1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
3
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
4
|
Bakermans-Kranenburg MJ, Verhees MWFT, Lotz AM, Alyousefi-van Dijk K, van IJzendoorn MH. Is paternal oxytocin an oxymoron? Oxytocin, vasopressin, testosterone, oestradiol and cortisol in emerging fatherhood. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210060. [PMID: 35858109 PMCID: PMC9272151 DOI: 10.1098/rstb.2021.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
How do hormonal levels in men change from pregnancy to after the birth of their firstborn child, and what is the role of oxytocin, alone or in interplay with other hormones, in explaining variance in their parenting quality? We explored in 73 first-time fathers the development of five hormones that have been suggested to play a role in parenting: oxytocin (OT), vasopressin (AVP), testosterone (T), oestradiol (E2) and cortisol (Cort). In an extended group of fathers (N = 152) we examined associations with fathers' behaviour with their 2-month-old infants. OT and E2 showed stability from the prenatal to the postnatal assessments, whereas AVP and T decreased significantly, and Cort decreased marginally. OT on its own or in interplay with other hormones was not related to paternal sensitivity. Using an exploratory approach, the interaction between T and E2 emerged as relevant for fathers' sensitive parenting. Among fathers with high E2, high T was associated with lower sensitivity. Although we did not find evidence for the importance of OT as stand-alone hormone or in interplay with other hormones in this important phase in men's lives, the interaction between T and E2 in explaining variation in paternal behaviour is a promising hypothesis for further research. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Marian J. Bakermans-Kranenburg
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, 1085 BT, Amsterdam, The Netherlands
- Leiden Consortium on Individual Development, 2300 RB, Leiden, The Netherlands
| | - Martine W. F. T. Verhees
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, 1085 BT, Amsterdam, The Netherlands
- Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Anna M. Lotz
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, 1085 BT, Amsterdam, The Netherlands
| | - Kim Alyousefi-van Dijk
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, 1085 BT, Amsterdam, The Netherlands
| | - Marinus H. van IJzendoorn
- Leiden Consortium on Individual Development, 2300 RB, Leiden, The Netherlands
- Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, UCL, University of London, London W1T 7NF, UK
| |
Collapse
|
5
|
Capas-Peneda S, Saavedra Torres Y, Prins JB, Olsson IAS. From Mating to Milk Access: A Review of Reproductive Vocal Communication in Mice. Front Behav Neurosci 2022; 16:833168. [PMID: 35418843 PMCID: PMC8995852 DOI: 10.3389/fnbeh.2022.833168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vocalisations play a central role in rodent communication, especially in reproduction related behaviours. In adult mice (Mus musculus) the emission of ultrasonic vocalisations (USVs) has been observed in courtship and mating behaviour, especially by males. These have been found to have distinctive individual signatures that influence female choice of mating partner. The most recent findings show that vocal communication also has a role in parental cooperation, in that female mice communicate with male partners in ultrasonic frequencies to induce paternal behaviour. Infant vocalisations form the other important part of reproductive vocal communication. Although born deaf, neonatal mice are capable of producing vocalisations since birth. As an altricial species, successful mother-infant communication is essential for survival, and these vocalisations are important modulators of maternal behaviour. Three main types of infant vocalisations have been identified and characterised. Most research has addressed pure USVs, related to stressful situations (e.g., cold, isolation, handling, presence of unfamiliar males or predators), which usually elicit maternal search and retrieval. In addition, broad-band spectrum signals, emitted post-partum during cleaning of foetal membranes, inhibit biting and injury by adults and “wriggling calls,” emitted during suckling, release maternal behaviour (such as licking). Several variables have been identified to modulate vocalisations in mice, including individual characteristics such as strain/genotype, age, sex, and experimental factors such as pharmacological compounds and social context. In recent years, there has been a big increase in the knowledge about the characteristics of vocal communication in rodents due to recent technological advances as well as a growing interest from the neuroscience community. Vocalisation analysis has become an essential tool for phenotyping and evaluating emotional states. In this review, we will (i) provide a comprehensive summary of the current knowledge on mouse reproductive vocal communication and (ii) discuss the most recent findings in order to provide a broad overview on this topic.
Collapse
Affiliation(s)
- Sara Capas-Peneda
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- *Correspondence: Sara Capas-Peneda,
| | | | - Jan-Bas Prins
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, Netherlands
| | - I. Anna S. Olsson
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Been LE, Sheppard PAS, Galea LAM, Glasper ER. Hormones and neuroplasticity: A lifetime of adaptive responses. Neurosci Biobehav Rev 2021; 132:679-690. [PMID: 34808191 DOI: 10.1016/j.neubiorev.2021.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Major life transitions often co-occur with significant fluctuations in hormones that modulate the central nervous system. These hormones enact neuroplastic mechanisms that prepare an organism to respond to novel environmental conditions and/or previously unencountered cognitive, emotional, and/or behavioral demands. In this review, we will explore several examples of how hormones mediate neuroplastic changes in order to produce adaptive responses, particularly during transitions in life stages. First, we will explore hormonal influences on social recognition in both males and females as they transition to sexual maturity. Next, we will probe the role of hormones in mediating the transitions to motherhood and fatherhood, respectively. Finally, we will survey the long-term impact of reproductive experience on neuroplasticity in females, including potential protective effects and risk factors associated with reproductive experience in mid-life and beyond. Ultimately, a more complete understanding of how hormones influence neuroplasticity throughout the lifespan, beyond development, is necessary for understanding how individuals respond to life changes in adaptive ways.
Collapse
Affiliation(s)
- Laura E Been
- Department of Psychology, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA.
| | - Paul A S Sheppard
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Erica R Glasper
- Department of Psychology, University of Maryland, College Park, MD, 20742 USA.
| |
Collapse
|
7
|
Cai W, Ma H, Xun Y, Hou W, Wang L, Zhang X, Ran Y, Yuan W, Guo Q, Zhang J, Li L, Yang Y, Li Y, Lv Z, He Z, Jia R, Tai F. Involvement of the dopamine system in paternal behavior induced by repeated pup exposure in virgin male ICR mice. Behav Brain Res 2021; 415:113519. [PMID: 34389426 DOI: 10.1016/j.bbr.2021.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Like mothers, fathers play a vital role in the development of the brain and behavior of offspring in mammals with biparental care. Unlike mothers, fathers do not experience the physiological processes of pregnancy, parturition, or lactation before their first contact with offspring. Whether pup exposure can induce the onset of paternal behavior and the underlying neural mechanisms remains unclear. By using Slc:ICR male mice exhibiting maternal-like parental care, the present study found that repeated exposure to pups for six days significantly increased the total duration of paternal behavior and shortened the latency to retrieve and care for pups. Repeated pup exposure increased c-Fos-positive neurons and the levels of dopamine- and TH-positive neurons in the nucleus accumbens (NAc). In addition, inhibition of dopamine projections from the ventral tegmental area to the NAc using chemogenetic methods reduced paternal care induced by repeated pup exposure. In conclusion, paternal behavior in virgin male ICR mice can be initiated by repeated pup exposure via sensitization, and the dopamine system may be involved in this process.
Collapse
Affiliation(s)
- Wenqi Cai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huan Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Xun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Ran
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianqian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Laifu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitong Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zijian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Shabalova AA, Liang M, Zhong J, Huang Z, Tsuji C, Shnayder NA, Lopatina O, Salmina AB, Okamoto H, Yamamoto Y, Zhong ZG, Yokoyama S, Higashida H. Oxytocin and CD38 in the paraventricular nucleus play a critical role in paternal aggression in mice. Horm Behav 2020; 120:104695. [PMID: 31987898 DOI: 10.1016/j.yhbeh.2020.104695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.
Collapse
Affiliation(s)
- Anna A Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa Campus, Kanazawa 920-8640, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Department of Physiology, Guangxi University of Chinese Medicine, Xianhu Campus, Nanning, Guangxi 530200, China
| | - Zhiqi Huang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Xianhu Campus, Nanning, Guangxi 530200, China
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Natalia A Shnayder
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
| | - Alla B Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Zeng-Guo Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University, Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia.
| |
Collapse
|
9
|
Delevich K, Okada NJ, Rahane A, Zhang Z, Hall CD, Wilbrecht L. Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in Mice. Cereb Cortex 2020; 30:3543-3557. [PMID: 32037445 DOI: 10.1093/cercor/bhz325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, nonhuman primates, and rodents, the frontal cortices exhibit grey matter thinning and dendritic spine pruning that extends into adolescence. This maturation is believed to support higher cognition but may also confer psychiatric vulnerability during adolescence. Currently, little is known about how specific cell types in the frontal cortex mature or whether puberty plays a role in the maturation of some cell types but not others. Here, we used mice to characterize the spatial topography and adolescent development of cross-corticostriatal (cSTR) neurons that project through the corpus collosum to the dorsomedial striatum. We found that apical spine density on cSTR neurons in the medial prefrontal cortex decreased significantly between late juvenile (P29) and young adult time points (P60), with females exhibiting higher spine density than males at both ages. Adult males castrated prior to puberty onset had higher spine density compared to sham controls. Adult females ovariectomized before puberty onset showed greater variance in spine density measures on cSTR cells compared to controls, but their mean spine density did not significantly differ from sham controls. Our findings reveal that these cSTR neurons, a subtype of the broader class of intratelencephalic-type neurons, exhibit significant sex differences and suggest that spine pruning on cSTR neurons is regulated by puberty in male mice.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Nana J Okada
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ameet Rahane
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Zicheng Zhang
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Hall
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Anagnostou I, Morales T. Fatherhood diminishes the hippocampal damaging action of excitotoxic lesioning in mice. J Neuroendocrinol 2019; 31:e12783. [PMID: 31433881 DOI: 10.1111/jne.12783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
Parental experience imposes neuroplasticity in the hippocampus of females and males. In lactating rat dams, the hippocampus is protected against excitotoxic damage by kainic acid lesioning, although it is still unknown whether paternity can provide such protection to male rodents. To evaluate the protective effects of fatherhood against excitotoxic lesions, we paired male mice with females and co-housed them until the day of parturition (PPD0), when we randomly assigned them to two groups: (i) the pregnancy group (males housed individually overnight and injected i.c.v. with 100 ng per 1 μL of kainic acid or vehicle on PPD1) and (ii) the sire group (males housed with the dam and pups until PPD8, when injected i.c.v. after evaluation of parental behaviour). Individually housed virgin adult male mice formed the control group. Markers of neurodegeneration (NeuN, Fluoro-Jade C) and astrogliosis (glial fibrillary acidic protein) were evaluated in fixed cerebral tissue containing the dorsal CA1, CA3 and CA4 hippocampal subfields. The CA1 subfield did not suffer damage in any of the experimental groups. The sire group exhibited less neurodegeneration and astrogliosis in the CA3 and CA4 subfields compared to their respective controls, independently of the expression of parental behaviour. Western blot analysis was conducted for prolactin (PRL), PRL receptor and related intracellular pathways. Monomeric PRL was lower in the hippocampus of sires in the first week postpartum with a parallel rise of a 48-kDa dimerised isoform compared to virgin controls. The long isoform of PRL receptor did not change, and signal transducer and activator of transcription 5 (STAT5) was not detected in the hippocampus. However, a sustained rise in pAkt, a signalling molecule that participates in cell survival, was observed in the sire group. These results indicate that the hippocampus of sires housed with the dam and pups is less sensitive to neurotoxic injury, which might not be primarily regulated by PRL-STAT5-modulated mechanisms.
Collapse
Affiliation(s)
- Ilektra Anagnostou
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
11
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
12
|
Glasper ER, Kenkel WM, Bick J, Rilling JK. More than just mothers: The neurobiological and neuroendocrine underpinnings of allomaternal caregiving. Front Neuroendocrinol 2019; 53:100741. [PMID: 30822428 DOI: 10.1016/j.yfrne.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
In a minority of mammalian species, mothers depend on others to help raise their offspring. New research is investigating the neuroendocrine mechanisms supporting this allomaternal behavior. Several hormones have been implicated in allomaternal caregiving; however, the role of specific hormones is variable across species, perhaps because allomothering independently evolved multiple times. Brain regions involved in maternal behavior in non-human animals, such as the medial preoptic area, are also critically involved in allomaternal behavior. Allomaternal experience modulates hormonal systems, neural plasticity, and behavioral reactivity. In humans, fatherhood-induced decreases in testosterone and increases in oxytocin may support sensitive caregiving. Fathers and mothers activate similar neural systems when exposed to child stimuli, and this can be considered a global "parental caregiving" network. Finally, early work on caregiving by non-kin (e.g., foster parents) suggests reliance on similar mechanisms as biologically-related parents. This article is part of the 'Parental Brain and Behavior' Special Issue.
Collapse
Affiliation(s)
- E R Glasper
- Department of Psychology, University of Maryland, 4094 Campus Drive, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| | - W M Kenkel
- Kinsey Institute, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA
| | - J Bick
- Department of Psychology, University of Houston, 4849 Calhoun Road, Houston, TX 77204, USA; Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, 4849 Calhoun Rd, Houston, TX 77204, USA
| | - J K Rilling
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA; Center for Behavioral Neuroscience, Emory University, PO Box 3966, Atlanta, GA 30302, USA; Center for Translational Social Neuroscience, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
14
|
Mitre M, Kranz TM, Marlin BJ, Schiavo JK, Erdjument-Bromage H, Zhang X, Minder J, Neubert TA, Hackett TA, Chao MV, Froemke RC. Sex-Specific Differences in Oxytocin Receptor Expression and Function for Parental Behavior. GENDER AND THE GENOME 2017; 1:142-166. [PMID: 32959027 PMCID: PMC7500123 DOI: 10.1089/gg.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Parental care is among the most profound behavior expressed by humans and other animals. Despite intense interest in understanding the biological basis of parental behaviors, it remains unknown how much of parenting is encoded by the genome and which abilities instead are learned or can be refined by experience. One critical factor at the intersection between innate behaviors and experience-dependent learning is oxytocin, a neurohormone important for maternal physiology and neuroplasticity. Oxytocin acts throughout the body and brain to promote prosocial and maternal behaviors and modulates synaptic transmission to affect neural circuit dynamics. Recently we developed specific antibodies to mouse oxytocin receptors, found that oxytocin receptors are left lateralized in female auditory cortex, and examined how oxytocin enables maternal behavior by sensitizing the cortex to infant distress sounds. In this study we compare oxytocin receptor expression and function in male and female mice. Receptor expression is higher in adult female left auditory cortex than in right auditory cortex or males. Developmental profiles and mRNA expression were comparable between males and females. Behaviorally, male and female mice began expressing parental behavior similarly after cohousing with experienced females; however, oxytocin enhanced parental behavior onset in females but not males. This suggests that left lateralization of oxytocin receptor expression in females provides a mechanism for accelerating maternal behavior onset, although male mice can also effectively co-parent after experience with infants. The sex-specific pattern of oxytocin receptor expression might genetically predispose female cortex to respond to infant cues, which both males and females can also rapidly learn.
Collapse
Affiliation(s)
- Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Thorsten M. Kranz
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Bianca J. Marlin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Jennifer K. Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Hediye Erdjument-Bromage
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | | | - Jess Minder
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Thomas A. Neubert
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Robert C. Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| |
Collapse
|
15
|
Independent self-construal mediates the association between CYP19A1 gene variant and subjective well-being. Conscious Cogn 2017; 55:205-213. [DOI: 10.1016/j.concog.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/07/2023]
|
16
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 2017; 1654:123-144. [PMID: 27590721 PMCID: PMC5283387 DOI: 10.1016/j.brainres.2016.08.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Carolyn M Johnson
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
| | - A Wren Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ezequiel M Galarce
- School of Public Health, University of California, Berkeley, Berkeley CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|