1
|
Morrel J, Overholtzer LN, Sukumaran K, Cotter DL, Cardenas-Iniguez C, Tyszka JM, Schwartz J, Hackman DA, Chen JC, Herting MM. Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617429. [PMID: 39463957 PMCID: PMC11507665 DOI: 10.1101/2024.10.14.617429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion volumes in 9-10-year-olds. Methods Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 participants (55.4% male) were leveraged. Air pollution was estimated for each participant's primary residential address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala relative volume fractions (RVFs). Results No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and central, RVFs. Conclusions Fine particulate and its components are linked with distinct amygdala differences, potentially playing a role in risk for adolescent mental health problems.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala Subregion Volumes and Apportionment in Preadolescents - Associations with Age, Sex, and Body Mass Index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617048. [PMID: 39416063 PMCID: PMC11482789 DOI: 10.1101/2024.10.07.617048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance The amygdala, a key limbic structure, plays a critical role in emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. Objective To characterize the associations between developmental variables and amygdala subregion volumes during preadolescence. Design Setting and Participants Cross-sectional Adolescent Brain Cognitive Development (ABCD®) Study data was collected from 3,953 9- and 10-year-old children between September 1, 2016, and October 15, 2018. Data analysis was conducted between June 1, 2023, and July 30, 2024. Main Outcomes and Measures Using the CIT168 Amygdala Atlas, nine amygdala subregion volumes were quantified from high-quality MRI scans. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Results The study population consisted of 3,953 preadolescents (mean [SD] age, 120 [7.41] months; 1,763 [44.6%] female; 57 [1.4%] Asian, 527 [13.3%] Black, 740 [18.7%] Hispanic, 2,279 [57.7%] white, and 350 [8.9%] from other racial/ethnic groups [identified by parents as American Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, other Pacific Islander, or other race]). Distinct associations were observed between age, sex, and BMIz and whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in dorsal amygdala subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large laterobasal subregions, with increased relative apportionment in smaller subregions. Conclusions and Relevance This cross-sectional study suggests that age, but not pubertal stage, is associated with near-global expansion of the amygdala at ages 9 and 10, while sex and BMIz are linked to distinct changes in amygdala subregions that explain observed differences in total volumes. These findings provide a foundational context for understanding how developmental variables influence amygdala structure in preadolescents, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hur KH, Meisler SL, Yassin W, Frederick BB, Kohut SJ. Prefrontal-Limbic Circuitry Is Associated With Reward Sensitivity in Nonhuman Primates. Biol Psychiatry 2024; 96:473-485. [PMID: 38432521 PMCID: PMC11338745 DOI: 10.1016/j.biopsych.2024.02.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Abnormal reward sensitivity is a risk factor for psychiatric disorders, including eating disorders such as overeating and binge-eating disorder, but the brain structural mechanisms that underlie it are not completely understood. Here, we sought to investigate the relationship between multimodal whole-brain structural features and reward sensitivity in nonhuman primates. METHODS Reward sensitivity was evaluated through behavioral economic analysis in which monkeys (adult rhesus macaques; 7 female, 5 male) responded for sweetened condensed milk (10%, 30%, 56%), Gatorade, or water using an operant procedure in which the response requirement increased incrementally across sessions (i.e., fixed ratio 1, 3, 10). Animals were divided into high (n = 6) or low (n = 6) reward sensitivity groups based on essential value for 30% milk. Multimodal magnetic resonance imaging was used to measure gray matter volume and white matter microstructure. Brain structural features were compared between groups, and their correlations with reward sensitivity for various stimuli was investigated. RESULTS Animals in the high sensitivity group had greater dorsolateral prefrontal cortex, centromedial amygdaloid complex, and middle cingulate cortex volumes than animals in the low sensitivity group. Furthermore, compared with monkeys in the low sensitivity group, high sensitivity monkeys had lower fractional anisotropy in the left dorsal cingulate bundle connecting the centromedial amygdaloid complex and middle cingulate cortex to the dorsolateral prefrontal cortex, and in the left superior longitudinal fasciculus 1 connecting the middle cingulate cortex to the dorsolateral prefrontal cortex. CONCLUSIONS These results suggest that neuroanatomical variation in prefrontal-limbic circuitry is associated with reward sensitivity. These brain structural features may serve as predictive biomarkers for vulnerability to food-based and other reward-related disorders.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
| | - Walid Yassin
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Blaise B Frederick
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
4
|
Nakamura Y, Koike S. Daily fat intake is associated with basolateral amygdala response to high-calorie food cues and appetite for high-calorie food. Nutr Neurosci 2024; 27:809-817. [PMID: 37731332 DOI: 10.1080/1028415x.2023.2260585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Animal studies have indicated that fat intake mediates amygdala activation, which in turn promotes fat intake, while amygdala activation increases the preference for fat and leads to increased fat intake. However, the association among fat intake, amygdala activation, and appetite for high-calorie foods in humans remains unclear. Thus, to examine this association, we conducted a functional magnetic resonance imaging (fMRI) experiment. METHODS Fifty healthy-weight adults (18 females; mean age: 22.9 ± 3.02 years) were included. Participants were shown images of high-calorie and low-calorie foods and were instructed to rate their desire to eat the food items during fMRI. All participants provided information on their daily fat intake using a self-reported questionnaire. Associations among fat intake, the desire to eat high-calorie or low-calorie food items, and amygdala responses to food items were examined. RESULTS The basolateral amygdala (BLA) response was positively associated with fat intake ([x, y, z] = [24, -6, -16], z = 3.91, pFWE-corrected = 0.007) and the desire to eat high-calorie food items ([26, -4, -16], z = 3.75, pFWE-corrected = 0.010). Structural equation modeling showed that the desire for high-calorie food items was predicted by BLA response to high-calorie food items (p = 0.013, β = 3.176), and BLA response was predicted by fat intake (p < 0.001, β = 0.026). DISCUSSION Fat intake influences BLA response to high-fat food, which in turn increases the desire to eat palatable high-fat food. This may lead to additional fat intake and increase the risk of weight gain.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, the University of Tokyo, Meguro-ku, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, the University of Tokyo, Meguro-ku, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
5
|
Ruiz-Molina YG, Herrera-Ávila J, Espinosa-Juárez JV, Esquinca-Avilés HA, Tejas-Juárez JG, Flores-Guillén E, Morales-Martínez LA, Briones-Aranda A, Jiménez-Ceballos B, Sierra-Ramírez JA, Cruz-Trujillo R. Association of Overweight and Obesity with Impaired Executive Functioning in Mexican Adolescents: The Importance of Inhibitory Control. Healthcare (Basel) 2024; 12:1368. [PMID: 39057511 PMCID: PMC11275439 DOI: 10.3390/healthcare12141368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Overweight and obesity are major public health issues worldwide, including in Mexico, particularly among adolescents. This study aimed to analyze the associations between nutritional status and impaired executive function (EF) in Mexican adolescents. A case-control study was conducted with 98 male and female adolescents, categorized into normal weight and overweight/obese groups based on body mass index. EF was assessed using the BANFE-2 test. The prevalence of overweight and obesity was 54.3%. The EF assessment revealed that 82.45% of the overweight/obese group exhibited mild-to-severe impairment, compared to only 36.58% in the normal weight group (X2 = 21.69, p < 0.0001). In the inhibitory control assessment, adolescents with overweight and obesity performed worse than their normal-weight counterparts. Specifically, females with overweight/obesity scored lower than females with normal weight on the risk-benefit processing test. The risk of severe EF impairment significantly increased with the presence of overweight/obesity (OR = 7.8, p < 0.0001). These findings indicate that EF, particularly inhibitory control and risk-benefit processing, is impaired in adolescents with overweight or obesity.
Collapse
Affiliation(s)
- Yatzeny Guadalupe Ruiz-Molina
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Josué Herrera-Ávila
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
| | - Héctor Armando Esquinca-Avilés
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
| | - Juan Gabriel Tejas-Juárez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Tabasco 86658, Mexico;
| | - Elena Flores-Guillén
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas (UNICACH), Libramiento Norte-Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico; (E.F.-G.); (L.A.M.-M.)
| | - Luis Alberto Morales-Martínez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas (UNICACH), Libramiento Norte-Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico; (E.F.-G.); (L.A.M.-M.)
| | - Alfredo Briones-Aranda
- Facultad de Medicina Humana Campus II, Universidad Autónoma de Chiapas (UNACH), Décima Sur esquina Calle Central S/N, Tuxtla Gutiérrez 29050, Mexico;
| | - Betsabé Jiménez-Ceballos
- Clínica de Trastornos del Sueño, Universidad Autónoma Metropolitana, Unidad Iztapalapa (UAM-I), Av. San Rafael Atlixco 185, Col. Leyes de Reforma, Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - José Alfredo Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Refugio Cruz-Trujillo
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
- Departamento de Químicos Farmacobiólogos, Universidad Pablo Guardado Chávez (UPGCH), Libramiento Norte Oriente No. 3450, Tuxtla Gutiérrez 29040, Mexico
| |
Collapse
|
6
|
Di Passa AM, Prokop-Millar S, Yaya H, Dabir M, McIntyre-Wood C, Fein A, MacKillop E, MacKillop J, Duarte D. Clinical efficacy of deep transcranial magnetic stimulation (dTMS) in psychiatric and cognitive disorders: A systematic review. J Psychiatr Res 2024; 175:287-315. [PMID: 38759496 DOI: 10.1016/j.jpsychires.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Deep transcranial magnetic stimulation (dTMS) has gained attention as an enhanced form of traditional TMS, targeting broader and deeper regions of the brain. However, a fulsome synthesis of dTMS efficacy across psychiatric and cognitive disorders using sham-controlled trials is lacking. We systematically reviewed 28 clinical trials comparing active dTMS to a sham/controlled condition to characterize dTMS efficacy across diverse psychiatric and cognitive disorders. A comprehensive search of APA PsycINFO, Cochrane, Embase, Medline, and PubMed databases was conducted. Predominant evidence supports dTMS efficacy in patients with obsessive-compulsive disorder (OCD; n = 2), substance use disorders (SUDs; n = 8), and in those experiencing depressive episodes with major depressive disorder (MDD) or bipolar disorder (BD; n = 6). However, the clinical efficacy of dTMS in psychiatric disorders characterized by hyperactivity or hyperarousal (i.e., attention-deficit/hyperactivity disorder, posttraumatic stress disorder, and schizophrenia) was heterogeneous. Common side effects included headaches and pain/discomfort, with rare but serious adverse events such as seizures and suicidal ideation/attempts. Risk of bias ratings indicated a collectively low risk according to the Grading of Recommendations, Assessment, Development, and Evaluations checklist (Meader et al., 2014). Literature suggests promise for dTMS as a beneficial alternative or add-on treatment for patients who do not respond well to traditional treatment, particularly for depressive episodes, OCD, and SUDs. Mixed evidence and limited clinical trials for other psychiatric and cognitive disorders suggest more extensive research is warranted. Future research should examine the durability of dTMS interventions and identify moderators of clinical efficacy.
Collapse
Affiliation(s)
- Anne-Marie Di Passa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Shelby Prokop-Millar
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Horodjei Yaya
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Melissa Dabir
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Carly McIntyre-Wood
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Michael G DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, ON, Canada
| | - Allan Fein
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Michael G DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, ON, Canada
| | - Emily MacKillop
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - James MacKillop
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Michael G DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, ON, Canada
| | - Dante Duarte
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Kim MS, Pickering TA, Cotter DL, Fraga NR, Luo S, Won CY, Geffner ME, Herting MM. Neural Correlates of Obesity and Inflammation in Children and Adolescents with Congenital Adrenal Hyperplasia. Horm Res Paediatr 2024:000537847. [PMID: 38373413 PMCID: PMC11331025 DOI: 10.1159/000537847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Patients with classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency exhibit an increased prevalence of obesity from childhood including central adiposity and inflammation. There is also an emerging affected brain phenotype in CAH, with decreased cortico-limbic gray matter volumes and white matter abnormalities. We aimed to study the relationship between brain structure, obesity, and inflammation in children and adolescents with CAH compared to controls. METHODS 27 CAH (12.6±3.4y, 16 females) and 35 controls (13.0±2.8y, 20 females) had MRI of gray matter regions of interest [prefrontal cortex (PFC), amygdala, hippocampus] and white matter microstructure [fornix, stria terminalis (ST)]. Anthropometric measures and lab analytes were obtained. Relaimpo analyses (relative importance for linear regression; percent variance) identified which brain structures were most different between groups. Subsequent regressions further quantified the magnitude and direction of these relationships. Correlations analyzed relationships between brain structure, obesity, and inflammation in the context of CAH status. RESULTS PFC (13.3% variance) and its superior frontal (SF) subregion (14%) were most different between CAH and controls for gray matter; ST (16%) for white matter. Patients with CAH had lower caudal middle frontal [β = -0.56, (-0.96, -0.15)] and superior frontal [β = -0.58 (-0.92, -0.25)] subregion volumes, increased orientation dispersion index in the fornix [β = 0.56 (0.01, 1.10)] and ST [β = 0.85 (0.34, 1.36)], and decreased fractional anisotropy in the fornix [β = -0.91 (-1.42, -0.42)] and ST [β = -0.83 (-1.34, -0.33)] (all p's <0.05) indicating axonal disorganization, reduced myelin content, and/or higher microglial density within the affected white matter tracts. For the full cohort, SF was correlated with MCP-1 (r=-0.41), visceral adipose tissue (r=-0.25), and waist-to-height ratio (r=-0.27, all p's <0.05); ST was correlated with MCP-1 (r=0.31) and TNF-α (r= 0.29, all p's <0.05); however, after adjusting for CAH status, almost all correlations were attenuated for significance. CONCLUSIONS Relationships among key brain structures, body composition and inflammatory markers in pediatric patients with CAH could be largely driven by having CAH, with implications for obesity and neuroinflammation in this high-risk population.
Collapse
Affiliation(s)
- Mimi S. Kim
- Children’s Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA, USA
- The Saban Research Institute at Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Trevor A. Pickering
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Nicole R. Fraga
- Children’s Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA, USA
| | - Shan Luo
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Cindy Y. Won
- Children’s Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA, USA
| | - Mitchell E. Geffner
- Children’s Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA, USA
- The Saban Research Institute at Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Kulisch LK, Arumäe K, Briley DA, Vainik U. Triangulating causality between childhood obesity and neurobehavior: Behavioral genetic and longitudinal evidence. Dev Sci 2023; 26:e13392. [PMID: 36950909 DOI: 10.1111/desc.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Childhood obesity is a serious health concern that is not yet fully understood. Previous research has linked obesity with neurobehavioral factors such as behavior, cognition, and brain morphology. The causal directions of these relationships remain mostly untested. We filled this gap by using the Adolescent Brain Cognitive Development study cohort comprising 11,875 children aged 9-10. First, correlations between the age- and sex-specific 95th BMI percentile (%BMIp95) and neurobehavioral measures were cross-sectionally analyzed. Effects were then aggregated by neurobehavioral domain for causal analyses. Behavioral genetic Direction of Causation modeling was used to test the direction of each relationship. Findings were validated by longitudinal cross-lagged panel modeling. %BMIp95 correlated with impulsivity, motivation, psychopathology, eating behavior, and cognitive tests (executive functioning, language, memory, perception, working memory). Greater %BMIp95 was also associated with reduced cortical thickness in frontal and temporal brain areas but with increased thickness in parietal and occipital areas. Similar although weaker patterns emerged for cortical surface area and volume. Behavioral genetic modeling suggested causal effects of %BMIp95 on eating behavior (β = 0.26), cognition (β = 0.05), cortical thickness (β = 0.15), and cortical surface area (β = 0.07). Personality/psychopathology (β = 0.09) and eating behavior (β = 0.16) appeared to influence %BMIp95. Longitudinal evidence broadly supported these findings. Results regarding cortical volume were inconsistent. Results supported causal effects of obesity on brain functioning and morphology. The present study highlights the importance of physical health for brain development and may inform interventions aimed at preventing or reducing pediatric obesity. RESEARCH HIGHLIGHTS: A continuous measure related to obesity, %BMIp95, has correlations with various measures of brain functioning and structure Behavioral genetic and longitudinal modeling suggest causal links from personality, psychopathology, and eating behavior to %BMIp95 Results also indicate directional links from %BMIp95 to eating behavior, cognition, cortical thickness, and cortical surface area Obesity may play a role for healthy brain development during childhood.
Collapse
Affiliation(s)
- Leonard Konstantin Kulisch
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Wilhem Wundt Institute for Pschology, Leipzig University, Leipzig, Germany
| | - Kadri Arumäe
- Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Uku Vainik
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Kobiec T, Mardaraz C, Toro-Urrego N, Kölliker-Frers R, Capani F, Otero-Losada M. Neuroprotection in metabolic syndrome by environmental enrichment. A lifespan perspective. Front Neurosci 2023; 17:1214468. [PMID: 37638319 PMCID: PMC10447983 DOI: 10.3389/fnins.2023.1214468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Metabolic syndrome (MetS) is defined by the concurrence of different metabolic conditions: obesity, hypertension, dyslipidemia, and hyperglycemia. Its incidence has been increasingly rising over the past decades and has become a global health problem. MetS has deleterious consequences on the central nervous system (CNS) and neurological development. MetS can last several years or be lifelong, affecting the CNS in different ways and treatments can help manage condition, though there is no known cure. The early childhood years are extremely important in neurodevelopment, which extends beyond, encompassing a lifetime. Neuroplastic changes take place all life through - childhood, adolescence, adulthood, and old age - are highly sensitive to environmental input. Environmental factors have an important role in the etiopathogenesis and treatment of MetS, so environmental enrichment (EE) stands as a promising non-invasive therapeutic approach. While the EE paradigm has been designed for animal housing, its principles can be and actually are applied in cognitive, sensory, social, and physical stimulation programs for humans. Here, we briefly review the central milestones in neurodevelopment at each life stage, along with the research studies carried out on how MetS affects neurodevelopment at each life stage and the contributions that EE models can provide to improve health over the lifespan.
Collapse
Affiliation(s)
- Tamara Kobiec
- Facultad de Psicología, Centro de Investigaciones en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mardaraz
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
11
|
Kaltenhauser S, Weber CF, Lin H, Mozayan A, Malhotra A, Constable RT, Acosta JN, Falcone GJ, Taylor SN, Ment LR, Sheth KN, Payabvash S. Association of Body Mass Index and Waist Circumference With Imaging Metrics of Brain Integrity and Functional Connectivity in Children Aged 9 to 10 Years in the US, 2016-2018. JAMA Netw Open 2023; 6:e2314193. [PMID: 37200030 PMCID: PMC10196880 DOI: 10.1001/jamanetworkopen.2023.14193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Importance Aside from widely known cardiovascular implications, higher weight in children may have negative associations with brain microstructure and neurodevelopment. Objective To evaluate the association of body mass index (BMI) and waist circumference with imaging metrics that approximate brain health. Design, Setting, and Participants This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study to examine the association of BMI and waist circumference with multimodal neuroimaging metrics of brain health in cross-sectional and longitudinal analyses over 2 years. From 2016 to 2018, the multicenter ABCD study recruited more than 11 000 demographically representative children aged 9 to 10 years in the US. Children without any history of neurodevelopmental or psychiatric disorders were included in this study, and a subsample of children who completed 2-year follow-up (34%) was included for longitudinal analysis. Exposures Children's weight, height, waist circumference, age, sex, race and ethnicity, socioeconomic status, handedness, puberty status, and magnetic resonance imaging scanner device were retrieved and included in the analysis. Main Outcomes and Measures Association of preadolescents' BMI z scores and waist circumference with neuroimaging indicators of brain health: cortical morphometry, resting-state functional connectivity, and white matter microstructure and cytostructure. Results A total of 4576 children (2208 [48.3%] female) at a mean (SD) age of 10.0 years (7.6 months) were included in the baseline cross-sectional analysis. There were 609 (13.3%) Black, 925 (20.2%) Hispanic, and 2565 (56.1%) White participants. Of those, 1567 had complete 2-year clinical and imaging information at a mean (SD) age of 12.0 years (7.7 months). In cross-sectional analyses at both time points, higher BMI and waist circumference were associated with lower microstructural integrity and neurite density, most pronounced in the corpus callosum (fractional anisotropy for BMI and waist circumference at baseline and second year: P < .001; neurite density for BMI at baseline: P < .001; neurite density for waist circumference at baseline: P = .09; neurite density for BMI at second year: P = .002; neurite density for waist circumference at second year: P = .05), reduced functional connectivity in reward- and control-related networks (eg, within the salience network for BMI and waist circumference at baseline and second year: P < .002), and thinner brain cortex (eg, for the right rostral middle frontal for BMI and waist circumference at baseline and second year: P < .001). In longitudinal analysis, higher baseline BMI was most strongly associated with decelerated interval development of the prefrontal cortex (left rostral middle frontal: P = .003) and microstructure and cytostructure of the corpus callosum (fractional anisotropy: P = .01; neurite density: P = .02). Conclusions and Relevance In this cross-sectional study, higher BMI and waist circumference among children aged 9 to 10 years were associated with imaging metrics of poorer brain structure and connectivity as well as hindered interval development. Future follow-up data from the ABCD study can reveal long-term neurocognitive implications of excess childhood weight. Imaging metrics that had the strongest association with BMI and waist circumference in this population-level analysis may serve as target biomarkers of brain integrity in future treatment trials of childhood obesity.
Collapse
Affiliation(s)
- Simone Kaltenhauser
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- University of Regensburg, Regensburg, Germany
| | - Clara F. Weber
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Huang Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ali Mozayan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julián N. Acosta
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Guido J. Falcone
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Taylor
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Kevin N. Sheth
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Jiang F, Li G, Ji W, Zhang Y, Wu F, Hu Y, Zhang W, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Obesity is associated with decreased gray matter volume in children: a longitudinal study. Cereb Cortex 2023; 33:3674-3682. [PMID: 35989308 PMCID: PMC10068275 DOI: 10.1093/cercor/bhac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.
Collapse
Affiliation(s)
- Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
13
|
Sakib MN, Best JR, Hall PA. Bidirectional Associations Between Adiposity and Cognitive Function and Mediation by Brain Morphology in the ABCD Study. JAMA Netw Open 2023; 6:e2255631. [PMID: 36795417 PMCID: PMC9936350 DOI: 10.1001/jamanetworkopen.2022.55631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 02/17/2023] Open
Abstract
Importance Most epidemiologic studies examine the brain as an outcome in relation to adiposity (ie, the brain-as-outcome perspective), but it is also a potential risk factor associated with adiposity accumulation over time (ie, the brain-as-risk factor perspective). The bidirectionality hypothesis has not been fully explored in adolescent samples previously. Objective To assess bidirectional associations between adiposity and cognitive function in youth and test mediational pathways through brain morphology (specifically the lateral prefrontal cortex [LPFC]), lifestyle behaviors, and blood pressure. Design, Setting, and Participants This cohort study uses data (wave 1-3; 2 years of follow-up) from the Adolescent Brain Cognitive Development (ABCD) Study, a long-term longitudinal investigation of brain development in the United States launched in 2015, which recruited 11 878 children aged 9 to 10 years at inception. Data analysis was performed from August 2021 to June 2022. Main Outcomes and Measures Multivariate multivariable regression analyses were used to assess bidirectional associations of indicators of cognitive function (eg, executive function, processing speed, episodic memory, receptive vocabulary and reading skills) and adiposity (eg, body mass index z scores [zBMI] and waist circumference [WC]). Mediators considered for this investigation were lifestyle variables (eg, diet and physical activity), blood pressure, and the morphology of the LPFC and its subregions. Results A total of 11 103 individuals (mean [SD] age, 9.91 [0.6] years; 5307 females [48%]; 8293 White individuals [75%] and 2264 Hispanic individuals [21%]) were included in the current study. Multivariate multivariable regression analyses revealed that higher baseline zBMI and WC were associated with worse follow-up episodic memory (β, -0.04; 95% CI, -0.07 to -0.01) and better vocabulary (β, 0.03; 95% CI, 0.002 to 0.06) task performance, in covariate adjusted models. Similarly, superior baseline executive function (zBMI: β, -0.03; 95% CI, -0.06 to -0.01; WC: β, -0.04; 95% CI, -0.07 to -0.01) and episodic memory (zBMI: β, -0.04; 95% CI, -0.07 to -0.02; WC: β, -0.03; 95% CI, -0.06 to -0.002) task performance were associated with better follow-up adiposity status in covariate adjusted models. Cross-lagged panel models with latent variable modeling had a bidirectional association with executive function task performance (brain-as-outcome: β, -0.02; 95% CI, -0.05 to -0.001; brain-as-risk factor: β, -0.01; 95% CI, -0.02 to -0.003). The hypothesized associations were statistically mediated by LPFC volume and thickness, physical activity, and blood pressure. Conclusions and Relevance In this cohort study, executive function and episodic memory were bidirectionally associated with adiposity indices over time in this adolescent sample. These findings suggest that the brain can be both a risk factor and an outcome of adiposity; this complex bidirectional association should be taken into account in future research and clinical practice.
Collapse
Affiliation(s)
- Mohammad Nazmus Sakib
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - John R. Best
- Gerontology Research Centre, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter A. Hall
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Caballero S, Moënne-Loccoz C, Delgado M, Luarte L, Jimenez Y, Galgani JE, Perez-Leighton CE. Eating contexts determine the efficacy of nutrient warning labels to promote healthy food choices. Front Nutr 2023; 9:1026623. [PMID: 36687700 PMCID: PMC9852898 DOI: 10.3389/fnut.2022.1026623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Unhealthy food choices increase the risk of obesity and its co-morbidities. Nutrition labels are a public health policy that aims to drive individuals toward healthier food choices. Chile has been an example of this policy, where mandatory nutrient warning labels (NWL) identify processed foods high in calories and critical nutrients. Eating contexts influence individual food choices, but whether eating contexts also influence how NWL alter the decision process and selection during food choice is unknown. Methods In an online mouse-tracking study, participants prompted to health, typical, or unrestricted eating contexts were instructed to choose between pairs of foods in the presence or absence of NWL. Conflict during choices was analyzed using mouse paths and reaction times. Results NWL increased conflict during unhealthy food choices and reduced conflict during healthy choices in all contexts. However, the probability that NWL reversed an unhealthy choice was 80% in a healthy, 37% in a typical, and 19% in an unrestricted context. A drift-diffusion model analysis showed the effects of NWL on choice were associated with an increased bias toward healthier foods in the healthy and typical but not in the unrestricted context. Discussion These data suggest that the efficacy of NWL to drive healthy food choices increases in a healthy eating context, whereas NWL are less effective in typical or unrestricted eating contexts.
Collapse
Affiliation(s)
- Sara Caballero
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,Programa de Magister en Nutrición, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Delgado
- Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Luarte
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,Programa Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yanireth Jimenez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José E. Galgani
- Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio E. Perez-Leighton
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,Programa Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Claudio E. Perez-Leighton,
| |
Collapse
|
15
|
Ma H, He C, Li L, Gao P, Lu Z, Hu Y, Wang L, Zhao Y, Cao T, Cui Y, Zheng H, Yang G, Yan Z, Liu D, Zhu Z. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond) 2022; 46:1544-1555. [PMID: 35589963 DOI: 10.1038/s41366-022-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Collapse
Affiliation(s)
- Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China. .,Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
16
|
Alteration of regional heterogeneity and functional connectivity for obese undergraduates: evidence from resting-state fMRI. Brain Imaging Behav 2021; 16:627-636. [PMID: 34487278 DOI: 10.1007/s11682-021-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Obesity was found to be related with the changes of brain functions in human beings. There were several brain areas that were verified to be correlated with the obesity, including the parietal cortex, frontal cortex and so on. However, the cortical regions found from different studies were discrepant due to the different ages, gender distribution and satiation degree of participants. We found that the regional homogeneity of right angular gyrus were smaller in obese undergraduates than that in normal-weight undergraduates. Moreover, functional connectivity of the left middle temporal cortex and the right angular gyrus were found to be smaller in obese group than that in normal-weight group by setting the right angular gyrus as seed region. In addition, multiple regression analysis suggested that the right superior frontal gyrus and left middle temporal gyrus were significantly correlated with their body mass index for normal-weight undergraduates, but no significant correlation was found for obese group. In summary, these findings indicated the functional changes of the cortex in obese undergraduates, which might be significant for providing imaging-based biomarkers for intervention and therapy of obesity.
Collapse
|
17
|
Serrano-Gonzalez M, Herting MM, Lim SL, Sullivan NJ, Kim R, Espinoza J, Koppin CM, Javier JR, Kim MS, Luo S. Developmental Changes in Food Perception and Preference. Front Psychol 2021; 12:654200. [PMID: 34084148 PMCID: PMC8168465 DOI: 10.3389/fpsyg.2021.654200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 12/05/2022] Open
Abstract
Food choices are a key determinant of dietary intake, with brain regions, such as the mesolimbic and prefrontal cortex maturing at differential rates into adulthood. More needs to be understood about developmental changes in healthy and unhealthy food perceptions and preference. We investigated how food perceptions and preference vary as a function of age and how food attributes (taste and health) impact age-related changes. One hundred thirty-nine participants (8–23 years, 60 females) completed computerized tasks to rate high-calorie and low-calorie food cues for taste, health, and liking (preference), followed by 100 binary food choices based on each participant’s ratings. Dietary self-control was considered successful when the healthier (vs. tastier) food was chosen. Self-control success ratio was the proportion of success trials over total number of choices. Beta-weights for health (β-health) and taste (β-taste) were calculated as each attribute’s influence on food preference. Adiposity measurements included BMI z-score and waist-to-height ratio (WHtR). High-calorie foods were rated more tasty and less healthy with increasing age. Older participants liked high-calorie foods more (vs. younger participants), and β-taste was associated with age. Significant age-by-WHtR interactions were observed for health and taste ratings of high-calorie foods, β-taste, and marginally for preference of high-calorie foods. Stratifying by WHtR (high, low), we found age-related increases in taste and preference ratings of high-calorie foods in the high WHtR group alone. In contrast, age-related decreases in health ratings of high-calorie foods were significant in the low WHtR group alone. Age and β-taste were significantly associated in the high WHtR group and only marginally significant with low WHtR. Although participants rated low-calorie foods as less tasty and less healthy with increasing age, there was no association between age and preference for low-calorie foods. Participants made faster food choices with increasing age regardless of WHtR, with a significant age-by-WHtR interaction on reaction time (RT). There were no age-related effects in self-control success ratio and β-health. These results suggest that individual differences in age and central adiposity play an important role in preference for high-calorie foods, and a higher importance of food tastiness in food choice may contribute to greater preference for high-calorie foods with increasing age.
Collapse
Affiliation(s)
- Monica Serrano-Gonzalez
- Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Pediatric Endocrinology, Hasbro Children's Hospital, Providence, RI, United States
| | - Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Seung-Lark Lim
- Department of Psychology, University of Missouri-Kansas City, Kansas City, MO, United States
| | | | - Robert Kim
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Juan Espinoza
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Division of General Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christina M Koppin
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Joyce R Javier
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Division of General Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mimi S Kim
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA, United States.,Division of Endocrinology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Cai S, Aris IM, Yuan WL, Tan KH, Godfrey KM, Gluckman PD, Shek LPC, Chong YS, Yap F, Fortier MV, Meaney MJ, Lee YS, Qiu A. Neonatal amygdala microstructure mediates the relationship between gestational glycemia and offspring adiposity. BMJ Open Diabetes Res Care 2021; 9:e001396. [PMID: 33888539 PMCID: PMC8070871 DOI: 10.1136/bmjdrc-2020-001396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION To determine if variations in the neonatal amygdala mediate the association between maternal antenatal glycemia and offspring adiposity in early childhood. RESEARCH DESIGN AND METHODS 123 non-obese pregnant women with no pregnancy complications aside from gestational diabetes underwent a 75 g 2-hour oral glucose tolerance test at 26-28 weeks' gestation. Volume and fractional anisotropy (FA) of the neonatal amygdala (5-17 days old) were measured by MRI. The Body Mass Index (BMI) z-scores and sum of skinfold thickness (subscapular and triceps) of these children were tracked up to 60 months of age (18, 24, 36, 48, 54 and 60 months). RESULTS Maternal fasting glucose levels were positively associated with the offspring's sum of skinfold thickness at age 48 months (β=3.12, 95% CI 0.18 to 6.06 mm) and 60 months (β=4.14, 95% CI 0.46 to 7.82 mm) and BMI z-scores at 48 months (β=0.94, 95% CI 0.03 to 1.85), 54 months (β=0.74, 95% CI 0.12 to 1.36) and 60 months (β=0.74, 95% CI 0.08 to 1.39). Maternal fasting glucose was negatively associated with the offspring's FA of the right amygdala (β=-0.019, 95% CI -0.036 to -0.003). Right amygdala FA was negatively associated with the sum of skinfold thickness in the offspring at age 48 months (β=-56.95, 95% CI -98.43 to -15.47 mm), 54 months (β=-46.18, 95% CI -88.57 to -3.78 mm), and 60 months (β=-53.69, 95% CI -105.74 to -1.64 mm). The effect sizes mediated by right amygdala FA between fasting glucose and sum of skinfolds were estimated at β=5.14 (95% CI 0.74 to 9.53) mm (p=0.022), β=4.40 (95% CI 0.08 to 8.72) (p=0.049) mm and β=4.56 (95% CI -0.17 to 9.29) mm (p=0.059) at 48, 54 and 60 months, respectively. CONCLUSIONS In the offspring of non-obese mothers, gestational fasting glucose concentration is negatively associated with neonatal right amygdala FA and positively associated with childhood adiposity. Neonatal right amygdala FA may be a potential mediator between maternal glycemia and childhood adiposity.
Collapse
Affiliation(s)
- Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department for Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Wen Lun Yuan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- The Liggins Institute, The University of Auckland, Aukland, New Zealand
| | - Lynette Pei-Chi Shek
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department for Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women's and Children's Hospital, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|