR2/1-dependent conversation between highly pure activated microglia and astrocytes via signaling molecules. Furthermore, we demonstrate the first crosstalk experiments using ∼100% pure microglia and astrocyte mono-/co-cultures derived from mice with different genotypes highlighting the urgent need of efficient glial isolation protocols, which particularly holds true for astrocytes.
Collapse
Affiliation(s)
- Laura Zelenka
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Michael Jarek
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Dennis Pägelow
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Jiang H, Sun Z, Zhu X, Li F, Chen Q. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice. Sci Rep 2023; 13:13021. [PMID: 37563282 PMCID: PMC10415315 DOI: 10.1038/s41598-023-40255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Ischemic stroke (IS) is associated with changes in gene expression patterns in the ischemic penumbra and extensive neurovascular inflammation. However, the key molecules related to the inflammatory response in the acute phase of IS remain unclear. To address this knowledge gap, conducted a study using Gene Set Enrichment Analysis (GSEA) on two gene expression profiles, GSE58720 and GSE202659, downloaded from the GEO database. We screened differentially expressed genes (DEGs) using GEO2R and analyzed 170 differentially expressed intersection genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. We also used Metascape, DAVID, STRING, Cytoscape, and TargetScan to identify candidate miRNAs and genes. The targeted genes and miRNA molecule were clarified using the mice middle cerebral artery occlusion-reperfusion (MCAO/R) model. Our findings revealed that 170 genes were correlated with cytokine production and inflammatory cell activation, as determined by GO and KEGG analyses. Cluster analysis identified 11 hub genes highly associated with neuroinflammation: Ccl7, Tnf, Ccl4, Timp1, Ccl3, Ccr1, Sele, Ccr2, Tlr4, Ptgs2, and Il6. TargetScan results suggested that Ptgs2, Tlr4, and Ccr2 might be regulated by miR-202-3p. In the MCAO/R model, the level of miR-202-3p decreased, while the levels of Ptgs2, Tlr4, and Ccr2 increased compared to the sham group. Knockdown of miR-202-3p exacerbated ischemic reperfusion injury (IRI) through neuroinflammation both in vivo and in vitro. Our study also demonstrated that mRNA and protein levels of Ptgs2, Tlr4, and Ccr2 increased in the MCAO/R model with miR-202-3p knockdown. These findings suggest that differentially expressed genes, including Ptgs2, Tlr4, and Ccr2 may play crucial roles in the neuroinflammation of IS, and their expression may be negatively regulated by miR-202-3p. Our study provides new insights into the regulation of neuroinflammation in IS.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xiwei Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
37
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
38
|
Asveda T, Priti T, Ravanan P. Exploring microglia and their phenomenal concatenation of stress responses in neurodegenerative disorders. Life Sci 2023:121920. [PMID: 37429415 DOI: 10.1016/j.lfs.2023.121920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Neuronal cells are highly functioning but also extremely stress-sensitive cells. By defending the neuronal cells against pathogenic insults, microglial cells, a unique cell type, act as the frontline cavalry in the central nervous system (CNS). Their remarkable and unique ability to self-renew independently after their creation is crucial for maintaining normal brain function and neuroprotection. They have a wide range of molecular sensors that help maintain CNS homeostasis during development and adulthood. Despite being the protector of the CNS, studies have revealed that persistent microglial activation may be the root cause of innumerable neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and Amyloid Lateral Sclerosis (ALS). From our vigorous review, we state that there is a possible interlinking between pathways of Endoplasmic reticulum (ER) stress response, inflammation, and oxidative stress resulting in dysregulation of the microglial population, directly influencing the accumulation of pro-inflammatory cytokines, complement factors, free radicals, and nitric oxides leading to cell death via apoptosis. Recent research uses the suppression of these three pathways as a therapeutic approach to prevent neuronal death. Hence, in this review, we have spotlighted the advancement in microglial studies, which focus on their molecular defenses against multiple stresses, and current therapeutic strategies indirectly targeting glial cells for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Thankavelu Asveda
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Talwar Priti
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
39
|
Edamakanti CR, Mohan V, Opal P. Reactive Bergmann glia play a central role in spinocerebellar ataxia inflammation via the JNK pathway. J Neuroinflammation 2023; 20:126. [PMID: 37237366 PMCID: PMC10214658 DOI: 10.1186/s12974-023-02801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are devastating neurological diseases characterized by progressive cerebellar incoordination. While neurons bear the brunt of the pathology, a growing body of evidence suggests that glial cells are also affected. It has, however, been difficult to understand the role of glia, given the diversity of subtypes, each with their individual contributions to neuronal health. Using human SCA autopsy samples we have discovered that Bergmann glia-the radial glia of the cerebellum, which form intimate functional connections with cerebellar Purkinje neurons-display inflammatory JNK-dependent c-Jun phosphorylation. This phosphorylation defines a signaling pathway not observed in other activated glial populations, providing an opportunity to isolate the role of Bergmann glia in SCA inflammation. Turning to an SCA1 mouse model as a paradigmatic SCA, we demonstrate that inhibiting the JNK pathway reduces Bergmann glia inflammation accompanied by improvements in the SCA1 phenotype both behaviorally and pathologically. These findings demonstrate the causal role for Bergmann glia inflammation in SCA1 and point to a novel therapeutic strategy that could span several ataxic syndromes where Bergmann glia inflammation is a major feature.
Collapse
Affiliation(s)
- Chandrakanth Reddy Edamakanti
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Vishwa Mohan
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
40
|
Kumari A, Srivastava A, Jagdale P, Ayanur A, Khanna VK. Lambda-cyhalothrin enhances inflammation in nigrostriatal region in rats: Regulatory role of NF-κβ and JAK-STAT signaling. Neurotoxicology 2023; 96:101-117. [PMID: 37060950 DOI: 10.1016/j.neuro.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1β, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kβ (P65, Iκβ, IKKα, IKKβ) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κβ and JAK/STAT signaling.
Collapse
Affiliation(s)
- Anima Kumari
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anugya Srivastava
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
41
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
42
|
Vicente-Rodríguez M, Mancuso R, Peris-Yague A, Simmons C, Gómez-Nicola D, Perry VH, Turkheimer F, Lovestone S, Parker CA, Cash D. Pharmacological modulation of TSPO in microglia/macrophages and neurons in a chronic neurodegenerative model of prion disease. J Neuroinflammation 2023; 20:92. [PMID: 37032328 PMCID: PMC10084680 DOI: 10.1186/s12974-023-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Renzo Mancuso
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alba Peris-Yague
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Diego Gómez-Nicola
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - V Hugh Perry
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Federico Turkheimer
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Simon Lovestone
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Janssen Medical Ltd, High Wycombe, UK
| | - Christine A Parker
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- GlaxoSmithKline, Stevenage, London, UK
| | - Diana Cash
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| |
Collapse
|
43
|
Song C, Broadie K. Fragile X mental retardation protein coordinates neuron-to-glia communication for clearance of developmentally transient brain neurons. Proc Natl Acad Sci U S A 2023; 120:e2216887120. [PMID: 36920921 PMCID: PMC10041173 DOI: 10.1073/pnas.2216887120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance. Neuronal RNAi of Drosophila fragile X mental retardation 1 (dfmr1) elevates mad transcript levels and increases pMad signaling. Neuronal dfmr1 and mad RNAi both elevate phospho-protein kinase B (pAkt) and delay neuron removal but cause opposite effects on InR expression. Genetically correcting pAkt levels in the mad RNAi background restores normal remodeling. Consistently, neuronal dfmr1 and mad RNAi both decrease Prtp levels, whereas neuronal InR and akt RNAi increase Prtp levels, indicating FMRP works with pMad and insulin signaling to tightly regulate Prtp signaling and thus control glial phagocytosis for correct circuit remodeling. Neuronal dfmr1 and mad and akt RNAi all decrease APPL levels, with the pathway signaling higher glial endolysosome activity for phagocytosis. These findings reveal a FMRP-dependent control pathway for neuron-to-glia communication in neuronal pruning, identifying potential molecular mechanisms for devising fragile X syndrome treatments.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN37235
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN37235
| |
Collapse
|
44
|
Huang Q, Chen C, Chen W, Cai C, Xing H, Li J, Li M, Ma S. Cell type- and region-specific translatomes in an MPTP mouse model of Parkinson's disease. Neurobiol Dis 2023; 180:106105. [PMID: 36977454 DOI: 10.1016/j.nbd.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by the progressive loss of nigrostriatal dopaminergic neurons (DANs), involving the dysregulation of both neurons and glial cells. Cell type- and region-specific gene expression profiles can provide an effective source for revealing the mechanisms of PD. In this study, we adopted the RiboTag approach to obtain cell type (DAN, microglia, astrocytes)- and brain region (substantia nigra, caudate-putamen)-specific translatomes at an early stage in an MPTP-induced mouse model of PD. Through DAN-specific translatome analysis, the glycosphingolipid biosynthetic process was identified as a significantly downregulated pathway in the MPTP-treated mice. ST8Sia6, a key downregulated gene related to glycosphingolipid biosynthesis, was confirmed to be downregulated in nigral DANs from postmortem brains of patients with PD. Specific expression of ST8Sia6 in DANs exerts anti-inflammatory and neuroprotective effects in MPTP-treated mice. Through cell type (microglia vs. astrocyte) and brain region (substantia nigra vs. caudate-putamen) comparisons, nigral microglia showed the most intense immune responses. Microglia and astrocytes in the substantia nigra showed similar levels of activation in interferon-related pathways and interferon gamma (IFNG) was identified as the top upstream regulator in both cell types. This work highlights that the glycosphingolipid metabolism pathway in the DAN is involved in neuroinflammation and neurodegeneration in an MPTP mouse model of PD and provides a new data source for elucidating the pathogenesis of PD.
Collapse
|
45
|
The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol 2023; 229:305-320. [PMID: 36535359 DOI: 10.1016/j.ijbiomac.2022.12.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.
Collapse
|
46
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
47
|
Krawczyk MC, Pan L, Zhang AJ, Zhang Y. Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia. PLoS One 2023; 18:e0279736. [PMID: 36827449 PMCID: PMC9956607 DOI: 10.1371/journal.pone.0279736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 02/26/2023] Open
Abstract
Though the brain was long characterized as an immune-privileged organ, findings in recent years have shown extensive communications between the brain and peripheral immune cells. We now know that alterations in the peripheral immune system can affect the behavioral outputs of the central nervous system, but we do not know which brain cells are affected by the presence of peripheral immune cells. Glial cells including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells (OPCs) are critical for the development and function of the central nervous system. In a wide range of neurological and psychiatric diseases, the glial cell state is influenced by infiltrating peripheral lymphocytes. However, it remains largely unclear whether the development of the molecular phenotypes of glial cells in the healthy brain is regulated by lymphocytes. To answer this question, we acutely purified each type of glial cell from immunodeficient Rag2-/- mice. Interestingly, we found that the transcriptomes of microglia, astrocytes, and OPCs developed normally in Rag2-/- mice without reliance on lymphocytes. In contrast, there are modest transcriptome differences between the oligodendrocytes from Rag2-/- and control mice. Furthermore, the subcellular localization of the RNA-binding protein Quaking, is altered in oligodendrocytes. These results demonstrate that the molecular attributes of glial cells develop largely without influence from lymphocytes and highlight potential interactions between lymphocytes and oligodendrocytes.
Collapse
Affiliation(s)
- Mitchell C. Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
48
|
Di Mauro G, Amoriello R, Lozano N, Carnasciali A, Guasti D, Becucci M, Cellot G, Kostarelos K, Ballerini C, Ballerini L. Graphene Oxide Nanosheets Reduce Astrocyte Reactivity to Inflammation and Ameliorate Experimental Autoimmune Encephalomyelitis. ACS NANO 2023; 17:1965-1978. [PMID: 36692902 PMCID: PMC9933621 DOI: 10.1021/acsnano.2c06609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In neuroinflammation, astrocytes play multifaceted roles that regulate the neuronal environment. Astrocytes sense and respond to pro-inflammatory cytokines (CKs) and, by a repertoire of intracellular Ca2+ signaling, contribute to disease progression. Therapeutic approaches wish to reduce the overactivation in Ca2+ signaling in inflammatory-reactive astrocytes to restore dysregulated cellular changes. Cell-targeting therapeutics might take advantage by the use of nanomaterial-multifunctional platforms such as graphene oxide (GO). GO biomedical applications in the nervous system involve therapeutic delivery and sensing, and GO flakes were shown to enable interfacing of neuronal and glial membrane dynamics. We exploit organotypic spinal cord cultures and optical imaging to explore Ca2+ changes in astrocytes, and we report, when spinal tissue is exposed to CKs, neuroinflammatory-associated modulation of resident glia. We show the efficacy of GO to revert these dynamic changes in astrocytic reactivity to CKs, and we translate this potential in an animal model of immune-mediated neuroinflammatory disease.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Roberta Amoriello
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Neus Lozano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
| | - Alberto Carnasciali
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Daniele Guasti
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Maurizio Becucci
- Dipartimento
di Chimica “Ugo Schiff”, DICUS, University of Florence, 50139Florence, Italy
| | - Giada Cellot
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
- Nanomedicine
Lab, and Faculty of Biology, Medicine & Health, The National Graphene
Institute, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Clara Ballerini
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| |
Collapse
|
49
|
Nam MK, Seong Y, Jeong GH, Yoo SA, Rhim H. HtrA2 regulates α-Synuclein-mediated mitochondrial reactive oxygen species production in the mitochondria of microglia. Biochem Biophys Res Commun 2023; 638:84-93. [PMID: 36442236 DOI: 10.1016/j.bbrc.2022.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Aggregation and misfolding of α-Synuclein (α-Syn), a causative agent for Parkinson's disease (PD), and oxidative stress are tightly implicated in the pathogenesis of PD. Although more than 20 genes including HtrA2 have been identified as causative genes for PD, the molecular mechanisms underlying the pathophysiological functions between HtrA2 and α-Syn in the pathogenesis of PD remain unclear. This study shows that HtrA2 serine protease selectively recognizes and interacts with the NAC region of α-Syn. Interestingly, we found that HtrA2 causes proteolysis of α-Syn to prevent mitochondrial accumulation of α-Syn, thereby inhibiting the production of reactive oxygen species (ROS) in the mitochondria. We have further demonstrated that HtrA2 knockdown promotes α-Syn-mediated mitochondrial ROS production, thereby activating microglial cells. This study is the first to demonstrate that the HtrA2/α-Syn cellular partner may play a crucial role in the pathogenesis of PD and provide new insights into the pathological processes and effective therapeutic strategies for PD.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngmo Seong
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Gi Heon Jeong
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ah Yoo
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Hyangshuk Rhim
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
50
|
Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:265-281. [PMID: 34988761 DOI: 10.1007/s10571-021-01173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1β, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1β, TNF-α, CCL2, CCL5 and CCR2.
Collapse
|