1
|
Gazzo DV, Zartman JJ. Calcium Imaging in Drosophila. Methods Mol Biol 2025; 2861:257-271. [PMID: 39395111 DOI: 10.1007/978-1-0716-4164-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.
Collapse
Affiliation(s)
- David V Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Bayati A, Ayoubi R, Aguila A, Zorca CE, Deyab G, Han C, Recinto SJ, Nguyen-Renou E, Rocha C, Maussion G, Luo W, Shlaifer I, Banks E, McDowell I, Del Cid Pellitero E, Ding XE, Sharif B, Séguéla P, Yaqubi M, Chen CXQ, You Z, Abdian N, McBride HM, Fon EA, Stratton JA, Durcan TM, Nahirney PC, McPherson PS. Modeling Parkinson's disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines. Nat Neurosci 2024:10.1038/s41593-024-01775-4. [PMID: 39379564 DOI: 10.1038/s41593-024-01775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson's disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chanshuai Han
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Wen Luo
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xue Er Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carol X-Q Chen
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Narges Abdian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Asiminas A, Gomolka RS, Gregoriades S, Hirase H, Nedergaard M, Beinlich FRM. Protocol to study oxygen dynamics in the in vivo mouse brain using bioluminescence microscopy. STAR Protoc 2024; 5:103334. [PMID: 39331498 PMCID: PMC11460448 DOI: 10.1016/j.xpro.2024.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Bioluminescence imaging (BLI) relies on the biochemical reaction between substrate and enzyme that triggers light emission upon convergence. Here, we present a protocol to study molecular oxygen dynamics in the in vivo mouse brain using the oxygen-dependent reaction between luciferase and its substrate. We describe steps for acute craniotomy, viral transfection, substrate administration, imaging, and analysis of hypoxic pockets. This protocol offers superior spatiotemporal properties compared to established approaches like electrodes and phosphorescence. For complete details on the use and execution of this protocol, please refer to Beinlich et al.1.
Collapse
Affiliation(s)
- Antonios Asiminas
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ryszard S Gomolka
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie Gregoriades
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Felix R M Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Barr J, Walz A, Restaino AC, Amit M, Barclay SM, Vichaya EG, Spanos WC, Dantzer R, Talbot S, Vermeer PD. Tumor-infiltrating nerves functionally alter brain circuits and modulate behavior in a mouse model of head-and-neck cancer. eLife 2024; 13:RP97916. [PMID: 39302290 DOI: 10.7554/elife.97916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.
Collapse
Affiliation(s)
- Jeffrey Barr
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Austin Walz
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Anthony C Restaino
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Moran Amit
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sarah M Barclay
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Elisabeth G Vichaya
- Baylor University, Department of Psychology and Neuroscience, Waco, United States
| | - William C Spanos
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Robert Dantzer
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sebastien Talbot
- Queen's University, Department of Biomedical and Molecular Sciences, Kingston, Canada
| | - Paola D Vermeer
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| |
Collapse
|
5
|
Desai NS, Zhong C, Kim R, Talmage DA, Role LW. A simple MATLAB toolbox for analyzing calcium imaging data in vitro and in vivo. J Neurosci Methods 2024; 409:110202. [PMID: 38906335 PMCID: PMC11289828 DOI: 10.1016/j.jneumeth.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Fluorescence imaging of calcium dynamics in neuronal populations is powerful because it offers a way of relating the activity of individual cells to the broader population of nearby cells. The method's growth across neuroscience has particularly been driven by the introduction of sophisticated mathematical techniques related to motion correction, image registration, cell detection, spike estimation, and population characterization. However, for many researchers, making good use of these techniques has been difficult because they have been devised by different workers and impose differing - and sometimes stringent - technical requirements on those who seek to use them. NEW METHOD We have built a simple toolbox of analysis routines that encompass the complete workflow for analyzing calcium imaging data. The workflow begins with preprocessing of data, includes motion correction and longitudinal image registration, detects active cells using constrained non-negative matrix factorization, and offers multiple options for estimating spike times and characterizing population activity. The routines can be navigated through a simple graphical user interface. Although written in MATLAB, a standalone version for researchers who do not have access to MATLAB is included. RESULTS We have used the toolbox on two very different preparations: spontaneously active brain slices and microendoscopic imaging from deep structures in awake behaving mice. In both cases, the toolbox offered a seamless flow from raw data all the way through to prepared graphs. CONCLUSION The field of calcium imaging has benefited from the development of numerous innovative mathematical techniques. Here we offer a simple toolbox that allows ordinary researchers to fully exploit these techniques.
Collapse
Affiliation(s)
- Niraj S Desai
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA.
| | - Chongbo Zhong
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - Lorna W Role
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA.
| |
Collapse
|
6
|
Péter M, Héja L. FluoAnalysis: An Open-Source MATLAB Toolbox for Analysis of Calcium Imaging Measurements of Oscillatory Astrocytic and Neuronal Networks. Brain Sci 2024; 14:830. [PMID: 39199521 PMCID: PMC11353153 DOI: 10.3390/brainsci14080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Calcium imaging, especially two-photon imaging, has become essential in neuroscience for studying neuronal and astrocytic activity under in vivo and in vitro conditions. Current advances in the development of calcium sensors as well as imaging hardware enable high-frequency measurements of calcium signals in hundreds of cells simultaneously. The analysis of these large datasets requires special tools and usually a certain level of programming experience. Despite advancements in calcium imaging analysis software development, significant gaps remain, particularly for data acquired at a high sampling rate that would allow for the spectral analysis of calcium signals. The FluoAnalysis MATLAB toolbox addresses these gaps by offering a comprehensive solution for analyzing simultaneously measured calcium imaging and electrophysiological data. It features both GUI-based and command-line approaches, emphasizing frequency domain analysis to reveal network-level oscillatory signals linked to single-cell activity. In addition, the toolbox puts special emphasis on differentiating between astrocytes and neurons, revealing the interactions between the network activity of the two major cell types of the brain. It facilitates a streamlined workflow for data loading, ROI identification, cell classification, fluorescence intensity calculation, spectral analysis, and report generation, supporting both manual and automated high-throughput analysis. This versatile platform enables the comprehensive analysis of large imaging datasets. In conclusion, the FluoAnalysis MATLAB toolbox provides a robust and versatile platform for the integrated analysis of calcium imaging and electrophysiological data, supporting diverse neuroscience research applications.
Collapse
Affiliation(s)
- Márton Péter
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
| |
Collapse
|
7
|
Dobler Z, Suresh A, Chari T, Mula S, Tran A, Buonomano DV, Portera-Cailliau C. Adapting and facilitating responses in mouse somatosensory cortex are dynamic and shaped by experience. Curr Biol 2024; 34:3506-3521.e5. [PMID: 39059392 PMCID: PMC11324963 DOI: 10.1016/j.cub.2024.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Sensory adaptation is the process whereby brain circuits adjust neuronal activity in response to redundant sensory stimuli. Although sensory adaptation has been extensively studied for individual neurons on timescales of tens of milliseconds to a few seconds, little is known about it over longer timescales or at the population level. We investigated population-level adaptation in the barrel field of the mouse somatosensory cortex (S1BF) using in vivo two-photon calcium imaging and Neuropixels recordings in awake mice. Among stimulus-responsive neurons, we found both adapting and facilitating neurons, which decreased or increased their firing, respectively, with repetitive whisker stimulation. The former outnumbered the latter by 2:1 in layers 2/3 and 4; hence, the overall population response of mouse S1BF was slightly adapting. We also discovered that population adaptation to one stimulus frequency (5 Hz) does not necessarily generalize to a different frequency (12.5 Hz). Moreover, responses of individual neurons to repeated rounds of stimulation over tens of minutes were strikingly heterogeneous and stochastic, such that their adapting or facilitating response profiles were not stable across time. Such representational drift was particularly striking when recording longitudinally across 8-9 days, as adaptation profiles of most whisker-responsive neurons changed drastically from one day to the next. Remarkably, repeated exposure to a familiar stimulus paradoxically shifted the population away from strong adaptation and toward facilitation. Thus, the adapting vs. facilitating response profile of S1BF neurons is not a fixed property of neurons but rather a highly dynamic feature that is shaped by sensory experience across days.
Collapse
Affiliation(s)
- Zoë Dobler
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Anand Suresh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Trishala Chari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Supriya Mula
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Anne Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Dean V Buonomano
- Department of Neurobiology, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Miles KD, Barker CM, Russell KP, Appel BH, Doll CA. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome. J Neurosci 2024; 44:e2275232024. [PMID: 38969506 PMCID: PMC11293453 DOI: 10.1523/jneurosci.2275-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
Collapse
Affiliation(s)
- Kaleb D Miles
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Chase M Barker
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen P Russell
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bruce H Appel
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
9
|
Chen W, Liang J, Wu Q, Han Y. Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation. Nat Commun 2024; 15:6020. [PMID: 39019943 PMCID: PMC11255269 DOI: 10.1038/s41467-024-50388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Adjusting decision-making under uncertain and dynamic situations is the hallmark of intelligence. It requires a system capable of converting feedback information to renew the internal value. The anterior cingulate cortex (ACC) involves in error and reward events that prompt switching or maintenance of current decision strategies. However, it is unclear whether and how the changes of stimulus-action mapping during behavioral adaptation are encoded, nor how such computation drives decision adaptation. Here, we tracked ACC activity in male mice performing go/no-go auditory discrimination tasks with manipulated stimulus-reward contingencies. Individual ACC neurons integrate the outcome information to the value representation in the next-run trials. Dynamic recruitment of them determines the learning rate of error-guided value iteration and decision adaptation, forming a non-linear feedback-driven updating system to secure the appropriate decision switch. Optogenetically suppressing ACC significantly slowed down feedback-driven decision switching without interfering with the execution of the established strategy.
Collapse
Affiliation(s)
- Wenqi Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiejunyi Liang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiyun Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Barr J, Walz A, Restaino AC, Amit M, Barclay SM, Vichaya EG, Spanos WC, Dantzer R, Talbot S, Vermeer PD. Tumor-infiltrating nerves functionally alter brain circuits and modulate behavior in a male mouse model of head-and-neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562990. [PMID: 37905135 PMCID: PMC10614955 DOI: 10.1101/2023.10.18.562990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a male mouse model for head and neck cancer, we utilized neuronal tracing techniques and show that tumor-infiltrating nerves indeed connect to distinct brain areas via the ipsilateral trigeminal ganglion. The activation of this neuronal circuitry led to behavioral alterations represented by decreased nest-building, increased latency to eat a cookie, and reduced wheel running. Tumor-infiltrating nociceptor neurons exhibited heightened activity, as indicated by increased calcium mobilization. Correspondingly, the specific brain regions receiving these neural projections showed elevated cFos and delta FosB expression in tumor-bearing mice, alongside markedly intensified calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons in tumor-bearing mice led to decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment successfully restored behaviors involving oral movements to normalcy in tumor-bearing mice, it did not have a similar therapeutic effect on voluntary wheel running. This discrepancy points towards an intricate relationship, where pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.
Collapse
|
11
|
Khayachi A, Abuzgaya M, Liu Y, Jiao C, Dejgaard K, Schorova L, Kamesh A, He Q, Cousineau Y, Pietrantonio A, Farhangdoost N, Castonguay CE, Chaumette B, Alda M, Rouleau GA, Milnerwood AJ. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine 2024; 104:105161. [PMID: 38772282 PMCID: PMC11134542 DOI: 10.1016/j.ebiom.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. METHODS In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. FINDINGS We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. INTERPRETATION These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. FUNDING Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - Malak Abuzgaya
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Yumin Liu
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Chuan Jiao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Kurt Dejgaard
- McIntyre Institute, Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Lenka Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Qin He
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Yuting Cousineau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Nargess Farhangdoost
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Charles-Etienne Castonguay
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France; Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
12
|
Schulte S, Decker D, Nowduri B, Gries M, Christmann A, Meyszner A, Rabe H, Saumer M, Schäfer KH. Improving morphological and functional properties of enteric neuronal networks in vitro using a novel upside-down culture approach. Am J Physiol Gastrointest Liver Physiol 2024; 326:G567-G582. [PMID: 38193168 PMCID: PMC11376983 DOI: 10.1152/ajpgi.00170.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.
Collapse
Affiliation(s)
- Steven Schulte
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Dominique Decker
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Bharat Nowduri
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Manuela Gries
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Anne Christmann
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Antoine Meyszner
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Holger Rabe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Monika Saumer
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Karl-Herbert Schäfer
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| |
Collapse
|
13
|
Yu Y, Adsit LM, Smith IT. Comprehensive software suite for functional analysis and synaptic input mapping of dendritic spines imaged in vivo. NEUROPHOTONICS 2024; 11:024307. [PMID: 38628980 PMCID: PMC11021036 DOI: 10.1117/1.nph.11.2.024307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Significance Advances in genetically encoded sensors and two-photon imaging have unlocked functional imaging at the level of single dendritic spines. Synaptic activity can be measured in real time in awake animals. However, tools are needed to facilitate the analysis of the large datasets acquired by the approach. Commonly available software suites for imaging calcium transients in cell bodies are ill-suited for spine imaging as dendritic spines have structural characteristics distinct from those of the cell bodies. We present an automated tuning analysis tool (AUTOTUNE), which provides analysis routines specifically developed for the extraction and analysis of signals from subcellular compartments, including dendritic subregions and spines. Aim Although the acquisition of in vivo functional synaptic imaging data is increasingly accessible, a hurdle remains in the computation-heavy analyses of the acquired data. The aim of this study is to overcome this barrier by offering a comprehensive software suite with a user-friendly interface for easy access to nonprogrammers. Approach We demonstrate the utility and effectiveness of our software with demo analyses of dendritic imaging data acquired from layer 2/3 pyramidal neurons in mouse V1 in vivo. A user manual and demo datasets are also provided. Results AUTOTUNE provides a robust workflow for analyzing functional imaging data from neuronal dendrites. Features include source image registration, segmentation of regions-of-interest and detection of structural turnover, fluorescence transient extraction and smoothing, subtraction of signals from putative backpropagating action potentials, and stimulus and behavioral parameter response tuning analyses. Conclusions AUTOTUNE is open-source and extendable for diverse functional synaptic imaging experiments. The ease of functional characterization of dendritic spine activity provided by our software can accelerate new functional studies that complement decades of morphological studies of dendrites, and further expand our understanding of neural circuits in health and in disease.
Collapse
Affiliation(s)
- Yiyi Yu
- University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Liam M. Adsit
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
| | - Ikuko T. Smith
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
- University of California, Santa Barbara, Neuroscience Research Institute, Santa Barbara, California, United States
- University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
14
|
Zhuo Y, Luo B, Yi X, Dong H, Miao X, Wan J, Williams JT, Campbell MG, Cai R, Qian T, Li F, Weber SJ, Wang L, Li B, Wei Y, Li G, Wang H, Zheng Y, Zhao Y, Wolf ME, Zhu Y, Watabe-Uchida M, Li Y. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 2024; 21:680-691. [PMID: 38036855 PMCID: PMC11009088 DOI: 10.1038/s41592-023-02100-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Malcolm G Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lei Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
15
|
Beinlich FR, Asiminas A, Untiet V, Bojarowska Z, Plá V, Sigurdsson B, Timmel V, Gehrig L, Graber MH, Hirase H, Nedergaard M. Oxygen imaging of hypoxic pockets in the mouse cerebral cortex. Science 2024; 383:1471-1478. [PMID: 38547288 PMCID: PMC11251491 DOI: 10.1126/science.adn1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.
Collapse
Affiliation(s)
- Felix R.M. Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Antonios Asiminas
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Zuzanna Bojarowska
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Virginia Plá
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Björn Sigurdsson
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Vincenzo Timmel
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Lukas Gehrig
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Michael H. Graber
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| |
Collapse
|
16
|
Han M, Yildiz E, Bozuyuk U, Aydin A, Yu Y, Bhargava A, Karaz S, Sitti M. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat Commun 2024; 15:2013. [PMID: 38443369 PMCID: PMC10915158 DOI: 10.1038/s41467-024-46245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Electrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 μm-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases.
Collapse
Affiliation(s)
- Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yan Yu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Aarushi Bhargava
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Selcan Karaz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Türkiye.
| |
Collapse
|
17
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
18
|
Maas DA, Manot-Saillet B, Bun P, Habermacher C, Poilbout C, Rusconi F, Angulo MC. Versatile and automated workflow for the analysis of oligodendroglial calcium signals. Cell Mol Life Sci 2024; 81:15. [PMID: 38194116 PMCID: PMC11073395 DOI: 10.1007/s00018-023-05065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.
Collapse
Affiliation(s)
- Dorien A Maas
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Blandine Manot-Saillet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "NeurImag Platform", 75014, Paris, France
| | - Chloé Habermacher
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
- SynapCell, Bâtiment Synergy Zac Isiparc, 38330, Saint Ismier, France
| | - Corinne Poilbout
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Filippo Rusconi
- IDEEV, GQE, Université Paris-Saclay, CNRS, INRAE, AgroParisTech, 12, Route 128, 91272, Gif-sur-Yvette, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, 75006, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France.
- GHU PARIS Psychiatrie and Neurosciences, 75014, Paris, France.
| |
Collapse
|
19
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
20
|
Rahmatullah N, Schmitt LM, De Stefano L, Post S, Robledo J, Chaudhari G, Pedapati E, Erickson C, Portera-Cailliau C, Goel A. Hypersensitivity to Distractors in Fragile X Syndrome from Loss of Modulation of Cortical VIP Interneurons. J Neurosci 2023; 43:8172-8188. [PMID: 37816596 PMCID: PMC10697397 DOI: 10.1523/jneurosci.0571-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Attention deficit is one of the most prominent and disabling symptoms in Fragile X syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in humans and mice with FXS but not in typically developing controls. In both species, males and females were examined. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the poststimulus period during early distractor trials in WT mice, consistent with their known role as error signals. Strikingly, however, VIP cells from Fmr1 -/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells could be a potential therapeutic target for attentional difficulties in FXS.SIGNIFICANCE STATEMENT Sensory hypersensitivity, impulsivity, and persistent inattention are among the most consistent clinical features of FXS, all of which impede daily functioning and create barriers to learning. However, the neural mechanisms underlying sensory over-reactivity remain elusive. To overcome a significant challenge in translational FXS research we demonstrate a compelling alignment of sensory over-reactivity in both humans with FXS and Fmr1 -/- mice (the principal animal model of FXS) using a novel analogous distractor task. Two-photon microscopy in mice revealed that lack of modulation by VIP cells contributes to susceptibility to distractors. Implementing research efforts we describe here can help identify dysfunctional neural mechanisms associated not only with sensory issues but broader impairments, including those in learning and cognition.
Collapse
Affiliation(s)
- Noorhan Rahmatullah
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45267
| | - Lisa De Stefano
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Sam Post
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Jessica Robledo
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Gunvant Chaudhari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
- Department of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Craig Erickson
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anubhuti Goel
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
21
|
Gerasimov E, Mitenev A, Pchitskaya E, Chukanov V, Bezprozvanny I. NeuroActivityToolkit-Toolbox for Quantitative Analysis of Miniature Fluorescent Microscopy Data. J Imaging 2023; 9:243. [PMID: 37998090 PMCID: PMC10672520 DOI: 10.3390/jimaging9110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023] Open
Abstract
The visualization of neuronal activity in vivo is an urgent task in modern neuroscience. It allows neurobiologists to obtain a large amount of information about neuronal network architecture and connections between neurons. The miniscope technique might help to determine changes that occurred in the network due to external stimuli and various conditions: processes of learning, stress, epileptic seizures and neurodegenerative diseases. Furthermore, using the miniscope method, functional changes in the early stages of such disorders could be detected. The miniscope has become a modern approach for recording hundreds to thousands of neurons simultaneously in a certain brain area of a freely behaving animal. Nevertheless, the analysis and interpretation of the large recorded data is still a nontrivial task. There are a few well-working algorithms for miniscope data preprocessing and calcium trace extraction. However, software for further high-level quantitative analysis of neuronal calcium signals is not publicly available. NeuroActivityToolkit is a toolbox that provides diverse statistical metrics calculation, reflecting the neuronal network properties such as the number of neuronal activations per minute, amount of simultaneously co-active neurons, etc. In addition, the module for analyzing neuronal pairwise correlations is implemented. Moreover, one can visualize and characterize neuronal network states and detect changes in 2D coordinates using PCA analysis. This toolbox, which is deposited in a public software repository, is accompanied by a detailed tutorial and is highly valuable for the statistical interpretation of miniscope data in a wide range of experimental tasks.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia
| | - Alexander Mitenev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia
| | - Viacheslav Chukanov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Sullivan MA, Lane S, Volkerling A, Engel M, Werry EL, Kassiou M. Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnol Bioeng 2023; 120:3079-3091. [PMID: 37395340 PMCID: PMC10953436 DOI: 10.1002/bit.28470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Current research tools for preclinical drug development such as rodent models and two-dimensional immortalized monocultures have failed to serve as effective translational models for human central nervous system (CNS) disorders. Recent advancements in the development of induced pluripotent stem cells (iPSCs) and three-dimensional (3D) culturing can improve the in vivo-relevance of preclinical models, while generating 3D cultures though novel bioprinting technologies can offer increased scalability and replicability. As such, there is a need to develop platforms that combine iPSC-derived cells with 3D bioprinting to produce scalable, tunable, and biomimetic cultures for preclinical drug discovery applications. We report a biocompatible poly(ethylene glycol)-based matrix which incorporates Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg peptide motifs and full-length collagen IV at a stiffness similar to the human brain (1.5 kPa). Using a high-throughput commercial bioprinter we report the viable culture and morphological development of monocultured iPSC-derived astrocytes, brain microvascular endothelial-like cells, neural progenitors, and neurons in our novel matrix. We also show that this system supports endothelial-like vasculogenesis and enhances neural differentiation and spontaneous activity. This platform forms a foundation for more complex, multicellular models to facilitate high-throughput translational drug discovery for CNS disorders.
Collapse
Affiliation(s)
- Michael A. Sullivan
- School of Medical Sciences, The Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samuel Lane
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| | | | - Martin Engel
- Inventia Life Science Operations Pty Ltd.AlexandriaNew South WalesAustralia
| | - Eryn L. Werry
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
- Central Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Michael Kassiou
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
24
|
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal MJ, Martínez-Cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-Cailliau C. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron 2023; 111:2863-2880.e6. [PMID: 37451263 PMCID: PMC10529373 DOI: 10.1016/j.neuron.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Collapse
Affiliation(s)
| | - Anand Suresh
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Benjamin Liu
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Pablo Juarez
- Department of Pathology, UC Davis, Davis, CA, USA
| | - Ashley Lin
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Dean V Buonomano
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | - Carlos Portera-Cailliau
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Neurobiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Zhuo Y, Luo B, Yi X, Dong H, Wan J, Cai R, Williams JT, Qian T, Campbell MG, Miao X, Li B, Wei Y, Li G, Wang H, Zheng Y, Watabe-Uchida M, Li Y. Improved dual-color GRAB sensors for monitoring dopaminergic activity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554559. [PMID: 37662187 PMCID: PMC10473776 DOI: 10.1101/2023.08.24.554559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- These authors contributed equally
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- These authors contributed equally
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Malcolm G. Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Wang CL, Ohkubo R, Mu WC, Chen W, Fan JL, Song Z, Maruichi A, Sudmant PH, Pisco AO, Dubal DB, Ji N, Chen D. The mitochondrial unfolded protein response regulates hippocampal neural stem cell aging. Cell Metab 2023; 35:996-1008.e7. [PMID: 37146607 PMCID: PMC10330239 DOI: 10.1016/j.cmet.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/14/2022] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiang Lan Fan
- Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, San Francisco, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Dena B Dubal
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Untiet V, Beinlich FRM, Kusk P, Kang N, Ladrón-de-Guevara A, Song W, Kjaerby C, Andersen M, Hauglund N, Bojarowska Z, Sigurdsson B, Deng S, Hirase H, Petersen NC, Verkhratsky A, Nedergaard M. Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice. Nat Commun 2023; 14:1871. [PMID: 37015909 PMCID: PMC10073105 DOI: 10.1038/s41467-023-37433-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Felix R M Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Peter Kusk
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ning Kang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Wei Song
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Celia Kjaerby
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mie Andersen
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Natalie Hauglund
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Zuzanna Bojarowska
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Björn Sigurdsson
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Saiyue Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nicolas C Petersen
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Bayrer JR, Castro J, Venkataraman A, Touhara KK, Rossen ND, Morrie RD, Maddern J, Hendry A, Braverman KN, Garcia-Caraballo S, Schober G, Brizuela M, Castro Navarro FM, Bueno-Silva C, Ingraham HA, Brierley SM, Julius D. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 2023; 616:137-142. [PMID: 36949192 PMCID: PMC10827380 DOI: 10.1038/s41586-023-05829-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.
Collapse
Affiliation(s)
- James R Bayrer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Joel Castro
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Archana Venkataraman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Nathan D Rossen
- Department of Physiology, University of California, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ryan D Morrie
- Department of Physiology, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Jessica Maddern
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Aenea Hendry
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Kristina N Braverman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Jansen, Johnson & Johnson, San Diego, CA, USA
| | - Sonia Garcia-Caraballo
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | | | - Carla Bueno-Silva
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Stuart M Brierley
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
29
|
Zhou J, Deng W, Chen C, Kang J, Yang X, Dou Z, Wu J, Li Q, Jiang M, Liang M, Han Y. Methcathinone Increases Visually-evoked Neuronal Activity and Enhances Sensory Processing Efficiency in Mice. Neurosci Bull 2023; 39:602-616. [PMID: 36449230 PMCID: PMC10073404 DOI: 10.1007/s12264-022-00965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Methcathinone (MCAT) belongs to the designer drugs called synthetic cathinones, which are abused worldwide for recreational purposes. It has strong stimulant effects, including enhanced euphoria, sensation, alertness, and empathy. However, little is known about how MCAT modulates neuronal activity in vivo. Here, we evaluated the effect of MCAT on neuronal activity with a series of functional approaches. C-Fos immunostaining showed that MCAT increased the number of activated neurons by 6-fold, especially in sensory and motor cortices, striatum, and midbrain motor nuclei. In vivo single-unit recording and two-photon Ca2+ imaging revealed that a large proportion of neurons increased spiking activity upon MCAT administration. Notably, MCAT induced a strong de-correlation of population activity and increased trial-to-trial reliability, specifically during a natural movie stimulus. It improved the information-processing efficiency by enhancing the single-neuron coding capacity, suggesting a cortical network mechanism of the enhanced perception produced by psychoactive stimulants.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Deng
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junya Kang
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaodan Yang
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaojuan Dou
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiancheng Wu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quancong Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Man Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100192, China.
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100192, China.
| |
Collapse
|
30
|
Naik AG, Kenyon RV, Taheri A, BergerWolf TY, Ibrahim BA, Shinagawa Y, Llano DA. V-NeuroStack: Open-source 3D time stack software for identifying patterns in neuronal data. J Neurosci Res 2023; 101:217-231. [PMID: 36309817 PMCID: PMC9742979 DOI: 10.1002/jnr.25139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Understanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize data obtained using calcium imaging of spontaneous activity of neurons in a mouse brain slice as well as in vivo using two-photon imaging. V-NeuroStack creates 3D time stacks by stacking 2D time frames for a time-series dataset. It provides a web interface to explore and analyze data using both 3D and 2D visualization techniques. Previous attempts to analyze such data have been limited by the tools available to visualize large numbers of correlated activity traces. V-NeuroStack's 3D view is used to explore patterns in dynamic large-scale correlations between neurons over time. The 2D view is used to examine any timestep of interest in greater detail. Furthermore, a dual-line graph provides the ability to explore the raw and first-derivative values of activity from an individual or a functional cluster of neurons. V-NeuroStack can scale to datasets with at least a few thousand temporal snapshots. It can potentially support future advancements in in vitro and in vivo data capturing techniques to bring forth novel hypotheses by allowing unambiguous visualization of massive patterns in neuronal activity data.
Collapse
Affiliation(s)
- Ashwini G. Naik
- Department of Computer ScienceUniversity of Illinois ChicagoIllinoisChicagoUSA
| | - Robert V. Kenyon
- Department of Computer ScienceUniversity of Illinois ChicagoIllinoisChicagoUSA
| | - Aynaz Taheri
- Department of Computer ScienceUniversity of Illinois ChicagoIllinoisChicagoUSA
| | - Tanya Y. BergerWolf
- Department of Computer Science EngineeringOhio State UniversityColumbusOhioUSA
| | - Baher A. Ibrahim
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignIllinoisUrbanaUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaIllinoisUSA
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignIllinoisUrbanaUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaIllinoisUSA
| | - Daniel A. Llano
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignIllinoisUrbanaUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaIllinoisUSA
| |
Collapse
|
31
|
Gare S, Chel S, Abhinav TK, Dhyani V, Jana S, Giri L. Mapping of structural arrangement of cells and collective calcium transients: an integrated framework combining live cell imaging using confocal microscopy and UMAP-assisted HDBSCAN-based approach. Integr Biol (Camb) 2022; 14:184-203. [PMID: 36670549 DOI: 10.1093/intbio/zyac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023]
Abstract
Live cell calcium (Ca2+) imaging is one of the important tools to record cellular activity during in vitro and in vivo preclinical studies. Specially, high-resolution microscopy can provide valuable dynamic information at the single cell level. One of the major challenges in the implementation of such imaging schemes is to extract quantitative information in the presence of significant heterogeneity in Ca2+ responses attained due to variation in structural arrangement and drug distribution. To fill this gap, we propose time-lapse imaging using spinning disk confocal microscopy and machine learning-enabled framework for automated grouping of Ca2+ spiking patterns. Time series analysis is performed to correlate the drug induced cellular responses to self-assembly pattern present in multicellular systems. The framework is designed to reduce the large-scale dynamic responses using uniform manifold approximation and projection (UMAP). In particular, we propose the suitability of hierarchical DBSCAN (HDBSCAN) in view of reduced number of hyperparameters. We find UMAP-assisted HDBSCAN outperforms existing approaches in terms of clustering accuracy in segregation of Ca2+ spiking patterns. One of the novelties includes the application of non-linear dimension reduction in segregation of the Ca2+ transients with statistical similarity. The proposed pipeline for automation was also proved to be a reproducible and fast method with minimal user input. The algorithm was used to quantify the effect of cellular arrangement and stimulus level on collective Ca2+ responses induced by GPCR targeting drug. The analysis revealed a significant increase in subpopulation containing sustained oscillation corresponding to higher packing density. In contrast to traditional measurement of rise time and decay ratio from Ca2+ transients, the proposed pipeline was used to classify the complex patterns with longer duration and cluster-wise model fitting. The two-step process has a potential implication in deciphering biophysical mechanisms underlying the Ca2+ oscillations in context of structural arrangement between cells.
Collapse
Affiliation(s)
- Suman Gare
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Soumita Chel
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - T K Abhinav
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Soumya Jana
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
32
|
Mittal D, Mease R, Kuner T, Flor H, Kuner R, Andoh J. Data management strategy for a collaborative research center. Gigascience 2022; 12:giad049. [PMID: 37401720 PMCID: PMC10318494 DOI: 10.1093/gigascience/giad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
The importance of effective research data management (RDM) strategies to support the generation of Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience data grows with each advance in data acquisition techniques and research methods. To maximize the impact of diverse research strategies, multidisciplinary, large-scale neuroscience research consortia face a number of unsolved challenges in RDM. While open science principles are largely accepted, it is practically difficult for researchers to prioritize RDM over other pressing demands. The implementation of a coherent, executable RDM plan for consortia spanning animal, human, and clinical studies is becoming increasingly challenging. Here, we present an RDM strategy implemented for the Heidelberg Collaborative Research Consortium. Our consortium combines basic and clinical research in diverse populations (animals and humans) and produces highly heterogeneous and multimodal research data (e.g., neurophysiology, neuroimaging, genetics, behavior). We present a concrete strategy for initiating early-stage RDM and FAIR data generation for large-scale collaborative research consortia, with a focus on sustainable solutions that incentivize incremental RDM while respecting research-specific requirements.
Collapse
Affiliation(s)
- Deepti Mittal
- Institute of Pharmacology, Heidelberg University, 69120 Heidelberg, Germany
| | - Rebecca Mease
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| |
Collapse
|
33
|
Omelchenko AA, Bai H, Hussain S, Tyrrell JJ, Klein M, Ni L. TACI: An ImageJ Plugin for 3D Calcium Imaging Analysis. J Vis Exp 2022:10.3791/64953. [PMID: 36591984 PMCID: PMC10388512 DOI: 10.3791/64953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Research in neuroscience has evolved to use complex imaging and computational tools to extract comprehensive information from data sets. Calcium imaging is a widely used technique that requires sophisticated software to obtain reliable results, but many laboratories struggle to adopt computational methods when updating protocols to meet modern standards. Difficulties arise due to a lack of programming knowledge and paywalls for software. In addition, cells of interest display movements in all directions during calcium imaging. Many approaches have been developed to correct the motion in the lateral (x/y) direction. This paper describes a workflow using a new ImageJ plugin, TrackMate Analysis of Calcium Imaging (TACI), to examine motion on the z-axis in 3D calcium imaging. This software identifies the maximum fluorescence value from all the z-positions a neuron appears in and uses it to represent the neuron's intensity at the corresponding t-position. Therefore, this tool can separate neurons overlapping in the lateral (x/y) direction but appearing on distinct z-planes. As an ImageJ plugin, TACI is a user-friendly, open-source computational tool for 3D calcium imaging analysis. We validated this workflow using fly larval thermosensitive neurons that displayed movements in all directions during temperature fluctuation and a 3D calcium imaging dataset acquired from the fly brain.
Collapse
Affiliation(s)
- Alisa A Omelchenko
- School of Neuroscience, Virginia Polytechnic Institute and State University; CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh
| | - Hua Bai
- School of Neuroscience, Virginia Polytechnic Institute and State University
| | - Sibtain Hussain
- School of Neuroscience, Virginia Polytechnic Institute and State University
| | - Jordan J Tyrrell
- School of Neuroscience, Virginia Polytechnic Institute and State University; Eastern Virginia Medical School
| | | | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University;
| |
Collapse
|
34
|
Tippani M, Pattie EA, Davis BA, Nguyen CV, Wang Y, Sripathy SR, Maher BJ, Martinowich K, Jaffe AE, Page SC. CaPTure: Calcium PeakToolbox for analysis of in vitro calcium imaging data. BMC Neurosci 2022; 23:71. [PMID: 36451089 PMCID: PMC9710137 DOI: 10.1186/s12868-022-00751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Calcium imaging is a powerful technique for recording cellular activity across large populations of neurons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological manipulations. RESULTS To address this need we developed CaPTure, a scalable, automated Ca2+ imaging analysis pipeline ( https://github.com/LieberInstitute/CaPTure ). CaPTuredetects neurons, classifies and quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The method is compatible with parallel processing on computing clusters without requiring significant user input or parameter modification. CONCLUSION CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- and rodent-derived neurons and is compatible with many imaging systems.
Collapse
Affiliation(s)
- Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Brittany A Davis
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Claudia V Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
36
|
Cho WH, Noh K, Lee BH, Barcelon E, Jun SB, Park HY, Lee SJ. Hippocampal astrocytes modulate anxiety-like behavior. Nat Commun 2022; 13:6536. [PMID: 36344520 PMCID: PMC9640657 DOI: 10.1038/s41467-022-34201-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Astrocytes can affect animal behavior by regulating tripartite synaptic transmission, yet their influence on affective behavior remains largely unclear. Here we showed that hippocampal astrocyte calcium activity reflects mouse affective state during virtual elevated plus maze test using two-photon calcium imaging in vivo. Furthermore, optogenetic hippocampal astrocyte activation elevating intracellular calcium induced anxiolytic behaviors in astrocyte-specific channelrhodopsin 2 (ChR2) transgenic mice (hGFAP-ChR2 mice). As underlying mechanisms, we found ATP released from the activated hippocampal astrocytes increased excitatory synaptic transmission in dentate gyrus (DG) granule cells, which exerted anxiolytic effects. Our data uncover a role of hippocampal astrocytes in modulating mice anxiety-like behaviors by regulating ATP-mediated synaptic homeostasis in hippocampal DG granule cells. Thus, manipulating hippocampal astrocytes activity can be a therapeutic strategy to treat anxiety.
Collapse
Affiliation(s)
- Woo-Hyun Cho
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826 Republic of Korea
| | - Kyungchul Noh
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826 Republic of Korea
| | - Byung Hun Lee
- grid.31501.360000 0004 0470 5905Department of Physics and Astronomy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ellane Barcelon
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826 Republic of Korea
| | - Sang Beom Jun
- grid.255649.90000 0001 2171 7754Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea ,grid.255649.90000 0001 2171 7754Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760 Republic of Korea ,grid.255649.90000 0001 2171 7754Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hye Yoon Park
- grid.31501.360000 0004 0470 5905Department of Physics and Astronomy, Seoul National University, Seoul, 08826 Republic of Korea ,grid.17635.360000000419368657Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Sung Joong Lee
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826 Republic of Korea
| |
Collapse
|
37
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
38
|
Banerjee P, Kubo F, Nakaoka H, Ajima R, Sato T, Hirata T, Iwasato T. Spontaneous activity in whisker-innervating region of neonatal mouse trigeminal ganglion. Sci Rep 2022; 12:16311. [PMID: 36175429 PMCID: PMC9522796 DOI: 10.1038/s41598-022-20068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Spontaneous activity during the early postnatal period is thought to be crucial for the establishment of mature neural circuits. It remains unclear if the peripheral structure of the developing somatosensory system exhibits spontaneous activity, similar to that observed in the retina and cochlea of developing mammals. By establishing an ex vivo calcium imaging system, here we found that neurons in the whisker-innervating region of the trigeminal ganglion (TG) of neonatal mice generate spontaneous activity. A small percentage of neurons showed some obvious correlated activity, and these neurons were mostly located close to one another. TG spontaneous activity was majorly exhibited by medium-to-large diameter neurons, a characteristic of mechanosensory neurons, and was blocked by chelation of extracellular calcium. Moreover, this activity was diminished by the adult stage. Spontaneous activity in the TG during the first postnatal week could be a source of spontaneous activity observed in the neonatal mouse barrel cortex.
Collapse
Affiliation(s)
- Piu Banerjee
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Fumi Kubo
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Systems Neuroscience, NIG, Mishima, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan
| | - Rieko Ajima
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Mammalian Development, NIG, Mishima, Japan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan
| | - Tatsumi Hirata
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Brain Function, NIG, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan. .,Department of Genetics, SOKENDAI, Mishima, Japan.
| |
Collapse
|
39
|
Wang L, Wu C, Peng W, Zhou Z, Zeng J, Li X, Yang Y, Yu S, Zou Y, Huang M, Liu C, Chen Y, Li Y, Ti P, Liu W, Gao Y, Zheng W, Zhong H, Gao S, Lu Z, Ren PG, Ng HL, He J, Chen S, Xu M, Li Y, Chu J. A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. Nat Commun 2022; 13:5363. [PMID: 36097007 PMCID: PMC9468011 DOI: 10.1038/s41467-022-32994-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
cAMP is a key second messenger that regulates diverse cellular functions including neural plasticity. However, the spatiotemporal dynamics of intracellular cAMP in intact organisms are largely unknown due to low sensitivity and/or brightness of current genetically encoded fluorescent cAMP indicators. Here, we report the development of the new circularly permuted GFP (cpGFP)-based cAMP indicator G-Flamp1, which exhibits a large fluorescence increase (a maximum ΔF/F0 of 1100% in HEK293T cells), decent brightness, appropriate affinity (a Kd of 2.17 μM) and fast response kinetics (an association and dissociation half-time of 0.20 and 0.087 s, respectively). Furthermore, the crystal structure of the cAMP-bound G-Flamp1 reveals one linker connecting the cAMP-binding domain to cpGFP adopts a distorted β-strand conformation that may serve as a fluorescence modulation switch. We demonstrate that G-Flamp1 enables sensitive monitoring of endogenous cAMP signals in brain regions that are implicated in learning and motor control in living organisms such as fruit flies and mice.
Collapse
Affiliation(s)
- Liang Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunling Wu
- PKU-IDG-McGovern Institute for Brain Research, Beijing, 100871, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziliang Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Oral Emergency and General Dentistry, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Jianzhi Zeng
- PKU-IDG-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Xuelin Li
- PKU-IDG-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Yini Yang
- PKU-IDG-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, 66506, KS, USA
| | - Mian Huang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, 66506, KS, USA
| | - Chang Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yefei Chen
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenfeng Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, 97239, OR, USA
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhonghua Lu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pei-Gen Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, 66506, KS, USA
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Experimental Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yulong Li
- PKU-IDG-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Jun Chu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science, and Shenzhen Institute of Synthetic Biology, Shenzhen, 518055, China.
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
41
|
Moroni M, Brondi M, Fellin T, Panzeri S. SmaRT2P: a software for generating and processing smart line recording trajectories for population two-photon calcium imaging. Brain Inform 2022; 9:18. [PMID: 35927517 PMCID: PMC9352634 DOI: 10.1186/s40708-022-00166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Two-photon fluorescence calcium imaging allows recording the activity of large neural populations with subcellular spatial resolution, but it is typically characterized by low signal-to-noise ratio (SNR) and poor accuracy in detecting single or few action potentials when large number of neurons are imaged. We recently showed that implementing a smart line scanning approach using trajectories that optimally sample the regions of interest increases both the SNR fluorescence signals and the accuracy of single spike detection in population imaging in vivo. However, smart line scanning requires highly specialised software to design recording trajectories, interface with acquisition hardware, and efficiently process acquired data. Furthermore, smart line scanning needs optimized strategies to cope with movement artefacts and neuropil contamination. Here, we develop and validate SmaRT2P, an open-source, user-friendly and easy-to-interface Matlab-based software environment to perform optimized smart line scanning in two-photon calcium imaging experiments. SmaRT2P is designed to interface with popular acquisition software (e.g., ScanImage) and implements novel strategies to detect motion artefacts, estimate neuropil contamination, and minimize their impact on functional signals extracted from neuronal population imaging. SmaRT2P is structured in a modular way to allow flexibility in the processing pipeline, requiring minimal user intervention in parameter setting. The use of SmaRT2P for smart line scanning has the potential to facilitate the functional investigation of large neuronal populations with increased SNR and accuracy in detecting the discharge of single and few action potentials.
Collapse
Affiliation(s)
- Monica Moroni
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, UniTn, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy.
| | - Marco Brondi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano Di Tecnologia, 16163, Genoa, Italy.,Department of Biomedical Sciences-UNIPD, Università Degli Studi Di Padova, 35121, Padua, Italy.,Padova Neuroscience Center (PNC), Università Degli Studi Di Padova, 35129, Padua, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano Di Tecnologia, 16163, Genoa, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, UniTn, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy. .,Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany.
| |
Collapse
|
42
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
43
|
Flotho P, Nomura S, Kuhn B, Strauss DJ. Software for non-parametric image registration of 2-photon imaging data. JOURNAL OF BIOPHOTONICS 2022; 15:e202100330. [PMID: 35289100 DOI: 10.1002/jbio.202100330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Functional 2-photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non-rigid movement artifacts which requires high-accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2-photon neuroimaging data. In this work, we present the motion compensation method Flow-Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal-to-noise ratio 2-photon imaging data and is able to compensate high-divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy-to-use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi-channel support and compatibility with existing 2-photon imaging suites.
Collapse
Affiliation(s)
- Philipp Flotho
- Systems Neuroscience and Neurotechnology Unit, Neurocenter, Faculty of Medicine, Saarland University & School of Engineering, htw saar, Germany
- Summer Program, Japan Society for the Promotion of Science (JSPS), Tokyo
- Center for Digital Neurotechnologies Saar (CDNS), Homburg, Germany
| | - Shinobu Nomura
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa
| | - Daniel J Strauss
- Systems Neuroscience and Neurotechnology Unit, Neurocenter, Faculty of Medicine, Saarland University & School of Engineering, htw saar, Germany
- Center for Digital Neurotechnologies Saar (CDNS), Homburg, Germany
| |
Collapse
|
44
|
Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium imaging has rapidly become a methodology of choice for real-time in vivo neuron analysis. Its application to large sets of data requires automated tools to annotate and segment cells, allowing scalable image segmentation under reproducible criteria. In this paper, we review and summarize the most recent methods for computational segmentation of calcium imaging. The contributions of the paper are three-fold: we provide an overview of the main algorithms taxonomized in three categories (signal processing, matrix factorization and machine learning-based approaches), we highlight the main advantages and disadvantages of each category and we provide a summary of the performance of the methods that have been tested on public benchmarks (with links to the public code when available).
Collapse
|
45
|
Li M, Liu C, Cui X, Jung H, You H, Feng L, Zhang S. An Open-Source Real-Time Motion Correction Plug-In for Single-Photon Calcium Imaging of Head-Mounted Microscopy. Front Neural Circuits 2022; 16:891825. [PMID: 35814484 PMCID: PMC9265215 DOI: 10.3389/fncir.2022.891825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Single-photon-based head-mounted microscopy is widely used to record the brain activities of freely-moving animals. However, during data acquisition, the free movement of animals will cause shaking in the field of view, which deteriorates subsequent neural signal analyses. Existing motion correction methods applied to calcium imaging data either focus on offline analyses or lack sufficient accuracy in real-time processing for single-photon data. In this study, we proposed an open-source real-time motion correction (RTMC) plug-in for single-photon calcium imaging data acquisition. The RTMC plug-in is a real-time subpixel registration algorithm that can run GPUs in UCLA Miniscope data acquisition software. When used with the UCLA Miniscope, the RTMC algorithm satisfies real-time processing requirements in terms of speed, memory, and accuracy. We tested the RTMC algorithm by extending a manual neuron labeling function to extract calcium signals in a real experimental setting. The results demonstrated that the neural calcium dynamics and calcium events can be restored with high accuracy from the calcium data that were collected by the UCLA Miniscope system embedded with our RTMC plug-in. Our method could become an essential component in brain science research, where real-time brain activity is needed for closed-loop experiments.
Collapse
Affiliation(s)
- Mingkang Li
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Changhao Liu
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Xin Cui
- Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Hayoung Jung
- Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Heecheon You
- Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Linqing Feng
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, China
- *Correspondence: Linqing Feng
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Shaomin Zhang
| |
Collapse
|
46
|
Tjahjono N, Jin Y, Hsu A, Roukes M, Tian L. Letting the little light of mind shine: Advances and future directions in neurochemical detection. Neurosci Res 2022; 179:65-78. [PMID: 34861294 PMCID: PMC9508992 DOI: 10.1016/j.neures.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Synaptic transmission via neurochemical release is the fundamental process that integrates and relays encoded information in the brain to regulate physiological function, cognition, and emotion. To unravel the biochemical, biophysical, and computational mechanisms of signal processing, one needs to precisely measure the neurochemical release dynamics with molecular and cell-type specificity and high resolution. Here we reviewed the development of analytical, electrochemical, and fluorescence imaging approaches to detect neurotransmitter and neuromodulator release. We discussed the advantages and practicality in implementation of each technology for ease-of-use, flexibility for multimodal studies, and challenges for future optimization. We hope this review will provide a versatile guide for tool engineering and applications for recording neurochemical release.
Collapse
Affiliation(s)
- Nikki Tjahjono
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Yihan Jin
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, 95618, USA
| | - Alice Hsu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Michael Roukes
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Chapman DP, Sloley SS, Caccavano AP, Vicini S, Burns MP. High-Frequency Head Impact Disrupts Hippocampal Neural Ensemble Dynamics. Front Cell Neurosci 2022; 15:763423. [PMID: 35115908 PMCID: PMC8806157 DOI: 10.3389/fncel.2021.763423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
We have recently shown that the cognitive impairments in a mouse model of high-frequency head impact (HFHI) are caused by chronic changes to synaptic physiology. To better understand these synaptic changes occurring after repeat head impact, we used Thy1-GcCAMP6f mice to study intracellular and intercellular calcium dynamics and neuronal ensembles in HFHI mice. We performed simultaneous calcium imaging and local field potential (LFP) recordings of the CA1 field during an early-LTP paradigm in acute hippocampal slice preparations 24 h post-impact. As previously reported, HFHI causes a decrease in early-LTP in the absence of any shift in the input-output curve. Calcium analytics revealed that HFHI hippocampal slices have similar numbers of active ROIs, however, the number of calcium transients per ROI was significantly increased in HFHI slices. Ensembles consist of coordinated activity between groups of active ROIs. We exposed the CA1 ensemble to Schaffer-collateral stimulation in an abbreviated LTP paradigm and observed novel coordinated patterns of post stimulus calcium ensemble activity. HFHI ensembles displayed qualitatively similar patterns of post-stimulus ensemble activity to shams but showed significant changes in quantitative ensemble inactivation and reactivation. Previous in vivo and in vitro reports have shown that ensemble activity frequently occurs through a similar set of ROIs firing in a repeating fashion. HFHI slices showed a decrease in such coordinated firing patterns during post stimulus ensemble activity. The present study shows that HFHI alters synaptic activity and disrupts neuronal organization of the ensemble, providing further evidence of physiological synaptic adaptation occurring in the brain after a high frequency of non-pathological head impacts.
Collapse
Affiliation(s)
- Daniel P. Chapman
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Stephanie S. Sloley
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Adam P. Caccavano
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Stefano Vicini
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Mark P. Burns
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- *Correspondence: Mark P. Burns,
| |
Collapse
|
48
|
Vassilev P, Fonseca E, Hernandez G, Pantoja-Urban AH, Giroux M, Nouel D, Van Leer E, Flores C. Custom-Built Operant Conditioning Setup for Calcium Imaging and Cognitive Testing in Freely Moving Mice. eNeuro 2022; 9:ENEURO.0430-21.2022. [PMID: 35105659 PMCID: PMC8856704 DOI: 10.1523/eneuro.0430-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Operant chambers are widely used in animal research to study cognition, motivation, and learning processes. Paired with the rapidly developing technologies for brain imaging and manipulations of brain activity, operant conditioning chambers are a powerful tool for neuroscience research. The behavioral testing and imaging setups that are commercially available are often quite costly. Here, we present a custom-built operant chamber that can be constructed in a few days by an unexperienced user with relatively inexpensive, widely available materials. The advantages of our operant setup compared with other open-source and closed-source solutions are its relatively low cost, its support of complex behavioral tasks, its user-friendly setup, and its validated functionality with video imaging of behavior and calcium imaging using the UCLA Miniscope. Using this setup, we replicate our previously published findings showing that mice exposed to social defeat stress in adolescence have inhibitory control impairments in the Go/No-Go task when they reach adulthood. We also present calcium imaging data of medial prefrontal cortex (mPFC) neuronal activity acquired during Go/No-Go testing in freely moving mice and show that neuronal population activity increases from day 1 to day 14 of the task. We propose that our operant chamber is a cheaper alternative to its commercially available counterparts and offers a better balance between versatility and user-friendly setup than other open-source alternatives.
Collapse
Affiliation(s)
- Philip Vassilev
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Giovanni Hernandez
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Dominique Nouel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Elise Van Leer
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
49
|
Schmied C, Soykan T, Bolz S, Haucke V, Lehmann M. SynActJ: Easy-to-Use Automated Analysis of Synaptic Activity. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.777837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuronal synapses are highly dynamic communication hubs that mediate chemical neurotransmission via the exocytic fusion and subsequent endocytic recycling of neurotransmitter-containing synaptic vesicles (SVs). Functional imaging tools allow for the direct visualization of synaptic activity by detecting action potentials, pre- or postsynaptic calcium influx, SV exo- and endocytosis, and glutamate release. Fluorescent organic dyes or synapse-targeted genetic molecular reporters, such as calcium, voltage or neurotransmitter sensors and synapto-pHluorins reveal synaptic activity by undergoing rapid changes in their fluorescence intensity upon neuronal activity on timescales of milliseconds to seconds, which typically are recorded by fast and sensitive widefield live cell microscopy. The analysis of the resulting time-lapse movies in the past has been performed by either manually picking individual structures, custom scripts that have not been made widely available to the scientific community, or advanced software toolboxes that are complicated to use. For the precise, unbiased and reproducible measurement of synaptic activity, it is key that the research community has access to bio-image analysis tools that are easy-to-apply and allow the automated detection of fluorescent intensity changes in active synapses. Here we present SynActJ (Synaptic Activity in ImageJ), an easy-to-use fully open-source workflow that enables automated image and data analysis of synaptic activity. The workflow consists of a Fiji plugin performing the automated image analysis of active synapses in time-lapse movies via an interactive seeded watershed segmentation that can be easily adjusted and applied to a dataset in batch mode. The extracted intensity traces of each synaptic bouton are automatically processed, analyzed, and plotted using an R Shiny workflow. We validate the workflow on time-lapse images of stimulated synapses expressing the SV exo-/endocytosis reporter Synaptophysin-pHluorin or a synapse-targeted calcium sensor, Synaptophysin-RGECO. We compare the automatic workflow to manual analysis and compute calcium-influx and SV exo-/endocytosis kinetics and other parameters for synaptic vesicle recycling under different conditions. We predict SynActJ to become an important tool for the analysis of synaptic activity and synapse properties.
Collapse
|
50
|
Kolar K, Dondorp D, Zwiggelaar JC, Høyer J, Chatzigeorgiou M. Mesmerize is a dynamically adaptable user-friendly analysis platform for 2D and 3D calcium imaging data. Nat Commun 2021; 12:6569. [PMID: 34772921 PMCID: PMC8589933 DOI: 10.1038/s41467-021-26550-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
Calcium imaging is an increasingly valuable technique for understanding neural circuits, neuroethology, and cellular mechanisms. The analysis of calcium imaging data presents challenges in image processing, data organization, analysis, and accessibility. Tools have been created to address these problems independently, however a comprehensive user-friendly package does not exist. Here we present Mesmerize, an efficient, expandable and user-friendly analysis platform, which uses a Findable, Accessible, Interoperable and Reproducible (FAIR) system to encapsulate the entire analysis process, from raw data to interactive visualizations for publication. Mesmerize provides a user-friendly graphical interface to state-of-the-art analysis methods for signal extraction & downstream analysis. We demonstrate the broad scientific scope of Mesmerize's applications by analyzing neuronal datasets from mouse and a volumetric zebrafish dataset. We also applied contemporary time-series analysis techniques to analyze a novel dataset comprising neuronal, epidermal, and migratory mesenchymal cells of the protochordate Ciona intestinalis.
Collapse
Affiliation(s)
- Kushal Kolar
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006, Bergen, Norway.
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006, Bergen, Norway
| | | | - Jørgen Høyer
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006, Bergen, Norway.
| |
Collapse
|