1
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Li Y, Liu Y, Zhao X, Ren Y, Hu W, Yang Z, Yang J. Static and Temporal Dynamic in Functional Connectivity of Large-scale Brain Networks During Acute Stress Regulate Stress Resilience Differently: The Promotion Role of Trait Resilience. Neuroscience 2024; 551:132-142. [PMID: 38763226 DOI: 10.1016/j.neuroscience.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Stress resilience has been largely regarded as a process in which individuals actively cope with and recover from stress. Over the past decade, the emergence of large-scale brain networks has provided a new perspective for the study of the neural mechanisms of stress. However, the role of inter-network functional-connectivity (FC) and its temporal fluctuations in stress resilience is still unclear. To bridge this knowledge gap, seventy-seven participants (age, 17-22 years, 37 women) were recruited for a ScanSTRESS brain imaging study. A static perspective was initially adopted, using changes in FC that obtained from stress vs. control condition during the entire stress induction phase as a static indicator. Further, changes in FC between different stress runs were analyzed as an index of temporal dynamics. Stress resilience was gauged using salivary cortisol levels, while trait resilience was measured via behavioral-activation-system (BAS) sensitivity. Results found that, for the static index, enhanced FC between the salience-network (SN), default-mode-network (DMN) and limbic-network (LBN) during acute stress could negatively signal stress resilience. For the temporal dynamics index, FC among the dorsal-attention-network (DAN), central-executive-network (CEN) and visual-network (VN) decreased significantly during repeated stress induction. Moreover, the decline of FC positively signaled stress resilience, and this relationship only exist in people with high BAS. The current research elucidates the intricate neural underpinnings of stress resilience, offering insights into the adaptive mechanisms underlying effective stress responses.
Collapse
Affiliation(s)
- Yizhuo Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Zijian Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Borchers LR, Gifuni AJ, Ho TC, Kirshenbaum JS, Gotlib IH. Threat- and reward-related brain circuitry, perceived stress, and anxiety in adolescents during the COVID-19 pandemic: a longitudinal investigation. Soc Cogn Affect Neurosci 2024; 19:nsae040. [PMID: 38874967 PMCID: PMC11219304 DOI: 10.1093/scan/nsae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The Coronavirus disease (COVID-19) pandemic led to heightened anxiety in adolescents. The basolateral amygdala (BLA) and the nucleus accumbens (NAcc) are implicated in response to stress and may contribute to anxiety. The role of threat- and reward-related circuitry in adolescent anxiety during the COVID-19 pandemic, however, is not clear. Ninety-nine adolescents underwent resting-state fMRI ∼1 year before the pandemic. Following shelter-in-place orders, adolescents reported their perceived stress and, 1 month later, their anxiety. Generalized multivariate analyses identified BLA and NAcc seed-based whole-brain functional connectivity maps with perceived stress. In the resulting significant clusters, we examined the association between seed-based connectivityand subsequent anxiety. Perceived stress was associated with bilateral BLA and NAcc connectivity across distributed clusters that included prefrontal, limbic, temporal, and cerebellar regions. Several NAcc connectivity clusters located in ventromedial prefrontal, parahippocampal, and temporal cortices were positively associated with anxiety; NAcc connectivity with the inferior frontal gyrus was negatively associated. BLA connectivity was not associated with anxiety. These results underscore the integrative role of the NAcc in responding to acute stressors and its relation to anxiety in adolescents. Elucidating the involvement of subcortical-cortical circuitry in adolescents' capacity to respond adaptively to environmental challenges can inform treatment for anxiety-related disorders.
Collapse
Affiliation(s)
- Lauren R Borchers
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Anthony J Gifuni
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Psychiatry Department and Douglas Mental Health University Institute, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Jaclyn S Kirshenbaum
- Department of Psychiatry, Columbia University, New York, NY 10027, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
4
|
Ironside M, Duda JM, Moser AD, Holsen LM, Zuo CS, Du F, Perlo S, Richards CE, Chen X, Nickerson LD, Null KE, Esfand SM, Alexander MM, Crowley DJ, Lauze M, Misra M, Goldstein JM, Pizzagalli DA. Association of Lower Rostral Anterior Cingulate GABA+ and Dysregulated Cortisol Stress Response With Altered Functional Connectivity in Young Adults With Lifetime Depression: A Multimodal Imaging Investigation of Trait and State Effects. Am J Psychiatry 2024; 181:639-650. [PMID: 38685857 PMCID: PMC11216878 DOI: 10.1176/appi.ajp.20230382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Preclinical work suggests that excess glucocorticoids and reduced cortical γ-aminobutyric acid (GABA) may affect sex-dependent differences in brain regions implicated in stress regulation and depressive phenotypes. The authors sought to address a critical gap in knowledge, namely, how stress circuitry is functionally affected by glucocorticoids and GABA in current or remitted major depressive disorder (MDD). METHODS Multimodal imaging data were collected from 130 young adults (ages 18-25), of whom 44 had current MDD, 42 had remitted MDD, and 44 were healthy comparison subjects. GABA+ (γ-aminobutyric acid and macromolecules) was assessed using magnetic resonance spectroscopy, and task-related functional MRI data were collected under acute stress and analyzed using data-driven network modeling. RESULTS Across modalities, trait-related abnormalities emerged. Relative to healthy comparison subjects, both clinical groups were characterized by lower rostral anterior cingulate cortex (rACC) GABA+ and frontoparietal network amplitude but higher amplitude in salience and stress-related networks. For the remitted MDD group, differences from the healthy comparison group emerged in the context of elevated cortisol levels, whereas the MDD group had lower cortisol levels than the healthy comparison group. In the comparison group, frontoparietal and stress-related network connectivity was positively associated with cortisol level (highlighting putative top-down regulation of stress), but the opposite relationship emerged in the MDD and remitted MDD groups. Finally, rACC GABA+ was associated with stress-induced changes in connectivity between overlapping default mode and salience networks. CONCLUSIONS Lifetime MDD was characterized by reduced rACC GABA+ as well as dysregulated cortisol-related interactions between top-down control (frontoparietal) and threat (task-related) networks. These findings warrant further investigation of the role of GABA in the vulnerability to and treatment of MDD.
Collapse
Affiliation(s)
- Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Jessica M. Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Amelia D. Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Laura M. Holsen
- Harvard Medical School, Boston, Massachusetts, USA
- Divison of Women’s Health, Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chun S. Zuo
- Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Fei Du
- Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christine E. Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Xi Chen
- Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Lisa D. Nickerson
- Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Kaylee E. Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Shiba M. Esfand
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Madeline M. Alexander
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - David J. Crowley
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Meghan Lauze
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jill M. Goldstein
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diego A. Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
5
|
Sherman BE, Huang I, Wijaya EG, Turk-Browne NB, Goldfarb EV. Acute Stress Effects on Statistical Learning and Episodic Memory. J Cogn Neurosci 2024; 36:1741-1759. [PMID: 38713878 PMCID: PMC11223726 DOI: 10.1162/jocn_a_02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Stress is widely considered to negatively impact hippocampal function, thus impairing episodic memory. However, the hippocampus is not merely the seat of episodic memory. Rather, it also (via distinct circuitry) supports statistical learning. On the basis of rodent work suggesting that stress may impair the hippocampal pathway involved in episodic memory while sparing or enhancing the pathway involved in statistical learning, we developed a behavioral experiment to investigate the effects of acute stress on both episodic memory and statistical learning in humans. Participants were randomly assigned to one of three conditions: stress (socially evaluated cold pressor) immediately before learning, stress ∼15 min before learning, or no stress. In the learning task, participants viewed a series of trial-unique scenes (allowing for episodic encoding of each image) in which certain scene categories reliably followed one another (allowing for statistical learning of associations between paired categories). Memory was assessed 24 hr later to isolate stress effects on encoding/learning rather than retrieval. We found modest support for our hypothesis that acute stress can amplify statistical learning: Only participants stressed ∼15 min in advance exhibited reliable evidence of learning across multiple measures. Furthermore, stress-induced cortisol levels predicted statistical learning retention 24 hr later. In contrast, episodic memory did not differ by stress condition, although we did find preliminary evidence that acute stress promoted memory for statistically predictable information and attenuated competition between statistical and episodic encoding. Together, these findings provide initial insights into how stress may differentially modulate learning processes within the hippocampus.
Collapse
|
6
|
Rosada C, Lipka R, Metz S, Otte C, Heekeren H, Wingenfeld K. Effects of stress-related neuromodulators on amygdala and hippocampus resting state functional connectivity. J Psychopharmacol 2024; 38:604-614. [PMID: 38902928 PMCID: PMC11290027 DOI: 10.1177/02698811241260972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND The human stress response is characterized by increases in neuromodulators, including norepinephrine (NE) and cortisol. Both neuromodulators can enter the brain and affect neurofunctional responses. Two brain areas associated with stress are the amygdala and the hippocampus. The precise influence of NE and cortisol on the amygdala and hippocampal resting state functional connectivity (RSFC) is poorly understood. AIMS To investigate the influence of NE and cortisol on the amygdala and hippocampal RSFC. METHODS We recruited 165 participants who received 10 mg yohimbine and/or 10 mg hydrocortisone in a randomized, placebo-controlled design. With seed-based analyses, we compared RSFC of the hippocampus and amygdala separately between the three groups that received medication versus placebo. RESULTS We found no differences between yohimbine and placebo condition or between hydrocortisone and placebo condition regarding amygdala or hippocampal FC. Compared with placebo, the yohimbine/hydrocortisone condition showed increased amygdala and hippocampal RSFC with the cerebellum. Also, they had increased hippocampal RSFC with the amygdala and cerebral white matter. DISCUSSION The group with elevated NE and cortisol showed significantly increased RSFC between the amygdala, hippocampus, and cerebellum compared to placebo. These three brain areas are involved in associative learning and emotional memory, suggesting a critical role for this network in the human stress response. Our results show that NE and cortisol together may influence the strength of this association. Compared to placebo, we found no differences in the groups receiving only one medication, suggesting that increasing one neuromodulator alone may not induce differences in neurofunctional responses. The study procedure has been registered at clinicaltrials.gov (ID: NCT04359147).
Collapse
Affiliation(s)
- Catarina Rosada
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Renée Lipka
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sophie Metz
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Institute of Medical Psychology, Charité Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZPG (German Center for Mental Health), Berlin, Germany
| | | | - Katja Wingenfeld
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZPG (German Center for Mental Health), Berlin, Germany
| |
Collapse
|
7
|
Butler ER, Samia N, White S, Gratton C, Nusslock R. Neuroimmune mechanisms connecting violence with internalizing symptoms: A high-dimensional multimodal mediation analysis. Hum Brain Mapp 2024; 45:e26615. [PMID: 38339956 DOI: 10.1002/hbm.26615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Violence exposure is associated with worsening anxiety and depression symptoms among adolescents. Mechanistically, social defeat stress models in mice indicate that violence increases peripherally derived macrophages in threat appraisal regions of the brain, which have been causally linked to anxious behavior. In the present study, we investigate if there is a path connecting violence exposure with internalizing symptom severity through peripheral inflammation and amygdala connectivity. Two hundred and thirty-three adolescents, ages 12-15, from the Chicago area completed clinical assessments, immune assays and neuroimaging. A high-dimensional multimodal mediation model was fit, using violence exposure as the predictor, 12 immune variables as the first set of mediators and 288 amygdala connectivity variables as the second set, and internalizing symptoms as the primary outcome measure. 56.2% of the sample had been exposed to violence in their lifetime. Amygdala-hippocampus connectivity mediated the association between violence exposure and internalizing symptoms (ζ ̂ Hipp π ̂ Hipp = 0.059 $$ {\hat{\zeta}}_{\mathrm{Hipp}}{\hat{\pi}}_{\mathrm{Hipp}}=0.059 $$ ,95 % CI boot = 0.009,0.134 $$ 95\%{\mathrm{CI}}_{\mathrm{boot}}=\left[\mathrm{0.009,0.134}\right] $$ ). There was no evidence that inflammation or inflammation and amygdala connectivity in tandem mediated the association. Considering the amygdala and the hippocampus work together to encode, consolidate, and retrieve contextual fear memories, violence exposure may be associated with greater connectivity between the amygdala and the hippocampus because it could be adaptive for the amygdala and the hippocampus to be in greater communication following violence exposure to facilitate evaluation of contextual threat cues. Therefore, chronic elevations of amygdala-hippocampal connectivity may indicate persistent vigilance that leads to internalizing symptoms.
Collapse
Affiliation(s)
- Ellyn R Butler
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - Noelle Samia
- Department of Statistics and Data Science, Northwestern University, Evanston, Illinois, USA
| | - Stuart White
- Nebraska Children and Families Foundation, Lincoln, Nebraska, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Lipka R, Rosada C, Metz S, Hellmann-Regen J, Heekeren H, Wingenfeld K. No changes in triple network engagement following (combined) noradrenergic and glucocorticoid stimulation in healthy men. Soc Cogn Affect Neurosci 2024; 19:nsad073. [PMID: 38123464 PMCID: PMC10868128 DOI: 10.1093/scan/nsad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Successful recovery from stress is integral for adaptive responding to the environment. At a cellular level, this involves (slow genomic) actions of cortisol, which alter or reverse rapid effects of noradrenaline and cortisol associated with acute stress. At the network scale, stress recovery is less well understood but assumed to involve changes within salience-, executive control-, and default mode networks. To date, few studies have investigated this phase and directly tested these assumptions. Here, we present results from a double-blind, placebo-controlled, between-group paradigm (N = 165 healthy males) administering 10 mg oral yohimbine and/or 10 mg oral hydrocortisone two hours prior to resting state scanning. We found no changes in within-network connectivity of the three networks, both after single and combined drug administration. We further report the results of Bayesian parameter inference to provide evidence for the null hypothesis. Our results contrast with previous findings, which may be attributable to systematic differences between paradigms, highlighting the need to isolate paradigm-specific effects from those related to stress.
Collapse
Affiliation(s)
- Renée Lipka
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
- Humboldt Universität zu Berlin, Berlin School of Mind and Brain, Berlin 10099, Germany
| | - Catarina Rosada
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| | - Sophie Metz
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
- Charité—Universitätsmedizin Berlin, Institute of Medical Psychology, Campus Mitte, Berlin 10117, Germany
| | - Julian Hellmann-Regen
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| | - Hauke Heekeren
- Universität Hamburg, Executive University Board, Hamburg 20148, Germany
| | - Katja Wingenfeld
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| |
Collapse
|
9
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
10
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal Mechanisms Support Cortisol-Induced Memory Enhancements. J Neurosci 2023; 43:7198-7212. [PMID: 37813570 PMCID: PMC10601369 DOI: 10.1523/jneurosci.0916-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, University of Pennsylvania, Philadelphia 19104
| | - Bailey B Harris
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
| | - Elizabeth V Goldfarb
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut 06477
| |
Collapse
|
11
|
Kogler L, Müller VI, Moser E, Windischberger C, Gur RC, Habel U, Eickhoff SB, Derntl B. Testosterone and the Amygdala's Functional Connectivity in Women and Men. J Clin Med 2023; 12:6501. [PMID: 37892639 PMCID: PMC10607739 DOI: 10.3390/jcm12206501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The amygdala contains androgen receptors and is involved in various affective and social functions. An interaction between testosterone and the amygdala's functioning is likely. We investigated the amygdala's resting-state functional connectivity (rsFC) network in association with testosterone in 94 healthy young adult women and men (final data available for analysis from 42 women and 39 men). Across the whole sample, testosterone was positively associated with the rsFC between the right amygdala and the right middle occipital gyrus, and it further predicted lower agreeableness scores. Significant sex differences appeared for testosterone and the functional connectivity between the right amygdala and the right superior frontal gyrus (SFG), showing higher testosterone levels with lower connectivity in women. Sex further predicted the openness and agreeableness scores. Our results show that testosterone modulates the rsFC between brain areas involved in affective processing and executive functions. The data indicate that the cognitive control of the amygdala via the frontal cortex is dependent on the testosterone levels in a sex-specific manner. Testosterone seems to express sex-specific patterns (1) in networks processing affect and cognition, and (2) in the frontal down-regulation of the amygdala. The sex-specific coupling between the amygdala and the frontal cortex in interaction with the hormone levels may drive sex-specific differences in a variety of behavioral phenomena that are further associated with psychiatric illnesses that show sex-specific prevalence rates.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany;
- German Center for Mental Health (DZPG) Partner Site, 72076 Tübingen, Germany
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Centre Jülich, 52425 Jülich, Germany; (V.I.M.); (S.B.E.)
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ewald Moser
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.M.); (C.W.)
| | - Christian Windischberger
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.M.); (C.W.)
| | - Ruben C. Gur
- Brain Behavior Laboratory and Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
- JARA BRAIN Institute I, Translational Brain Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Centre Jülich, 52425 Jülich, Germany; (V.I.M.); (S.B.E.)
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany;
- German Center for Mental Health (DZPG) Partner Site, 72076 Tübingen, Germany
- LEAD Graduate School and Network, University of Tübingen, Walter-Simon-Straße 12, 72074 Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction (IMPRS-MMFD), Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Kühnel A, Hagenberg J, Knauer-Arloth J, Ködel M, Czisch M, Sämann PG, Binder EB, Kroemer NB. Stress-induced brain responses are associated with BMI in women. Commun Biol 2023; 6:1031. [PMID: 37821711 PMCID: PMC10567923 DOI: 10.1038/s42003-023-05396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Overweight and obesity are associated with altered stress reactivity and increased inflammation. However, it is not known whether stress-induced changes in brain function scale with BMI and if such associations are driven by peripheral cytokines. Here, we investigate multimodal stress responses in a large transdiagnostic sample using predictive modeling based on spatio-temporal profiles of stress-induced changes in activation and functional connectivity. BMI is associated with increased brain responses as well as greater negative affect after stress and individual response profiles are associated with BMI in females (pperm < 0.001), but not males. Although stress-induced changes reflecting BMI are associated with baseline cortisol, there is no robust association with peripheral cytokines. To conclude, alterations in body weight and energy metabolism might scale acute brain responses to stress more strongly in females compared to males, echoing observational studies. Our findings highlight sex-dependent associations of stress with differences in endocrine markers, largely independent of peripheral inflammation.
Collapse
Affiliation(s)
- Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany.
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Jonas Hagenberg
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Janine Knauer-Arloth
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- German Center for Mental Health, Tübingen, Germany.
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
- German Center for Mental Health, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Kraaijenvanger EJ, Banaschewski T, Eickhoff SB, Holz NE. A coordinate-based meta-analysis of human amygdala connectivity alterations related to early life adversities. Sci Rep 2023; 13:16541. [PMID: 37783710 PMCID: PMC10545708 DOI: 10.1038/s41598-023-43057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
By affecting core neurobiological systems early in development, early life adversities (ELAs) might confer latent vulnerability to future psychopathologies. This coordinate-based meta-analysis aims to identify significant convergent alterations in functional connectivity of the amygdala related to ELAs across resting-state and task-based fMRI-studies. Five electronic databases were systematically searched until 22 October 2020, retrieving 49 eligible studies (n = 3162 participants). Convergent alterations in functional connectivity related to ELAs between the amygdala and the anterior cingulate cortex (ACC) and left hippocampus were found. Sub-analyses based on hemisphere and direction showed that connectivity seeded in the right amygdala was affected and, moreover, revealed that connectivity with ACC was decreased. Analyses based on paradigm and age showed that amygdala-ACC coupling was altered during resting state and that amygdala-left hippocampus connectivity was mostly affected during task-based paradigms and in adult participants. While both regions showed altered connectivity during emotion processing and following adverse social postnatal experiences such as maltreatment, amygdala-ACC coupling was mainly affected when ELAs were retrospectively assessed through self-report. We show that ELAs are associated with altered functional connectivity of the amygdala with the ACC and hippocampus. As such, ELAs may embed latent vulnerability to future psychopathologies by systematically affecting important neurocognitive systems.
Collapse
Affiliation(s)
- Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
- Donders Institute, Radboud University, Nijmegen, The Netherlands.
- Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Ai D, Chen L, Xie J, Cheng L, Zhang F, Luan Y, Li Y, Hou S, Sun F, Xia LC. Identifying local associations in biological time series: algorithms, statistical significance, and applications. Brief Bioinform 2023; 24:bbad390. [PMID: 37930023 DOI: 10.1093/bib/bbad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Local associations refer to spatial-temporal correlations that emerge from the biological realm, such as time-dependent gene co-expression or seasonal interactions between microbes. One can reveal the intricate dynamics and inherent interactions of biological systems by examining the biological time series data for these associations. To accomplish this goal, local similarity analysis algorithms and statistical methods that facilitate the local alignment of time series and assess the significance of the resulting alignments have been developed. Although these algorithms were initially devised for gene expression analysis from microarrays, they have been adapted and accelerated for multi-omics next generation sequencing datasets, achieving high scientific impact. In this review, we present an overview of the historical developments and recent advances for local similarity analysis algorithms, their statistical properties, and real applications in analyzing biological time series data. The benchmark data and analysis scripts used in this review are freely available at http://github.com/labxscut/lsareview.
Collapse
Affiliation(s)
- Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lulu Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiemin Xie
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| | - Longwei Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Zhang
- Shenwan Hongyuan Securities Co. Ltd., Shanghai 200031, China
| | - Yihui Luan
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Yang Li
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, California, 90007, USA
| | - Li Charlie Xia
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Antonoudiou P, Stone B, Colmers PLW, Evans-Strong A, Walton N, Maguire J. Influence of chronic stress on network states governing valence processing: Potential relevance to the risk for psychiatric illnesses. J Neuroendocrinol 2023; 35:e13274. [PMID: 37186481 PMCID: PMC11025365 DOI: 10.1111/jne.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Stress is a major risk factor for psychiatric illnesses and understanding the mechanisms through which stress disrupts behavioral states is imperative to understanding the underlying pathophysiology of mood disorders. Both chronic stress and early life stress alter valence processing, the process of assigning value to sensory inputs and experiences (positive or negative), which determines subsequent behavior and is essential for emotional processing and ultimately survival. Stress disrupts valence processing in both humans and preclinical models, favoring negative valence processing and impairing positive valence processing. Valence assignment involves neural computations performed in emotional processing hubs, including the amygdala, prefrontal cortex, and ventral hippocampus, which can be influenced by neuroendocrine mediators. Oscillations within and between these regions are critical for the neural computations necessary to perform valence processing functions. Major advances in the field have demonstrated a role for oscillatory states in valence processing under physiological conditions and emerging studies are exploring how these network states are altered under pathophysiological conditions and impacted by neuroendocrine factors. The current review highlights what is currently known regarding the impact of stress and the role of neuroendocrine mediators on network states and valence processing. Further, we propose a model in which chronic stress alters information routing through emotional processing hubs, resulting in a facilitation of negative valence processing and a suppression of positive valence processing.
Collapse
Affiliation(s)
| | - Bradly Stone
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - Najah Walton
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jamie Maguire
- Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Vanhollebeke G, Kappen M, De Raedt R, Baeken C, van Mierlo P, Vanderhasselt MA. Effects of acute psychosocial stress on source level EEG power and functional connectivity measures. Sci Rep 2023; 13:8807. [PMID: 37258794 DOI: 10.1038/s41598-023-35808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The usage of EEG to uncover the influence of psychosocial stressors (PSSs) on neural activity has gained significant attention throughout recent years, but the results are often troubled by confounding stressor types. To investigate the effect of PSSs alone on neural activity, we employed a paradigm where participants are exposed to negative peer comparison as PSS, while other possible stressors are kept constant, and compared this with a condition where participants received neutral feedback. We analyzed commonly used sensor level EEG indices (frontal theta, alpha, and beta power) and further investigated whether source level power and functional connectivity (i.e., the temporal dependence between spatially seperated brain regions) measures, which have to our knowledge not yet been used, are more sensitive to PSSs than sensor level-derived EEG measures. Our results show that on sensor level, no significant frontal power changes are present (all p's > 0.16), indicating that sensor level frontal power measures are not sensitive enough to be affected by only PSSs. On source level, we find increased alpha power (indicative of decreased cortical activity) in the left- and right precuneus and right posterior cingulate cortex (all p's < 0.03) and increased functional connectivity between the left- and right precuneus (p < 0.001), indicating that acute, trial based PSSs lead to decreased precuneus/PCC activity, and possibly indicates a temporary disruption in the self-referential neural processes of an individual.
Collapse
Affiliation(s)
- Gert Vanhollebeke
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium.
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Mitchel Kappen
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
| | - Rudi De Raedt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
| |
Collapse
|
17
|
Bürger Z, Müller VI, Hoffstaedter F, Habel U, Gur RC, Windischberger C, Moser E, Derntl B, Kogler L. Stressor-Specific Sex Differences in Amygdala-Frontal Cortex Networks. J Clin Med 2023; 12:jcm12030865. [PMID: 36769521 PMCID: PMC9918214 DOI: 10.3390/jcm12030865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Females and males differ in stress reactivity, coping, and the prevalence rates of stress-related disorders. According to a neurocognitive framework of stress coping, the functional connectivity between the amygdala and frontal regions (including the dorsolateral prefrontal cortex (dlPFC), ventral anterior cingulate cortex (vACC), and medial prefrontal cortex (mPFC)) plays a key role in how people deal with stress. In the current study, we investigated the effects of sex and stressor type in a within-subject counterbalanced design on the resting-state functional connectivity (rsFC) of the amygdala and these frontal regions in 77 healthy participants (40 females). Both stressor types led to changes in subjective ratings, with decreasing positive affect and increasing negative affect and anger. Females showed higher amygdala-vACC and amygdala-mPFC rsFC for social exclusion than for achievement stress, and compared to males. Whereas a higher amygdala-vACC rsFC indicates the activation of emotion processing and coping, a higher amygdala-mPFC rsFC indicates feelings of reward and social gain, highlighting the positive effects of social affiliation. Thus, for females, feeling socially affiliated might be more fundamental than for males. Our data indicate interactions of sex and stressor in amygdala-frontal coupling, which translationally contributes to a better understanding of the sex differences in prevalence rates and stress coping.
Collapse
Affiliation(s)
- Zoé Bürger
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (Z.B.); (L.K.); Tel.: +49-(0)-707129-85736 (Z.B.)
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- JARA BRAIN Institute I, Translational Brain Medicine, 52428 Jülich, Germany
| | - Ruben C. Gur
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Windischberger
- High-Field MR Center, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Ewald Moser
- High-Field MR Center, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, 72076 Tübingen, Germany
- LEAD Graduate School and Research Network, University of Tübingen, 72074 Tübingen, Germany
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (Z.B.); (L.K.); Tel.: +49-(0)-707129-85736 (Z.B.)
| |
Collapse
|
18
|
Singleton SP, Wang JB, Mithoefer M, Hanlon C, George MS, Mithoefer A, Mithoefer O, Coker AR, Yazar-Klosinski B, Emerson A, Doblin R, Kuceyeski A. Altered brain activity and functional connectivity after MDMA-assisted therapy for post-traumatic stress disorder. Front Psychiatry 2023; 13:947622. [PMID: 36713926 PMCID: PMC9879604 DOI: 10.3389/fpsyt.2022.947622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction 3,4-methylenedioxymethamphetamine-assisted therapy (MDMA-AT) for post-traumatic stress disorder (PTSD) has demonstrated promise in multiple clinical trials. MDMA is hypothesized to facilitate the therapeutic process, in part, by decreasing fear response during fear memory processing while increasing extinction learning. The acute administration of MDMA in healthy controls modifies recruitment of brain regions involved in the hyperactive fear response in PTSD such as the amygdala, hippocampus, and insula. However, to date there have been no neuroimaging studies aimed at directly elucidating the neural impact of MDMA-AT in PTSD patients. Methods We analyzed brain activity and connectivity via functional MRI during both rest and autobiographical memory (trauma and neutral) response before and two-months after MDMA-AT in nine veterans and first-responders with chronic PTSD of 6 months or more. Results We hypothesized that MDMA-AT would increase amygdala-hippocampus resting-state functional connectivity, however we only found evidence of a trend in the left amygdala-left hippocampus (t = -2.91, uncorrected p = 0.0225, corrected p = 0.0901). We also found reduced activation contrast (trauma > neutral) after MDMA-AT in the cuneus. Finally, the amount of recovery from PTSD after MDMA-AT correlated with changes in four functional connections during autobiographical memory recall: the left amygdala-left posterior cingulate cortex (PCC), left amygdala-right PCC, left amygdala-left insula, and left isthmus cingulate-left posterior hippocampus. Discussion Amygdala-insular functional connectivity is reliably implicated in PTSD and anxiety, and both regions are impacted by MDMA administration. These findings compliment previous research indicating that amygdala, hippocampus, and insula functional connectivity is a potential target of MDMA-AT, and highlights other regions of interest related to memory processes. More research is necessary to determine if these findings are specific to MDMA-AT compared to other types of treatment for PTSD. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT02102802, identifier NCT02102802.
Collapse
Affiliation(s)
- S. Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, United States
| | - Julie B. Wang
- MAPS Public Benefit Corporation, San Jose, CA, United States
| | - Michael Mithoefer
- MAPS Public Benefit Corporation, San Jose, CA, United States
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Colleen Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Annie Mithoefer
- MAPS Public Benefit Corporation, San Jose, CA, United States
| | - Oliver Mithoefer
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Allison R. Coker
- MAPS Public Benefit Corporation, San Jose, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Amy Emerson
- MAPS Public Benefit Corporation, San Jose, CA, United States
| | - Rick Doblin
- Multidisciplinary Association for Psychedelic Studies, San Jose, CA, United States
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
19
|
Eşkisu M, Çam Z, Boysan M. Health-Related Cognitions and Metacognitions Indirectly Contribute to the Relationships Between Impulsivity, Fear of COVID-19, and Cyberchondria. JOURNAL OF RATIONAL-EMOTIVE AND COGNITIVE-BEHAVIOR THERAPY 2023:1-23. [PMID: 36687465 PMCID: PMC9838370 DOI: 10.1007/s10942-022-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
The aim of the study was to converge a structural equation model to unfold the compositive relationships between trait impulsivity, health cognitions, metacognitions about health, fear of COVID-19 and cyberchondria, after controlling for gender, age, marital status, having a chronic illness and chronic illness among first-degree relatives. Six hundred fifty-one participants (423 females, 65%; 228 males, 35%) participated in the study. The Short UPPS-P Impulsive Behavior Scale (S-UPPS-P), Health Cognitions Questionnaire (HCQ), The Meta-Cognitions about Health Questionnaire (MCQ-HA), Cyberchondria Severity Scale -Short Form (CSS-12), and Fear of COVID-19 Scale (FCV-19 S) were completed by volunteered participants. The structural model showed that the S-UPPS-P directly and indirectly contributed to the HCQ, MCQ-HA, CSS-12, and FCV-19 S. The multi-group structural analysis by gender showed that the structural model had a partial measurement and factorial invariance. We concluded that the significant associations between impulsivity, fear of COVID-19 and cyberchondria were indirectly contributed by health-related cognitions and metacognitions.
Collapse
Affiliation(s)
- Mustafa Eşkisu
- Faculty of Education, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Zekeriya Çam
- Faculty of Education, Muş Alparslan University, Muş, Turkey
| | - Murat Boysan
- Faculty of Social Sciences and Humanities, Social Sciences University of Ankara, Ankara, Turkey
| |
Collapse
|
20
|
Nanni-Zepeda M, Alizadeh S, Chand T, Kasties V, Fan Y, van der Meer J, Herrmann L, Vester JC, Schulz M, Naschold B, Walter M. Trait anxiety is related to Nx4's efficacy on stress-induced changes in amygdala-centered resting state functional connectivity: a placebo-controlled cross-over trial in mildly to moderately stressed healthy volunteers. BMC Neurosci 2022; 23:68. [PMID: 36434512 PMCID: PMC9694608 DOI: 10.1186/s12868-022-00754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The multicomponent drug Neurexan (Nx4) was shown to reduce the neural stress network activation. We now investigated its effects on stress-induced resting state functional connectivity (RSFC) in dependence of trait anxiety (TA), an acknowledged vulnerability factor for stress-induced psychopathologies. METHODS Nx4 was tested in a randomized placebo-controlled crossover trial. Resting state fMRI scans were performed before and after a psychosocial stress task and exploratively analyzed for amygdala centered RSFC. Effects of Nx4 on stress-induced RSFC changes were evaluated and correlated to TA levels. A subgroup analysis based on TA scores was performed. RESULTS Multiple linear regression analysis revealed a significant correlation between TA and Nx4 effect on stress-induced RSFC changes between right amygdala and pregenual anterior cingulate cortex (pgACC) and ventro-medial prefrontal cortex (vmPFC). For participants with above average TA, a significant amelioration of the stress-induced RSFC changes was observed. CONCLUSIONS The data add evidence to the hypothesis that Nx4's clinical efficacy is based on a dampened activation of the neural stress network, with a greater neural response in subjects with anxious personality traits. Further studies assessing clinically relevant outcome measures in parallel to fMRI are encouraged to evaluate the real-world benefit of Nx4. Trial registration NCT02602275.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Sarah Alizadeh
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Tara Chand
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Vanessa Kasties
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Yan Fan
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| | - Johan van der Meer
- grid.509540.d0000 0004 6880 3010Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Luisa Herrmann
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Johannes C. Vester
- idv Data Analysis and Study Planning, Tassilostraße 6, 82131 Gauting, Germany
| | - Myron Schulz
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Britta Naschold
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Martin Walter
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| |
Collapse
|
21
|
Chand T, Alizadeh S, Li M, Fan Y, Jamalabadi H, Danyeli L, Nanni-Zepeda M, Herrmann L, Van der Meer J, Vester JC, Schultz M, Naschold B, Walter M. Nx4 Modulated Resting-State Functional Connectivity Between Amygdala and Prefrontal Cortex in a Placebo-Controlled, Crossover Trial. Brain Connect 2022; 12:812-822. [PMID: 35438535 PMCID: PMC9805862 DOI: 10.1089/brain.2021.0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The basic functional organization of the resting brain, assessed as resting-state functional connectivity (rsFC), can be affected by previous stress experience and it represents the basis on which subsequent stress experience develops. Notably, the rsFC between the amygdala and the cortical regions associated with emotion regulation and anxiety are affected during stress. The multicomponent drug Neurexan® (Nx4) has previously demonstrated a reduction in amygdala activation in an emotional face matching task and it ameliorated stress-related symptoms. We, thus, investigated the effect of Nx4 on rsFC of the amygdala before stress induction compared with baseline in mildly to moderately stressed participants. Methods: In a randomized, placebo-controlled, double-blind, crossover trial 39 participants received a single dose of placebo or Nx4. Resting-state functional magnetic resonance imaging scans were performed pre-dose and 40 to 60 min post-dose, before any stress induction. First, highly connected functional hubs were identified by global functional connectivity density (gFCD) analysis. Second, by using a seed-based approach, rsFC maps of the left centromedial amygdala (CeMA) were created. The effect of Nx4 on both was evaluated. Results: The medial prefrontal cortex was identified as a relevant functional hub affected by Nx4 in an explorative whole brain gFCD analysis. Using the seed-based approach, we then demonstrated that Nx4 significantly enhanced the negative connectivity between the left CeMA and two cortical regions: the dorsolateral and medial prefrontal cortices. Conclusions: In a resting-state condition, Nx4 reduced the prefrontal cortex gFCD and strengthened the functional coupling between the amygdala and the prefrontal cortex that is relevant for emotion regulation and the stress response. Further studies should elaborate whether this mechanism represents enhanced regulatory control of the amygdala at rest and, consequently, to a diminished susceptibility to stress. ClinicalTrials.gov ID: NCT02602275.
Collapse
Affiliation(s)
- Tara Chand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Luisa Herrmann
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Johan Van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Address correspondence to: Martin Walter, Department of Psychiatry and Psychotherapy, University of Tübingen, Leipziger Str. 44, Tübingen 39120, Germany
| |
Collapse
|
22
|
Caetano I, Amorim L, Castanho TC, Coelho A, Ferreira S, Portugal-Nunes C, Soares JM, Gonçalves N, Sousa R, Reis J, Lima C, Marques P, Moreira PS, Rodrigues AJ, Santos NC, Morgado P, Esteves M, Magalhães R, Picó-Pérez M, Sousa N. Association of amygdala size with stress perception: Findings of a transversal study across the lifespan. Eur J Neurosci 2022; 56:5287-5298. [PMID: 36017669 DOI: 10.1111/ejn.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Daily routines are getting increasingly stressful. Interestingly, associations between stress perception and amygdala volume, a brain region implicated in emotional behaviour, have been observed in both younger and older adults. Life stress, on the other hand, has become pervasive and is no longer restricted to a specific age group or life stage. As a result, it is vital to consider stress as a continuum across the lifespan. In this study, we investigated the relationship between perceived stress and amygdala size in 272 healthy participants with a broad age range. Participants were submitted to a structural magnetic resonance imaging (MRI) to extract amygdala volume, and the Perceived Stress Scale (PSS) scores were used as the independent variable in volumetric regressions. We found that perceived stress is positively associated with the right amygdala volume throughout life.
Collapse
Affiliation(s)
- Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,CECAV-Veterinary and Animal Science Research Centre, Vila Real, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Joana Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Catarina Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| |
Collapse
|
23
|
Fathabadipour S, Mohammadi Z, Roshani F, Goharbakhsh N, Alizadeh H, Palizgar F, Cumming P, Michel TM, Vafaee MS. The neural effects of oxytocin administration in autism spectrum disorders studied by fMRI: A systematic review. J Psychiatr Res 2022; 154:80-90. [PMID: 35933858 DOI: 10.1016/j.jpsychires.2022.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE Oxytocin (OXT) is a hypothalamic neuropeptide that is released from the posterior pituitary gland and at specific targets in the central nervous system (CNS). The prosocial effects of OXT acting in the CNS present it as a potential therapeutic agent for the treatment of aspects of autism spectrum disorder (ASD). In this article, we systematically review the functional MRI (fMRI) literature that reports task-state and resting-state fMRI (rsfMRI) studies of the neural effects of single or multiple dose intranasal OXT (IN-OXT) administration in individuals with ASD. METHOD We searched four databases for relevant documents (PubMed, Web of Science, Scopus, and Google Scholar) using the keywords "autism spectrum disorder", "Asperger Syndrome", "oxytocin", and "fMRI". Moreover, we made a manual search to assess the quality of our automatic search. The search was confined to English language articles published in the interval February 2013 until March 2021. RESULTS The search yielded 12 fMRI studies with OXT intervention, including 288 individuals with ASD (age 8-55 years) enrolled in randomized, double-blind, placebo-controlled, parallel designs, within-subject-crossover experimental OXT trials. Studies reporting activation task and rsfMRI were summarized with region of interest (ROI) or whole-brain voxel wise analysis. The systematic review of the 12 studies supported the proposition that IN-OXT administration alters brain activation in individuals with ASD. The effects of IN-OXT interacted with the type of the task and the overall results did not indicate restoration of normal brain activation in ASD signature regions albeit the lack of statistical evidence. CONCLUSION A large body of evidence consistently indicates that OXT alters activation to fMRI in brain networks of individuals with ASD, but with uncertain implications for alleviation of their social deficits.
Collapse
Affiliation(s)
- Sara Fathabadipour
- Department of Psychology, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Zohreh Mohammadi
- Neurosciences Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Niloofar Goharbakhsh
- Department of Psychology and Educational Sciences, Semnan University, Semnan, Iran
| | - Hadi Alizadeh
- Neurosciences Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Palizgar
- School of Psychology, Keele University, Newcastle Under Lyme, UK
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Tanja Maria Michel
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Research Unit for Psychiatry, Odense University Hospital, Odense, Denmark
| | - Manouchehr Seyedi Vafaee
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Research Unit for Psychiatry, Odense University Hospital, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
24
|
Ford JH, Kim SY, Kark SM, Daley RT, Payne JD, Kensinger EA. Distinct stress-related changes in intrinsic amygdala connectivity predict subsequent positive and negative memory performance. Eur J Neurosci 2022; 56:4744-4765. [PMID: 35841177 PMCID: PMC9710194 DOI: 10.1111/ejn.15777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experiencing stress before an event can influence how that event is later remembered. In the current study, we examine how individual differences in one's physiological response to a stressor are related to changes to underlying brain states and memory performance. Specifically, we examined how changes in intrinsic amygdala connectivity relate to positive and negative memory performance as a function of stress response, defined as a change in cortisol. Twenty-five participants underwent a social stressor before an incidental emotional memory encoding task. Cortisol samples were obtained before and after the stressor to measure individual differences in stress response. Three resting state scans (pre-stressor, post-stressor/pre-encoding and post-encoding) were conducted to evaluate pre- to post-stressor and pre- to post-encoding changes to intrinsic amygdala connectivity. Analyses examined relations between greater cortisol changes and connectivity changes. Greater cortisol increases were associated with a greater decrease in prefrontal-amygdala connectivity following the stressor and a reversal in the relation between prefrontal-amygdala connectivity and negative vs. positive memory performance. Greater cortisol increases were also associated with a greater increase in amygdala connectivity with a number of posterior sensory regions following encoding. Consistent with prior findings in non-stressed individuals, pre- to post-encoding increases in amygdala-posterior connectivity were associated with greater negative relative to positive memory performance, although this was specific to lateral rather than medial posterior regions and to participants with the greatest cortisol changes. These findings suggest that stress response is associated with changes in intrinsic connectivity that have downstream effects on the valence of remembered emotional content.
Collapse
Affiliation(s)
- Jaclyn H Ford
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sarah M Kark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, California, USA
| | - Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana, USA
| | - Elizabeth A Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
25
|
Kühnel A, Czisch M, Sämann PG, Binder EB, Kroemer NB. Spatiotemporal Dynamics of Stress-Induced Network Reconfigurations Reflect Negative Affectivity. Biol Psychiatry 2022; 92:158-169. [PMID: 35260225 DOI: 10.1016/j.biopsych.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maladaptive stress responses are important risk factors in the etiology of mood and anxiety disorders, but exact pathomechanisms remain to be understood. Mapping individual differences of acute stress-induced neurophysiological changes, especially on the level of neural activation and functional connectivity (FC), could provide important insights in how variation in the individual stress response is linked to disease risk. METHODS Using an established psychosocial stress task flanked by two resting states, we measured subjective, physiological, and brain responses to acute stress and recovery in 217 participants with and without mood and anxiety disorders. To estimate blockwise changes in stress-induced activation and FC, we used hierarchical mixed-effects models based on denoised time series within predefined stress-related regions. We predicted inter- and intraindividual differences in stress phases (anticipation vs. stress vs. recovery) and transdiagnostic dimensions of stress reactivity using elastic net and support vector machines. RESULTS We identified four subnetworks showing distinct changes in FC over time. FC but not activation trajectories predicted the stress phase (accuracy = 70%, pperm < .001) and increases in heart rate (R2 = 0.075, pperm < .001). Critically, individual spatiotemporal trajectories of changes across networks also predicted negative affectivity (ΔR2 = 0.075, pperm = .030) but not the presence or absence of a mood and anxiety disorder. CONCLUSIONS Spatiotemporal dynamics of brain network reconfiguration induced by stress reflect individual differences in the psychopathology dimension of negative affectivity. These results support the idea that vulnerability for mood and anxiety disorders can be conceptualized best at the level of network dynamics, which may pave the way for improved prediction of individual risk.
Collapse
Affiliation(s)
- Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | | | | | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Lan C, Liu C, Li K, Zhao Z, Yang J, Ma Y, Scheele D, Yao S, Kendrick KM, Becker B. Oxytocinergic Modulation of Stress-Associated Amygdala-Hippocampus Pathways in Humans Is Mediated by Serotonergic Mechanisms. Int J Neuropsychopharmacol 2022; 25:807-817. [PMID: 35723242 PMCID: PMC9593216 DOI: 10.1093/ijnp/pyac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The hypothalamic neuropeptide oxytocin (OXT) may exert anxiolytic and stress-reducing actions via modulatory effects on amygdala circuits. Animal models and initial findings in humans suggest that some of these effects are mediated by interactions with other neurotransmitter systems, in particular the serotonin (5-HT) system. Against this background, the present pharmacological resting-state functional magnetic resonance imaging study aimed to determine whether effects of OXT on stress-associated amygdala intrinsic networks are mediated by 5-HT. METHODS We employed a randomized, placebo-controlled, double-blind parallel-group, pharmacological functional magnetic resonance imaging resting-state experiment with 4 treatment groups in n = 112 healthy male participants. Participants underwent a transient decrease in 5-HT signaling via acute tryptophan depletion (ATD) or a corresponding placebo-control protocol before the administration of intranasal OXT (24 IU) or placebo intranasal spray. RESULTS OXT and 5-HT modulation exerted interactive effects on the coupling of the left amygdala with the ipsilateral hippocampus and adjacent midbrain. OXT increased intrinsic coupling in this pathway, whereas this effect of OXT was significantly attenuated during transiently decreased central serotonergic signaling induced via acute tryptophan depletion. In the absence of OXT or 5-HT modulation, this pathway showed a trend for an association with self-reported stress perception in everyday life. No interactive effects were observed for the right amygdala. CONCLUSIONS Together, the findings provide the first evidence, to our knowledge, that the effects of OXT on stress-associated amygdala-hippocampal-midbrain pathways are critically mediated by the 5-HT system in humans.
Collapse
Affiliation(s)
| | | | - Keshuang Li
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China,School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zhiying Zhao
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing, China
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University HospitalBonn, Bonn, Germany,Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shuxia Yao
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Correspondence: Benjamin Becker, PhD, University of Electronic Science and Technology, Xiyuan Avenue 2006, 611731 Chengdu, China ()
| |
Collapse
|
27
|
Tidmarsh LV, Harrison R, Ravindran D, Matthews SL, Finlay KA. The Influence of Adverse Childhood Experiences in Pain Management: Mechanisms, Processes, and Trauma-Informed Care. FRONTIERS IN PAIN RESEARCH 2022; 3:923866. [PMID: 35756908 PMCID: PMC9226323 DOI: 10.3389/fpain.2022.923866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
Adverse childhood experiences (ACEs) increase the likelihood of reduced physical and psychological health in adulthood. Though understanding and psychological management of traumatic experiences is growing, the empirical exploration of ACEs and physical clinical outcomes remains under-represented and under-explored. This topical review aimed to highlight the role of ACEs in the experience of chronic pain, pain management services and clinical decision making by: (1) providing an overview of the relationship between ACEs and chronic pain; (2) identifying biopsychosocial mechanisms through which ACEs may increase risk of persistent pain; (3) highlighting the impact of ACEs on patient adherence and completion of pain management treatment; and (4) providing practical clinical implications for pain management. Review findings demonstrated that in chronic pain, ACEs are associated with increased pain complications, pain catastrophizing and depression and the combination of these factors further heightens the risk of early treatment attrition. The pervasive detrimental impacts of the COVID-19 pandemic on ACEs and their cyclical effects on pain are discussed in the context of psychological decline during long treatment waitlists. The review highlights how people with pain can be further supported in pain services by maintaining trauma-informed practices and acknowledging the impact of ACEs on chronic pain and detrimental health outcomes. Clinicians who are ACE-informed have the potential to minimize the negative influence of ACEs on treatment outcomes, ultimately optimizing the impact of pain management services.
Collapse
Affiliation(s)
- Lydia V. Tidmarsh
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Lydia V. Tidmarsh
| | - Richard Harrison
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | | | - Samantha L. Matthews
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Katherine A. Finlay
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
28
|
Castanho EN, Aidos H, Madeira SC. Biclustering fMRI time series: a comparative study. BMC Bioinformatics 2022; 23:192. [PMID: 35606701 PMCID: PMC9126639 DOI: 10.1186/s12859-022-04733-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The effectiveness of biclustering, simultaneous clustering of rows and columns in a data matrix, was shown in gene expression data analysis. Several researchers recognize its potentialities in other research areas. Nevertheless, the last two decades have witnessed the development of a significant number of biclustering algorithms targeting gene expression data analysis and a lack of consistent studies exploring the capacities of biclustering outside this traditional application domain. RESULTS This work evaluates the potential use of biclustering in fMRI time series data, targeting the Region × Time dimensions by comparing seven state-in-the-art biclustering and three traditional clustering algorithms on artificial and real data. It further proposes a methodology for biclustering evaluation beyond gene expression data analysis. The results discuss the use of different search strategies in both artificial and real fMRI time series showed the superiority of exhaustive biclustering approaches, obtaining the most homogeneous biclusters. However, their high computational costs are a challenge, and further work is needed for the efficient use of biclustering in fMRI data analysis. CONCLUSIONS This work pinpoints avenues for the use of biclustering in spatio-temporal data analysis, in particular neurosciences applications. The proposed evaluation methodology showed evidence of the effectiveness of biclustering in finding local patterns in fMRI time series data. Further work is needed regarding scalability to promote the application in real scenarios.
Collapse
Affiliation(s)
| | - Helena Aidos
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sara C. Madeira
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci 2022; 55:2632-2650. [PMID: 33511691 DOI: 10.1111/ejn.15132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah M Kark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
30
|
Brasanac J, Hetzer S, Asseyer S, Kuchling J, Bellmann-Strobl J, Ritter K, Gamradt S, Scheel M, Haynes JD, Brandt AU, Paul F, Gold SM, Weygandt M. Central stress processing, T cell responsivity to stress hormones, and disease severity in multiple sclerosis. Brain Commun 2022; 4:fcac086. [PMID: 35441135 PMCID: PMC9014535 DOI: 10.1093/braincomms/fcac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Epidemiological, clinical and neuroscientific studies support a link between psychobiological stress and multiple sclerosis. Neuroimaging suggests that blunted central stress processing goes along with higher multiple sclerosis severity, neuroendocrine studies suggest that blunted immune system sensitivity to stress hormones is linked to stronger neuroinflammation. Until now, however, no effort has been made to elucidate whether central stress processing and immune system sensitivity to stress hormones are related in a disease-specific fashion, and if so, whether this relation is clinically meaningful. Consequently, we conducted two functional MRI analyses based on a total of 39 persons with multiple sclerosis and 25 healthy persons. Motivated by findings of an altered interplay between neuroendocrine stress processing and T-cell glucocorticoid sensitivity in multiple sclerosis, we searched for neural networks whose stress task-evoked activity is differentially linked to peripheral T-cell glucocorticoid signalling in patients versus healthy persons as a potential indicator of disease-specific CNS–immune crosstalk. Subsequently, we tested whether this activity is simultaneously related to disease severity. We found that activity of a network comprising right anterior insula, right fusiform gyrus, left midcingulate and lingual gyrus was differentially coupled to T-cell glucocorticoid signalling across groups. This network’s activity was simultaneously linked to patients’ lesion volume, clinical disability and information-processing speed. Complementary analyses revealed that T-cell glucocorticoid signalling was not directly linked to disease severity. Our findings show that alterations in the coupling between central stress processing and T-cell stress hormone sensitivity are related to key severity measures of multiple sclerosis.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joseph Kuchling
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kristin Ritter
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Stefanie Gamradt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Scheel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuroradiology, 10117 Berlin, Germany
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
| | - Stefan M. Gold
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, 10117 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
31
|
Vanhollebeke G, De Smet S, De Raedt R, Baeken C, van Mierlo P, Vanderhasselt MA. The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies. Neurobiol Stress 2022; 18:100452. [PMID: 35573807 PMCID: PMC9095895 DOI: 10.1016/j.ynstr.2022.100452] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gert Vanhollebeke
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
- Corresponding author. University Hospital Ghent Ghent, C. Heymanslaan 10, entrance 12 – floor 13, 9000, Belgium.
| | - Stefanie De Smet
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Inter-relationships between changes in stress, mindfulness, and dynamic functional connectivity in response to a social stressor. Sci Rep 2022; 12:2396. [PMID: 35165343 PMCID: PMC8844001 DOI: 10.1038/s41598-022-06342-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
We conducted a study to understand how dynamic functional brain connectivity contributes to the moderating effect of trait mindfulness on the stress response. 40 male participants provided subjective reports of stress, cortisol assays, and functional MRI before and after undergoing a social stressor. Self-reported trait mindfulness was also collected. Experiencing stress led to significant decreases in the prevalence of a connectivity state previously associated with mindfulness, but no changes in two connectivity states with prior links to arousal. Connectivity did not return to baseline 30 min after stress. Higher trait mindfulness was associated with attenuated affective and neuroendocrine stress response, and smaller decreases in the mindfulness-related connectivity state. In contrast, we found no association between affective response and functional connectivity. Taken together, these data allow us to construct a preliminary brain-behaviour model of how mindfulness dampens stress reactivity and demonstrate the utility of time-varying functional connectivity in understanding psychological state changes.
Collapse
|
33
|
Gong L, Xu R, Yang D, Wang J, Ding X, Zhang B, Zhang X, Hu Z, Xi C. Orbitofrontal Cortex Functional Connectivity-Based Classification for Chronic Insomnia Disorder Patients With Depression Symptoms. Front Psychiatry 2022; 13:907978. [PMID: 35873230 PMCID: PMC9299364 DOI: 10.3389/fpsyt.2022.907978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Depression is a common comorbid symptom in patients with chronic insomnia disorder (CID). Previous neuroimaging studies found that the orbital frontal cortex (OFC) might be the core brain region linking insomnia and depression. Here, we used a machine learning approach to differentiate CID patients with depressive symptoms from CID patients without depressive symptoms based on OFC functional connectivity. Seventy patients with CID were recruited and subdivided into CID with high depressive symptom (CID-HD) and low depressive symptom (CID-LD) groups. The OFC functional connectivity (FC) network was constructed using the altered structure of the OFC region as a seed. A linear kernel SVM-based machine learning approach was carried out to classify the CID-HD and CID-LD groups based on OFC FC features. The predict model was further verified in a new cohort of CID group (n = 68). The classification model based on the OFC FC pattern showed a total accuracy of 76.92% (p = 0.0009). The area under the receiver operating characteristic curve of the classification model was 0.84. The OFC functional connectivity with reward network, salience network and default mode network contributed the highest weights to the prediction model. These results were further validated in an independent CID group with high and low depressive symptom (accuracy = 67.9%). These findings provide a potential biomarker for early diagnosis and intervention in CID patients comorbid with depression based on an OFC FC-based machine learning approach.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Dan Yang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Jian Wang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Xingping Zhang
- Department of General Practice, Chengdu Second People's Hospital, Chengdu, China
| | - Zhengjun Hu
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Wang H, van Leeuwen JMC, de Voogd LD, Verkes RJ, Roozendaal B, Fernández G, Hermans EJ. Mild early-life stress exaggerates the impact of acute stress on corticolimbic resting-state functional connectivity. Eur J Neurosci 2021; 55:2122-2141. [PMID: 34812558 PMCID: PMC9299814 DOI: 10.1111/ejn.15538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Abundant evidence shows that early‐life stress (ELS) predisposes for the development of stress‐related psychopathology when exposed to stressors later in life, but the underlying mechanisms remain unclear. To study predisposing effects of mild ELS on stress sensitivity, we examined in a healthy human population the impact of a history of ELS on acute stress‐related changes in corticolimbic circuits involved in emotional processing (i.e., amygdala, hippocampus and ventromedial prefrontal cortex [vmPFC]). Healthy young male participants (n = 120) underwent resting‐state functional magnetic resonance imaging (fMRI) in two separate sessions (stress induction vs. control). The Childhood Trauma Questionnaire (CTQ) was administered to index self‐reported ELS, and stress induction was verified using salivary cortisol, blood pressure, heart rate and subjective affect. Our findings show that self‐reported ELS was negatively associated with baseline cortisol, but not with the acute stress‐induced cortisol response. Critically, individuals with more self‐reported ELS exhibited an exaggerated reduction of functional connectivity in corticolimbic circuits under acute stress. A mediation analysis showed that the association between ELS and stress‐induced changes in amygdala–hippocampal connectivity became stronger when controlling for basal cortisol. Our findings show, in a healthy sample, that the effects of mild ELS on functioning of corticolimbic circuits only become apparent when exposed to an acute stressor and may be buffered by adaptations in hypothalamic–pituitary–adrenal axis function. Overall, our findings might reveal a potential mechanism whereby even mild ELS might confer vulnerability to exposure to stressors later in adulthood.
Collapse
Affiliation(s)
- Huan Wang
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Judith M C van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Lycia D de Voogd
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Robbert-Jan Verkes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Watanabe N, Takeda M. Neurophysiological dynamics for psychological resilience: A view from the temporal axis. Neurosci Res 2021; 175:53-61. [PMID: 34801599 DOI: 10.1016/j.neures.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
When an individual is faced with adversity, the brain and body work cooperatively to adapt to it. This adaptive process is termed psychological resilience, and recent studies have identified several neurophysiological factors ("neurophysiological resilience"), such as monoamines, oscillatory brain activity, hemodynamics, autonomic activity, stress hormones, and immune systems. Each factor is activated in an interactive manner during specific time windows after exposure to stress. Thus, the differences in psychological resilience levels among individuals can be characterized by differences in the temporal dynamics of neurophysiological resilience. In this review, after briefly introducing the frequently used approaches in this research field and the well-known factors of neurophysiological resilience, we summarize the temporal dynamics of neurophysiological resilience. This viewpoint clarifies an important time window, the more-than-one-hour scale, but the neurophysiological dynamics during this window remain elusive. To address this issue, we propose exploring brain-wide oscillatory activities using concurrent functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) techniques.
Collapse
Affiliation(s)
- Noriya Watanabe
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.
| | - Masaki Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
36
|
Ironside M, Moser AD, Holsen LM, Zuo CS, Du F, Perlo S, Richards CE, Duda JM, Chen X, Nickerson LD, Null KE, Nascimento N, Crowley DJ, Misra M, Goldstein JM, Pizzagalli DA. Reductions in rostral anterior cingulate GABA are associated with stress circuitry in females with major depression: a multimodal imaging investigation. Neuropsychopharmacology 2021; 46:2188-2196. [PMID: 34363015 PMCID: PMC8505659 DOI: 10.1038/s41386-021-01127-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The interplay between cortical and limbic regions in stress circuitry calls for a neural systems approach to investigations of acute stress responses in major depressive disorder (MDD). Advances in multimodal imaging allow inferences between regional neurotransmitter function and activation in circuits linked to MDD, which could inform treatment development. The current study investigated the role of the inhibitory neurotransmitter GABA in stress circuitry in females with current and remitted MDD. Multimodal imaging data were analyzed from 49 young female adults across three groups (current MDD, remitted MDD (rMDD), and healthy controls). GABA was assessed at baseline using magnetic resonance spectroscopy, and functional MRI data were collected before, during, and after an acute stressor and analyzed using a network modeling approach. The MDD group showed an overall lower cortisol response than the rMDD group and lower rostral anterior cingulate cortex (ACC) GABA than healthy controls. Across groups, stress decreased activation in the frontoparietal network (FPN) but increased activation in the default mode network (DMN) and a network encompassing the ventromedial prefrontal cortex-striatum-anterior cingulate cortex (vmPFC-Str-ACC). Relative to controls, the MDD and rMDD groups were characterized by decreased FPN and salience network (SN) activation overall. Rostral ACC GABA was positively associated with connectivity between an overlapping limbic network (Temporal-Insula-Amygdala) and two other circuits (FPN and DMN). Collectively, these findings indicate that reduced GABA in females with MDD was associated with connectivity differences within and across key networks implicated in depression. GABAergic treatments for MDD might alleviate stress circuitry abnormalities in females.
Collapse
Affiliation(s)
- Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- University of Colorado Boulder, Boulder, CO, USA
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, USA
- Divison of Women's Health, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| | - Chun S Zuo
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Fei Du
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Christine E Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Jessica M Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Xi Chen
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
| | - Lisa D Nickerson
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Nara Nascimento
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - David J Crowley
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
37
|
Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O'Mara S, O'Hanlon E, O'Keane V. Amygdala substructure volumes in Major Depressive Disorder. NEUROIMAGE-CLINICAL 2021; 31:102781. [PMID: 34384996 PMCID: PMC8361319 DOI: 10.1016/j.nicl.2021.102781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 11/27/2022]
Abstract
The role of the amygdala in the experience of emotional states and stress is well established. Connections from the amygdala to the hypothalamus activate the hypothalamic-pituitaryadrenal (HPA) axis and the cortisol response. Previous studies have failed to find consistent whole amygdala volume changes in Major Depressive Disorder (MDD), but differences may exist at the smaller substructural level of the amygdala nuclei. High-resolution T1 and T2-weighted-fluid-attenuated inversion recovery MRIs were compared between 80 patients with MDD and 83 healthy controls (HC) using the automated amygdala substructure module in FreeSurfer 6.0. Volumetric assessments were performed for individual nuclei and three anatomico-functional composite groups of nuclei. Salivary cortisol awakening response (CAR), as a measure of HPA responsivity, was measured in a subset of patients. The right medial nucleus volume was larger in MDD compared to HC (p = 0.002). Increased right-left volume ratios were found in MDD for the whole amygdala (p = 0.004), the laterobasal composite (p = 0.009) and in the central (p = 0.003) and medial (p = 0.014) nuclei. The CAR was not significantly different between MDD and HC. Within the MDD group the left corticoamygdaloid transition area was inversely correlated with the CAR, as measured by area under the curve (AUCg) (p ≤ 0.0001). In conclusion, our study found larger right medial nuclei volumes in MDD compared to HC and relatively increased right compared to left whole and substructure volume ratios in MDD. The results suggest that amygdala substructure volumes may be involved in the pathophysiology of depression.
Collapse
Affiliation(s)
- Darren Roddy
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - John R Kelly
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland.
| | - Chloë Farrell
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kelly Doolin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Anurag Nasa
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Veronica O'Keane
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
38
|
Henze GI, Konzok J, Kreuzpointner L, Bärtl C, Giglberger M, Peter H, Streit F, Kudielka BM, Kirsch P, Wüst S. Sex-Specific Interaction Between Cortisol and Striato-Limbic Responses to Psychosocial Stress. Soc Cogn Affect Neurosci 2021; 16:972-984. [PMID: 33961049 PMCID: PMC8421693 DOI: 10.1093/scan/nsab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Although women and men differ in psychological and endocrine stress responses as well as in the prevalence rates of stress-related disorders, knowledge on sex differences regarding stress regulation in the brain is scarce. Therefore, we performed an in-depth analysis of data from 67 healthy participants (31 women, taking oral contraceptives), who were exposed to the ScanSTRESS paradigm in a functional magnetic resonance imaging study. Changes in cortisol, affect, heart rate and neural activation in response to psychosocial stress were examined in women and men as well as potential sex-specific interactions between stress response domains. Stress exposure led to significant cortisol increases, with men exhibiting higher levels than women. Depending on sex, cortisol elevations were differently associated with stress-related responses in striato-limbic structures: higher increases were associated with activations in men but with deactivations in women. Regarding affect or heart rate responses, no sex differences emerged. Although women and men differ in their overall stress reactivity, our findings do not support the idea of distinct neural networks as the base of this difference. Instead, we found differential stress reactions for women and men in identical structures. We propose considering quantitative predictors such as sex-specific cortisol increases when exploring neural response differences of women and men.
Collapse
Affiliation(s)
| | - Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - Christoph Bärtl
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Marina Giglberger
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Hannah Peter
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Siegel JS, Palanca BJA, Ances BM, Kharasch ED, Schweiger JA, Yingling MD, Snyder AZ, Nicol GE, Lenze EJ, Farber NB. Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology (Berl) 2021; 238:1157-1169. [PMID: 33483802 PMCID: PMC7969576 DOI: 10.1007/s00213-021-05762-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Ketamine produces a rapid antidepressant response in over 50% of adults with treatment-resistant depression. A long infusion of ketamine may provide durable remission of depressive symptoms, but the safety, efficacy, and neurobiological correlates are unknown. In this open-label, proof-of-principle study, adults with treatment-resistant depression (N = 23) underwent a 96-h infusion of intravenous ketamine (0.15 mg/kg/h titrated toward 0.6 mg/kg/h). Clonidine was co-administered to reduce psychotomimetic effects. We measured clinical response for 8 weeks post-infusion. Resting-state functional magnetic resonance imaging was used to assess functional connectivity in patients pre- and 2 weeks post-infusion and in matched non-depressed controls (N = 27). We hypothesized that responders to therapy would demonstrate response-dependent connectivity changes while all subjects would show treatment-dependent connectivity changes. Most participants completed infusion (21/23; mean final dose 0.54 mg/kg/h, SD 0.13). The infusion was well tolerated with minimal cognitive and psychotomimetic side effects. Depressive symptoms were markedly reduced (MADRS 29 ± 4 at baseline to 9 ± 8 one day post-infusion), which was sustained at 2 weeks (13 ± 8) and 8 weeks (15 ± 8). Imaging demonstrated a response-dependent decrease in hyperconnectivity of the subgenual anterior cingulate cortex to the default mode network, and a treatment-dependent decrease in hyperconnectivity within the limbic system (hippocampus, amygdala, medial thalamus, nucleus accumbens). In exploratory analyses, connectivity was increased between the limbic system and frontal areas, and smaller right hippocampus volume at baseline predicted larger MADRS change. A single prolonged infusion of ketamine provides a tolerated, rapid, and sustained response in treatment-resistant depression and normalizes depression-related hyperconnectivity in the limbic system and frontal lobe. ClinicalTrials.gov : Treatment Resistant Depression (Pilot), NCT01179009.
Collapse
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA.
| | - Ben J A Palanca
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Julie A Schweiger
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Michael D Yingling
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| |
Collapse
|
40
|
Cunningham TJ, Mattingly SM, Tlatenchi A, Wirth MM, Alger SE, Kensinger EA, Payne JD. Higher post-encoding cortisol benefits the selective consolidation of emotional aspects of memory. Neurobiol Learn Mem 2021; 180:107411. [PMID: 33609737 DOI: 10.1016/j.nlm.2021.107411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022]
Abstract
Emotional experiences create durable memory traces in the brain, especially when these memories are consolidated in the presence of stress hormones such as cortisol. Although some research suggests cortisol elevation can increase long-term memory for emotional relative to neutral content, the impact of stress and cortisol on the consolidation of emotional and neutral aspects of memories when they are part of the same experience remains unknown. Here, after encoding complex scenes consisting of negative or neutral objects placed on neutral backgrounds, participants were exposed to a psychosocial stressor (or matched control condition) in order to examine the impact of stress and cortisol on early consolidation processes. The next day, once cortisol levels had returned to baseline, specific and gist recognition memory were tested separately for objects and backgrounds. Results indicate that while there was a numerical increase in memory for negative objects in the stress group, higher endogenous cortisol concentrations were specifically associated with decreased memory for the neutral backgrounds originally paired with negative objects. Moreover, across all participants, cortisol levels were positively correlated with the magnitude of the emotional memory trade-off effect. Specifically, while memory for negative objects was preserved, elevated cortisol during early consolidation was associated with decreased memory for neutral backgrounds that were initially paired with negative objects. These memory effects were observed in both the stricter specific measure of memory and the less conservative measure of gist memory. Together, these findings suggest that rather than influencing all aspects of an experience similarly, elevated cortisol during early consolidation selectively preserves what is most emotionally salient and adaptive to remember while allowing the loss of memory for less important neutral information over time.
Collapse
Affiliation(s)
- Tony J Cunningham
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Centre for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States.
| | - Stephen M Mattingly
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States(1)
| | - Antonio Tlatenchi
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States(1)
| | - Michelle M Wirth
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States(1)
| | - Sara E Alger
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth A Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States(1).
| |
Collapse
|
41
|
Kalafatakis K, Russell GM, Ferguson SG, Grabski M, Harmer CJ, Munafò MR, Marchant N, Wilson A, Brooks JC, Thakrar J, Murphy P, Thai NJ, Lightman SL. Glucocorticoid ultradian rhythmicity differentially regulates mood and resting state networks in the human brain: A randomised controlled clinical trial. Psychoneuroendocrinology 2021; 124:105096. [PMID: 33296841 PMCID: PMC7895801 DOI: 10.1016/j.psyneuen.2020.105096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022]
Abstract
Adrenal glucocorticoid secretion into the systematic circulation is characterised by a complex rhythm, composed of the diurnal variation, formed by changes in pulse amplitude of an underlying ultradian rhythm of short duration hormonal pulses. To elucidate the potential neurobiological significance of glucocorticoid pulsatility in man, we have conducted a randomised, double-blind, placebo-controlled, three-way crossover clinical trial on 15 healthy volunteers, investigating the impact of different glucocorticoid rhythms on measures of mood and neural activity under resting conditions by recruiting functional neuroimaging, computerised behavioural tests and ecological momentary assessments. Endogenous glucocorticoid biosynthesis was pharmacologically suppressed, and plasma levels of corticosteroid restored by hydrocortisone replacement in three different regimes, either mimicking the normal ultradian and circadian profile of the hormone, or retaining the normal circadian but abolishing the ultradian rhythm of the hormone, or by our current best oral replacement regime which results in a suboptimal circadian and ultradian rhythm. Our results indicate that changes in the temporal mode of glucocorticoid replacement impact (i) the morning levels of self-perceived vigour, fatigue and concentration, (ii) the diurnal pattern of mood variation, (iii) the within-network functional connectivity of various large-scale resting state networks of the human brain, (iv) the functional connectivity of the default-mode, salience and executive control networks with glucocorticoid-sensitive nodes of the corticolimbic system, and (v) the functional relationship between mood variation and underlying neural networks. The findings indicate that the pattern of the ultradian glucocorticoid rhythm could affect cognitive psychophysiology under non-stressful conditions and opens new pathways for our understanding on the neuropsychological effects of cortisol pulsatility with relevance to the goal of optimising glucocorticoid replacement strategies.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom.
| | - Georgina M Russell
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Stuart G Ferguson
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Meryem Grabski
- Clinical Psychopharmacology Unit, Division of Psychology and Language Sciences, University College London, WC1E 6BT London, United Kingdom; MRC Integrative Epidemiology Unit, School of Psychological Science, University of Bristol, BS8 1TU Bristol, United Kingdom
| | - Catherine J Harmer
- Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, OX3 7JX Oxford, United Kingdom
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, School of Psychological Science, University of Bristol, BS8 1TU Bristol, United Kingdom
| | - Nicola Marchant
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Aileen Wilson
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Jonathan C Brooks
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Jamini Thakrar
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Patrick Murphy
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Ngoc J Thai
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Stafford L Lightman
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| |
Collapse
|
42
|
Murray RJ, Apazoglou K, Celen Z, Dayer A, Aubry JM, Ville DVD, Vuilleumier P, Piguet C. Maladaptive emotion regulation traits predict altered corticolimbic recovery from psychosocial stress. J Affect Disord 2021; 280:54-63. [PMID: 33202338 DOI: 10.1016/j.jad.2020.09.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Adaptive recovery from stress promotes healthy cognitive affective functioning, whereas maladaptive recovery is linked to poor psychological outcomes. Neural regions, like the anterior cingulate and hippocampus, play critical roles in psychosocial stress responding and serve as hubs in the corticolimbic neural system. To date, however, it is unknown how cognitive emotion regulation traits (cER), adaptive and maladaptive, influence corticolimbic stress recovery. Here, we examined acute psychosocial stress neural recovery, accounting for cER. METHODS Functional neuroimaging data were collected while forty-seven healthy participants performed blocks of challenging, time-sensitive, mental calculations. Participants immediately received performance feedback (positive/negative/neutral) and their ranking, relative to fictitious peers. Participants rested for 90 seconds after each feedback, allowing for a neural stress recovery period. Collected before scanning, cER scores were correlated with neural activity during each recovery condition. RESULTS Negative feedback recovery yielded increased activity within the dorsomedial prefrontal cortex and amygdala, but this effect was ultimately explained by maladaptive cER (M-cER), like rumination. Isolating positive after-effects (i.e. positive > negative recovery) yielded a significant positive correlation between M-cER and the anterior cingulate, anterior insula, hippocampus, and striatum. CONCLUSIONS We provide first evidence of M-cER to predict altered neural recovery from positive stress within corticolimbic regions. Positive feedback may be potentially threatening to individuals with poor stress regulation. Identifying positive stress-induced activation patterns in corticolimbic neural networks linked to M-cER creates the possibility to identify these neural responses as risk factors for social-emotional dysregulation subsequent to rewarding social information, often witnessed in affective disorders, like depression.
Collapse
Affiliation(s)
- Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland.
| | - Kalliopi Apazoglou
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Campus Biotech, 1202 Geneva, Switzerland
| | - Zeynep Celen
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland
| | - Alexandre Dayer
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| | - Jean-Michel Aubry
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Campus Biotech, 1202 Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| |
Collapse
|
43
|
Lobo J, Henriques R, Madeira SC. G-Tric: generating three-way synthetic datasets with triclustering solutions. BMC Bioinformatics 2021; 22:16. [PMID: 33413095 PMCID: PMC7789692 DOI: 10.1186/s12859-020-03925-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-way data started to gain popularity due to their increasing capacity to describe inherently multivariate and temporal events, such as biological responses, social interactions along time, urban dynamics, or complex geophysical phenomena. Triclustering, subspace clustering of three-way data, enables the discovery of patterns corresponding to data subspaces (triclusters) with values correlated across the three dimensions (observations [Formula: see text] features [Formula: see text] contexts). With increasing number of algorithms being proposed, effectively comparing them with state-of-the-art algorithms is paramount. These comparisons are usually performed using real data, without a known ground-truth, thus limiting the assessments. In this context, we propose a synthetic data generator, G-Tric, allowing the creation of synthetic datasets with configurable properties and the possibility to plant triclusters. The generator is prepared to create datasets resembling real 3-way data from biomedical and social data domains, with the additional advantage of further providing the ground truth (triclustering solution) as output. RESULTS G-Tric can replicate real-world datasets and create new ones that match researchers needs across several properties, including data type (numeric or symbolic), dimensions, and background distribution. Users can tune the patterns and structure that characterize the planted triclusters (subspaces) and how they interact (overlapping). Data quality can also be controlled, by defining the amount of missing, noise or errors. Furthermore, a benchmark of datasets resembling real data is made available, together with the corresponding triclustering solutions (planted triclusters) and generating parameters. CONCLUSIONS Triclustering evaluation using G-Tric provides the possibility to combine both intrinsic and extrinsic metrics to compare solutions that produce more reliable analyses. A set of predefined datasets, mimicking widely used three-way data and exploring crucial properties was generated and made available, highlighting G-Tric's potential to advance triclustering state-of-the-art by easing the process of evaluating the quality of new triclustering approaches.
Collapse
Affiliation(s)
- João Lobo
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Rui Henriques
- INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1900-001, Lisbon, Portugal
| | - Sara C Madeira
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016, Lisbon, Portugal.
| |
Collapse
|
44
|
Liu P, Yang W, Zhuang K, Wei D, Yu R, Huang X, Qiu J. The functional connectome predicts feeling of stress on regular days and during the COVID-19 pandemic. Neurobiol Stress 2020; 14:100285. [PMID: 33385021 PMCID: PMC7772572 DOI: 10.1016/j.ynstr.2020.100285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/05/2022] Open
Abstract
Although many studies have explored the neural mechanism of the feeling of stress, to date, no effort has been made to establish a model capable of predicting the feeling of stress at the individual level using the resting-state functional connectome. Although individuals may be confronted with multidimensional stressors during the coronavirus disease 2019 (COVID-19) pandemic, their appraisal of the impact and severity of these events might vary. In this study, connectome-based predictive modeling (CPM) with leave-one-out cross-validation was conducted to predict individual perceived stress (PS) from whole-brain functional connectivity data from 817 participants. The results showed that the feeling of stress could be predicted by the interaction between the default model network and salience network, which are involved in emotion regulation and salience attribution, respectively. Key nodes that contributed to the prediction model comprised regions mainly located in the limbic systems and temporal lobe. Critically, the CPM model of PS based on regular days can be generalized to predict individual PS levels during the COVID-19 pandemic, which is a multidimensional, uncontrollable stressful situation. The stability of the results was demonstrated by two independent datasets. The present work not only expands existing knowledge regarding the neural mechanism of PS but also may help identify high-risk individuals in healthy populations. Perceived stress (PS) can be predicated by resting-state functional connectome. PS can be predicated by interaction between default model and salience network. Key nodes of the prediction model located in limbic systems and temporal lobe. psCPM of regular days generalized to predict PS level in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Peiduo Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
- Research Center for Psychology and Social Development, Southwest University, Chongqing, 400715, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
- Corresponding author. Faculty of Psychology, Southwest University, No.2 TianSheng Road, Beibei District, Chongqing, 400715, China.
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore
| | - Xiting Huang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China
- Corresponding author. Faculty of Psychology, Southwest University, No.2 TianSheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
45
|
Le TM, Wang W, Zhornitsky S, Dhingra I, Chen Y, Zhang S, Li CSR. The Neural Processes Interlinking Social Isolation, Social Support, and Problem Alcohol Use. Int J Neuropsychopharmacol 2020; 24:333-343. [PMID: 33211853 PMCID: PMC8059487 DOI: 10.1093/ijnp/pyaa086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Subjective feeling of social isolation, as can be measured by perceived burdensomeness (PB), is a major risk factor for alcohol misuse. Heightened PB is associated with elevated stress response and diminished cognitive control, both of which contribute to problem drinking. Here, we sought to identify the neural substrates underlying the relationship between PB and alcohol misuse. METHODS We employed resting-state functional magnetic resonance imaging data collected from 61 problem drinkers to characterize the functional connectivity of the hypothalamus and ventral striatum (VS) in relation to PB. We specifically examined whether the connectivities of the hypothalamus and VS were differentially influenced by PB to produce contrasting effects on alcohol use. Finally, we evaluated how individual differences in social support modulate the inter-relationships of social isolation, neural connectivity, and the severity of problem drinking. RESULTS Whole-brain multiple regressions show a positive relationship between PB and hypothalamic connectivity with the hippocampus and an inverse pattern for VS connectivity with the middle frontal gyrus. Difference in strength between the 2 connectivities predicted the severity of problem drinking, suggesting an imbalance involving elevated hypothalamic and diminished prefrontal cortical modulation in socially isolated problem drinkers. A path analysis further revealed that the lack of social support was associated with a bias toward low prefrontal connectivity, which in turn increased PB and facilitated problem drinking. CONCLUSIONS Altered hypothalamus and VS connectivity may underlie problem drinking induced by social isolation. The current findings also highlight the important role of social support as a potential protective factor against alcohol misuse.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA,Correspondence: Thang M. Le, PhD, Connecticut Mental Health Center, S105, 34 Park Street, New Haven, CT 06519-1109, USA ()
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiang-Shan R Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Kühnel A, Kroemer NB, Elbau IG, Czisch M, Sämann PG, Walter M, Binder EB. Psychosocial stress reactivity habituates following acute physiological stress. Hum Brain Mapp 2020; 41:4010-4023. [PMID: 32597537 PMCID: PMC7469805 DOI: 10.1002/hbm.25106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
Acute and chronic stress are important factors in the development of mental disorders. Reliable measurement of stress reactivity is therefore pivotal. Critically, experimental induction of stress often involves multiple “hits” and it is an open question whether individual differences in responses to an earlier stressor lead to habituation, sensitization, or simple additive effects on following events. Here, we investigated the effect of the individual cortisol response to intravenous catheter placement (IVP) on subsequent neural, psychological, endocrine, and autonomous stress reactivity. We used an established psychosocial stress paradigm to measure the acute stress response (Stress) and recovery (PostStress) in 65 participants. Higher IVP‐induced cortisol responses were associated with lower pulse rate increases during stress recovery (b = −4.8 bpm, p = .0008) and lower increases in negative affect after the task (b = −4.2, p = .040). While the cortisol response to IVP was not associated with subsequent specific stress‐induced neural activation patterns, the similarity of brain responses Pre‐ and PostStress was higher IVP‐cortisol responders (t[64] = 2.35, p = .022) indicating faster recovery. In conclusion, preparatory stress induced by IVP reduced reactivity in a subsequent stress task by modulating the latency of stress recovery. Thus, an individually stronger preceding release of cortisol may attenuate a second physiological response and perceived stress suggesting that relative changes, not absolute levels are crucial for stress attribution. Our study highlights that considering the entire trajectory of stress induction during an experiment is important to develop reliable individual biomarkers.
Collapse
Affiliation(s)
- Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Immanuel G Elbau
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
47
|
Makovac E, Dipasquale O, Jackson JB, Medina S, O'Daly O, O'Muircheartaigh J, de Lara Rubio A, Williams SCR, McMahon SB, Howard MA. Sustained perturbation in functional connectivity induced by cold pain. Eur J Pain 2020; 24:1850-1861. [PMID: 32648623 DOI: 10.1002/ejp.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Functional connectivity (FC) perturbations have been reported in multiple chronic pain phenotypes, but the nature of reported changes varies between cohorts and may relate to the consequences of living with chronic-pain related comorbidities, such as anxiety and depression. Healthy volunteer studies provide opportunities to study the effects of tonic noxious stimulation independently of these sequelae. Connectivity changes in task negative and positive networks, for example, the default mode and salience networks (DMN/SN), respectively, have been described, but how these and other connectivity networks, for example, those governing descending pain control are affected by the presence of tonic, noxious stimulation in healthy, pain-free individuals, remains unknown. METHOD In 20 healthy volunteers, we assessed FC prior to, during, and following tonic cold painful stimulation in the ventromedial prefrontal cortex (vmPFC), rostral anterior insula (rAI), subgenual anterior cingulate cortex (ACC) and periaqueductal grey (PAG). We also recorded subjectively reported pain using a computerised visual analogue scale. RESULTS We saw DMN FC changes during painful stimulation and that inter-network connectivity between the rAI with the vmPFC increased during pain, whereas PAG-precuneus FC decreased. Pain-induced FC alterations persisted following noxious stimulation. FC changes related to the magnitude of individuals' subjectively reported pain. CONCLUSIONS We demonstrate FC changes during and following tonic cold-pain in healthy participants. Similarities between our findings and reports of patients with chronic pain suggest that some FC changes observed in these patients may relate to the presence of an ongoing afferent nociceptive drive. SIGNIFICANCE How pain-related resting state networks are affected by tonic cold-pain remains unknown. We investigated functional connectivity alterations during and following tonic cold pain in healthy volunteers. Cold pain perturbed the functional connectivity of the ventro-medial prefrontal cortex, anterior insula, and the periacquaductal grey area. These connectivity changes were associated with the magnitude of individuals' reported pain. We suggest that some connectivity changes described in chronic pain patients may be due to an ongoing afferent peripheral drive.
Collapse
Affiliation(s)
- Elena Makovac
- Department of Neuroimaging, King's College London, London, UK
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | - Jade B Jackson
- Department of Neuroimaging, King's College London, London, UK
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Sonia Medina
- Department of Neuroimaging, King's College London, London, UK
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, UK
| | - Jonathan O'Muircheartaigh
- Department of Neuroimaging, King's College London, London, UK
- Sackler Institute for Translational Neurodevelopment, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | | | - Stephen B McMahon
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
48
|
Harrewijn A, Vidal-Ribas P, Clore-Gronenborn K, Jackson SM, Pisano S, Pine DS, Stringaris A. Associations between brain activity and endogenous and exogenous cortisol - A systematic review. Psychoneuroendocrinology 2020; 120:104775. [PMID: 32592873 PMCID: PMC7502528 DOI: 10.1016/j.psyneuen.2020.104775] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
To arrive at a coherent understanding of the relation between glucocorticoids and the human brain, we systematically reviewed the literature for studies examining the associations between endogenous or exogenous cortisol and human brain function. Higher levels of endogenous cortisol during psychological stress were related to increased activity in the middle temporal gyrus and perigenual anterior cingulate cortex (ACC), decreased activity in the ventromedial prefrontal cortex, and altered function (i.e., mixed findings, increased or decreased) in the amygdala, hippocampus and inferior frontal gyrus. Moreover, endogenous cortisol response to psychological stress was related to increased activity in the inferior temporal gyrus and altered function in the amygdala during emotional tasks that followed psychological stress. Exogenous cortisol administration was related to increased activity in the postcentral gyrus, superior frontal gyrus and ACC, and altered function in the amygdala and hippocampus during conditioning, emotional and reward-processing tasks after cortisol administration. These findings were in line with those from animal studies on amygdala activity during and after stress.
Collapse
Affiliation(s)
- Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Pablo Vidal-Ribas
- Social and Behavioral Sciences Branch, National Institute of Child Health and Human Development, 6710 Rockledge Drive, Bethesda, MD, 20892, USA
| | - Katharina Clore-Gronenborn
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9501 Euclid Ave. EC10, Cleveland, OH, 44195, USA; Genetic Epidemiology Research Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sarah M Jackson
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Simone Pisano
- Department of Neuroscience, AORN Santobono-Pausilipon, Via Mario Fiore 6, Naples, Italy; Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Argyris Stringaris
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
49
|
Rab SL, Admon R. Parsing inter- and intra-individual variability in key nervous system mechanisms of stress responsivity and across functional domains. Neurosci Biobehav Rev 2020; 120:550-564. [PMID: 32941963 DOI: 10.1016/j.neubiorev.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Exposure to stressful events is omnipresent in modern human life, yet people show considerable heterogeneity in the impact of stress exposure(s) on their functionality and overall health. Encounter with stressor(s) is counteracted by an intricate repertoire of nervous-system responses. This narrative review starts with a brief summary of the vast evidence that supports heart rate variability, cortisol secretion, and large-scale cortical network interactions as kay physiological, endocrinological, and neural mechanisms of stress responsivity, respectively. The second section highlights potential sources for inter-individual variability in these mechanisms, by focusing on biological, environmental, social, habitual, and psychological factors that may influence stress responsivity patterns and thus contribute to heterogeneity in the impact of stress exposure on functionality and health. The third section introduces intra-individually variability in stress responsivity across functional domains as a novel putative source for heterogeneity in the impact of stress exposure. Challenges and future directions are further discussed. Parsing inter- and intra-individual variability in nervous-system mechanisms of stress responsivity and across functional domains is critical towards potential clinical translation.
Collapse
Affiliation(s)
- Sharona L Rab
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
50
|
Abstract
In primary polydipsia pathologically high levels of water intake physiologically lower arginine vasopressin (AVP) secretion, and in this way mirror the secondary polydipsia in diabetes insipidus in which pathologically low levels of AVP (or renal responsiveness to AVP) physiologically increase water intake. Primary polydipsia covers several disorders whose clinical features and significance, risk factors, pathophysiology and treatment are reviewed here. While groupings may appear somewhat arbitrary, they are associated with distinct alterations in physiologic parameters of water balance. The polydipsia is typically unrelated to homeostatic regulation of water intake, but instead reflects non-homeostatic influences. Recent technological advances, summarized here, have disentangled functional neurocircuits underlying both homeostatic and non-homeostatic physiologic influences, which provides an opportunity to better define the mechanisms of the disorders. We summarize this recent literature, highlighting hypothalamic circuitry that appears most clearly positioned to contribute to primary polydipsia. The life-threatening water imbalance in psychotic disorders is caused by an anterior hippocampal induced stress-diathesis that can be reproduced in animal models, and involves phylogenetically preserved pathways that appear likely to include one or more of these circuits. Ongoing translational neuroscience studies in these animal models may potentially localize reversible pathological changes which contribute to both the water imbalance and psychotic disorder.
Collapse
Affiliation(s)
- Leeda Ahmadi
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Morris B Goldman
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|