1
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
2
|
de Melo PS, Gianlorenco AC, Marduy A, Kim CK, Choi H, Song JJ, Fregni F. A Mechanistic Analysis of the Neural Modulation of the Inflammatory System Through Vagus Nerve Stimulation: A Systematic Review and Meta-analysis. Neuromodulation 2025; 28:43-53. [PMID: 38795094 DOI: 10.1016/j.neurom.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE We aimed to conduct a systematic review and meta-analysis assessing the antiinflammatory effects of various VNS methods while exploring multiple antiinflammatory pathways. MATERIALS AND METHODS We included clinical trials that used electrical stimulation of the vagus nerve and assessed inflammatory markers up to October 2022. We excluded studies lacking control groups, those with combined interventions, or abstracts without full text. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Cochrane Handbook for Systematic Reviews. For each inflammatory marker, a random-effects meta-analysis using the inverse variance method was performed. Methods used include transcutaneous auricular VNS (taVNS), transcutaneous cervical VNS (tcVNS), invasive cervical VNS (iVNS), and electroacupuncture VNS (eaVNS). Main reported outcomes included tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, C-reactive protein (CRP), and IL-10. Risk of bias was evaluated using the Cochrane Collaboration Tool (RoB 2.0). RESULTS This review included 15 studies, involving 597 patients. No statistically significant general VNS effect was observed on TNF-α, IL-6, and IL-1ß. However, CRP, IL-10, and interferon (IFN)-γ were significantly modulated by VNS across all methods. Subgroup analysis revealed specific stimulation techniques producing significant results, such as taVNS effects in IL-1ß and IL-10, and iVNS in IL-6, whereas tcVNS and eaVNS did not convey significant pooled results individually. Cumulative exposure to VNS, higher risk of bias, study design, and pulse width were identified as effect size predictors in our meta-regression models. CONCLUSIONS Pooling all VNS techniques indicated the ability of VNS to modulate inflammatory markers such as CRP, IL-10, and IFN-γ. Individually, methods such as taVNS were effective in modulating IL-1ß and IL-10, whereas iVNS modulated IL-6. However, different VNS techniques should be separately analyzed in larger, homogeneous, and powerful studies to achieve a clearer and more consistent understanding of the effect of each VNS method on the inflammatory system.
Collapse
Affiliation(s)
- Paulo S de Melo
- Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna C Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medicine, União Metropolitana de Ensino e Cultura (UNIME), Salvador, Bahia, Brazil
| | - Chi K Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, South Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597946. [PMID: 38915657 PMCID: PMC11195094 DOI: 10.1101/2024.06.10.597946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rapid learning confers significant advantages to animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by a gradual expansion of predictive cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6-8, challenging the prevailing model of sensory cortical plasticity. Here, we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex (AC) drives both rapid learning and slower performance gains but becomes dispensable at expert. Rather than enhancement or expansion of cue representations9, two-photon calcium imaging of AC excitatory neurons throughout learning revealed two higher-order signals that were causal to learning and performance. First, a reward prediction (RP) signal emerged rapidly within tens of trials, was present after action-related errors only early in training, and faded at expert levels. Strikingly, silencing at the time of the RP signal impaired rapid learning, suggesting it serves an associative and teaching role. Second, a distinct cell ensemble encoded and controlled licking suppression that drove the slower performance improvements. These two ensembles were spatially clustered but uncoupled from underlying sensory representations, indicating a higher-order functional segregation within AC. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Present address: Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| |
Collapse
|
5
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
8
|
Gargano A, Olabiyi BF, Palmisano M, Zimmer A, Bilkei-Gorzo A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 2023; 17:1264253. [PMID: 37694113 PMCID: PMC10492095 DOI: 10.3389/fnins.2023.1264253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Aging is associated with a decline in cognitive abilities, including memory and attention. It is generally accepted that age-related histological changes such as increased neuroinflammatory glial activity and a reduction in the number of specific neuronal populations contribute to cognitive aging. Noradrenergic neurons in the locus coeruleus (LC) undergo an approximately 20 % loss during ageing both in humans and mice, but whether this change contributes to cognitive deficits is not known. To address this issue, we asked whether a similar loss of LC neurons in young animals as observed in aged animals impairs memory and attention, cognitive domains that are both influenced by the noradrenergic system and impaired in aging. Methods For that, we treated young healthy mice with DSP-4, a toxin that specifically kills LC noradrenergic neurons. We compared the performance of DSP-4 treated young mice with the performance of aged mice in models of attention and memory. To do this, we first determined the dose of DSP-4, which causes a similar 20 % neuronal loss as is typical in aged animals. Results Young mice treated with DSP-4 showed impaired attention in the presence of distractor and memory deficits in the 5-choice serial reaction time test (5-CSRTT). Old, untreated mice showed severe deficits in both the 5-CSRTT and in fear extinction tests. Discussion Our data now suggest that a reduction in the number of LC neurons contributes to impaired working memory and greater distractibility in attentional tasks but not to deficits in fear extinction. We hypothesize that the moderate loss of LC noradrenergic neurons during aging contributes to attention deficits and working memory impairments.
Collapse
Affiliation(s)
| | | | | | | | - Andras Bilkei-Gorzo
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus, Bonn, Germany
| |
Collapse
|
9
|
Choi S, Chen Y, Zeng H, Biswal B, Yu X. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI. J Cereb Blood Flow Metab 2023; 43:1115-1129. [PMID: 36803280 PMCID: PMC10291453 DOI: 10.1177/0271678x231158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
Collapse
Affiliation(s)
- Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yi Chen
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, NJIT, Newark, NJ, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
10
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
11
|
Xu H, Jin T, Zhang R, Xie H, Zhuang C, Zhang Y, Kong D, Xiao G, Yu X. Cerebral cortex and hippocampus neural interaction during vagus nerve stimulation under in vivo large-scale imaging. Front Neurosci 2023; 17:1131063. [PMID: 36937685 PMCID: PMC10017477 DOI: 10.3389/fnins.2023.1131063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.
Collapse
Affiliation(s)
- Hanyun Xu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Jin
- Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal University, Wuhu, Anhui, China
| | - Rujin Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- BNRist, Tsinghua University, Beijing, China
- *Correspondence: Guihua Xiao,
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Xinguang Yu,
| |
Collapse
|
12
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Zhang J, Tang Y, Xu W, Hu Z, Xu S, Niu Q. Fluoride-Induced Cortical Toxicity in Rats: the Role of Excessive Endoplasmic Reticulum Stress and Its Mediated Defective Autophagy. Biol Trace Elem Res 2022:10.1007/s12011-022-03463-5. [PMID: 36327065 DOI: 10.1007/s12011-022-03463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The cerebral cortex is closely associated with learning and memory, and fluoride is capable of inducing cortical toxicity, but its mechanism is unclear. This study aimed to investigate the role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Rats exposed to sodium fluoride (NaF) were used as an in vivo model. The results showed that NaF exposure impaired the learning and memory capacities and increased urinary fluoride levels in rats. In addition, NaF exposure induced excessive endoplasmic reticulum stress and associated apoptosis, as evidenced by elevated IRE1α, GRP78, cleaved caspase-12, and cleaved caspase-3, as well as defective autophagy, as evidenced by increased expression of Beclin1, LC3-II, and p62 in cortical areas. Importantly, the endoplasmic reticulum stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated endoplasmic reticulum stress as well as defective autophagy, thus confirming the critical role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Taken together, these results suggest that excessive endoplasmic reticulum stress and its mediated defective autophagy lead to fluoride-induced cortical toxicity. This provides new insights into the mechanisms of fluoride-induced neurotoxicity and a new theoretical basis for the prevention and treatment of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Shangzhi Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
| |
Collapse
|
14
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
15
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
16
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Gated feedforward inhibition in the frontal cortex releases goal-directed action. Nat Neurosci 2021; 24:1452-1464. [PMID: 34413512 DOI: 10.1038/s41593-021-00910-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Cortical circuits process both sensory and motor information in animals performing perceptual tasks. However, it is still unclear how sensory inputs are transformed into motor signals in the cortex to initiate goal-directed actions. In this study, we found that a visual-to-motor inhibitory circuit in the anterior cingulate cortex (ACC) triggers precise action in mice performing visual Go/No-go tasks. Three distinct features of ACC neurons-visual amplitudes of sensory neurons, suppression times of motor neurons and network activity from other neurons-predicted response times of the mice. Moreover, optogenetic activation of visual inputs in the ACC, which drives fast-spiking sensory neurons, prompted task-relevant actions in mice by suppressing ACC motor neurons and disinhibiting downstream striatal neurons. Notably, when mice terminated actions in response to stop signals, both motor neuron and network activity increased. Collectively, our data demonstrate that visual inputs to the frontal cortex trigger gated feedforward inhibition to initiate goal-directed actions.
Collapse
|
18
|
Konno D, Nishimoto S, Suzuki T, Ikegaya Y, Matsumoto N. Multiple states in ongoing neural activity in the rat visual cortex. PLoS One 2021; 16:e0256791. [PMID: 34437630 PMCID: PMC8389421 DOI: 10.1371/journal.pone.0256791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.
Collapse
Affiliation(s)
- Daichi Konno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Nishimoto
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Nrf2 Activation Attenuates Acrylamide-Induced Neuropathy in Mice. Int J Mol Sci 2021; 22:ijms22115995. [PMID: 34206048 PMCID: PMC8199319 DOI: 10.3390/ijms22115995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023] Open
Abstract
Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.
Collapse
|
20
|
Folgerø PO, Johansson C, Stokkedal LH. The Superior Visual Perception Hypothesis: Neuroaesthetics of Cave Art. Behav Sci (Basel) 2021; 11:81. [PMID: 34073168 PMCID: PMC8226463 DOI: 10.3390/bs11060081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cave Art in the Upper Paleolithic presents a boost of creativity and visual thinking. What can explain these savant-like paintings? The normal brain function in modern man rarely supports the creation of highly detailed paintings, particularly the convincing representation of animal movement, without extensive training and access to modern technology. Differences in neuro-signaling and brain anatomy between modern and archaic Homo sapiens could also cause differences in perception. The brain of archaic Homo sapiens could perceive raw detailed information without using pre-established top-down concepts, as opposed to the common understanding of the normal modern non-savant brain driven by top-down control. Some ancient genes preserved in modern humans may be expressed in rare disorders. Researchers have compared Cave Art with art made by people with autism spectrum disorder. We propose that archaic primary consciousness, as opposed to modern secondary consciousness, included a savant-like perception with a superior richness of details compared to modern man. Modern people with high frequencies of Neanderthal genes, have notable anatomical features such as increased skull width in the occipital and parietal visual areas. We hypothesize that the anatomical differences are functional and may allow a different path to visual perception.
Collapse
Affiliation(s)
- Per Olav Folgerø
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, 5007 Bergen, Norway;
| | - Christer Johansson
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, 5007 Bergen, Norway;
| | | |
Collapse
|
21
|
Collins L, Boddington L, Steffan PJ, McCormick D. Vagus nerve stimulation induces widespread cortical and behavioral activation. Curr Biol 2021; 31:2088-2098.e3. [DOI: 10.1016/j.cub.2021.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
|
22
|
Kheradpezhouh E, Tang MF, Mattingley JB, Arabzadeh E. Enhanced Sensory Coding in Mouse Vibrissal and Visual Cortex through TRPA1. Cell Rep 2021; 32:107935. [PMID: 32698003 DOI: 10.1016/j.celrep.2020.107935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel, broadly expressed throughout the body. Despite its expression in the mammalian brain, little is known about the contribution of TRPA1 to cortical function. Here, we characterize how TRPA1 affects sensory information processing in two cortical areas in mice: the primary vibrissal (whisker) somatosensory cortex (vS1) and the primary visual cortex (V1). In vS1, local activation of TRPA1 by allyl isothiocyanate (AITC) increases the ongoing activity of neurons and their evoked response to vibrissal stimulation, producing a positive gain modulation. The gain modulation is reversed by TRPA1 inhibitor HC-030031 and is absent in TRPA1 knockout mice. Similarly, in V1, TRPA1 activation increases the gain of direction and orientation selectivity. Linear decoding of V1 population activity confirms faster and more reliable encoding of visual signals under TRPA1 activation. Overall, our findings reveal a physiological role for TRPA1 in enhancing sensory signals in the mammalian cortex.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; The Australian Research Council Centre of Excellence for Integrative Brain Function, Australia.
| | - Matthew F Tang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; The Australian Research Council Centre of Excellence for Integrative Brain Function, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason B Mattingley
- The Australian Research Council Centre of Excellence for Integrative Brain Function, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; School of Psychology, The University of Queensland, Brisbane, QLD, Australia; Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia; The Australian Research Council Centre of Excellence for Integrative Brain Function, Australia
| |
Collapse
|
23
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS. Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Sci Rep 2021; 11:8092. [PMID: 33854153 PMCID: PMC8046778 DOI: 10.1038/s41598-021-87652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem—region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor’s expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn’t decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Postgenomics Neurobiology, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.
| | - E V Sukhareva
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - V V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - E V Shaburova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
24
|
Robayo Avendaño O, Alvira Botero X, Garzón M. Ultrastructural evidence for mu and delta opioid receptors at noradrenergic dendrites and glial profiles in the cat locus coeruleus. Brain Res 2021; 1762:147443. [PMID: 33745926 DOI: 10.1016/j.brainres.2021.147443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG). Even though much of the research on sleep has been done in the cat, the subcellular location of opioid receptors in the LC and their relationship with LC noradrenergic neurons is not known yet in this species. Therefore, we conducted a study to describe the ultrastructural localization of mu-opioid receptors (MOR), delta-opioid receptors (DOR) and tyrosine hydroxylase (TH) in the cat LC using high resolution electron microscopy double-immunocytochemical detection. MOR and DOR were localized mainly in dendrites (45% and 46% of the total number of profiles respectively), many of which were noradrenergic (35% and 53% for MOR and DOR, respectively). TH immunoreactivity was more frequent in dendrites (65% of the total number of profiles), which mostly also expressed opioid receptors (58% and 73% for MOR and DOR, respectively). Because the distribution of MORs and DORs are similar, it is possible that a substantial sub-population of neurons co-express both receptors, which may facilitate the formation of MOR-DOR heterodimers. Moreover, we found differences in the cat subcellular DOR distribution compared with the rat. This opens the possibility to the existence of diverse mechanisms for opioid modulation of LC activity.
Collapse
Affiliation(s)
- Omar Robayo Avendaño
- Universidad Pedagógica y Tecnológica de Colombia. Antiguo Hospital San Rafael, 150001 Tunja, Colombia.
| | - Ximena Alvira Botero
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Miguel Garzón
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
25
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
26
|
Kasamatsu T, Imamura K. Ocular dominance plasticity: Molecular mechanisms revisited. J Comp Neurol 2020; 528:3039-3074. [PMID: 32737874 DOI: 10.1002/cne.25001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Ocular dominance plasticity (ODP) is a type of cortical plasticity operating in visual cortex of mammals that are endowed with binocular vision based on the competition-driven disparity. Earlier, a molecular mechanism was proposed that catecholamines play an important role in the maintenance of ODP in kittens. Having survived the initial test, the hypothesis was further advanced to identify noradrenaline (NA) as a key factor that regulates ODP in the immature cortex. Later, the ODP-promoting effect of NA is extended to the adult with age-related limitations. Following the enhanced NA availability, the chain events downstream lead to the β-adrenoreceptor-induced cAMP accumulation, which in turn activates the protein kinase A. Eventually, the protein kinase translocates to the cell nucleus to activate cAMP responsive element binding protein (CREB). CREB is a cellular transcription factor that controls the transcription of various genes, underpinning neuronal plasticity and long-term memory. In the advent of molecular genetics in that various types of new tools have become available with relative ease, ODP research has lightly adopted in the rodent model the original concepts and methodologies. Here, after briefly tracing the strategic maturation of our quest, the review moves to the later development of the field, with the emphasis placed around the following issues: (a) Are we testing ODP per se? (b) What does monocular deprivation deprive of the immature cortex? (c) The critical importance of binocular competition, (d) What is the adult plasticity? (e) Excitation-Inhibition balance in local circuits, and (f) Species differences in the animal models.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- Smith-Kettlewell Eye Research Institute, San Francisco, California, USA
| | - Kazuyuki Imamura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
| |
Collapse
|
27
|
McBurney-Lin J, Sun Y, Tortorelli LS, Nguyen QAT, Haga-Yamanaka S, Yang H. Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology 2020; 174:108151. [PMID: 32445638 DOI: 10.1016/j.neuropharm.2020.108151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
The brain neuromodulatory systems heavily influence behavioral and cognitive processes. Previous work has shown that norepinephrine (NE), a classic neuromodulator mainly derived from the locus coeruleus (LC), enhances neuronal responses to sensory stimuli. However, the role of the LC-NE system in modulating perceptual task performance is not well understood. In addition, systemic perturbation of NE signaling has often been proposed to specifically target the LC in functional studies, yet the assumption that localized (specific) and systemic (nonspecific) perturbations of LC-NE have the same behavioral impact remains largely untested. In this study, we trained mice to perform a head-fixed, quantitative tactile detection task, and administered an α2 adrenergic receptor agonist or antagonist to pharmacologically down- or up-regulate LC-NE activity, respectively. We addressed the outstanding question of how bidirectional perturbations of LC-NE activity affect tactile detection, and tested whether localized and systemic drug treatments exert the same behavioral effects. We found that both localized and systemic suppression of LC-NE impaired tactile detection by reducing motivation. Surprisingly, while locally activating LC-NE enabled mice to perform in a near-optimal regime, systemic activation impaired behavior by promoting impulsivity. Our results demonstrate that localized silencing and activation of LC-NE differentially affect tactile detection, and that localized and systemic NE activation induce distinct behavioral changes.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Yina Sun
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas S Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Quynh Anh T Nguyen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
28
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
30
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
31
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
33
|
Affiliation(s)
- WA Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|