1
|
Geng H, Mo S, Chen L, Ballapuram A, Tsang M, Lu M, Rauschecker AM, Wen KW, Devine WP, Solomon DA, Rubenstein JL. Identification of genomic biomarkers of disease progression and survival in primary CNS lymphoma. Blood Adv 2025; 9:1117-1131. [PMID: 39536287 PMCID: PMC11914178 DOI: 10.1182/bloodadvances.2024014460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT The determination of the genetic subtypes of primary central nervous system lymphoma (PCNSL) and their relationship to differential chemoimmunotherapeutic response has not been established. There is a particular need for genomic biomarkers that identify patients with newly diagnosed PCNSL at high risk of early progression and death. We applied targeted next-generation sequencing for detection of recurrent single-nucleotide variants, copy number alterations, and zygosity abnormalities in diagnostic specimens from 78 patients with PCNSL treated with a standard methotrexate-based regimen, to identify prognostically significant molecular subgroups. All patients received induction immunochemotherapy, and 44 proceeded to dose-intensive consolidation. Genomic aberrations at 4 loci were associated with 91% of lymphoma progression events and all 15 deaths: (1) chromosome 6p copy-neutral loss of heterozygosity (CN-LOH) or focal homozygous deletion (HD) at 6p21.3, and mutations of tumor suppressor genes (2) BTG1, (3) ETV6, and (4) TP53. Cox regression multivariate analysis demonstrated a high risk of progression in patients with aberrations at these loci. Genomic aberrations at these loci were also associated with significantly shorter survival. Lower expression of HLA-DR was associated with 6p CN-LOH/6p21.3 HD and inferior prognosis. These genomic aberrations identify a high-risk molecular subgroup that may inform risk stratification in PCNSL. Further elucidation of the mechanisms of therapeutic resistance associated with the high-risk genetic phenotype is requisite to facilitate precision medicine and progress in therapy.
Collapse
Affiliation(s)
- Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Shirley Mo
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Lingjing Chen
- Department of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| | - Aishwarya Ballapuram
- Department of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| | - Mazie Tsang
- Department of Hematology and Oncology, Mayo Clinic, Pheonix, AZ
| | - Ming Lu
- Department of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| | - Andreas M Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Kwun Wah Wen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | | | - David A Solomon
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - James L Rubenstein
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
3
|
Wahl D, Grant RA, LaRocca TJ. The reverse transcriptase inhibitor 3TC modulates hippocampal transcriptome signatures of inflammation in tauopathy model mice. Exp Gerontol 2024; 192:112458. [PMID: 38735597 PMCID: PMC11185825 DOI: 10.1016/j.exger.2024.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Reducing neuroinflammation, a key contributor to brain aging and neurodegenerative diseases, is a promising strategy for improving cognitive function in these settings. The FDA-approved nucleoside reverse transcriptase inhibitor 3TC (Lamivudine) has been reported to improve cognitive function in old wild-type mice and multiple mouse models of neurodegenerative disease, but its effects on the brain have not been comprehensively investigated. In the current study, we used transcriptomics to broadly characterize the effects of long-term supplementation with a human-equivalent therapeutic dose of 3TC on the hippocampal transcriptome in male and female rTg4510 mice (a commonly studied model of tauopathy-associated neurodegeneration). We found that tauopathy increased hippocampal transcriptomic signatures of neuroinflammation/immune activation, but 3TC treatment reversed some of these effects. We also found that 3TC mitigated tauopathy-associated activation of key transcription factors that contribute to neuroinflammation and immune activation, and these changes were related to improved recognition memory performance. Collectively, our findings suggest that 3TC exerts protective effects against tauopathy in the hippocampus by modulating inflammation and immune activation, and they may provide helpful insight for ongoing clinical efforts to determine if 3TC and/or related therapeutics hold promise for treating neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America
| | - Randy A Grant
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
4
|
Baig S, Nadaf J, Allache R, Le PU, Luo M, Djedid A, Nkili-Meyong A, Safisamghabadi M, Prat A, Antel J, Guiot MC, Petrecca K. Identity and nature of neural stem cells in the adult human subventricular zone. iScience 2024; 27:109342. [PMID: 38495819 PMCID: PMC10940989 DOI: 10.1016/j.isci.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.
Collapse
Affiliation(s)
- Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Phuong U. Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Annisa Djedid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Maryam Safisamghabadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Alex Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X0A9, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| |
Collapse
|
5
|
Boltz T, Schwarz T, Bot M, Hou K, Caggiano C, Lapinska S, Duan C, Boks MP, Kahn RS, Zaitlen N, Pasaniuc B, Ophoff R. Cell-type deconvolution of bulk-blood RNA-seq reveals biological insights into neuropsychiatric disorders. Am J Hum Genet 2024; 111:323-337. [PMID: 38306997 PMCID: PMC10870131 DOI: 10.1016/j.ajhg.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/04/2024] Open
Abstract
Genome-wide association studies (GWASs) have uncovered susceptibility loci associated with psychiatric disorders such as bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome, and the causal mechanisms of the link between genetic variation and disease risk is unknown. Expression quantitative trait locus (eQTL) analysis of bulk tissue is a common approach used for deciphering underlying mechanisms, although this can obscure cell-type-specific signals and thus mask trait-relevant mechanisms. Although single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell-type proportions and cell-type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-seq from 1,730 samples derived from whole blood in a cohort ascertained from individuals with BP and SCZ, this study estimated cell-type proportions and their relation with disease status and medication. For each cell type, we found between 2,875 and 4,629 eGenes (genes with an associated eQTL), including 1,211 that are not found on the basis of bulk expression alone. We performed a colocalization test between cell-type eQTLs and various traits and identified hundreds of associations that occur between cell-type eQTLs and GWASs but that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on the regulation of cell-type expression loci and found examples of genes that are differentially regulated according to lithium use. Our study suggests that applying computational methods to large bulk RNA-seq datasets of non-brain tissue can identify disease-relevant, cell-type-specific biology of psychiatric disorders and psychiatric medication.
Collapse
Affiliation(s)
- Toni Boltz
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Merel Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Christa Caggiano
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandra Lapinska
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Chenda Duan
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Rene S Kahn
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Noah Zaitlen
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Roel Ophoff
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
7
|
Velayutham N, Calderon MU, Alfieri CM, Padula SL, van Leeuwen FN, Scheijen B, Yutzey KE. Btg1 and Btg2 regulate neonatal cardiomyocyte cell cycle arrest. J Mol Cell Cardiol 2023; 179:30-41. [PMID: 37062247 PMCID: PMC10192094 DOI: 10.1016/j.yjmcc.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Uscategui Calderon
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christina M Alfieri
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stephanie L Padula
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Katherine E Yutzey
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Madrigal M, Martín P, Lamus F, Fernandez JM, Gato A, Alonso MI. Embryonic cerebrospinal fluid influence in the subependymal neurogenic niche in adult mouse hippocampus. Tissue Cell 2023; 82:102120. [PMID: 37285750 DOI: 10.1016/j.tice.2023.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The adult mouse hippocampal neurogenic niche is a complex structure which is not completely understood. It has mainly been related to the Subgranular layer of the dentate gyrus; however, as a result of differential neural stem cell populations reported in the subventricular zone of the lateral ventricle and associated with the hippocampus, the possibility remains of a multifocal niche reproducing developmental stages. Here, using a set of molecular markers for neural precursors, we describe in the adult mouse brain hippocampus the existence of a disperse population of neural precursors in the Subependymal Zone, the Dentate Migratory Stream and the hilus; these display dynamic behaviour compatible with neurogenesis. This supports the idea that the adult hippocampal niche cannot be restricted to the dentate gyrus subgranular layer. In other neurogenic niches such as the Subventricular Zone, a functional periventricular dependence has been shown due to the ability to respond to embryonic cerebro-spinal fluid. In this study, we demonstrate that neural precursors from the three areas studied (Sub-ependymal Zone, Dentate Migratory Stream and hilus) are able to modify their behaviour by increasing neurogenesis in a locally differential manner. Our results are compatible with the persistence in the adult mouse hippocampus of a neurogenic niche with the same spatial structure as that seen during development and early postnatal stages.
Collapse
Affiliation(s)
- M Madrigal
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - P Martín
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - F Lamus
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - J M Fernandez
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - A Gato
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain.
| | - M I Alonso
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Boltz T, Schwarz T, Bot M, Hou K, Caggiano C, Lapinska S, Duan C, Boks MP, Kahn RS, Zaitlen N, Pasaniuc B, Ophoff R. Cell type deconvolution of bulk blood RNA-Seq to reveal biological insights of neuropsychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542156. [PMID: 37293101 PMCID: PMC10245943 DOI: 10.1101/2023.05.24.542156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-wide association studies (GWAS) have uncovered susceptibility loci associated with psychiatric disorders like bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome with unknown causal mechanisms of the link between genetic variation and disease risk. Expression quantitative trait loci (eQTL) analysis of bulk tissue is a common approach to decipher underlying mechanisms, though this can obscure cell-type specific signals thus masking trait-relevant mechanisms. While single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell type proportions and cell type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-Seq from 1,730 samples derived from whole blood in a cohort ascertained for individuals with BP and SCZ this study estimated cell type proportions and their relation with disease status and medication. We found between 2,875 and 4,629 eGenes for each cell type, including 1,211 eGenes that are not found using bulk expression alone. We performed a colocalization test between cell type eQTLs and various traits and identified hundreds of associations between cell type eQTLs and GWAS loci that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on cell type expression regulation and found examples of genes that are differentially regulated dependent on lithium use. Our study suggests that computational methods can be applied to large bulk RNA-Seq datasets of non-brain tissue to identify disease-relevant, cell type specific biology of psychiatric disorders and psychiatric medication.
Collapse
Affiliation(s)
- Toni Boltz
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Merel Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Christa Caggiano
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandra Lapinska
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Chenda Duan
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Rene S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Noah Zaitlen
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Roel Ophoff
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Lee CJ, Lee HY, Yu YS, Ryu KB, Lee H, Kim K, Shin SY, Gil YC, Cho SJ. Brain compartmentalization based on transcriptome analyses and its gene expression in Octopus minor. Brain Struct Funct 2023:10.1007/s00429-023-02647-6. [PMID: 37138199 DOI: 10.1007/s00429-023-02647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Coleoid cephalopods have a high intelligence, complex structures, and large brain. The cephalopod brain is divided into supraesophageal mass, subesophageal mass and optic lobe. Although much is known about the structural organization and connections of various lobes of octopus brain, there are few studies on the brain of cephalopod at the molecular level. In this study, we demonstrated the structure of an adult Octopus minor brain by histomorphological analyses. Through visualization of neuronal and proliferation markers, we found that adult neurogenesis occurred in the vL and posterior svL. We also obtained specific 1015 genes by transcriptome of O. minor brain and selected OLFM3, NPY, GnRH, and GDF8 genes. The expression of genes in the central brain showed the possibility of using NPY and GDF8 as molecular marker of compartmentation in the central brain. This study will provide useful information for establishing a molecular atlas of cephalopod brain.
Collapse
Affiliation(s)
- Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hae-Youn Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yun-Sang Yu
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyoung-Bin Ryu
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Young-Chun Gil
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
11
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Blum KL, Krumbiegel M, Kraus C, Reis A, Hüffmeier U. Expanding the phenotype of 12q21 deletions: A role of BTG1 in speech development? Eur J Med Genet 2023; 66:104717. [PMID: 36746366 DOI: 10.1016/j.ejmg.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
We report on a female individual with feeding difficulties, constipation, poor overall growth, periventricular lesions resembling gliosis in brain MRI, recurrent otitis media with palsy of facial nerve, distinct facial features, and pronounced delay in speech development. The latter was the most prominent feature. Molecular karyotyping revealed a heterozygous de novo deletion of 4.353 Mb at chromosome 12q21.33q22. This report expands the number of described individuals with heterozygous deletions at 12q21.33, their clinical spectrum and highlights the clinical variability, even in individuals with deletion of the same genes. Furthermore, our findings indicate a role of BTG1 (OMIM *109580) in speech development.
Collapse
Affiliation(s)
- Katalin Lml Blum
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Delage L, Lambert M, Bardel É, Kundlacz C, Chartoire D, Conchon A, Peugnet AL, Gorka L, Auberger P, Jacquel A, Soussain C, Destaing O, Delecluse HJ, Delecluse S, Merabet S, Traverse-Glehen A, Salles G, Bachy E, Billaud M, Ghesquières H, Genestier L, Rouault JP, Sujobert P. BTG1 inactivation drives lymphomagenesis and promotes lymphoma dissemination through activation of BCAR1. Blood 2023; 141:1209-1220. [PMID: 36375119 DOI: 10.1182/blood.2022016943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.
Collapse
Affiliation(s)
- Lorric Delage
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM U1016, Plateforme BioMecan'IC, Biomécanique de la cellule, Paris, France
| | - Émilie Bardel
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Cindy Kundlacz
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Chartoire
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Axel Conchon
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Anne-Laure Peugnet
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Lucas Gorka
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Patrick Auberger
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Carole Soussain
- Institut Curie, Site de Saint-Cloud, Hematologie, et INSERM U932 Institut Curie, PSL Research University, Paris, France
| | - Olivier Destaing
- Centre de Recherche UGA, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | | | | | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Marc Billaud
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hervé Ghesquières
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Jean-Pierre Rouault
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| |
Collapse
|
14
|
Affiliation(s)
- Sang Hyeon Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ryeong Jung
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Yan H, Yan Y, Gao Y, Zhang N, Kumar G, Fang Q, Li Z, Li J, Zhang Y, Song L, Wang J, Sun J, Zhang HT, Ma CG. Transcriptome analysis of fasudil treatment in the APPswe/PSEN1dE9 transgenic (APP/PS1) mice model of Alzheimer's disease. Sci Rep 2022; 12:6625. [PMID: 35459923 PMCID: PMC9033779 DOI: 10.1038/s41598-022-10554-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of progressive dementia. In the present study, we showed hippocampal tissue transcriptome analysis in APPswe/PSEN1dE9 (APP/PS1, AD model) mice treated with fasudil (ADF) and compared with AD mice treated with saline (ADNS) and wild type mice (WT). The competing endogenous RNA (ceRNA) network was constructed and validated the differential expression of mRNA, lncRNA, miRNA, and circRNA. Our study showed differentially expressed mRNAs (DEMs) between WT and ADNS, while enriched in cell growth and death and nervous system pathways. DEMs between ADNS-ADF were enriched in the nervous system, glycosaminoglycan biosynthesis-keratan sulfate (KS) and Quorum sensing pathways. We validated four genes with RT-PCR, whereas enrichment of Acyl-CoA Synthetase Long Chain Family Member 4 (Acsl4, ENSMUST00000112903) in Quorum sensing pathways, and BTG anti-proliferation factor 1 (Btg1, ENSMUST00000038377) in RNA degradation pathways were conducted. Expression of these two genes were higher in ADNS, but were significantly reduced in ADF. Histone H4 transcription factor (Hinfp, ENSMUST00000216508) orchestrate G1/S transition of mitotic cell cycle and co-expressed with mmu-miR-26a-2-3p-mediated ceRNA and mmu-miR-3065-5p-mediated ceRNA; Wnt family member 4 (Wnt4, ENSMUST00000045747) was enriched in mTOR, Hippo and Wnt signaling pathway. Expression of these two genes were significantly lower in ADNS, and fasudil treatment reverse it. The present studies demonstrated four genes: Acsl4, Btg1, Hinfp, Wnt4 could be potential biomarkers of AD and the targets of fasudil treatment. These results will pave a novel direction for future clinic studies for AD and fasudil treatment.
Collapse
Affiliation(s)
- Hailong Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Ziqing Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jiehui Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuna Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiawei Wang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jingxian Sun
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266073, China.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
16
|
Ikeda Y, Taniguchi K, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Reactive oxygen species may influence on the crossroads of stemness, senescence, and carcinogenesis in a cell via the roles of APRO family proteins. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excessive reactive oxygen species (ROS) may cause oxidative stress which is involved in aging and in the pathogenesis of various human diseases. Whereas unregulated levels of the ROS may be harmful, regulated basal level of ROS are even necessary to support cellular functions as a second messenger for homeostasis under physiological conditions. Therefore, redox medicine could develop as a new therapeutic concept for human health-benefits. Here, we introduce the involvement of ROS on the crossroads of stemness, senescence, and carcinogenesis in a stem cell and cancer cell biology. Amazingly, the anti-proliferative (APRO) family anti-proliferative proteins characterized by immediate early growth responsive genes may also be involved in the crossroads machinery. The biological functions of APRO proteins (APROs) seem to be quite intricate, however, which might be a key modulator of microRNAs (miRNAs). Given the crucial roles of ROS and APROs for pathophysiological functions, upcoming novel therapeutics should include vigilant modulation of the redox state. Next generation of medicine including regenerative medicine and/or cancer therapy will likely comprise strategies for altering the redox environment with the APROs via the modulation of miRNAs as well as with the regulation of ROS of cells in a sustainable manner.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
17
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
18
|
Micheli L, Creanza TM, Ceccarelli M, D'Andrea G, Giacovazzo G, Ancona N, Coccurello R, Scardigli R, Tirone F. Transcriptome Analysis in a Mouse Model of Premature Aging of Dentate Gyrus: Rescue of Alpha-Synuclein Deficit by Virus-Driven Expression or by Running Restores the Defective Neurogenesis. Front Cell Dev Biol 2021; 9:696684. [PMID: 34485283 PMCID: PMC8415876 DOI: 10.3389/fcell.2021.696684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
The dentate gyrus of the hippocampus and the subventricular zone are neurogenic niches where neural stem and progenitor cells replicate throughout life to generate new neurons. The Btg1 gene maintains the stem cells of the neurogenic niches in quiescence. The deletion of Btg1 leads to an early transient increase of stem/progenitor cells division, followed, however, by a decrease during adulthood of their proliferative capability, accompanied by apoptosis. Since a physiological decrease of neurogenesis occurs during aging, the Btg1 knockout mouse may represent a model of neural aging. We have previously observed that the defective neurogenesis of the Btg1 knockout model is rescued by the powerful neurogenic stimulus of physical exercise (running). To identify genes responsible for stem and progenitor cells maintenance, we sought here to find genes underlying this premature neural aging, and whose deregulated expression could be rescued by running. Through RNA sequencing we analyzed the transcriptomic profiles of the dentate gyrus isolated from Btg1 wild-type or Btg1 knockout adult (2-month-old) mice submitted to physical exercise or sedentary. In Btg1 knockout mice, 545 genes were deregulated, relative to wild-type, while 2081 genes were deregulated by running. We identified 42 genes whose expression was not only down-regulated in the dentate gyrus of Btg1 knockout, but was also counter-regulated to control levels by running in Btg1 knockout mice, vs. sedentary. Among these 42 counter-regulated genes, alpha-synuclein (Snca), Fos, Arc and Npas4 showed significantly greater differential regulation. These genes control neural proliferation, apoptosis, plasticity and memory and are involved in aging. In particular, Snca expression decreases during aging. We tested, therefore, whether an Snca-expressing lentivirus, by rescuing the defective Snca levels in the dentate gyrus of Btg1 knockout mice, could also reverse the aging phenotype, in particular the defective neurogenesis. We found that the exogenous expression of Snca reversed the Btg1 knockout-dependent decrease of stem cell proliferation as well as the increase of progenitor cell apoptosis. This indicates that Snca has a functional role in the process of neural aging observed in this model, and also suggests that Snca acts as a positive regulator of stem cell maintenance.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Bari, Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giacomo Giacovazzo
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Ancona
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Bari, Italy
| | - Roberto Coccurello
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy.,Institute for Complex Systems, National Research Council, Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
19
|
Willemin A, Lopez-Delisle L, Bolt CC, Gadolini ML, Duboule D, Rodriguez-Carballo E. Induction of a chromatin boundary in vivo upon insertion of a TAD border. PLoS Genet 2021; 17:e1009691. [PMID: 34292939 PMCID: PMC8330945 DOI: 10.1371/journal.pgen.1009691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development. During development, enhancer sequences tightly regulate the spatio-temporal expression of target genes often located hundreds of kilobases away. This complex process is made possible by the folding of chromatin into domains, which are separated from one another by specific genomic regions referred to as boundaries. In order to understand whether such boundary sequences require their particular genomic contexts to achieve their isolating effect, we analyzed the impact of introducing one such boundary, taken from the HoxD locus, into a distinct topological domain. We show that this ectopic boundary splits the host domain into two sub-domains and affects the expression levels of a neighboring gene. We conclude that this sequence can work independently from its genomic context and thus carries all the information necessary to act as a boundary element.
Collapse
Affiliation(s)
- Andréa Willemin
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie-Laure Gadolini
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Collège de France, Paris, France
- * E-mail: (DD); (ER-C)
| | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- * E-mail: (DD); (ER-C)
| |
Collapse
|
20
|
ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 2021; 136:2975-2986. [PMID: 33150381 DOI: 10.1182/blood.2020007975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum-associated degradation (ERAD) governs the function of quiescent HSCs. The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyperproliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, we identify Ras homolog enriched in brain (Rheb), an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.
Collapse
|
21
|
Chen C, Sun MA, Warzecha C, Bachu M, Dey A, Wu T, Adams PD, Macfarlan T, Love P, Ozato K. HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Rep 2021; 30:2136-2149.e4. [PMID: 32075733 DOI: 10.1016/j.celrep.2020.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.
Collapse
Affiliation(s)
- Chao Chen
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claude Warzecha
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anup Dey
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiyun Wu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd Macfarlan
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Love
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Clark LR, Yun S, Acquah NK, Kumar PL, Metheny HE, Paixao RCC, Cohen AS, Eisch AJ. Mild Traumatic Brain Injury Induces Transient, Sequential Increases in Proliferation, Neuroblasts/Immature Neurons, and Cell Survival: A Time Course Study in the Male Mouse Dentate Gyrus. Front Neurosci 2021; 14:612749. [PMID: 33488351 PMCID: PMC7817782 DOI: 10.3389/fnins.2020.612749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.
Collapse
Affiliation(s)
- Lyles R. Clark
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Nana K. Acquah
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Priya L. Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biomechanical Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Rikley C. C. Paixao
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Akivas S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Yi W, Lu Y, Zhong S, Zhang M, Sun L, Dong H, Wang M, Wei M, Xie H, Qu H, Peng R, Hong J, Yao Z, Tong Y, Wang W, Ma Q, Liu Z, Ma Y, Li S, Yin C, Liu J, Ma C, Wang X, Wu Q, Xue T. A single-cell transcriptome atlas of the aging human and macaque retina. Natl Sci Rev 2020; 8:nwaa179. [PMID: 34691611 PMCID: PMC8288367 DOI: 10.1093/nsr/nwaa179] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
The human retina is a complex neural tissue that detects light and sends visual information to the brain. However, the molecular and cellular processes that underlie aging primate retina remain unclear. Here, we provide a comprehensive transcriptomic atlas based on 119 520 single cells of the foveal and peripheral retina of humans and macaques covering different ages. The molecular features of retinal cells differed between the two species, suggesting distinct regional and species specializations of the human and macaque retinae. In addition, human retinal aging occurred in a region- and cell-type-specific manner. Aging of human retina exhibited a foveal to peripheral gradient. MYO9A− rods and a horizontal cell subtype were greatly reduced in aging retina, indicating their vulnerability to aging. Moreover, we generated a dataset showing the cell-type- and region-specific gene expression associated with 55 types of human retinal disease, which provides a foundation to understanding of the molecular and cellular mechanisms underlying human retinal diseases. Such datasets are valuable to understanding of the molecular characteristics of primate retina, as well as molecular regulation of aging progression and related diseases.
Collapse
Affiliation(s)
- Wenyang Yi
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Mei Zhang
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wei
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haohuan Xie
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongqiang Qu
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Rongmei Peng
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Jing Hong
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Ziqin Yao
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yunyun Tong
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqian Ma
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shouzhen Li
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chonghai Yin
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tian Xue
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Omais S, Halaby NN, Habashy KJ, Jaafar C, Bejjani AT, Ghanem N. Histological Assessment of Cre-loxP Genetic Recombination in the Aging Subventricular Zone of Nestin-CreER T2/Rosa26YFP Mice. Methods Mol Biol 2020; 2045:187-199. [PMID: 30888667 DOI: 10.1007/7651_2019_214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2/Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Nour N Halaby
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Karl John Habashy
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Anthony T Bejjani
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
25
|
Ceccarelli M, D’Andrea G, Micheli L, Tirone F. Interaction Between Neurogenic Stimuli and the Gene Network Controlling the Activation of Stem Cells of the Adult Neurogenic Niches, in Physiological and Pathological Conditions. Front Cell Dev Biol 2020; 8:211. [PMID: 32318568 PMCID: PMC7154047 DOI: 10.3389/fcell.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
In the adult mammalian brain new neurons are continuously generated throughout life in two niches, the dentate gyrus of the hippocampus and the subventricular zone. This process, called adult neurogenesis, starts from stem cells, which are activated and enter the cell cycle. The proliferative capability of stem cells progressively decreases during aging. The population of stem cells is generally quiescent, and it is not clear whether the potential for stem cells to expand is limited, or whether they can expand and then return to quiescence, remaining available for further activation. Certain conditions may deregulate stem cells quiescence and self-renewal. In fact we discuss the possibility of activation of stem cells by neurogenic stimuli as a function of the intensity of the stimulus (i.e., whether this is physiological or pathological), and of the deregulation of the system (i.e., whether the model is aged or carrying genetic mutations in the gene network controlling quiescence). It appears that when the system is aged and/or carrying mutations of quiescence-maintaining genes, preservation of the quiescent state of stem cells is more critical and stem cells can be activated by a neurogenic stimulus which is ineffective in normal conditions. Moreover, when a neurogenic stimulus is in itself a cause of brain damage (e.g., kainic acid treatment) the activation of stem cells occurs bypassing any inhibitory control. Plausibly, with strong neurogenic stimuli, such as kainic acid injected into the dentate gyrus, the self-renewal capacity of stem cells may undergo rapid exhaustion. However, the self-renewal capability of stem cells persists when normal stimuli are elicited in the presence of a mutation of one of the quiescence-maintaining genes, such as p16Ink4a, p21Cip1 or Btg1. In this case, stem cells become promptly activated by a neurogenic stimulus even during aging. This indicates that stem cells retain a high proliferative capability and plasticity, and suggests that stem cells are protected against the response to stimulus and are resilient to exhaustion. It will be interesting to assess at which functional degree of deregulation of the quiescence-maintaining system, stem cells will remain responsive to repeated neurogenic stimuli without undergoing exhaustion of their pool.
Collapse
Affiliation(s)
| | | | | | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
26
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
27
|
D’Andrea G, Ceccarelli M, Bernini R, Clemente M, Santi L, Caruso C, Micheli L, Tirone F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J 2020; 34:4512-4526. [DOI: 10.1096/fj.201902643r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Giorgio D’Andrea
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| |
Collapse
|
28
|
Running-Activated Neural Stem Cells Enhance Subventricular Neurogenesis and Improve Olfactory Behavior in p21 Knockout Mice. Mol Neurobiol 2019; 56:7534-7556. [DOI: 10.1007/s12035-019-1590-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
|
29
|
Abstract
Stem cells can reside in a state of reversible growth arrest, or quiescence, for prolonged periods of time. Although quiescence has long been viewed as a dormant, low-activity state, increasing evidence suggests that quiescence represents states of poised potential and active restraint, as stem cells "idle" in anticipation of activation, proliferation, and differentiation. Improved understanding of quiescent stem cell dynamics is leading to novel approaches to enhance maintenance and repair of aged or diseased tissues. In this Review, we discuss recent advances in our understanding of stem cell quiescence and techniques enabling more refined analyses of quiescence in vivo.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
30
|
Micheli L, D'Andrea G, Ceccarelli M, Ferri A, Scardigli R, Tirone F. p16Ink4a Prevents the Activation of Aged Quiescent Dentate Gyrus Stem Cells by Physical Exercise. Front Cell Neurosci 2019; 13:10. [PMID: 30792628 PMCID: PMC6374340 DOI: 10.3389/fncel.2019.00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
In the neurogenic niches—the dentate gyrus of the hippocampus and the subventricular zone (SVZ) adjacent to lateral ventricles—stem cells continue to divide during adulthood, generating progenitor cells and new neurons, and to self-renew, thus maintaining the stem cell pool. During aging, the numbers of stem/progenitor cells in the neurogenic niches are reduced. The preservation of the neurogenic pool is committed to a number of antiproliferative genes, with the role of maintaining the quiescence of neural cells. The cyclin-dependent kinase inhibitor p16Ink4a, whose expression increases with age, controls the expansion of SVZ aging stem cells, since in mice its deficiency prevents the decline of neurogenesis in SVZ. No change of neurogenesis is however observed in the p16Ink4a-null dentate gyrus. Here, we hypothesized that p16Ink4a plays a role as a regulator of the self-renewal of the stem cell pool also in the dentate gyrus, and to test this possibility we stimulated the dentate gyrus neural cells of p16Ink4a-null aging mice with physical exercise, a powerful neurogenic activator. We observed that running highly induced the generation of new stem cells in the p16Ink4a-null dentate gyrus, forcing them to exit from quiescence. Stem cells, notably, are not induced to proliferate by running in wild-type (WT) mice. Moreover, p16Ink4a-null progenitor cells were increased by running significantly above the number observed in WT mice. The new stem and progenitor cells generated new neurons, and continued to actively proliferate in p16Ink4a-null mice longer than in the WT after cessation of exercise. Thus, p16Ink4a prevents aging dentate gyrus stem cells from being activated by exercise. Therefore, p16Ink4a may play a role in the maintenance of dentate gyrus stem cells after stimulus, by keeping a reserve of their self-renewal capacity during aging.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Alessandra Ferri
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology (IFT), National Research Council, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| |
Collapse
|
31
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143:181-193. [PMID: 30236533 DOI: 10.1016/j.brainresbull.2018.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Of wide interest for health is the relation existing between depression, a very common psychological illness, accompanied by anxiety and reduced ability to concentrate, and adult neurogenesis. We will focus on two neurogenic stimuli, fluoxetine and physical exercise, both endowed with the ability to activate adult neurogenesis in the dentate gyrus of the hippocampus, known to be required for learning and memory, and both able to counteract depression. Fluoxetine belongs to the class of selective serotonin reuptake inhibitor (SSRI) antidepressants, which represent the most used pharmacological therapy; physical exercise has also been shown to effectively counteract depression symptoms in rodents as well as in humans. While there is evidence that the antidepressant effect of fluoxetine requires its pro-neurogenic action, exerted by promoting proliferation, differentiation and survival of progenitor cells of the hippocampus, on the other hand fluoxetine exerts also neurogenesis-independent antidepressant effects by influencing the plasticity of the new neurons generated. Similarly, the antidepressant action of running also correlates with an increase of hippocampal neurogenesis and plasticity, although the gene pathways involved are only partially coincident with those of fluoxetine, such as those involved in serotonin metabolism and synapse formation. We further discuss how extra-neurogenic actions are also suggested by the fact that, unlike running, fluoxetine is unable to stimulate neurogenesis during aging, but still displays antidepressant effects. Moreover, in specific conditions, fluoxetine or running activate not only progenitor but also stem cells, which normally are not stimulated; this fact reveals how stem cells have a long-term, hidden ability to self-renew and, more generally, that neurogenesis is subject to complex controls that may play a role in depression, such as the type of neurogenic stimulus or the state of the local niche. Finally, we discuss how fluoxetine or running are effective in counteracting depression originated from stress or neurodegenerative diseases.
Collapse
|
33
|
Micheli L, Ceccarelli M, D'Andrea G, Costanzi M, Giacovazzo G, Coccurello R, Caruso C, Tirone F. Fluoxetine or Sox2 reactivate proliferation-defective stem and progenitor cells of the adult and aged dentate gyrus. Neuropharmacology 2018; 141:316-330. [PMID: 30142401 DOI: 10.1016/j.neuropharm.2018.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
The dentate gyrus of the hippocampus and the subventricular zone are neurogenic niches where the production of new neurons from glia-like stem cells continues throughout adult life. It is not clear whether the pool of stem cells is fated to be exhausted or is conserved until old age. We observed that the antiproliferative gene Btg1 maintains the quiescence of stem cells, and its ablation causes an increase of stem/progenitor cells proliferation in neonatal mice followed by progressive loss of proliferation during adulthood. Fluoxetine is an antidepressant, which exerts a powerful neurogenic effect on dentate gyrus progenitor cells, but is ineffective on stem cells. Here we show that adult dentate gyrus stem cells in the Btg1 knockout mice, with reduced self-renewal and proliferative capability, can be reactivated by fluoxetine, which increases their number greatly above the level of control or fluoxetine-treated wild-type mice. The increase of mitotic index above wild-type in Btg1 knockout fluoxetine-treated stem cells indicates that fluoxetine forces quiescent stem cells to enter the cycle. Stem cell proliferation undergoes continuous reactivation until fluoxetine is administered. Remarkably, fluoxetine reactivates proliferation-defective stem cells also in aged Btg1 knockout mice (15-month-old), an effect absent in wild-type aged mice. Moreover, overexpression of Sox2 retrovirally transduced in Btg1 knockout dentate gyrus cells significantly increases the number of neuroblasts, indicating that Sox2 is able to promote the self-renewal of proliferation-defective stem cells. Overall, the deletion of an antiproliferative gene, such as Btg1, reveals that dentate gyrus stem cells retain a hidden plasticity for self-renewal also in old age, in agreement with a model of permanent self-renewal.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy; Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università S.n.c., 01100, Viterbo, Italy.
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, Piazza Delle Vaschette 101, 00193, Rome, Italy.
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università S.n.c., 01100, Viterbo, Italy.
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
34
|
Tijchon E, van Emst L, Yuniati L, van Ingen Schenau D, Gerritsen M, van der Meer LT, Williams O, Hoogerbrugge PM, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 limits activation of BCL6 expression downstream of ETV6-RUNX1. Exp Hematol 2018; 60:57-62.e3. [PMID: 29408281 DOI: 10.1016/j.exphem.2018.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/20/2018] [Indexed: 11/28/2022]
Abstract
Translocation t(12;21) (p13;q22), giving rise to the ETV6-RUNX1 fusion gene, is the most common genetic abnormality in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation usually arises in utero, but its expression is insufficient to induce leukemia and requires other cooperating genetic lesions for BCP-ALL to develop. Deletions affecting the transcriptional coregulator BTG1 are frequently observed in ETV6-RUNX1-positive leukemia. Here we report that Btg1 deficiency enhances the self-renewal capacity of ETV6-RUNX1-positive mouse fetal liver-derived hematopoietic progenitors (FL-HPCs). Combined expression of the fusion protein and a loss of BTG1 drive upregulation of the proto-oncogene Bcl6 and downregulation of BCL6 target genes, such as p19Arf and Tp53. Similarly, ectopic expression of BCL6 promotes the self-renewal and clonogenic replating capacity of FL-HPCs, by suppressing the expression of p19Arf and Tp53. Together these results identify BCL6 as a potential driver of ETV6-RUNX1-mediated leukemogenesis, which could involve loss of BTG1-dependent suppression of ETV6-RUNX1 function.
Collapse
Affiliation(s)
- Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mylène Gerritsen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Owen Williams
- Molecular Haematology and Cancer Biology Unit, UCL-Institute of Child Health, London, United Kingdom
| | | | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain Behav Immun 2018; 68:1-10. [PMID: 28249802 DOI: 10.1016/j.bbi.2017.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
36
|
Lin LH, Jones S, Talman WT. Cellular Localization of Acid-Sensing Ion Channel 1 in Rat Nucleus Tractus Solitarii. Cell Mol Neurobiol 2018; 38:219-232. [PMID: 28825196 PMCID: PMC11482015 DOI: 10.1007/s10571-017-0534-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions. We hypothesized that saporin would increase ASIC1 expression in areas of gliosis. Using fluorescent immunohistochemistry and confocal microscopy, we found that cells and processes containing ASIC1-immunoreactivity (IR) were present in the NTS, the dorsal motor nucleus of vagus, and the area postrema. In control tissue, ASIC1-IR predominantly colocalized with IR for the astrocyte marker, glial fibrillary acidic protein (GFAP), or the microglial marker, integrin αM (OX42). The subpostremal NTS was the only NTS region where neurons, identified by protein gene product 9.5 (PGP9.5), contained ASIC1-IR. ASIC1-IR increased significantly (157 ± 8.6% of control, p < 0.001) in the NTS seven days after microinjection of saporin. As we reported previously, GFAP-IR was decreased in the center of the saporin injection site, but GFAP-IR was increased in the surrounding areas where OX42-IR, indicative of activated microglia, was also increased. The over-expressed ASIC1-IR colocalized with GFAP-IR and OX42-IR in those reactive astrocytes and microglia. Our results support the hypothesis that ASIC1 would be increased in activated microglia and in reactive astrocytes after injection of saporin into the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Susan Jones
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - William T Talman
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
- Neurology Service, Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
37
|
Micheli L, Ceccarelli M, Gioia R, D'Andrea G, Farioli-Vecchioli S, Costanzi M, Saraulli D, Cestari V, Tirone F. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2. Front Cell Neurosci 2017; 11:186. [PMID: 28740463 PMCID: PMC5502263 DOI: 10.3389/fncel.2017.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Roberta Gioia
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Marco Costanzi
- Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy.,Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Vincenzo Cestari
- Department of Psychology, Sapienza Università di RomaRome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
38
|
Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice. Brain Struct Funct 2017; 222:2855-2876. [PMID: 28247022 DOI: 10.1007/s00429-017-1376-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.
Collapse
|
39
|
Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen Schenau D, Waanders E, van Emst L, van der Meer LT, Pieters R, Escherich G, Horstmann MA, Sonneveld E, Venn N, Sutton R, Dalla-Pozza L, Kuiper RP, Hoogerbrugge PM, den Boer ML, van Leeuwen FN. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica 2016; 102:541-551. [PMID: 27979924 PMCID: PMC5394950 DOI: 10.3324/haematol.2016.153023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1+/− mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1+/− displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Marke
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Esmé Waanders
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gabriele Escherich
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicola Venn
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Rosemary Sutton
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Yuniati L, van der Meer LT, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, Palit SAL, Rodenbach C, Poelmans G, Hoogerbrugge PM, Shan J, Kilberg MS, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7:3128-43. [PMID: 26657730 PMCID: PMC4823095 DOI: 10.18632/oncotarget.6519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/19/2015] [Indexed: 11/25/2022] Open
Abstract
Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorette van Ingen Schenau
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marloes Levers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander A L Palit
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Rodenbach
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Prinses Maxima Center for Pediatric Oncology, De Bilt, The Netherlands
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Sellner S, Paricio-Montesinos R, Spieß A, Masuch A, Erny D, Harsan LA, Elverfeldt DV, Schwabenland M, Biber K, Staszewski O, Lira S, Jung S, Prinz M, Blank T. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 2016; 4:102. [PMID: 27639555 PMCID: PMC5027111 DOI: 10.1186/s40478-016-0374-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/10/2016] [Indexed: 11/16/2022] Open
Abstract
Homo and heterozygote cx3cr1 mutant mice, which harbor a green fluorescent protein (EGFP) in their cx3cr1 loci, represent a widely used animal model to study microglia and peripheral myeloid cells. Here we report that microglia in the dentate gyrus (DG) of cx3cr1−/− mice displayed elevated microglial sirtuin 1 (SIRT1) expression levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 activation, despite unaltered morphology when compared to cx3cr1+/− or cx3cr1+/+ controls. This phenotype was restricted to the DG and accompanied by reduced adult neurogenesis in cx3cr1−/− mice. Remarkably, adult neurogenesis was not affected by the lack of the CX3CR1-ligand, fractalkine (CX3CL1). Mechanistically, pharmacological activation of SIRT1 improved adult neurogenesis in the DG together with an enhanced performance of cx3cr1−/− mice in a hippocampus-dependent learning and memory task. The reverse condition was induced when SIRT1 was inhibited in cx3cr1−/− mice, causing reduced adult neurogenesis and lowered hippocampal cognitive abilities. In conclusion, our data indicate that deletion of CX3CR1 from microglia under resting conditions modifies brain areas with elevated cellular turnover independent of CX3CL1.
Collapse
|
42
|
Xiao F, Deng J, Guo Y, Niu Y, Yuan F, Yu J, Chen S, Guo F. BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism. Sci Signal 2016; 9:ra50. [PMID: 27188441 DOI: 10.1126/scisignal.aad8581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver steatosis, a condition in which lipid accumulates in liver cells, is a leading cause of many liver diseases. The livers of patients with hepatocellular carcinoma, a cancer characterized by liver steatosis, have decreased abundance of the transcription cofactor BTG1 (B cell translocation gene 1). We showed that the livers of db/db mice, which are a genetic model of obesity, had decreased BTG1 mRNA and protein abundance. BTG1 overexpression ameliorated liver steatosis in db/db mice, whereas knockdown of BTG1 induced liver steatosis in wild-type mice. Consistent with these changes, we found that BTG1 decreased triglyceride accumulation in cultured hepatocytes. BTG1 overexpression inhibited the expression of the gene encoding stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in the synthesis of fatty acids, by suppressing the activity of activating transcription factor 4 (ATF4). Knockdown of SCD1 prevented liver steatosis in wild-type mice induced by knockdown of BTG1. Conversely, the ability of BTG1 overexpression to ameliorate liver steatosis in db/db mice was negated by ATF4 overexpression. Moreover, BTG1 transgenic mice were resistant to liver steatosis induced by a high-carbohydrate diet. BTG1 abundance was decreased by this diet through a pathway that involved mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and cAMP response element-binding protein (CREB). Together, our study identifies a role of BTG1 in regulating hepatic lipid metabolism and specifically in preventing ATF4 and SCD1 from inducing liver steatosis.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuguo Niu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
43
|
Tijchon E, van Emst L, Yuniati L, van Ingen Schenau D, Havinga J, Rouault JP, Hoogerbrugge PM, van Leeuwen FN, Scheijen B. Tumor suppressors BTG1 and BTG2 regulate early mouse B-cell development. Haematologica 2016; 101:e272-6. [PMID: 27036158 DOI: 10.3324/haematol.2015.139675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Jørn Havinga
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jean-Pierre Rouault
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon1, France
| | | | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Adami R, Bottai D. Movement impairment: Focus on the brain. J Neurosci Res 2016; 94:310-7. [DOI: 10.1002/jnr.23711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/04/2015] [Accepted: 12/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaella Adami
- Department of Health Science; Faculty of Medicine, University of Milan; Milan Italy
| | - Daniele Bottai
- Department of Health Science; Faculty of Medicine, University of Milan; Milan Italy
| |
Collapse
|
45
|
Alshammari MA, Alshammari TK, Nenov MN, Scala F, Laezza F. Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. Mol Neurobiol 2015; 53:7254-7270. [PMID: 26687232 DOI: 10.1007/s12035-015-9568-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis, the production of mature neurons from progenitor cells in the adult mammalian brain, is linked to the etiology of neurodegenerative and psychiatric disorders. However, a thorough understanding of the molecular elements at the base of adult neurogenesis remains elusive. Here, we provide evidence for a previously undescribed function of fibroblast growth factor 14 (FGF14), a brain disease-associated factor that controls neuronal excitability and synaptic plasticity, in regulating adult neurogenesis in the dentate gyrus (DG). We found that FGF14 is dynamically expressed in restricted subtypes of sex determining region Y-box 2 (Sox2)-positive and doublecortin (DCX)-positive neural progenitors in the DG. Bromodeoxyuridine (BrdU) incorporation studies and confocal imaging revealed that genetic deletion of Fgf14 in Fgf14 -/- mice leads to a significant change in the proportion of proliferating and immature and mature newly born adult granule cells. This results in an increase in the late immature and early mature population of DCX and calretinin (CR)-positive neurons. Electrophysiological extracellular field recordings showed reduced minimal threshold response and impaired paired-pulse facilitation at the perforant path to DG inputs in Fgf14 -/- compared to Fgf14 +/+ mice, supporting disrupted synaptic connectivity as a correlative read-out to impaired neurogenesis. These new insights into the biology of FGF14 in neurogenesis shed light into the signaling pathways associated with disrupted functions in complex brain diseases.
Collapse
Affiliation(s)
- Musaad A Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Tahani K Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Federico Scala
- Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
46
|
The tumor suppressor BTG1 is expressed in the developing digits and regulates skeletogenic differentiation of limb mesodermal progenitors in high density cultures. Cell Tissue Res 2015; 364:299-308. [PMID: 26662056 DOI: 10.1007/s00441-015-2331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
In the developing limb, differentiation of skeletal progenitors towards distinct connective tissues of the digits is correlated with the establishment of well-defined domains of Btg1 gene expression. Zones of high expression of Btg1 include the earliest digit blastemas, the condensing mesoderm at the tip of the growing digits, the peritendinous mesenchyme, and the chondrocytes around the developing interphalangeal joints. Gain- and loss-of function experiments in micromass cultures of skeletal progenitors reveal a negative influence of Btg1 in cartilage differentiation accompanied by up-regulation of Ccn1, Scleraxis and PTHrP. Previous studies have assigned a role to these factors in the aggregation of progenitors in the digit tips (Ccn1), in the differentiation of tendon blastemas (Scleraxis) and repressing hypertrophic cartilage differentiation (PTHrP). Overexpression of Btg1 up-regulates the expression of retinoic acid and thyroid hormone receptors, but, different from other systems, the influence of BTG1 in connective tissue differentiation appears to be independent of retinoic acid and thyroid hormone signaling.
Collapse
|
47
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
48
|
Farioli-Vecchioli S, Tirone F. Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plast 2015; 1:41-54. [PMID: 29765834 PMCID: PMC5928538 DOI: 10.3233/bpl-150013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult brain the neurogenesis is mainly restricted to two neurogenic regions: newly generated neurons arise at the subventricular zone (SVZ) of the lateral ventricle and at the subgranular zone of the hippocampal subregion named the dentate gyrus. The hippocampus is involved in learning and memory paradigms and the generation of new hippocampal neurons has been hypothesized to be a pivotal form of plasticity involved in the process. Moreover the dysregulation of hippocampal adult neurogenesis has been recognized and could anticipate several varieties of brain disease such as Alzheimer disease, epilepsy and depression. Over the last few decades numerous intrinsic, epigenetic and environmental factors have been revealed to deeply influence the process of adult neurogenesis, although the underlying mechanisms remain largely unknown. Growing evidence indicates that physical exercise represents one of the main extrinsic factor able to profoundly increase hippocampal adult neurogenesis, by altering neurochemistry and function of newly generated neurons. The present review surveys how neurogenesis can be modulated by cell cycle kinetics and highlights the putative role of the cell cycle length as a key component of the beneficial effect of running for hippocampal adult neurogenesis, both in physiological conditions and in the presence of defective neurogenesis.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
49
|
Xiao F, Deng J, Yu J, Guo Y, Chen S, Guo F. A novel function of B‐cell translocation gene 1 (
BTG1
) in the regulation of hepatic insulin sensitivity in mice
via
c‐Jun. FASEB J 2015; 30:348-59. [DOI: 10.1096/fj.15-278689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiali Deng
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Junjie Yu
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Yajie Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Shanghai Chen
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Feifan Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
50
|
Jones KM, Sarić N, Russell JP, Andoniadou CL, Scambler PJ, Basson MA. CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult hippocampus. Stem Cells 2015; 33:196-210. [PMID: 25183173 PMCID: PMC5952591 DOI: 10.1002/stem.1822] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/19/2014] [Indexed: 01/10/2023]
Abstract
Neural stem/progenitor cells (NSCs) in the hippocampus produce new neurons throughout adult life. NSCs are maintained in a state of reversible quiescence and the failure to maintain the quiescent state can result in the premature depletion of the stem cell pool. The epigenetic mechanisms that maintain this quiescent state have not been identified. Using an inducible knockout mouse model, we show that the chromatin remodeling factor chromodomain-helicase-DNA-binding protein 7 (CHD7) is essential for maintaining NSC quiescence. CHD7 inactivation in adult NSCs results in a loss of stem cell quiescence in the hippocampus, a transient increase in cell divisions, followed by a significant decline in neurogenesis. This loss of NSC quiescence is associated with the premature loss of NSCs in middle-aged mice. We find that CHD7 represses the transcription of several positive regulators of cell cycle progression and is required for full induction of the Notch target gene Hes5 in quiescent NSCs. These findings directly link CHD7 to pathways involved in NSC quiescence and identify the first chromatin-remodeling factor with a role in NSC quiescence and maintenance. As CHD7 haplo-insufficiency is associated with a range of cognitive disabilities in CHARGE syndrome, our observations may have implications for understanding the basis of these deficits.
Collapse
Affiliation(s)
- Kieran M Jones
- King's College London, Department of Craniofacial Development and Stem Cell Biology, Guy's Hospital Tower Wing, London, UK
| | | | | | | | | | | |
Collapse
|