1
|
Hu N, Long Q, Wang X, Li Q, Li Q, Chen A. Neural and Behavioral Measures of Stress-induced Impairment in Error Awareness and Post-error Adjustment. Neurosci Bull 2024; 40:937-951. [PMID: 38070027 PMCID: PMC11250752 DOI: 10.1007/s12264-023-01154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 07/16/2024] Open
Abstract
Exposure to stress negatively affects error processing, but the impact of stress on error awareness remains to be determined. In the present study, we examined the temporal dynamics of error awareness and post-error adjustment following acute stress. Forty-nine healthy men were randomly assigned to the control (n = 26) or stress group (n = 23). After stress induction, participants completed the error awareness task, and their brain activity was assessed by electroencephalography. Compared to the control group, the stress group demonstrated lower error awareness accuracy and smaller Pe (error positivity) and ΔPe amplitudes following aware error responses, which indicated impairment of error awareness following stress. Furthermore, the stress group had lower accuracy in post-aware error responses than in post-unaware error responses and the control group, which indicated poor post-error adjustment following stress. Our results showed a stress effect on sequential stages of error processing. Stress induces impaired error identification, which further generates maladaptive post-error performance.
Collapse
Affiliation(s)
- Na Hu
- School of Preschool and Special Education, Kunming University, Kunming, 650214, China
| | - Quanshan Long
- Faculty of Education, Yunnan Normal University, Kunming, 650214, China
| | - Xiaoxi Wang
- School of Preschool and Special Education, Kunming University, Kunming, 650214, China
| | - Quan Li
- College of Teacher Education, Qujing Normal University, Qujing, 655099, China
| | - Qing Li
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
2
|
Clement MK, Pimentel CS, McGaughy JA. Dopaminergic lesions of the anterior cingulate cortex of rats increase vulnerability to salient distractors. Eur J Neurosci 2024; 59:3353-3375. [PMID: 38654478 DOI: 10.1111/ejn.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
The anterior cingulate cortex (ACC) has been shown to be critical to many aspects of executive function including filtering irrelevant information, updating response contingencies when reinforcement contingencies change and stabilizing task sets. Nonspecific lesions to this region in rats produce a vulnerability to distractors that have gained salience through prior associations with reinforcement. These lesions also exacerbate cognitive fatigue in tests of sustained attention but do not produce global attentional impairments nor do they produce distractibility to novel distractors that do not have a prior association with reinforcement. To determine the neurochemical basis of these cognitive impairments, dopaminergically selective lesions of the ACC were made in both male and female Long-Evans, hooded rats prior to assessment in two attentional tasks. Dopaminergic lesions of the ACC increase the vulnerability of subjects to previously reinforced distractors and impede formation of an attentional set. Lesioned rats were not more susceptible to the effects of novel, irrelevant stimuli in a test of sustained attention as has been previously shown. Additionally, the effects of dopaminergic lesions were found to differ based on sex. Lesioned female, but not male, rats were more vulnerable than sham-lesioned females to the effects of prolonged testing and the removal of reinforcement during a test of sustained attention. Together, these data support the hypothesis that dopamine in the ACC is critical to filtering distractors whose salience has been gained through reinforcement.
Collapse
Affiliation(s)
- Madison K Clement
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Cynthia S Pimentel
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Jill A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
3
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024:10.3758/s13423-024-02495-3. [PMID: 38587756 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Mårup SH, Kleber BA, Møller C, Vuust P. When direction matters: Neural correlates of interlimb coordination of rhythm and beat. Cortex 2024; 172:86-108. [PMID: 38241757 DOI: 10.1016/j.cortex.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Accepted: 11/09/2023] [Indexed: 01/21/2024]
Abstract
In a previous experiment, we found evidence for a bodily hierarchy governing interlimb coordination of rhythm and beat, using five effectors: 1) Left foot, 2) Right foot, 3) Left hand, 4) Right hand and 5) Voice. The hierarchy implies that, during simultaneous rhythm and beat performance and using combinations of two of these effectors, executing the task by performing the rhythm with an effector that has a higher number than the beat effector is significantly easier than vice versa. To investigate the neural underpinnings of this proposed bodily hierarchy, we here scanned 46 professional musicians using fMRI as they performed a rhythmic pattern with one effector while keeping the beat with another. The conditions combined the voice and the right hand (V + RH), the right hand and the left hand (RH + LH), and the left hand and the right foot (LH + RF). Each effector combination was performed with and against the bodily hierarchy. Going against the bodily hierarchy increased tapping errors significantly and also increased activity in key brain areas functionally associated with top-down sensorimotor control and bottom-up feedback processing, such as the cerebellum and SMA. Conversely, going with the bodily hierarchy engaged areas functionally associated with the default mode network and regions involved in emotion processing. Theories of general brain function that hold prediction as a key principle, propose that action and perception are governed by the brain's attempt to minimise prediction error at different levels in the brain. Following this viewpoint, our results indicate that going against the hierarchy induces stronger prediction errors, while going with the hierarchy allows for a higher degree of automatization. Our results also support the notion of a bodily hierarchy in motor control that prioritizes certain conductive and supportive tapping roles in specific effector combinations.
Collapse
Affiliation(s)
- Signe H Mårup
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Boris A Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Cecilie Møller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| |
Collapse
|
5
|
Le TM, Oba T, Couch L, McInerney L, Li CSR. The Neural Correlates of Individual Differences in Reinforcement Learning during Pain Avoidance and Reward Seeking. eNeuro 2024; 11:ENEURO.0437-23.2024. [PMID: 38365840 PMCID: PMC10901196 DOI: 10.1523/eneuro.0437-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Organisms learn to gain reward and avoid punishment through action-outcome associations. Reinforcement learning (RL) offers a critical framework to understand individual differences in this associative learning by assessing learning rate, action bias, pavlovian factor (i.e., the extent to which action values are influenced by stimulus values), and subjective impact of outcomes (i.e., motivation to seek reward and avoid punishment). Nevertheless, how these individual-level metrics are represented in the brain remains unclear. The current study leveraged fMRI in healthy humans and a probabilistic learning go/no-go task to characterize the neural correlates involved in learning to seek reward and avoid pain. Behaviorally, participants showed a higher learning rate during pain avoidance relative to reward seeking. Additionally, the subjective impact of outcomes was greater for reward trials and associated with lower response randomness. Our imaging findings showed that individual differences in learning rate and performance accuracy during avoidance learning were positively associated with activities of the dorsal anterior cingulate cortex, midcingulate cortex, and postcentral gyrus. In contrast, the pavlovian factor was represented in the precentral gyrus and superior frontal gyrus (SFG) during pain avoidance and reward seeking, respectively. Individual variation of the subjective impact of outcomes was positively predicted by activation of the left posterior cingulate cortex. Finally, action bias was represented by the supplementary motor area (SMA) and pre-SMA whereas the SFG played a role in restraining this action tendency. Together, these findings highlight for the first time the neural substrates of individual differences in the computational processes during RL.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Takeyuki Oba
- Human Informatics and Interaction Research Institute, the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
| | - Luke Couch
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Lauren McInerney
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
6
|
Hanley CJ, Burns N, Thomas HR, Marstaller L, Burianová H. The effects of age bias on neural correlates of successful and unsuccessful response inhibition in younger and older adults. Neurobiol Aging 2023; 131:1-10. [PMID: 37535985 DOI: 10.1016/j.neurobiolaging.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Facilitating communication between generations has become increasingly important. However, individuals often demonstrate a preference for their own age group, which can impact social interactions, and such bias in young adults even extends to inhibitory control. To assess whether older adults also experience this phenomenon, a group of younger and older adults completed a Go/NoGo task incorporating young and old faces, while undergoing functional magnetic resonance imaging. Within the networks subserving successful and unsuccessful response inhibition, patterns of activity demonstrated distinct neural age bias effects in each age group. During successful inhibition, the older adult group demonstrated significantly increased activity to other-age faces, whereas unsuccessful inhibition in the younger group produced significantly enhanced activity to other-age faces. Consequently, the findings of the study confirm that neural responses to successful and unsuccessful inhibition can be contingent on the stimulus-specific attribute of age in both younger and older adults. These findings have important implications in regard to minimizing the emergence of negative consequences, such as ageism, as a result of related implicit biases.
Collapse
Affiliation(s)
| | - Natasha Burns
- School of Psychology, Swansea University, Swansea, UK; Department of Psychology, Bournemouth University, Bournemouth, UK
| | - Hannah R Thomas
- School of Psychology, Swansea University, Swansea, UK; Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Lars Marstaller
- Department of Psychology, Bournemouth University, Bournemouth, UK
| | - Hana Burianová
- School of Psychology, Swansea University, Swansea, UK; Department of Psychology, Bournemouth University, Bournemouth, UK; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Jee HJ, Zhu E, Sun M, Liu W, Zhang Q, Wang J. Anterior cingulate cortex regulates pain catastrophizing-like behaviors in rats. Mol Brain 2023; 16:71. [PMID: 37833814 PMCID: PMC10576271 DOI: 10.1186/s13041-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Negative pain expectation including pain catastrophizing is a well-known clinical phenomenon whereby patients amplify the aversive value of a painful or oftentimes even a similar, non-painful stimulus. Mechanisms of pain catastrophizing, however, remain elusive. Here, we modeled pain catastrophizing behavior in rats, and found that rats subjected to repeated noxious pin pricks on one paw demonstrated an aversive response to similar but non-noxious mechanical stimuli delivered to the contralateral paw. Optogenetic inhibition of pyramidal neuron activity in the anterior cingulate cortex (ACC) during the application of repetitive noxious pin pricks eliminated this catastrophizing behavior. Time-lapse calcium (Ca2+) imaging in the ACC further revealed an increase in spontaneous neural activity after the delivery of noxious stimuli. Together these results suggest that the experience of repeated noxious stimuli may drive hyperactivity in the ACC, causing increased avoidance of subthreshold stimuli, and that reducing this hyperactivity may play a role in treating pain catastrophizing.
Collapse
Affiliation(s)
- Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
8
|
D'Andrea CB, Laumann TO, Newbold DJ, Nelson SM, Nielsen AN, Chauvin R, Marek S, Greene DJ, Dosenbach NUF, Gordon EM. Substructure of the brain's Cingulo-Opercular network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561772. [PMID: 37873065 PMCID: PMC10592749 DOI: 10.1101/2023.10.10.561772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.
Collapse
Affiliation(s)
- Carolina Badke D'Andrea
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63310, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Ashley N Nielsen
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Roselyne Chauvin
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Lyons S, Depue BE. Not all bad decisions are alike: approach and avoidant bad decisions are associated with distinct network organization. Front Neurosci 2023; 17:1249008. [PMID: 37877010 PMCID: PMC10591088 DOI: 10.3389/fnins.2023.1249008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Decisions under ambiguity occurs daily for everyone. Subsequently, we all deliberate upon options to initiate an action most appropriate for current goal demands. Researchers has attempted to identify factors which contribute to risk taking, alongside the neurocircuitry underpinning it. Empirically, uncertain decision making is frequently assessed using the Iowa Gambling Task (IGT). Research have reliably identified varying regions implicating two broader circuits known as the reward and salience networks. However, considerable work has focused on contrasting "good" versus "bad" decisions. Methods The present investigation attempted a unique approach to analyzing the modified IGT acquired during fMRI (n = 24) and focused on active and passive bad decisions to identify potential internetwork connectivity, dissociable connectivity patterns between approach and avoidant bad decisions, and their relationship with personality traits, which can be linked with behavioral approach styles. Results Network cluster analyses revealed general internetwork connectivity when passing (avoiding) good decks; however, the OFC was functionally disconnected from the rest of the selected brain regions when playing (approaching) bad decks. Decreased reward responsiveness was linked to increased functional connectivity between the lateral OFC and aSMG, while drive was associated with increased functional connectivity between dACC and aINS. Discussion We report evidence that approach and avoidant bad decisions are associated with distinct neural communication patterns. Avoidant decisions were marked by substantial network integration and coherence, contrasted with the general scarcity of internetwork communication observed for approach decisions. Furthermore, the present investigation observed preliminary evidence of personality traits linked with neural communication between salience and reward evaluative networks.
Collapse
Affiliation(s)
- Siraj Lyons
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Brendan Eliot Depue
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
10
|
Zhao S, Yuan R, Gao W, Liu Q, Yuan J. Neural substrates of behavioral inhibitory control during the two-choice oddball task: functional neuroimaging evidence. PSYCHORADIOLOGY 2023; 3:kkad012. [PMID: 38666128 PMCID: PMC10917370 DOI: 10.1093/psyrad/kkad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 04/28/2024]
Abstract
Background Behavioral inhibitory control (BIC) depicts a cognitive function of inhibiting inappropriate dominant responses to meet the context requirement. Despite abundant research into neural substrates of BIC during the go/no-go and stop signal tasks, these tasks were consistently shown hard to isolate neural processes of response inhibition, which is of primary interest, from those of response generation. Therefore, it is necessary to explore neural substrates of BIC using the two-choice oddball (TCO) task, whose design of dual responses is thought to produce an inhibition effect free of the confounds of response generation. Objective The current study aims at depicting neural substrates of performing behavioral inhibitory control in the two-choice oddball task, which designs dual responses to balance response generation. Also, neural substrates of performing BIC during this task are compared with those in the go/no-go task, which designs a motor response in a single condition. Methods The present study integrated go/no-go (GNG) and TCO tasks into a new Three-Choice BIC paradigm, which consists of standard (75%), deviant (12.5%), and no-go (12.5%) conditions simultaneously. Forty-eight college students participated in this experiment, which required them to respond to standard (frequent) and deviant stimuli by pressing different keys, while inhibiting motor response to no-go stimuli. Conjunction analysis and ROI (region of interest) analysis were adopted to identify the unique neural mechanisms that subserve the processes of BIC. Results Both tasks are effective in assessing BIC function, reflected by the significantly lower accuracy of no-go compared to standard condition in GNG, and the significantly lower accuracy and longer reaction time of deviant compared to standard condition in TCO. However, there were no significant differences between deviant and no-go conditions in accuracy. Moreover, functional neuroimaging has demonstrated that the anterior cingulate cortex (ACC) activation was observed for no-go vs. standard contrast in the GNG task, but not in deviant vs. standard contrast in the TCO task, suggesting that ACC involvement is not a necessary component of BIC. Second, ROI analysis of areas that were co-activated in TCO and GNG showed co-activations in the right inferior frontal cortex (triangle and orbital), with the signals in the TCO task significantly higher than those in the GNG task. Conclusions These findings show that the designed responses to both standard and deviant stimuli in the TCO task, compared to the GNG task, produced a more prominent prefrontal inhibitory processing and extinguished an unnecessary component of ACC activation during BIC. This implies that prefrontal involvement, but not that of ACC, is mandatory for the successful performance of inhibiting prepotent behaviors.
Collapse
Affiliation(s)
- Shirui Zhao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Faculté des Sciences Psychologiques et de l’Éducation, Université Libre de Bruxelles (ULB)Brussels 1050, Belgium
| | - Ruosong Yuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiang Liu
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jiajin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision (Sichuan Normal University), Chengdu 610066, China
| |
Collapse
|
11
|
Tsai CG, Fu YF, Li CW. Prediction errors arising from switches between major and minor modes in music: An fMRI study. Brain Cogn 2023; 169:105987. [PMID: 37126951 DOI: 10.1016/j.bandc.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The major and minor modes in Western music have positive and negative connotations, respectively. The present fMRI study examined listeners' neural responses to switches between major and minor modes. We manipulated the final chords of J. S. Bach's keyboard pieces so that each major-mode passage ended with either the major (Major-Major) or minor (Major-Minor) tonic chord, and each minor-mode passage ended with either the minor (Minor-Minor) or major (Minor-Major) tonic chord. If the final major and minor chords have positive and negative reward values respectively, the Major-Minor and Minor-Major stimuli would cause negative and positive reward prediction errors (RPEs) respectively in a listener's brain. We found that activity in a frontoparietal network was significantly higher for Major-Minor than for Major-Major. Based on previous research, these results support the idea that a major-to-minor switch causes negative RPE. The contrast of Minor-Major minus Minor-Minor yielded activation in the ventral insula and visual cortex, speaking against the idea that a minor-to-major switch causes positive RPE. We discuss our results in relation to executive functions and the emotional connotations of major versus minor modes.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Fu
- Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Jessey TB, Lin B, Subramanium SV, Kraeutner SN. Disrupting somatosensory processing impairs motor execution but not motor imagery. Hum Mov Sci 2023; 90:103101. [PMID: 37247540 DOI: 10.1016/j.humov.2023.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
While motor imagery (MI) is thought to be 'functionally equivalent' with motor execution (ME), the equivalence of feedforward and feedback mechanisms between the two modalities is unexplored. Here, we tested the equivalence of these mechanisms between MI and ME via two experiments designed to probe the role of somatosensory processing (Exp 1), and cognitive processing (Exp 2). All participants were engaged in a previously established force-matching task adapted for MI. A reference force was applied (on scale of 1-10, with higher numbers indicative of greater force) to one index finger while participants matched the force with their opposite index finger via ME or MI (control conditions). Participants then rated the force on the same scale of 1-10. Exp 1: Participants (N = 27) performed the task with tactile stimulation (ME+TAC, MI+TAC) in addition to control conditions. Exp 2: Participants (N = 26) performed the task in dual-task conditions (ME+COG, MI+COG) in addition to control conditions. Results indicate that (Exp 1) tactile stimulation impaired performance in ME but not MI. Dual-task conditions (Exp 2) were not shown to impair performance in either practice modality. Findings suggest that while somatosensory processing is critical for ME, it is not for MI. Overall we indicate a functional equivalence between feedforward/back mechanisms in MI and ME may not exist.
Collapse
Affiliation(s)
- Tarri B Jessey
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Beier Lin
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Soumyaa V Subramanium
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T1Z3, British Columbia, Canada.
| |
Collapse
|
13
|
Stopyra MA, Simon JJ, Rheude C, Nikendei C. Pathophysiological aspects of complex PTSD - a neurobiological account in comparison to classic posttraumatic stress disorder and borderline personality disorder. Rev Neurosci 2023; 34:103-128. [PMID: 35938987 DOI: 10.1515/revneuro-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/25/2022] [Indexed: 01/11/2023]
Abstract
Despite a great diagnostic overlap, complex posttraumatic stress disorder (CPTSD) has been recognised by the ICD-11 as a new, discrete entity and recent empirical evidence points towards a distinction from simple posttraumatic stress disorder (PTSD) and borderline personality disorder (BPD). The development and maintenance of these disorders is sustained by neurobiological alterations and studies using functional magnetic resonance imaging (fMRI) may further contribute to a clear differentiation of CPTSD, PTSD and BPD. However, there are no existing fMRI studies directly comparing CPTSD, PTSD and BPD. In addition to a summarization of diagnostic differences and similarities, the current review aims to provide a qualitative comparison of neuroimaging findings on affective, attentional and memory processing in CPTSD, PTSD and BPD. Our narrative review alludes to an imbalance in limbic-frontal brain networks, which may be partially trans-diagnostically linked to the degree of trauma symptoms and their expression. Thus, CPTSD, PTSD and BPD may underlie a continuum where similar brain regions are involved but the direction of activation may constitute its distinct symptom expression. The neuronal alterations across these disorders may conceivably be better understood along a symptom-based continuum underlying CPTSD, PTSD and BPD. Further research is needed to amend for the heterogeneity in experimental paradigms and sample criteria.
Collapse
Affiliation(s)
- Marion A Stopyra
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christiane Rheude
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christoph Nikendei
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Allen CH, Aharoni E, Gullapalli AR, Edwards BG, Harenski CL, Harenski KA, Kiehl KA. Hemodynamic activity in the limbic system predicts reoffending in women. Neuroimage Clin 2022; 36:103238. [PMID: 36451349 PMCID: PMC9668656 DOI: 10.1016/j.nicl.2022.103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Previous research (Aharoni et al., 2013, 2014) found that hemodynamic activity in the dorsal anterior cingulate cortex (dACC) during error monitoring predicted non-violent felony rearrest in men released from prison. This article reports an extension of the Aharoni et al. (2013, 2014) model in a sample of women released from state prison (n = 248). Replicating aspects of prior work, error monitoring activity in the dACC, as well as psychopathy scores and age at release, predicted non-violent felony rearrest in women. Sex differences in the directionality of dACC activity were observed-high error monitoring activity predicted rearrest in women, whereas prior work found low error monitoring activity predicted rearrest in men. As in prior analyses, the ability of the dACC to predict rearrest outcomes declines with more generalized outcomes (i.e., general felony). Implications for future research and clinical and forensic risk assessment are discussed.
Collapse
Affiliation(s)
- Corey H. Allen
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Eyal Aharoni
- Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA 30302-5010, USA
| | | | - Bethany G. Edwards
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA,Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Carla L. Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Keith A. Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Kent A. Kiehl
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA,Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA,Corresponding author at: Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
15
|
Deshpande HU, Fedota JR, Castillo J, Salmeron BJ, Ross TJ, Stein EA. Not all smokers are alike: the hidden cost of sustained attention during nicotine abstinence. Neuropsychopharmacology 2022; 47:1633-1642. [PMID: 35091674 PMCID: PMC9283548 DOI: 10.1038/s41386-022-01275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022]
Abstract
Nicotine Withdrawal Syndrome (NWS)-associated cognitive deficits are notably heterogeneous, suggesting underlying endophenotypic variance. However, parsing this variance in smokers has remained challenging. In this study, we identified smoker subgroups based on response accuracy during a Parametric Flanker Task (PFT) and then characterized distinct neuroimaging endophenotypes using a nicotine state manipulation. Smokers completed the PFT in two fMRI sessions (nicotine sated, abstinent). Based on response accuracy in the stressful, high cognitive demand PFT condition, smokers split into high (HTP, n = 21) and low task performer (LTP, n = 24) subgroups. Behaviorally, HTPs showed greater response accuracy (88.68% ± 5.19 SD) vs. LTPs (51.04% ± 4.72 SD), independent of nicotine state, and greater vulnerability to abstinence-induced errors of omission (EOm, p = 0.01). Neurobiologically, HTPs showed greater BOLD responses in attentional control brain regions, including bilateral insula, dorsal ACC, and frontoparietal Cx for the [correct responses (-) errors of commission] PFT contrast in both states. A whole-brain functional connectivity (FC) analysis with these subgroup-derived regions as seeds identified two circuits: Precentral Cx↔Insula and Insula↔Occipital Cx, with abstinence-induced FC strength increases seen only in HTPs. Finally, abstinence-induced FC and behavior (EOm) differences were positively correlated for HTPs in a Precentral Cx↔Orbitofrontal cortical circuit. In sum, only the HTP subgroup demonstrated sustained attention deficits following 48-hr nicotine abstinence, a stressor in dependent smokers. Unpacking underlying smoker heterogeneity with this 'dual (task and abstinence) stressor' approach revealed discrete smoker subgroups with differential attentional deficits to withdrawal that could be novel pharmacological/behavioral targets for therapeutic interventions to improve cessation outcomes.
Collapse
Affiliation(s)
- Harshawardhan U. Deshpande
- grid.420090.f0000 0004 0533 7147Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - John R. Fedota
- grid.420090.f0000 0004 0533 7147Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA ,grid.420090.f0000 0004 0533 7147Present Address: Behavioral and Cognitive Neuroscience Branch, Division of Neuroscience Behavior, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD USA
| | - Juan Castillo
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| | - Betty Jo Salmeron
- grid.420090.f0000 0004 0533 7147Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Thomas J. Ross
- grid.420090.f0000 0004 0533 7147Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Elliot A. Stein
- grid.420090.f0000 0004 0533 7147Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| |
Collapse
|
16
|
Estiveira J, Dias C, Costa D, Castelhano J, Castelo-Branco M, Sousa T. An Action-Independent Role for Midfrontal Theta Activity Prior to Error Commission. Front Hum Neurosci 2022; 16:805080. [PMID: 35634213 PMCID: PMC9131421 DOI: 10.3389/fnhum.2022.805080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Error-related electroencephalographic (EEG) signals have been widely studied concerning the human cognitive capability of differentiating between erroneous and correct actions. Midfrontal error-related negativity (ERN) and theta band oscillations are believed to underlie post-action error monitoring. However, it remains elusive how early monitoring activity is trackable and what are the pre-response brain mechanisms related to performance monitoring. Moreover, it is still unclear how task-specific parameters, such as cognitive demand or motor control, influence these processes. Here, we aimed to test pre- and post-error EEG patterns for different types of motor responses and investigate the neuronal mechanisms leading to erroneous actions. We implemented a go/no-go paradigm based on keypresses and saccades. Participants received an initial instruction about the direction of response to be given based on a facial cue and a subsequent one about the type of action to be performed based on an object cue. The paradigm was tested in 20 healthy volunteers combining EEG and eye tracking. We found significant differences in reaction time, number, and type of errors between the two actions. Saccadic responses reflected a higher number of premature responses and errors compared to the keypress ones. Nevertheless, both led to similar EEG patterns, supporting previous evidence for increased ERN amplitude and midfrontal theta power during error commission. Moreover, we found pre-error decreased theta activity independent of the type of action. Source analysis suggested different origin for such pre- and post-error neuronal patterns, matching the anterior insular cortex and the anterior cingulate cortex, respectively. This opposite pattern supports previous evidence of midfrontal theta not only as a neuronal marker of error commission but also as a predictor of action performance. Midfrontal theta, mostly associated with alert mechanisms triggering behavioral adjustments, also seems to reflect pre-response attentional mechanisms independently of the action to be performed. Our findings also add to the discussion regarding how salience network nodes interact during performance monitoring by suggesting that pre- and post-error patterns have different neuronal sources within this network.
Collapse
Affiliation(s)
- João Estiveira
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Camila Dias
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Diana Costa
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
- FMUC – Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Sousa
- CIBIT – Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- ICNAS – Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
- *Correspondence: Teresa Sousa,
| |
Collapse
|
17
|
Hanley CJ, Burns N, Thomas HR, Marstaller L, Burianová H. The effects of age-bias on neural correlates of successful and unsuccessful response inhibition. Behav Brain Res 2022; 428:113877. [DOI: 10.1016/j.bbr.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
|
18
|
Dali G, Brosnan M, Tiego J, Johnson BP, Fornito A, Bellgrove MA, Hester R. Examining the neural correlates of error awareness in a large fMRI study. Cereb Cortex 2022; 33:458-468. [PMID: 35238340 PMCID: PMC9837605 DOI: 10.1093/cercor/bhac077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 01/19/2023] Open
Abstract
Goal-directed behavior is dependent upon the ability to detect errors and implement appropriate posterror adjustments. Accordingly, several studies have explored the neural activity underlying error-monitoring processes, identifying the insula cortex as crucial for error awareness and reporting mixed findings with respect to the anterior cingulate cortex (ACC). Variable patterns of activation have previously been attributed to insufficient statistical power. We therefore sought to clarify the neural correlates of error awareness in a large event-related functional magnetic resonance imaging (fMRI) study. Four hundred and two healthy participants undertook the error awareness task, a motor Go/No-Go response inhibition paradigm in which participants were required to indicate their awareness of commission errors. Compared to unaware errors, aware errors were accompanied by significantly greater activity in a network of regions, including the insula cortex, supramarginal gyrus (SMG), and midline structures, such as the ACC and supplementary motor area (SMA). Error awareness activity was related to indices of task performance and dimensional measures of psychopathology in selected regions, including the insula, SMG, and SMA. Taken together, we identified a robust and reliable neural network associated with error awareness.
Collapse
Affiliation(s)
- Gezelle Dali
- Corresponding author: Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Méadhbh Brosnan
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK,The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Beth P Johnson
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | | | | |
Collapse
|
19
|
Sunderaraman P, Gazes Y, Ortiz G, Langfield C, Mensing A, Chapman S, Joyce JL, Brickman AM, Stern Y, Cosentino S. Financial decision-making and self-awareness for financial decision-making is associated with white matter integrity in older adults. Hum Brain Mapp 2022; 43:1630-1639. [PMID: 34984770 PMCID: PMC8886641 DOI: 10.1002/hbm.25747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 11/11/2022] Open
Abstract
Financial decision-making (FDM) and awareness of the integrity of one's FDM abilities (or financial awareness) are both critical for preventing financial mistakes. We examined the white matter correlates of these constructs and hypothesized that the tracts connecting the temporal-frontal regions would be most strongly correlated with both FDM and financial awareness. Overall, 49 healthy older adults were included in the FDM analysis and 44 in the financial awareness analyses. The Objective Financial Competency Assessment Inventory was used to measure FDM. Financial awareness was measured by integrating metacognitive ratings into this inventory and was calculated as the degree of overconfidence or underconfidence. Diffusion tensor imaging data were processed with Tracts Constrained by Underlying Anatomy distributed as part of the FreeSurfer analytic suite, which produced average measures of fractional anisotropy and mean diffusivity in 18 white matter tracts along with the overall tract average. As expected, FDM showed the strongest negative associations with average mean diffusivity measure of the superior longitudinal fasciculus -temporal (SLFT; r = -.360, p = .011) and -parietal (r = -.351, p = .014) tracts. After adjusting for FDM, only the association between financial awareness and average mean diffusivity measure of the right SLFT (r = .310, p = .046) was significant. Overlapping white matter tracts were involved in both FDM and financial awareness. More importantly, these preliminary findings reinforce emerging literature on a unique role of right hemisphere temporal connections in supporting financial awareness.
Collapse
Affiliation(s)
- Preeti Sunderaraman
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Gema Ortiz
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher Langfield
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ashley Mensing
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Silvia Chapman
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Jillian L Joyce
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephanie Cosentino
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA.,Gertrude. H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, Sutherland MT. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110398. [PMID: 34224796 PMCID: PMC8380727 DOI: 10.1016/j.pnpbp.2021.110398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Brain activity linked with error processing has rarely been examined among persons living with HIV (PLWH) despite importance for monitoring and modifying behaviors that could lead to adverse health outcomes (e.g., medication non-adherence, drug use, risky sexual practices). Given that cannabis (CB) use is prevalent among PLWH and impacts error processing, we assessed the influence of HIV serostatus and chronic CB use on error-related brain activity while also considering associated implications for everyday functioning and clinically-relevant disease management behaviors. METHODS A sample of 109 participants, stratified into four groups by HIV and CB (HIV+/CB+, n = 32; HIV+/CB-, n = 27; HIV-/CB+, n = 28; HIV-/CB-, n = 22), underwent fMRI scanning while completing a modified Go/NoGo paradigm called the Error Awareness Task (EAT). Participants also completed a battery of well-validated instruments including a subjective report of everyday cognitive failures and an objective measure of medication management abilities. RESULTS Across all participants, we observed expected error-related anterior insula (aI) activation which correlated with better task performance (i.e., less errors) and, among HIV- participants, fewer self-reported cognitive failures. Regarding awareness, greater insula activation as well as greater posterior cingulate cortex (PCC) deactivation were notably linked with aware (vs. unaware) errors. Regarding group effects, unlike HIV- participants, PLWH displayed a lack of error-related deactivation in two default mode network (DMN) regions (i.e., PCC, medial prefrontal cortex [mPFC]). No CB main or interaction effects were detected. Across all participants, reduced error-related PCC deactivation correlated with reduced medication management abilities and PCC deactivation mediated the effect of HIV on such abilities. More lifetime CB use was linked with reduced error-related mPFC deactivation among HIV- participants and poorer medication management across CB users. CONCLUSIONS These results demonstrate that insufficient error-related DMN suppression linked with HIV infection, as well as chronic CB use among HIV- participants, has real-world consequences for medication management behaviors. We speculate that insufficient DMN suppression may reflect an inability to disengage task irrelevant mental operations, ultimately hindering error monitoring and behavior modification.
Collapse
Affiliation(s)
| | | | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL
| | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D., Florida International University, Department of Psychology, AHC-4, RM 312, 11299 S.W. 8th St, Miami, FL 33199, , 305-348-7962
| |
Collapse
|
21
|
Yuen NH, Tam F, Churchill NW, Schweizer TA, Graham SJ. Driving With Distraction: Measuring Brain Activity and Oculomotor Behavior Using fMRI and Eye-Tracking. Front Hum Neurosci 2021; 15:659040. [PMID: 34483861 PMCID: PMC8415783 DOI: 10.3389/fnhum.2021.659040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Driving motor vehicles is a complex task that depends heavily on how visual stimuli are received and subsequently processed by the brain. The potential impact of distraction on driving performance is well known and poses a safety concern - especially for individuals with cognitive impairments who may be clinically unfit to drive. The present study is the first to combine functional magnetic resonance imaging (fMRI) and eye-tracking during simulated driving with distraction, providing oculomotor metrics to enhance scientific understanding of the brain activity that supports driving performance. Materials and Methods As initial work, twelve healthy young, right-handed participants performed turns ranging in complexity, including simple right and left turns without oncoming traffic, and left turns with oncoming traffic. Distraction was introduced as an auditory task during straight driving, and during left turns with oncoming traffic. Eye-tracking data were recorded during fMRI to characterize fixations, saccades, pupil diameter and blink rate. Results Brain activation maps for right turns, left turns without oncoming traffic, left turns with oncoming traffic, and the distraction conditions were largely consistent with previous literature reporting the neural correlates of simulated driving. When the effects of distraction were evaluated for left turns with oncoming traffic, increased activation was observed in areas involved in executive function (e.g., middle and inferior frontal gyri) as well as decreased activation in the posterior brain (e.g., middle and superior occipital gyri). Whereas driving performance remained mostly unchanged (e.g., turn speed, time to turn, collisions), the oculomotor measures showed that distraction resulted in more consistent gaze at oncoming traffic in a small area of the visual scene; less time spent gazing at off-road targets (e.g., speedometer, rear-view mirror); more time spent performing saccadic eye movements; and decreased blink rate. Conclusion Oculomotor behavior modulated with driving task complexity and distraction in a manner consistent with the brain activation features revealed by fMRI. The results suggest that eye-tracking technology should be included in future fMRI studies of simulated driving behavior in targeted populations, such as the elderly and individuals with cognitive complaints - ultimately toward developing better technology to assess and enhance fitness to drive.
Collapse
Affiliation(s)
- Nicole H Yuen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
Janssen TWP, Nieuwenhuis S, Hoefakker J, Dreier Gligoor PD, Bonte M, van Atteveldt N. Neural correlates of error-monitoring and mindset: Back to the drawing board? PLoS One 2021; 16:e0254322. [PMID: 34320015 PMCID: PMC8318296 DOI: 10.1371/journal.pone.0254322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
The different ways students deal with mistakes is an integral part of mindset theory. While previous error-monitoring studies found supporting neural evidence for mindset-related differences, they may have been confounded by overlapping stimulus processing. We therefore investigated the relationship between mindset and event-related potentials (ERPs) of error-monitoring (response-locked Ne, Pe), with and without overlap correction. In addition, besides behavioral measures of remedial action after errors (post-error slowing and accuracy), we investigated their neural correlates (stimulus-locked N2). Results indicated comparable Ne, but larger Pe amplitudes in fixed-minded students; however, after overlap correction, the Pe results were rendered non-significant. A likely explanation for this overlap was a near-significant effect of mindset on the preceding stimulus P3. Finally, although N2 was larger for trials following errors, mindset was unrelated. The current study shows that the relationship between error-monitoring and mindset is more complex and should be reconsidered. Future studies are advised to explore stimulus processing as well, and if needed, to correct for stimulus overlap. In addition, contextual influences on and individual variation in error-monitoring need more scrutiny, which may contribute to refining mindset theory.
Collapse
Affiliation(s)
- Tieme W. P. Janssen
- Department of Clinical, Neuro- & Developmental Psychology, Faculty of Behavioural and Movement sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Smiddy Nieuwenhuis
- Department of Clinical, Neuro- & Developmental Psychology, Faculty of Behavioural and Movement sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jamie Hoefakker
- Department of Clinical, Neuro- & Developmental Psychology, Faculty of Behavioural and Movement sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patricia D. Dreier Gligoor
- Department of Clinical, Neuro- & Developmental Psychology, Faculty of Behavioural and Movement sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro- & Developmental Psychology, Faculty of Behavioural and Movement sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Cartocci G, Boccia M, Pompili PM, Ferracuti S, Frati P, Fineschi V, Fiorelli M, Caramia F. Resting state functional magnetic resonance imaging study in mentally ill persons with diminished penal responsibility considered socially dangerous. Psychiatry Res Neuroimaging 2021; 310:111259. [PMID: 33607421 DOI: 10.1016/j.pscychresns.2021.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Gaia Cartocci
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, "Sapienza" University of Rome, Viale Regina Elena, 336, 00185, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Italy; Cognitive and motor rehabilitation and neuroimaging unit IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Pieritalo Maria Pompili
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, "Sapienza" University of Rome, Viale Regina Elena, 336, 00185, Rome, Italy; Local Health Agency ASL Roma 5, Palombara Sabina, Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, "Sapienza" University of Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, "Sapienza" University of Rome, Viale Regina Elena, 336, 00185, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, "Sapienza" University of Rome, Viale Regina Elena, 336, 00185, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neuroscience, "Sapienza" University of Rome, Italy
| | - Francesca Caramia
- Department of Human Neuroscience, "Sapienza" University of Rome, Italy
| |
Collapse
|
24
|
Hammerstrom MR, Ferguson TD, Williams CC, Krigolson OE. What happens when right means wrong? The impact of conflict arising from competing feedback responses. Brain Res 2021; 1761:147393. [PMID: 33639202 DOI: 10.1016/j.brainres.2021.147393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Humans often rely on feedback to learn. Indeed, in learning the difference between feedback and an expected outcome is computed to inform future actions. Further, recent work has found that reward and feedback have a unique role in modulating conflict processing and cognitive control. However, it is still not clear how conflict, especially concerning the processing and evaluation of feedback, impacts learning. To address this, we examined the effects of feedback competition on feedback evaluation in a reinforcement learning task. Specifically, we had participants play a simple two-choice gambling game while electroencephalographic (EEG) data were recorded. On half of the experiment blocks, we reversed the meaning of performance feedback for each trial from its prepotent meaning to induce response conflict akin to the Stroop effect (e.g., '✓' meant incorrect). Behaviourally, we found that participants' accuracy was reduced as a result of incongruent feedback. Paralleling this, an analysis of our EEG revealed that incongruent feedback resulted in a reduction in amplitude of the reward positivity and the P300, components of the human event-related brain potential implicated in reward processing. Our results demonstrate the negative impact of conflict on feedback evaluation and the impact of this on subsequent performance.
Collapse
Affiliation(s)
- Mathew R Hammerstrom
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Canada.
| | - Thomas D Ferguson
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Canada
| | - Chad C Williams
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Canada
| | - Olave E Krigolson
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Canada
| |
Collapse
|
25
|
Velichkovsky BB, Tatarinov DV, Khlebnikova AA, Roshchina IF, Selezneva ND, Gavrilova SI. [Distracter inhibition in mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:71-76. [PMID: 33580765 DOI: 10.17116/jnevro202112101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the effectiveness of interfering visual stimuli inhibition using the flanker task in a group of healthy young and healthy old participants, and in a group of participants with mild cognitive impairment (MCI). MATERIAL AND METHODS Reaction times and accuracy, as well as the diffusion model of reaction times with parameters reflecting perceptual and motor processes, stimulus processing speed, and conservativeness of response selection were analyzed. RESULTS We found reduced speed and accuracy in older age, especially in MCI patients. The reduction was especially pronounced in patients with the incongruent distracters. For diffusion model parameters, perceptual and motor processes took longer with older age, reduced processing speed was found only in pathological aging, and specific effectiveness reduction for incongruent probes in patients was driven by increased conservativeness of responses. CONCLUSIONS The results indicate the joint influence of normal and pathological aging processes on patients with MCI. The deceleration of the perceptual-motor components of the reaction time reflects the processes of normal cognitive aging, while the deceleration of the processing speed (in the presence of any distractors, including congruent ones) characterizes pathological cognitive aging. Differential diagnosis of normal and pathological cognitive changes is possible using data based on the analysis of reaction time components. It is important to take into account the conservativeness of responses as a factor slowing down the reaction time in pathological and normal cognitive aging.
Collapse
Affiliation(s)
- B B Velichkovsky
- Lomonosov Moscow State University, Moscow, Russia.,Moscow Institute of Psychoanalysis, Moscow, Russia
| | | | | | - I F Roshchina
- Mental Health Research Center, Moscow, Russia.,Moscow State University of Psychology and Education, Moscow, Russia
| | | | | |
Collapse
|
26
|
Kraeutner SN, McArthur JL, Kraeutner PH, Westwood DA, Boe SG. Leveraging the effector independent nature of motor imagery when it is paired with physical practice. Sci Rep 2020; 10:21335. [PMID: 33288785 PMCID: PMC7721807 DOI: 10.1038/s41598-020-78120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
While considered analogous to physical practice, the nature of imagery-based skill acquisition—specifically whether or not both effector independent and dependent encoding occurs through motor imagery—is not well understood. Here, motor imagery-based training was applied prior to or after physical practice-based training to probe the nature of imagery-based skill acquisition. Three groups of participants (N = 38) engaged in 10 days of training of a dart throwing task: 5 days of motor imagery prior to physical practice (MIP-PP), motor imagery following physical practice (PP-MIP), or physical practice only (PP-PP). Performance-related outcomes were assessed throughout. Brain activity was measured at three time points using fMRI (pre/mid/post-training; MIP-PP and PP-MIP groups). In contrast with physical practice, motor imagery led to changes in global versus specific aspects of the movement. Following 10 days of training, performance was greater when motor imagery preceded physical practice, although remained inferior to performance resulting from physical practice alone. Greater activation of regions that support effector dependent encoding was observed mid-, but not post-training for the PP-MIP group. Findings indicate that changes driven by motor imagery reflect effector independent encoding, providing new information regarding how motor imagery may be leveraged for skill acquisition.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | - Jennifer L McArthur
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - Paul H Kraeutner
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - David A Westwood
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada. .,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Physiotherapy, Dalhousie University, Rm 407, 4th Floor Forrest Building, 5869 University Avenue, PO Box 15000, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
27
|
Tsuda B, Tye KM, Siegelmann HT, Sejnowski TJ. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex. Proc Natl Acad Sci U S A 2020; 117:29872-29882. [PMID: 33154155 PMCID: PMC7703668 DOI: 10.1073/pnas.2009591117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex's ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.
Collapse
Affiliation(s)
- Ben Tsuda
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA 92093
| | - Kay M Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Hava T Siegelmann
- Biologically Inspired Neural & Dynamical Systems Laboratory, School of Computer Science, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
28
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
29
|
Neural and behavioral traces of error awareness. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 21:573-591. [PMID: 33025512 PMCID: PMC8208913 DOI: 10.3758/s13415-020-00838-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
Monitoring for errors and behavioral adjustments after errors are essential for daily life. A question that has not been addressed systematically yet, is whether consciously perceived errors lead to different behavioral adjustments compared to unperceived errors. Our goal was to develop a task that would enable us to study different commonly observed neural correlates of error processing and post-error adjustments in their relation to error awareness and accuracy confidence in a single experiment. We assessed performance in a new number judgement error awareness task in 70 participants. We used multiple, robust, single-trial EEG regressions to investigate the link between neural correlates of error processing (e.g., error-related negativity (ERN) and error positivity (Pe)) and error awareness. We found that only aware errors had a slowing effect on reaction times in consecutive trials, but this slowing was not accompanied by post-error increases in accuracy. On a neural level, error awareness and confidence had a modulating effect on both the ERN and Pe, whereby the Pe was most predictive of participants' error awareness. Additionally, we found partial support for a mediating role of error awareness on the coupling between the ERN and behavioral adjustments in the following trial. Our results corroborate previous findings that show both an ERN/Pe and a post-error behavioral adaptation modulation by error awareness. This suggests that conscious error perception can support meta-control processes balancing the recruitment of proactive and reactive control. Furthermore, this study strengthens the role of the Pe as a robust neural index of error awareness.
Collapse
|
30
|
Van der Sluys ME, Zijlmans J, Popma A, Van der Laan PH, Scherder EJA, Marhe R. Neurocognitive predictors of treatment completion and daytime activities at follow-up in multiproblem young adults. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1103-1121. [PMID: 32820418 PMCID: PMC7497488 DOI: 10.3758/s13415-020-00822-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has shown an association between cognitive control deficits and problematic behavior such as antisocial behavior and substance use, but little is known about the predictive value of cognitive control for treatment outcome. The current study tests whether selected markers of baseline cognitive control predict (1) treatment completion of a day treatment program involving a combination of approaches for multiproblem young adults and (2) daytime activities a year after the start of treatment, over and above psychological, social, and criminal characteristics. We assessed individual, neurobiological, and neurobehavioral measures, including functional brain activity during an inhibition task and two electroencephalographic measures of error processing in 127 male multiproblem young adults (age 18-27 years). We performed two hierarchical regression models to test the predictive power of cognitive control for treatment completion and daytime activities at follow-up. The overall models did not significantly predict treatment completion or daytime activities at follow-up. However, activity in the anterior cingulate cortex (ACC) during response inhibition, years of regular alcohol use, internalizing problems, and ethnicity were all significant individual predictors of daytime activity at follow-up. In conclusion, cognitive control could not predict treatment completion or daytime activities a year after the start of treatment over and above individual characteristics. However, results indicate a direct association between brain activity during response inhibition and participation in daytime activities, such as work or school, after treatment. As adequate baseline inhibitory control is associated with a positive outcome at follow-up, this suggests interventions targeting cognitive control might result in better outcomes at follow-up.
Collapse
Affiliation(s)
- M E Van der Sluys
- Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorstraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - J Zijlmans
- VU University Medical Center Department of Child and Adolescent Psychiatry, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
| | - A Popma
- VU University Medical Center Department of Child and Adolescent Psychiatry, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
- Department of Criminal Law and Criminology, Leiden University, Steenschuur 25, 2311 ES, Leiden, The Netherlands
| | - P H Van der Laan
- Department of Criminal Law and Criminology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
- Netherlands Institute for the Study of Crime and Law Enforcement, De Boelelaan 1077, 1081 HV, Amsterdam, The Netherlands
| | - E J A Scherder
- Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorstraat 7, 1081 BT, Amsterdam, The Netherlands
| | - R Marhe
- Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorstraat 7, 1081 BT, Amsterdam, The Netherlands
- VU University Medical Center Department of Child and Adolescent Psychiatry, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Impaired error awareness in healthy older adults: an age group comparison study. Neurobiol Aging 2020; 96:58-67. [PMID: 32949902 DOI: 10.1016/j.neurobiolaging.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022]
Abstract
Aging is associated with reduced conscious error detection but the brain regions mediating these changes have yet to be clarified. The present study examined the neural correlates of error awareness in healthy older adults. Sixteen older participants (mean age = 75.5 years) and sixteen younger controls (mean age = 27.9 years) were administered the error awareness task, a go/no-go response inhibition paradigm, in which participants were required to signal commission errors. Compared with young adults, older adults were significantly poorer at consciously detecting performance errors, despite both groups being matched for overall accuracy. This age-related behavioral effect was associated with differences in error-related dorsal anterior cingulate cortex and insula activation, with younger adults showing significant differences between errors made with versus without awareness compared with older adults. By contrast, an age-specific modulation in right inferior parietal lobule activation emerged, with increased right inferior parietal lobule activity occurring in older adults during errors made with awareness compared with younger adults. These findings are consistent with theories of age-related deterioration in error processing mechanisms.
Collapse
|
32
|
Error and post-error processing in children with attention-deficit/hyperactivity disorder: An electrical neuroimaging study. Clin Neurophysiol 2020; 131:2236-2249. [PMID: 32721844 DOI: 10.1016/j.clinph.2020.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Inaccurate and inconsistent response styles in attention-deficit/hyperactivity disorder (ADHD) have been observed in a wide variety of cognitive tasks, in line with regulatory deficit models of ADHD. Event-related potential (ERP) studies of error processing have provided evidence for these models, but are limited in specificity. We aimed to improve the isolation, localization and identification of error (self-monitoring and adaptive control) and post-error (implementation of cognitive control) processing in ADHD. METHODS ERPs were obtained for 46 ADHD and 51 typically developing (TD) children using the stop-signal task. Response-locked error (Ne and Pe) and stimulus-locked post-error (N2) components were compared between groups. Ne/Pe were corrected for preceding stimulus overlap and group differences were localized. RESULTS Ne was intact, while Pe amplitude was markedly reduced in children with ADHD (ηp2 = 0.14). Pe differences were localized in the dorsal posterior/midcingulate (BA31/24) cortex. While the TD group showed increased N2 amplitude in post-error trials (ηp2 = 0.24), localized in the left ventrolateral prefrontal cortex (VLPFC) and angular gyrus, the ADHD group did not. CONCLUSIONS Self-regulation deficits in ADHD are associated with later stages of error processing and subsequent implementation of cognitive control. SIGNIFICANCE We contribute to the literature by further specifying error processing deficits in ADHD.
Collapse
|
33
|
Wang L, Gu Y, Zhao G, Chen A. Error-related negativity and error awareness in a Go/No-go task. Sci Rep 2020; 10:4026. [PMID: 32132619 PMCID: PMC7055303 DOI: 10.1038/s41598-020-60693-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Error monitoring is crucial for the conscious error perception, however, the role of early error monitoring in error awareness remains unclear. Here, we investigated the relation between the ERN and error-related theta oscillations and the emergence of error awareness by conducting time- and phase-locked averaging analysis based on 4-8 Hz filtered data and phase-locked time frequency analysis. Results showed that while the ERN did not differ significantly between aware and unaware errors, theta power was stronger for aware errors than for unaware errors. Further, when continuous EEG was filtered outside the theta band, the ERN results confirmed this pattern. Additionally, when the non-phase-locked component was removed from continuous EEG, stronger theta power was still observed in aware errors compared to unaware errors. Collectively, these findings may suggest that (1) the ERN emerges from phase-locked component of theta band EEG activities; (2) the ERN engages in conscious error perception and serves the emerging error awareness through the activity of theta oscillations. Thus, early error monitoring is a precursor to error awareness, but this relationship is masked by high-frequency activity in aware errors when the ERN is not filtered outside the theta band in the Go/No-go task.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of cognition, brain and health, School of Education, HeNan University, Kaifeng, 475004, China
| | - Yan Gu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Guoxiang Zhao
- Faculty of Education, Henan Normal University, Xinxiang, 453007, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
34
|
Midline frontal and occipito-temporal activity during error monitoring in dyadic motor interactions. Cortex 2020; 127:131-149. [PMID: 32197149 DOI: 10.1016/j.cortex.2020.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Discrepancies between sensory predictions and action outcome are at the base of error coding. However, these phenomena have mainly been studied focussing on individual performance. Here, we explored EEG responses to motor prediction errors during a human-avatar interaction and show that Theta/Alpha activity of the frontal error-monitoring system works in phase with activity of the occipito-temporal node of the action observation network. Our motor interaction paradigm required healthy individuals to synchronize their reach-to-grasp movements with those of a virtual partner in conditions that did (Interactive) or did not require (Cued) movement prediction and adaptation to the partner's actions. Crucially, in 30% of the trials the virtual partner suddenly and unpredictably changed its movement trajectory thereby violating the human participant's expectation. These changes elicited error-related neuromarkers (ERN/Pe - Theta/Alpha modulations) over fronto-central electrodes during the Interactive condition. Source localization and connectivity analyses showed that the frontal Theta/Alpha activity induced by violations of the expected interactive movements was in phase with occipito-temporal Theta/Alpha activity. These results expand current knowledge about the neural correlates of on-line interpersonal motor interactions linking the frontal error-monitoring system to visual, body motion-related, responses.
Collapse
|
35
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Relationships between drinking quantity and frequency and behavioral and hippocampal BOLD responses during working memory performance involving allocentric spatial navigation in college students. Drug Alcohol Depend 2019; 201:236-243. [PMID: 31254750 PMCID: PMC7370814 DOI: 10.1016/j.drugalcdep.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Quantity and frequency of drinking may be used to effectively quantify the severity of alcohol-use. Drinking-severity has been related to neurocognitive impairments in such domains as spatial working memory (SWM). Youth drinking has been associated with altered neurofunctional underpinnings of SWM. The current study examined the relationship between drinking-severity and SWM processing. METHODS One-hundred-and-seventy college drinkers reported the maximum number of drinks in a 24 -h period in the last six-months (quantity) and average number of drinking weeks in the last six-months (frequency). All participants performed a virtual Morris Water Task during fMRI which included trials where the target platform was visible or hidden. RESULTS Greater quantity was associated with reduced SWM-related activity in the dorsolateral prefrontal cortex (F(1, 167) = 4.15, p = .04). Greater frequency was associated with reduced SWM-related activity in the hippocampus (F(1, 167) = 4.34, p = 0.039). Greater quantity was associated with longer search times (r = 0.21, p = .005) and greater platforms found (r = 0.19, p = .01) in VISIBLE trials. We did not find a relationship between drinking quantity or frequency and gender on SWM-related activity, although men found more platforms in both HIDDEN (F(1, 168) = 11.7, p = 0.0008) and VISIBLE (F(1, 168) = 23.0, p < .0001) trials compared to women. CONCLUSIONS Altered SWM-related hippocampal function relating to alcohol use in young adults raises questions regarding the impact on young adult health and the nature of the findings. Future studies should examine whether these differences may lead to cognitive deficits later in life.
Collapse
|
37
|
Pupil-Linked Arousal Responds to Unconscious Surprisal. J Neurosci 2019; 39:5369-5376. [PMID: 31061089 DOI: 10.1523/jneurosci.3010-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Pupil size under constant illumination reflects brain arousal state, and dilates in response to novel information, or surprisal. Whether this response can be observed regardless of conscious perception is still unknown. In the present study, male and female adult humans performed an implicit learning task across a series of three experiments. We measured pupil and brain-evoked potentials to stimuli that violated transition statistics but were not relevant to the task. We found that pupil size dilated following these surprising events, in the absence of awareness of transition statistics, and only when attention was allocated to the stimulus. These pupil responses correlated with central potentials, evoking an anterior cingulate origin. Arousal response to surprisal outside the scope of conscious perception points to the fundamental relationship between arousal and information processing and indicates that pupil size can be used to track the progression of implicit learning.SIGNIFICANCE STATEMENT Pupil size dilates following increase in mental effort, surprise, or more generally global arousal. However, whether this response arises as a conscious response or reflects a more fundamental mechanism outside the scrutiny of awareness is still unknown. Here, we demonstrate that unexpected changes in the environment, even when processed unconsciously and without being relevant to the task, lead to an increase in arousal levels as reflected by the pupillary response. Further, we show that the concurrent electrophysiological response shares similarities with mismatch negativity, suggesting the involvement of anterior cingulate cortex. All in all, our results establish novel insights about the mechanisms driving global arousal levels, and it provides new possibilities for reliably measuring unconscious processes.
Collapse
|
38
|
Respino M, Jaywant A, Kuceyeski A, Victoria LW, Hoptman MJ, Scult MA, Sankin L, Pimontel M, Liston C, Belvederi Murri M, Alexopoulos GS, Gunning FM. The impact of white matter hyperintensities on the structural connectome in late-life depression: Relationship to executive functions. Neuroimage Clin 2019; 23:101852. [PMID: 31077981 PMCID: PMC6514361 DOI: 10.1016/j.nicl.2019.101852] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/06/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) represent ischemic white matter damage in late-life depression (LLD) and are associated with cognitive control dysfunction. Understanding the impact of WMH on the structural connectivity of gray matter and the cognitive control correlates of WMH-related structural dysconnectivity can provide insight into the pathophysiology of LLD. METHODS We compared WMH burden and performance on clinical measures of cognitive control in patients with LLD (N = 44) and a control group of non-depressed older adults (N = 59). We used the Network Modification (NeMo) Tool to investigate the impact of WMH on structural dysconnectivity in specific gray matter regions, and how such connectivity was related to cognitive control functions. RESULTS Compared to the control group, LLD participants had greater WMH burden, poorer performance on Trail Making Test (TMT) A & B, and greater self-reported dysexecutive behavior on the Frosntal Systems Behavior Scale-Executive Function subscale (FrSBe-EF). Within the LLD group, disrupted connectivity in the left supramarginal gyrus, paracentral lobule, thalamus, and pallidum was associated with psychomotor slowing (TMT-A). Altered connectivity in the left supramarginal gyrus, paracentral lobule, precentral gyrus, postcentral gyrus, thalamus, and pallidum was associated with poor attentional set-shifting (TMT-B). A follow-up analysis that isolated set-shifting ability (TMT-B/A ratio) confirmed the association with dysconnectivity in the bilateral paracentral lobule, right thalamus, left precentral gyrus, postcentral gyrus, and pallidum; additionally, it revealed associations with dysconnectivity in the right posterior cingulate, and left anterior cingulate, middle frontal cortex, and putamen. CONCLUSIONS In LLD, WMH are associated with region-specific disruptions in cortical and subcortical gray matter areas involved in attentional aspects of cognitive control systems and sensorimotor processing, which in turn are associated with slower processing speed, and reduced attentional set-shifting. CLINICAL TRIALS REGISTRATION https://clinicaltrials.gov/ct2/show/NCT01728194.
Collapse
Affiliation(s)
- Matteo Respino
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Department of Rehabilitation Medicine, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Lindsay W Victoria
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Matthew J Hoptman
- Clinical Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Lindsey Sankin
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Monique Pimontel
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Feil Family Brain Mind Research Institute, Weill Cornell Medicine, 413 East 69(th) St, New York, NY 10021, USA
| | - Martino Belvederi Murri
- Department of Neuroscience, Ophthalmology, Genetics and Child-Maternal Science, University of Genoa, Corso Italia 22, 16145 Genova, Italy
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| |
Collapse
|
39
|
Porter BS, Hillman KL, Bilkey DK. Anterior cingulate cortex encoding of effortful behavior. J Neurophysiol 2019; 121:701-714. [DOI: 10.1152/jn.00654.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An animal’s ability to assess the value of their behaviors to minimize energy use while maximizing goal achievement is critical to its survival. The anterior cingulate cortex (ACC) has been previously shown to play a critical role in this behavioral optimization process, especially when animals are faced with effortful behaviors. In the present study, we designed a novel task to investigate the role of the ACC in evaluating behaviors that varied in effort but all resulted in the same outcome. We recorded single unit activity from the ACC as rats ran back and forth in a shuttle box that could be tilted to different tilt angles (0, 15, and 25°) to manipulate effort. Overall, a majority of ACC neurons showed selective firing to specific effort conditions. During effort expenditure, ACC units showed a consistent firing rate bias toward the downhill route compared with the more difficult uphill route, regardless of the tilt angle of the apparatus. Once rats completed a run and received their fixed reward, ACC units also showed a clear firing rate preference for the single condition with the highest relative value (25° downhill). To assess effort preferences, we used a choice version of our task and confirmed that rats prefer downhill routes to uphill routes when given the choice. Overall, these results help to elucidate the functional role of the ACC in monitoring and evaluating effortful behaviors that may then bias decision-making toward behaviors with the highest utility. NEW & NOTEWORTHY We developed a novel effort paradigm to investigate how the anterior cingulate cortex (ACC) responds to behaviors with varied degrees of physical effort and how changes in effort influence the ACC’s evaluation of behavioral outcomes. Our results provide evidence for a wider role of the ACC in its ability to motivate effortful behaviors and evaluate the outcome of multiple behaviors within an environment.
Collapse
Affiliation(s)
- Blake S. Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kristin L. Hillman
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David K. Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Leblanc-Sirois Y, Braun CMJ, Elie-Fortier J. Reaction Time of Erroneous Responses in the Go/No-Go Paradigm. Exp Psychol 2018; 65:314-321. [DOI: 10.1027/1618-3169/a000415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Reaction time (RT) of erroneous responses in go/no-go tasks tends to be shorter than RT of correct responses. An opposite difference has been reported ( Halperin, Wolf, Greenblatt, & Young, 1991 ) which could be attributed to differences in go trial probability, or to high memory demand. Two experiments aimed here to test these two explanations, a simultaneous matching task with low memory load (Experiment 1), and a sequential matching task with high memory load (Experiment 2). Go trial probability was also manipulated. Short false positive RT was obtained only in the sequential matching task with high go trial probability, while long false positive RT was obtained in the other three conditions. Low go trial probability and high memory load were both found to be sufficient, by themselves, to create long false positives attributable to confusion. Short false positives in the high go trial probability/low memory load condition were attributed to failure of response inhibition.
Collapse
Affiliation(s)
| | - Claude M. J. Braun
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | | |
Collapse
|
41
|
Urien L, Xiao Z, Dale J, Bauer EP, Chen Z, Wang J. Rate and Temporal Coding Mechanisms in the Anterior Cingulate Cortex for Pain Anticipation. Sci Rep 2018; 8:8298. [PMID: 29844413 PMCID: PMC5974274 DOI: 10.1038/s41598-018-26518-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/05/2018] [Indexed: 01/11/2023] Open
Abstract
Pain is a complex sensory and affective experience. Through its anticipation, animals can learn to avoid pain. Much is known about passive avoidance during a painful event; however, less is known about active pain avoidance. The anterior cingulate cortex (ACC) is a critical hub for affective pain processing. However, there is currently no mechanism that links ACC activities at the cellular level with behavioral anticipation or avoidance. Here we asked whether distinct populations of neurons in the ACC can encode information for pain anticipation. We used tetrodes to record from ACC neurons during a conditioning assay to train rats to avoid pain. We found that in rats that successfully avoid acute pain episodes, neurons that responded to pain shifted their firing rates to an earlier time, whereas neurons that responded to the anticipation of pain increased their firing rates prior to noxious stimulation. Furthermore, we found a selected group of neurons that shifted their firing from a pain-tuned response to an anticipatory response. Unsupervised learning analysis of ensemble spike activity indicates that temporal spiking patterns of ACC neurons can indeed predict the onset of pain avoidance. These results suggest rate and temporal coding schemes in the ACC for pain avoidance.
Collapse
Affiliation(s)
- Louise Urien
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, New York, 10016, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA.,Department of Instrument Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jahrane Dale
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, New York, 10016, USA
| | - Elizabeth P Bauer
- Biology Department, Barnard College Columbia University, New York, New York, 10027, USA
| | - Zhe Chen
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, New York, 10016, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, 10016, USA.
| |
Collapse
|
42
|
Brand J, Michels L, Bakker R, Hepp-Reymond MC, Kiper D, Morari M, Eng K. Neural correlates of visuomotor adjustments during scaling of human finger movements. Eur J Neurosci 2018; 46:1717-1729. [PMID: 28503804 DOI: 10.1111/ejn.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/31/2023]
Abstract
Visually guided finger movements include online feedback of current effector position to guide target approach. This visual feedback may be scaled or otherwise distorted by unpredictable perturbations. Although adjustments to visual feedback scaling have been studied before, the underlying brain activation differences between upscaling (visual feedback larger than real movement) and downscaling (feedback smaller than real movement) are currently unknown. Brain activation differences between upscaling and downscaling might be expected because within-trial adjustments during upscaling require corrective backwards accelerations, whereas correcting for downscaling requires forward accelerations. In this behavioural and fMRI study we investigated adjustments during up- and downscaling in a target-directed finger flexion-extension task with real-time visual feedback. We found that subjects made longer and more complete within-trial corrections for downscaling perturbations than for upscaling perturbations. The finger task activated primary motor (M1) and somatosensory (S1) areas, premotor and parietal regions, basal ganglia, and cerebellum. General scaling effects were seen in the right pre-supplementary motor area, dorsal anterior cingulate cortex, inferior parietal lobule, and dorsolateral prefrontal cortex. Stronger activations for down- than for upscaling were observed in M1, supplementary motor area (SMA), S1 and anterior cingulate cortex. We argue that these activation differences may reflect differing online correction for upscaling vs. downscaling during finger flexion-extension.
Collapse
Affiliation(s)
- Johannes Brand
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.,Centre for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Romy Bakker
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marie-Claude Hepp-Reymond
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Daniel Kiper
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Manfred Morari
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
| | - Kynan Eng
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Separating the Idea from the Action: A sLORETA Study. Brain Topogr 2017; 31:228-241. [DOI: 10.1007/s10548-017-0584-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/05/2017] [Indexed: 11/28/2022]
|
44
|
Adamczyk P, Wyczesany M, Domagalik A, Daren A, Cepuch K, Błądziński P, Cechnicki A, Marek T. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study. Neuroimage Clin 2017; 15:525-540. [PMID: 28652967 PMCID: PMC5473647 DOI: 10.1016/j.nicl.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.
Collapse
Key Words
- ABS, absurd/nonsensical punchline
- ACC, anterior cingulate cortex
- BA, Brodmann's area
- CON, healthy controls/control group
- Communication skills
- EEG, electroencephalography
- ERPs, EEG event-related potentials
- FDR, False Discovery Rate
- FUN, funny punchline
- FWHM, full-width-at-half-maximum
- Figurative meaning
- Functional magnetic resonance imaging
- GLM, general linear model
- Humor
- IFG, inferior frontal gyrus
- IPL, Inferior Parietal Lobule
- ISI, interstimulus-interval
- L, left hemisphere
- MFG, medial frontal gyrus
- MNI, Montreal Neurological Institute coordinates
- MOG, middle occipital gyrus
- MRI, magnetic resonance imaging
- MTG, middle temporal gyrus
- MoCA, Montreal Cognitive Assessment
- NEU, neutral/unfunny punchline
- PANSS, Positive and Negative Syndrome Scale
- PFC, prefrontal cortex
- R, right hemisphere
- RHLB, Right Hemisphere Language Battery
- RT, reaction time
- SCH, schizophrenia outpatients/clinical group
- SD, standard deviations
- SEM, standard error of the mean
- SFG, Superior Frontal Gyrus
- SOA, stimulus onset asynchrony
- STG, superior temporal gyrus
- Schizophrenia
- TP, temporal pole
- TPJ, temporoparietal junction
- ToM, theory of mind.
- dACC, dorsal anterior cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- dmMFG, dorsomedial Middle Frontal Gyrus
- fMRI, functional magnetic resonance imaging
- fNIRS, functional near-infrared spectroscopy
- k, number of voxels in analyzed cluster size
- ns, non-significant group difference
- pSTG, posterior Superior Temporal Gyrus
- sLORETA, standardized low resolution brain electromagnetic tomography analysis
Collapse
Affiliation(s)
- Przemysław Adamczyk
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland.
| | - Miroslaw Wyczesany
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Domagalik
- Neurobiology Department, The Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Daren
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland
| | - Kamil Cepuch
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Piotr Błądziński
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland
| | - Tadeusz Marek
- Neurobiology Department, The Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
45
|
Rustemeier M, Koch B, Schwarz M, Bellebaum C. Processing of Positive and Negative Feedback in Patients with Cerebellar Lesions. THE CEREBELLUM 2017. [PMID: 26208703 DOI: 10.1007/s12311-015-0702-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is well accepted that the cerebellum plays a crucial role in the prediction of the sensory consequences of movements. Recent findings of altered error processing in patients with selective cerebellar lesions led to the hypothesis that feedback processing and feedback-based learning might be affected by cerebellar damage as well. Thus, the present study investigated learning from and processing of positive and negative feedback in 12 patients with selective cerebellar lesions and healthy control subjects. Participants performed a monetary feedback learning task. The processing of positive and negative feedback was assessed by means of event-related potentials (ERPs) during the learning task and during a separate task in which the frequencies of positive and negative feedback were balanced. Patients did not show a general learning deficit compared to controls. Relative to the control group, however, patients with cerebellar lesions showed significantly higher ERP difference wave amplitudes (rewards-losses) in a time window between 250 and 450 ms after feedback presentation, possibly indicating impaired outcome prediction. The analysis of the original waveforms suggested that patients and controls primarily differed in their pattern of feedback-related negativity and P300 amplitudes. Our results add to recent findings on altered performance monitoring associated with cerebellar damage and demonstrate, for the first time, alterations of feedback processing in patients with cerebellar damage. Unaffected learning performance appears to suggest that chronic cerebellar lesions can be compensated in behaviour.
Collapse
Affiliation(s)
- Martina Rustemeier
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany. .,Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital Bochum, Ruhr University Bochum, Alexandrinenstrasse 1-3, 44791, Bochum, Germany.
| | - Benno Koch
- Department of Neurology, Klinikum Dortmund, Beurhausstrasse 40, 44137, Dortmund, Germany
| | - Michael Schwarz
- Department of Neurology, Klinikum Dortmund, Beurhausstrasse 40, 44137, Dortmund, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
46
|
Clawson A, Clayson PE, Keith CM, Catron C, Larson MJ. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis. Biol Psychol 2017; 124:87-99. [PMID: 28143802 DOI: 10.1016/j.biopsycho.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
Cognitive control includes higher-level cognitive processes used to evaluate environmental conflict. Given the importance of cognitive control in regulating behavior, understanding the developmental course of these processes may contribute to a greater understanding of normal and abnormal development. We examined behavioral (response times [RTs], error rates) and event-related potential data (N2, error-related negativity [ERN], correct-response negativity [CRN], error positivity [Pe]) during a flanker task in cross-sectional groups of 45 youth (ages 8-18), 52 younger adults (ages 20-28), and 58 older adults (ages 56-91). Younger adults displayed the most efficient processing, including significantly reduced CRN and N2 amplitude, increased Pe amplitude, and significantly better task performance than youth or older adults (e.g., faster RTs, fewer errors). Youth displayed larger CRN and N2, attenuated Pe, and significantly worse task performance than younger adults. Older adults fell either between youth and younger adults (e.g., CRN amplitudes, N2 amplitudes) or displayed neural and behavioral performance that was similar to youth (e.g., Pe amplitudes, error rates). These findings point to underdeveloped neural and cognitive processes early in life and reduced efficiency in older adulthood, contributing to poor implementation and modulation of cognitive control in response to conflict. Thus, cognitive control processing appears to reach peak performance and efficiency in younger adulthood, marked by improved task performance with less neural activation.
Collapse
Affiliation(s)
- Ann Clawson
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Peter E Clayson
- Department of Psychology, Brigham Young University, Provo, UT, United States; Department of Psychology, University of California-Los Angeles, Los Angeles, CA, United States
| | - Cierra M Keith
- Department of Psychology, Saint Louis University, St. Louis, MO, United States
| | - Christina Catron
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Michael J Larson
- Department of Psychology, Brigham Young University, Provo, UT, United States; Neuroscience Center, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
47
|
Buckley RF, Laming G, Chen LPE, Crole A, Hester R. Assessing Error Awareness as a Mediator of the Relationship between Subjective Concerns and Cognitive Performance in Older Adults. PLoS One 2016; 11:e0166315. [PMID: 27832173 PMCID: PMC5104449 DOI: 10.1371/journal.pone.0166315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives Subjective concerns of cognitive decline (SCD) often manifest in older adults who exhibit objectively normal cognitive functioning. This subjective-objective discrepancy is counter-intuitive when mounting evidence suggests that subjective concerns relate to future clinical progression to Alzheimer’s disease, and so possess the potential to be a sensitive early behavioural marker of disease. In the current study, we aimed to determine whether individual variability in conscious awareness of errors in daily life might mediate this subjective-objective relationship. Methods 67 cognitively-normal older adults underwent cognitive, SCD and mood tests, and an error awareness task. Results Poorer error awareness was not found to mediate a relationship between SCD and objective performance. Furthermore, non-clinical levels of depressive symptomatology were a primary driving factor of SCD and error awareness, and significantly mediated a relationship between the two. Discussion We were unable to show that poorer error awareness mediates SCD and cognitive performance in older adults. Our study does suggest, however, that underlying depressive symptoms influence both poorer error awareness and greater SCD severity. Error awareness is thus not recommended as a proxy for SCD, as reduced levels of error awareness do not seem to be reflected by greater SCD.
Collapse
Affiliation(s)
- Rachel F. Buckley
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Gemma Laming
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Li Peng Evelyn Chen
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Alice Crole
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Robert Hester
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
48
|
Malpas CB, Saling MM, Velakoulis D, Desmond P, O'Brien TJ. Differential Functional Connectivity Correlates of Cerebrospinal Fluid Biomarkers in Dementia of the Alzheimer's Type. NEURODEGENER DIS 2015; 16:147-51. [DOI: 10.1159/000438924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
|
49
|
Sellaro R, van Leusden JWR, Tona KD, Verkuil B, Nieuwenhuis S, Colzato LS. Transcutaneous Vagus Nerve Stimulation Enhances Post-error Slowing. J Cogn Neurosci 2015. [DOI: 10.1162/jocn_a_00851] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
People tend to slow down after they commit an error, a phenomenon known as post-error slowing (PES). It has been proposed that slowing after negative feedback or unforeseen errors is linked to the activity of the locus coeruleus–norepinephrine (LC–NE) system, but there is little direct evidence for this hypothesis. Here, we assessed the causal role of the noradrenergic system in modulating PES by applying transcutaneous vagus nerve stimulation (tVNS), a new noninvasive and safe method to stimulate the vagus nerve and to increase NE concentrations in the brain. A single-blind, sham-controlled, between-group design was used to assess the effect of tVNS in healthy young volunteers (n = 40) during two cognitive tasks designed to measure PES. Results showed increased PES during active tVNS, as compared with sham stimulation. This effect was of similar magnitude for the two tasks. These findings provide evidence for an important role of the noradrenergic system in PES.
Collapse
|
50
|
Larson MJ, Clayson PE, Primosch M, Leyton M, Steffensen SC. The Effects of Acute Dopamine Precursor Depletion on the Cognitive Control Functions of Performance Monitoring and Conflict Processing: An Event-Related Potential (ERP) Study. PLoS One 2015; 10:e0140770. [PMID: 26492082 PMCID: PMC4619587 DOI: 10.1371/journal.pone.0140770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL) and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR) and phenylalanine (PHE) on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT), error rates, the N450, an event-related potential (ERP) index of conflict monitoring, the conflict slow potential (conflict SP), an ERP index of conflict resolution, and the error-related negativity (ERN) and error positivity (Pe), ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD) or balanced (BAL) mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.
Collapse
Affiliation(s)
- Michael J. Larson
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Neuroscience Center, Brigham Young University, Provo, Utah, United States of America, 84602
- * E-mail:
| | - Peter E. Clayson
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America, 90095
| | - Mark Primosch
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave. W., Montreal, QC, Canada, H3A 1A1
| | - Scott C. Steffensen
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Neuroscience Center, Brigham Young University, Provo, Utah, United States of America, 84602
| |
Collapse
|