1
|
Wedderburn CJ, Yeung S, Groenewold NA, Rehman AM, Subramoney S, Fouche JP, Joshi SH, Narr KL, Hoffman N, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Subcortical Brain Volumes and Neurocognitive Function in Children With Perinatal HIV Exposure: A Population-Based Cohort Study in South Africa. Open Forum Infect Dis 2024; 11:ofae317. [PMID: 39022390 PMCID: PMC11253430 DOI: 10.1093/ofid/ofae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Background Children who are HIV-exposed and uninfected (HEU) are at risk for early neurodevelopmental impairment. Smaller basal ganglia nuclei have been reported in neonates who are HEU compared to HIV-unexposed (HU); however, neuroimaging studies outside infancy are scarce. We examined subcortical brain structures and associations with neurocognition in children who are HEU. Methods This neuroimaging study was nested within the Drakenstein Child Health Study birth cohort in South Africa. We compared (T1-weighted) magnetic resonance imaging-derived subcortical brain volumes between children who were HEU (n = 70) and HU (n = 92) at age 2-3 years using linear regression. Brain volumes were correlated with neurodevelopmental outcomes measured with the Bayley Scales of Infant and Toddler Development III. Results Compared to HU children, on average children who were HEU had 3% lower subcortical grey matter volumes. Analyses of individual structures found smaller volume of the putamen nucleus in the basal ganglia (-5% difference, P = .016) and the hippocampus (-3% difference, P = .044), which held on adjustment for potential confounders (P < .05). Maternal viremia and lower CD4 count in pregnancy were associated with smaller child putamen volumes. Children who were HEU had lower language scores than HU; putamen and hippocampus volumes were positively correlated with language outcomes. Conclusions Overall, children who are HEU had a pattern of smaller subcortical volumes in the basal ganglia and hippocampal regions compared to HU children, which correlated with language function. Findings suggest that optimizing maternal perinatal HIV care is important for child brain development. Further studies are needed to investigate underlying mechanisms and long-term outcomes.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nynke A Groenewold
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- Medical Research Council Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Katherine L Narr
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med 2024; 22:129. [PMID: 38519887 PMCID: PMC10960435 DOI: 10.1186/s12916-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Madzime J, Jankiewicz M, Meintjes EM, Torre P, Laughton B, van der Kouwe AJW, Holmes M. Reduced white matter maturation in the central auditory system of children living with HIV. FRONTIERS IN NEUROIMAGING 2024; 3:1341607. [PMID: 38510428 PMCID: PMC10951401 DOI: 10.3389/fnimg.2024.1341607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Introduction School-aged children experience crucial developmental changes in white matter (WM) in adolescence. The human immunodeficiency virus (HIV) affects neurodevelopment. Children living with perinatally acquired HIV (CPHIVs) demonstrate hearing and neurocognitive impairments when compared to their uninfected peers (CHUUs), but investigations into the central auditory system (CAS) WM integrity are lacking. The integration of the CAS and other brain areas is facilitated by WM fibers whose integrity may be affected in the presence of HIV, contributing to neurocognitive impairments. Methods We used diffusion tensor imaging (DTI) tractography to map the microstructural integrity of WM between CAS regions, including the lateral lemniscus and acoustic radiation, as well as between CAS regions and non-auditory regions of 11-year-old CPHIVs. We further employed a DTI-based graph theoretical framework to investigate the nodal strength and efficiency of the CAS and other brain regions in the structural brain network of the same population. Finally, we investigated associations between WM microstructural integrity outcomes and neurocognitive outcomes related to auditory and language processing. We hypothesized that compared to the CHUU group, the CPHIV group would have lower microstructural in the CAS and related regions. Results Our analyses showed higher mean diffusivity (MD), a marker of axonal maturation, in the lateral lemniscus and acoustic radiations, as well as WM between the CAS and non-auditory regions predominantly in frontotemporal areas. Most affected WM connections also showed higher axial and radial diffusivity (AD and RD, respectively). There were no differences in the nodal properties of the CAS regions between groups. The MD of frontotemporal and subcortical WM-connected CAS regions, including the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and internal capsule showed negative associations with sequential processing in the CPHIV group but not in the CHUU group. Discussion The current results point to reduced axonal maturation in WM, marked by higher MD, AD, and RD, within and from the CAS. Furthermore, alterations in WM integrity were associated with sequential processing, a neurocognitive marker of auditory working memory. Our results provide insights into the microstructural integrity of the CAS and related WM in the presence of HIV and link these alterations to auditory working memory.
Collapse
Affiliation(s)
- Joanah Madzime
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, College of Health and Human Services, San Diego, CA, United States
| | - Barbara Laughton
- Family Centre for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Andre J. W. van der Kouwe
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Martha Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Barnacle JR, Davis AG, Wilkinson RJ. Recent advances in understanding the human host immune response in tuberculous meningitis. Front Immunol 2024; 14:1326651. [PMID: 38264653 PMCID: PMC10803428 DOI: 10.3389/fimmu.2023.1326651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tuberculous meningitis (TBM), the most severe form of tuberculosis, causes death in approximately 25% cases despite antibiotic therapy, and half of survivors are left with neurological disability. Mortality and morbidity are contributed to by a dysregulated immune response, and adjunctive host-directed therapies are required to modulate this response and improve outcomes. Developing such therapies relies on improved understanding of the host immune response to TBM. The historical challenges in TBM research of limited in vivo and in vitro models have been partially overcome by recent developments in proteomics, transcriptomics, and metabolomics, and the use of these technologies in nested substudies of large clinical trials. We review the current understanding of the human immune response in TBM. We begin with M. tuberculosis entry into the central nervous system (CNS), microglial infection and blood-brain and other CNS barrier dysfunction. We then outline the innate response, including the early cytokine response, role of canonical and non-canonical inflammasomes, eicosanoids and specialised pro-resolving mediators. Next, we review the adaptive response including T cells, microRNAs and B cells, followed by the role of the glutamate-GABA neurotransmitter cycle and the tryptophan pathway. We discuss host genetic immune factors, differences between adults and children, paradoxical reaction, and the impact of HIV-1 co-infection including immune reconstitution inflammatory syndrome. Promising immunomodulatory therapies, research gaps, ongoing challenges and future paths are discussed.
Collapse
Affiliation(s)
- James R. Barnacle
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Angharad G. Davis
- The Francis Crick Institute, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
5
|
Williams SR, Robertson FC, Wedderburn CJ, Ringshaw JE, Bradford L, Nyakonda CN, Hoffman N, Joshi SH, Zar HJ, Stein DJ, Donald KA. 1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study. Front Neurosci 2023; 17:1251575. [PMID: 37901429 PMCID: PMC10600451 DOI: 10.3389/fnins.2023.1251575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Alterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure. Methods We used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age. Results Our study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17-0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35-0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson's r = -0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson's r = 0.51, p = 0.032). Conclusion Reduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.
Collapse
Affiliation(s)
- Simone R. Williams
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C. Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica E. Ringshaw
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Layla Bradford
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Charmaine N. Nyakonda
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H. Joshi
- Departments of Neurology and Bioengineering, UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Bulterys MA, Njuguna I, Mahy M, Gulaid LA, Powis KM, Wedderburn CJ, John-Stewart G. Neurodevelopment among children exposed to HIV and uninfected in sub-Saharan Africa. J Int AIDS Soc 2023; 26 Suppl 4:e26159. [PMID: 37909232 PMCID: PMC10618877 DOI: 10.1002/jia2.26159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION The population of 16 million children exposed to HIV and uninfected (CHEU) under 15 years of age continues to expand rapidly, and the estimated prevalence of CHEU exceeds 20% in several countries in sub-Saharan Africa with high HIV prevalence. Some evidence suggests that CHEU experience suboptimal neurodevelopmental outcomes compared to children born to women without HIV. In this commentary, we discuss the latest research on biologic and socio-behavioural factors associated with neurodevelopmental outcomes among CHEU. DISCUSSION Some but not all studies have noted that CHEU are at risk of poorer neurodevelopment across multiple cognitive domains, most notably in language and motor skills, in diverse settings, ages and using varied assessment tools. Foetal HIV exposure can adversely influence infant immune function, structural brain integrity and growth trajectories. Foetal exposure to antiretrovirals may also influence outcomes. Moreover, general, non-CHEU-specific risk factors for poor neurodevelopment, such as preterm birth, food insecurity, growth faltering and household violence, are amplified among CHEU; addressing these factors will require multi-factorial solutions. There is a need for rigorous harmonised approaches to identify children at the highest risk of delay. In high-burden HIV settings, existing maternal child health programmes serving the general population could adopt structured early child development programmes that educate healthcare workers on CHEU-specific risk factors and train them to conduct rapid neurodevelopmental screening tests. Community-based interventions targeting parent knowledge of optimal caregiving practices have shown to be successful in improving neurodevelopmental outcomes in children and should be adapted for CHEU. CONCLUSIONS CHEU in sub-Saharan Africa have biologic and socio-behavioural factors that may influence their neurodevelopment, brain maturation, immune system and overall health and wellbeing. Multidisciplinary research is needed to disentangle complex interactions between contributing factors. Common environmental and social risk factors for suboptimal neurodevelopment in the general population are disproportionately magnified within the CHEU population, and it is, therefore, important to draw on existing knowledge when considering the socio-behavioural pathways through which HIV exposure could impact CHEU neurodevelopment. Approaches to identify children at greatest risk for poor outcomes and multisectoral interventions are needed to ensure optimal outcomes for CHEU in sub-Saharan Africa.
Collapse
Affiliation(s)
- Michelle A Bulterys
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Irene Njuguna
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenyatta National Hospital, Nairobi, Kenya
| | | | - Laurie A Gulaid
- UNICEF, eastern and southern Africa Regional Office, Nairobi, Kenya
| | - Katheen M Powis
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine J Wedderburn
- Department of Pediatrics and Child Health and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Grace John-Stewart
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Ibrahim A, Warton FL, Fry S, Cotton MF, Jacobson SW, Jacobson JL, Molteno CD, Little F, van der Kouwe AJW, Laughton B, Meintjes EM, Holmes MJ. Maternal ART throughout gestation prevents caudate volume reductions in neonates who are HIV exposed but uninfected. Front Neurosci 2023; 17:1085589. [PMID: 36968507 PMCID: PMC10035579 DOI: 10.3389/fnins.2023.1085589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionSuccessful programmes for prevention of vertical HIV transmission have reduced the risk of infant HIV infection in South Africa from 8% in 2008 to below 1% in 2018/2019, resulting in an increasing population of children exposed to HIV perinatally but who are uninfected (HEU). However, the long-term effects of HIV and antiretroviral treatment (ART) exposure on the developing brain are not well understood. Whereas children who are HEU perform better than their HIV-infected counterparts, they demonstrate greater neurodevelopmental delay than children who are HIV unexposed and uninfected (HUU), especially in resource-poor settings. Here we investigate subcortical volumetric differences related to HIV and ART exposure in neonates.MethodsWe included 120 infants (59 girls; 79 HEU) born to healthy women with and without HIV infection in Cape Town, South Africa, where HIV sero-prevalence approaches 30%. Of the 79 HEU infants, 40 were exposed to ART throughout gestation (i.e., mothers initiated ART pre conception; HEU-pre), and 39 were exposed to ART for part of gestation (i.e., mothers initiated ART post conception; HEU-post). Post-conception mothers had a mean (± SD) gestational age (GA) of 15.4 (± 5.7) weeks at ART initiation. Mothers with HIV received standard care fixed drug combination ART (Tenofovir/Efavirenz/Emtricitabine). Infants were imaged unsedated on a 3T Skyra (Siemens, Erlangen, Germany) at mean GA equivalent of 41.5 (± 1.0) weeks. Selected regions (caudate, putamen, pallidum, thalamus, cerebellar hemispheres and vermis, and corpus callosum) were manually traced on T1-weighted images using Freeview.ResultsHEU neonates had smaller left putamen volumes than HUU [β (SE) = −90.3 (45.3), p = 0.05] and caudate volume reductions that depended on ART exposure duration in utero. While the HEU-pre group demonstrated no caudate volume reductions compared to HUU, the HEU-post group had smaller caudate volumes bilaterally [β (SE) = −145.5 (45.1), p = 0.002, and −135.7 (49.7), p = 0.008 for left and right caudate, respectively].DiscussionThese findings from the first postnatal month suggest that maternal ART throughout gestation is protective to the caudate nuclei. In contrast, left putamens were smaller across all HEU newborns, despite maternal ART.
Collapse
Affiliation(s)
- Abdulmumin Ibrahim
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Fleur L. Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- *Correspondence: Fleur L. Warton,
| | - Samantha Fry
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Sandra W. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Joseph L. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Ernesta M. Meintjes,
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Salan T, Willen EJ, Cuadra A, Sheriff S, Maudsley AA, Govind V. Whole-brain MR spectroscopic imaging reveals regional metabolite abnormalities in perinatally HIV infected young adults. Front Neurosci 2023; 17:1134867. [PMID: 36937663 PMCID: PMC10017464 DOI: 10.3389/fnins.2023.1134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Perinatally acquired HIV (PHIV) has been associated with brain structural and functional deficiencies, and with poorer cognitive performance despite the advent of antiretroviral therapy (ART). However, investigation of brain metabolite levels in PHIV measured by proton magnetic resonance spectroscopy (MRS) methods, is still limited with often inconclusive or contradictory findings. In general, these MRS-based methods have used a single voxel approach that can only evaluate metabolite concentrations in a few select brain anatomical regions. Additionally, most of the published data have been on children perinatally infected with HIV with only a few studies examining adult populations, though not exclusively. Therefore, this prospective and cross-sectional study aims to evaluate metabolite differences at the whole-brain level, using a unique whole-brain proton magnetic resonance spectroscopy imaging (MRSI) method, in a group of PHIV infected young adults (N = 28) compared to age and gender matched control sample (N = 28), and to find associations with HIV clinical factors and neurocognitive scores. MRSI data were acquired on a 3T scanner with a TE of 70 ms. Brain metabolites levels of total N-acetylaspartate (tNAA), total choline (tCho) and total creatine (tCre), as well as ratios of tNAA/tCre, tCho/tCre, and tNAA/tCho, were obtained from the whole brain level and evaluated at the level of gray matter (GM) and white matter (WM) tissue types and anatomical regions of interest (ROI). Our results indicate extensive metabolic abnormalities throughout the brains of PHIV infected subjects with significantly elevated levels of tCre and tCho, notably in GM regions. Decreases in tNAA and ratios of tNAA/tCre and tNAA/tCho were also found mostly in WM regions. These metabolic alterations indicate increased glial activation, inflammation, neuronal dysfunction, and energy metabolism in PHIV infected individuals, which correlated with a reduction in CD4 cell count, and lower cognitive scores. Our findings suggest that significant brain metabolite alterations and associated neurological complications persist in the brains of those with PHIV on long-term ART, and advocates the need for continued monitoring of their brain health.
Collapse
Affiliation(s)
- Teddy Salan
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth J. Willen
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Anai Cuadra
- Department of Pediatrics, Mailman Center for Child Development, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew A. Maudsley
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Nwosu EC, Holmes MJ, Cotton MF, Dobbels E, Little F, Laughton B, van der Kouwe A, Robertson F, Meintjes EM. Similar cortical morphometry trajectories from 5 to 9 years in children with perinatal HIV who started treatment before age 2 years and uninfected controls. BMC Neurosci 2023; 24:15. [PMID: 36829110 PMCID: PMC9951512 DOI: 10.1186/s12868-023-00783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Life-long early ART (started before age 2 years), often with periods of treatment interruption, is now the standard of care in pediatric HIV infection. Although cross-sectional studies have investigated HIV-related differences in cortical morphology in the setting of early ART and ART interruption, the long-term impact on cortical developmental trajectories is unclear. This study compares the longitudinal trajectories of cortical thickness and folding (gyrification) from age 5 to 9 years in a subset of children perinatally infected with HIV (CPHIV) from the Children with HIV Early antiRetroviral therapy (CHER) trial to age-matched children without HIV infection. METHODS 75 CHER participants in follow-up care at FAMCRU (Family Centre for Research with Ubuntu), as well as 66 age-matched controls, received magnetic resonance imaging (MRI) on a 3 T Siemens Allegra at ages 5, 7 and/or 9 years. MR images were processed, and cortical surfaces reconstructed using the FreeSurfer longitudinal processing stream. Vertex-wise linear mixed effects (LME) analyses were performed across the whole brain to compare the means and linear rates of change of cortical thickness and gyrification from 5 to 9 years between CPHIV and controls, as well as to examine effects of ART interruption. RESULTS Children without HIV demonstrated generalized cortical thinning from 5 to 9 years, with the rate of thinning varying by region, as well as regional age-related gyrification increases. Overall, the means and developmental trajectories of cortical thickness and gyrification were similar in CPHIV. However, at an uncorrected p < 0.005, 6 regions were identified where the cortex of CPHIV was thicker than in uninfected children, namely bilateral insula, left supramarginal, lateral orbitofrontal and superior temporal, and right medial superior frontal regions. Planned ART interruption did not affect development of cortical morphometry. CONCLUSIONS Although our results suggest that normal development of cortical morphometry between the ages of 5 and 9 years is preserved in CPHIV who started ART early, these findings require further confirmation with longitudinal follow-up through the vulnerable adolescent period.
Collapse
Affiliation(s)
- Emmanuel C Nwosu
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Martha J Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Mark F Cotton
- Department of Pediatrics & Child Health, Family Centre for Research With Ubuntu (FAMCRU), Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Els Dobbels
- Department of Pediatrics & Child Health, Family Centre for Research With Ubuntu (FAMCRU), Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Department of Pediatrics & Child Health, Family Centre for Research With Ubuntu (FAMCRU), Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,A.A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Frances Robertson
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa. .,Neuroscience Institute, University of Cape Town, Cape Town, South Africa. .,Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Khobo IL, Jankiewicz M, Holmes MJ, Little F, Cotton MF, Laughton B, van der Kouwe AJW, Moreau A, Nwosu E, Meintjes EM, Robertson FC. Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach. Hum Brain Mapp 2022; 43:4128-4144. [PMID: 35575438 PMCID: PMC9374890 DOI: 10.1002/hbm.25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy (1 H-MRS), structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI), a set of multimodal MRI measures characteristic of children on cART has not been previously identified. We used the embedded feature selection of a logistic elastic-net (EN) regularization to select neuroimaging measures that distinguish CPHIV from controls and measured their classification performance via the area under the receiver operating characteristic curve (AUC) using repeated cross validation. We also wished to establish whether combining MRI modalities improved the models. In single modality analysis, sMRI volumes performed best followed by DTI, whereas individual EN models on spectroscopic, gyrification, and cortical thickness measures showed no class discrimination capability. Adding DTI and 1 H-MRS in basal measures to sMRI volumes produced the highest classification performancevalidation accuracy = 85 % AUC = 0.80 . The best multimodal MRI set consisted of 22 DTI and sMRI volume features, which included reduced volumes of the bilateral globus pallidus and amygdala, as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the right corticospinal tract in cART-treated CPHIV. Consistent with previous studies of CPHIV, select subcortical volumes obtained from sMRI provide reasonable discrimination between CPHIV and controls. This may give insight into neuroimaging measures that are relevant in understanding the effects of HIV on the brain, thereby providing a starting point for evaluating their link with cognitive performance in CPHIV.
Collapse
Affiliation(s)
- Isaac L. Khobo
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Francesca Little
- Department of Statistical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Mark F. Cotton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Barbara Laughton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- A.A. Martinos Centre for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Emmanuel Nwosu
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Frances C. Robertson
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
11
|
Wedderburn CJ, Groenewold NA, Roos A, Yeung S, Fouche JP, Rehman AM, Gibb DM, Narr KL, Zar HJ, Stein DJ, Donald KA. Early structural brain development in infants exposed to HIV and antiretroviral therapy in utero in a South African birth cohort. J Int AIDS Soc 2022; 25:e25863. [PMID: 35041774 PMCID: PMC8765561 DOI: 10.1002/jia2.25863] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction There is a growing population of children who are HIV‐exposed and uninfected (HEU) with the successful expansion of antiretroviral therapy (ART) use in pregnancy. Children who are HEU are at risk of delayed neurodevelopment; however, there is limited research on early brain growth and maturation. We aimed to investigate the effects of in utero exposure to HIV/ART on brain structure of infants who are HEU compared to HIV‐unexposed (HU). Methods Magnetic resonance imaging using a T2‐weighted sequence was undertaken in a subgroup of infants aged 2–6 weeks enrolled in the Drakenstein Child Health Study birth cohort, South Africa, between 2012 and 2015. Mother–child pairs received antenatal and postnatal HIV testing and ART per local guidelines. We compared subcortical and total grey matter volumes between HEU and HU groups using multivariable linear regression adjusting for infant age, sex, intracranial volume and socio‐economic variables. We further assessed associations between brain volumes with maternal CD4 cell count and ART exposure. Results One hundred forty‐six infants (40 HEU; 106 HU) with high‐resolution images were included in this analysis (mean age 3 weeks; 50.7% male). All infants who were HEU were exposed to ART (88% maternal triple ART). Infants who were HEU had smaller caudate volumes bilaterally (5.4% reduction, p < 0.05) compared to HU infants. There were no group differences in other subcortical volumes (all p > 0.2). Total grey matter volume was also reduced in infants who were HEU (2.1% reduction, p < 0.05). Exploratory analyses showed that low maternal CD4 cell count (<350 cells/mm3) was associated with decreased infant grey matter volumes. There was no relationship between timing of ART exposure and grey matter volumes. Conclusions Lower caudate and total grey matter volumes were found in infants who were HEU compared to HU in the first weeks of life, and maternal immunosuppression was associated with reduced volumes. These findings suggest that antenatal HIV exposure may impact early structural brain development and improved antenatal HIV management may have the potential to optimize neurodevelopmental outcomes of children who are HEU.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, Roos A, Rehman AM, Hoffman N, Zar HJ, Stein DJ, Donald KA. A Neurometabolic Pattern of Elevated Myo-Inositol in Children Who Are HIV-Exposed and Uninfected: A South African Birth Cohort Study. Front Immunol 2022; 13:800273. [PMID: 35419007 PMCID: PMC8995436 DOI: 10.3389/fimmu.2022.800273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Exposure to maternal HIV in pregnancy may be a risk factor for impaired child neurodevelopment during the first years of life. Altered neurometabolites have been associated with HIV exposure in older children and may help explain the mechanisms underlying this risk. For the first time, we explored neurometabolic profiles of children who are HIV-exposed and uninfected (CHEU) compared to children who are HIV-unexposed (CHU) at 2-3 years of age. Methods The South African Drakenstein Child Health Study enrolled women during pregnancy and is following mother-child pairs through childhood. MRI scans were acquired on a sub-group of children at 2-3 years. We used single voxel magnetic resonance spectroscopy to measure brain metabolite ratios to total creatine in the parietal grey matter, and left and right parietal white matter of 83 children (36 CHEU; 47 CHU). Using factor analysis, we explored brain metabolite patterns in predefined parietal voxels in these groups using logistic regression models. Differences in relative concentrations of individual metabolites (n-acetyl-aspartate, myo-inositol, total choline, and glutamate) to total creatine between CHEU and CHU groups were also examined. Results Factor analysis revealed four different metabolite patterns, each one characterized by covarying ratios of a single metabolite in parietal grey and white matter. The cross-regional pattern dominated by myo-inositol, a marker for glial reactivity and inflammation, was associated with HIV exposure status (OR 1.63; 95% CI 1.11-2.50) which held after adjusting for child age, sex, and maternal alcohol use during pregnancy (OR 1.59; 95% CI 1.07 -2.47). Additionally, higher relative concentrations of myo-inositol to total creatine were found in left and right parietal white matter of CHEU compared to CHU (p=0.025 and p=0.001 respectively). Discussion Increased ratios of myo-inositol to total creatine in parietal brain regions at age 2-3 years in CHEU are suggestive of early and ongoing neuroinflammatory processes. Altered relative concentrations of neurometabolites were found predominantly in the white matter, which is sensitive to neuroinflammation, and may contribute to developmental risk in this population. Future work on the trajectory of myo-inositol over time in CHEU, alongside markers of neurocognitive development, and the potential for specific neurodevelopmental interventions will be useful.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Research Master Brain and Cognitive Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
van Biljon N, Robertson F, Holmes M, Cotton MF, Laughton B, van der Kouwe A, Meintjes E, Little F. Multivariate approach for longitudinal analysis of brain metabolite levels from ages 5-11 years in children with perinatal HIV infection. Neuroimage 2021; 237:118101. [PMID: 33961998 PMCID: PMC8295244 DOI: 10.1016/j.neuroimage.2021.118101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment guidelines recommend that children with perinatal HIV infection (PHIV) initiate antiretroviral therapy (ART) early in life and remain on it lifelong. As part of a longitudinal study examining the long-term consequences of PHIV and early ART on the developing brain, 89 PHIV children and a control group of 85 HIV uninfected children (HIV-) received neuroimaging at ages 5, 7, 9 and 11 years, including single voxel magnetic resonance spectroscopy (MRS) in three brain regions, namely the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM). We analysed age-related changes in absolute metabolite concentrations using a multivariate approach traditionally applied to ecological data, the Correlated Response Model (CRM) and compared these to results obtained from a multilevel mixed effect modelling (MMEM) approach. Both approaches produce similar outcomes in relation to HIV status and age effects on longitudinal trajectories. Both methods found similar age-related increases in both PHIV and HIV- children in almost all metabolites across regions. We found significantly elevated GPC+PCh across regions (95% CI=[0.033; 0.105] in BG; 95% CI=[0.021; 0.099] in PWM; 95% CI=[0.059; 0.137] in MFGM) and elevated mI in MFGM (95% CI=[0.131; 0.407]) among children living with PHIV compared to HIV- children; additionally the CRM model also indicated elevated mI in BG (95% CI=[0.008; 0.248]). These findings suggest persistent inflammation across the brain in young children living with HIV despite early ART initiation.
Collapse
Affiliation(s)
- Noëlle van Biljon
- Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7707 Cape Town, South Africa; Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa
| | - Frances Robertson
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Body Imaging Centre, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Martha Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Mark F Cotton
- FAMCRU, Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Stellenbosch University, Cape Town, South Africa
| | - Barbara Laughton
- FAMCRU, Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ernesta Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Body Imaging Centre, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7707 Cape Town, South Africa.
| |
Collapse
|
14
|
Ezeamama AE, Zalwango SK, Sikorskii A, Tuke R, Musoke PM, Giordani B, Boivin MJ. In utero and peripartum antiretroviral exposure as predictor of cognition in 6- to 10-year-old HIV-exposed Ugandan children - a prospective cohort study. HIV Med 2021; 22:592-604. [PMID: 33860626 DOI: 10.1111/hiv.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To quantify association between in utero/peripartum antiretroviral (IPA) exposure and cognition, i.e. executive function (EF) and socioemotional adjustment (SEA), in school-aged Ugandan children who were perinatally HIV-infected (CPHIV, n = 100) and children who were HIV-exposed but uninfected (CHEU, n = 101). METHODS Children were enrolled at age 6-10 years and followed for 12 months from March 2017 to December 2018. Caregiver-reported child EF and SEA competencies were assessed using validated questionnaires at baseline, 6 and 12 months. IPA type - combination antiretroviral therapy (cART), intrapartum single-dose nevirapine ± zidovudine (sdNVP ± ZDV), nevirapine + zidovudine + lamivudine (sdNVP + ZDV + 3TC) - or no IPA (reference) was verified via medical records. IPA-related standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) in cognitive competencies were estimated from regression models with adjustment for caregiver sociodemographic and contextual factors. Models were fitted separately for CPHIV and CHEU. RESULTS Among CPHIV children, cART (SMD = -0.82, 95% CI: -1.37 to -0.28) and sdNVP ± ZDV (SMD = -0.41, 95% CI: -0.81 to -0.00) vs. no IPA predicted lower executive dysfunction over 12 months. Intrapartum sdNVP + ZDV + 3TC vs. no IPA predicted executive dysfunction (SMD = 0.80, 95% CI: 0.30-1.31), SEA problems (SMD = 0.63-0.76, 95% CI: 0.00-1.24) and lower adaptive skills (SMD = -0.36, 95% CI: -0.75-0.02) over 12 months among CHEU. Further adjustment for contextual factors attenuated associations, although most remained of moderate clinical importance (|SMD| > 0.33). CONCLUSIONS Among CPHIV children, cART and sdNVP ± ZDV IPA exposure predicted, on average, lower executive dysfunction 6-10 years later. However, peripartum sdNVP + ZDV + 3TC predicted executive and SEA dysfunction among CHEU 6-10 years later. These data underscore the need for more research into long-term effects of in utero ART to inform development of appropriate interventions so as to mitigate cognitive sequelae.
Collapse
Affiliation(s)
- A E Ezeamama
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - S K Zalwango
- Directorate of Public Health and Environment, Kampala Capital City Authority, Kampala, Uganda
| | - A Sikorskii
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - R Tuke
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - P M Musoke
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda.,Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - B Giordani
- Departments of Psychiatry, Neurology, and Psychology, University of Michigan, Ann Arbor, MI, USA
| | - M J Boivin
- Departments of Psychiatry and Neurology & Ophthamology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Bertrand L, Velichkovska M, Toborek M. Cerebral Vascular Toxicity of Antiretroviral Therapy. J Neuroimmune Pharmacol 2021; 16:74-89. [PMID: 31209776 PMCID: PMC7952282 DOI: 10.1007/s11481-019-09858-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
HIV infection is associated with comorbidities that are likely to be driven not only by HIV itself, but also by the toxicity of long-term use of antiretroviral therapy (ART). Indeed, increasing evidence demonstrates that the antiretroviral drugs used for HIV treatment have toxic effects resulting in various cellular and tissue pathologies. The blood-brain barrier (BBB) is a modulated anatomophysiological interface which separates and controls substance exchange between the blood and the brain parenchyma; therefore, it is particularly exposed to ART-induced toxicity. Balancing the health risks and gains of ART has to be considered in order to maximize the positive effects of therapy. The current review discusses the cerebrovascular toxicity of ART, with the focus on mitochondrial dysfunction. Graphical Abstract Graphical representation of the interactions between HIV, antiretroviral therapy (ART), and the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
16
|
MRS suggests multi-regional inflammation and white matter axonal damage at 11 years following perinatal HIV infection. NEUROIMAGE-CLINICAL 2020; 28:102505. [PMID: 33395994 PMCID: PMC7721646 DOI: 10.1016/j.nicl.2020.102505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The neurological changes in children living with perinatal HIV (PHIV) on antiretroviral therapy (ART) can be studied at a metabolic level through proton magnetic resonance spectroscopy. While previous studies in children have largely focused on individual metabolite changes, investigating patterns within and across regions of interest can aid in identifying metabolic markers of HIV infection. In this study 76 children with PHIV from the Children with HIV Early AntiRetroviral (CHER) trial, 30 children who were HIV-exposed-uninfected (HEU) and 30 children who were HIV-unexposed (HU), were scanned at the age of 11.6 (sd = 0.3) years using a 3 T Skyra scanner. Metabolite concentrations were quantified within the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM), comparing levels between HIV status groups using linear regression. Factor analysis and logistic regression were performed to identify metabolic patterns characteristic of HIV infection within and across the regions of interest. In the BG region we observed restored metabolic activity in children with PHIV and children who were HEU, despite differences being previously observed at younger ages, suggesting that treatment may effectively reduce the effects of HIV infection and exposure. Elevated MFGM choline levels in children with PHIV are indicative of inflammation. Further, we observed reduced N-acetyl-aspartate (NAA) in the PWM of children with PHIV and children who were HEU, indicating possible axonal damage. Lower levels of PWM creatine in children with PHIV suggest that this may not be a valid reference metabolite in HIV studies. Finally, factor scores for a cross-regional inflammatory factor and a PWM axonal factor, driven by PWM NAA and creatine levels, distinguished children with PHIV from children without HIV (HEU and HU) at 11 years. Therefore, the effects of perinatal HIV infection and exposure continue to be seen at 11 years despite early treatment.
Collapse
|
17
|
Smith R, Huo Y, Tassiopoulos K, Rutstein R, Kapetanovic S, Mellins C, Kacanek D, Malee K, Yogev R, Ann Sanders M, Malee K, Hunter S, Shearer W, Paul M, Cooper N, Harris L, Purswani M, Baig MM, Villegas A, Puga A, Navarro S, Garvie PA, Blood J, Burchett SK, Karthas N, Kammerer B, Wiznia A, Burey M, Shaw R, Auguste R, Dieudonne A, Bettica L, Johnson J, Chen JS, Bulkley MG, Ivey L, Grant M, Knapp K, Allison K, Wilkins M, Russell-Bell J, Acevedo-Flores M, Rios H, Olivera V, Silio M, Gabriel M, Sirois P, Spector SA, Norris K, Nichols S, McFarland E, Cagwin E, Barr E, Katai A, Scott G, Alvarez G, Fernandez G, Cuadra A. Mental Health Diagnoses, Symptoms, and Service Utilization in US Youth with Perinatal HIV Infection or HIV Exposure. AIDS Patient Care STDS 2019; 33:1-13. [PMID: 30601062 DOI: 10.1089/apc.2018.0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Youth perinatally HIV infected (PHIV) or HIV exposed, but uninfected (PHEU), are aging into adolescence and adulthood with multiple complex risk factors for mental health (MH) problems and poor MH treatment utilization. Our aims were to estimate prevalence of MH diagnoses, clinically significant symptoms, and MH treatment utilization among youth with PHIV and among PHEU youth, 10-22 years old. We also aimed to identify correlates of diagnoses and treatment utilization. Analyses of data from standardized interviews, behavioral assessments, and chart review of 551 youth revealed that 36% had a previous or current MH diagnosis, with no significant HIV status group differences. Prevalence of clinically significant symptoms was 15% for both groups, of whom a third had no diagnosis, and half were not receiving treatment. Among youth with a current MH diagnosis, those with PHIV had greater utilization of services than PHEU youth (67% vs. 51%; p = 0.04). Factors associated with MH diagnoses and/or treatment utilization included caregiver characteristics, age and sex of child, HIV status, and stressful life events. Prevalence of MH diagnoses was higher than in the general population, but lower than in similar perinatally HIV-exposed cohorts, with some unmet service needs, particularly in PHEU youth. Family characteristics warrant careful consideration in early diagnosis and treatment of MH problems among youth affected by HIV.
Collapse
Affiliation(s)
- Renee Smith
- Department of Pediatrics, University of Illinois at Chicago Children's Hospital, Chicago, Illinois
| | - Yanling Huo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Katherine Tassiopoulos
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Richard Rutstein
- Division of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Suad Kapetanovic
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Claude Mellins
- Department of Psychiatry and Sociomedical Sciences, Columbia University, New York, New York
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathleen Malee
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|