1
|
Dong K, Wang S, Qu C, Zheng K, Sun P. Schizophrenia and type 2 diabetes risk: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1395771. [PMID: 39324122 PMCID: PMC11422011 DOI: 10.3389/fendo.2024.1395771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives The metabolic syndrome in patients with schizophrenia has consistently been a challenge for clinicians. Previous studies indicate that individuals with schizophrenia are highly prone to developing type 2 diabetes mellitus (T2DM). In recent years, a continuous stream of new observational studies has been reported, emphasizing the pressing need for clinicians to gain a more precise understanding of the association between schizophrenia and T2DM. The objective of this meta-analysis is to integrate new observational studies and further explore the potential link between schizophrenia and the risk of T2DM. Methods We conducted a comprehensive search of PubMed, Cochrane Library, Embase, and Web of Science using medical subject headings (MeSH) and relevant keywords. The risk of bias in cohort studies and case-control studies was assessed using the Newcastle-Ottawa Scale (NOS), while cross-sectional studies were evaluated using the Agency for Healthcare Research and Quality scale (AHRQ), scoring was based on the content of the original studies. A fixed-effects model was employed if P > 0.1 and I2 ≤ 50%, indicating low heterogeneity. Conversely, a random-effects model was utilized if I2 > 50%, indicating substantial heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Statistical analyses were carried out using Stata statistical software version 14.0. Results This meta-analysis comprised 32 observational studies, involving a total of 2,007,168 patients with schizophrenia and 35,883,980 without schizophrenia, published from 2004 to 2023. The pooled analysis revealed a significant association between a history of schizophrenia and an increased risk of T2DM (Odds Ratio [OR] = 2.15; 95% Confidence Interval [CI]: 1.83-2.52; I2 = 98.9%, P < 0.001). Stratified by gender, females with schizophrenia (OR = 2.12; 95% CI: 1.70-2.64; I2 = 90.7%, P < 0.001) had a significantly higher risk of T2DM than males (OR = 1.68; 95% CI: 1.39-2.04; I2 = 91.3%, P < 0.001). Regarding WHO regions, EURO (OR = 2.73; 95% CI: 2.23-3.35; I2 = 97.5%, P < 0.001) exhibited a significantly higher risk of T2DM compared to WPRO (OR = 1.72; 95% CI: 1.32-2.23; I2 = 95.2%, P < 0.001) and AMRO (OR = 1.82; 95% CI: 1.40-2.37; I2 = 99.1%, P < 0.001). In terms of follow-up years, the >20 years subgroup (OR = 3.17; 95% CI: 1.24-8.11; I2 = 99.4%, P < 0.001) showed a significantly higher risk of T2DM than the 10-20 years group (OR = 2.26; 95% CI: 1.76-2.90; I2 = 98.6%, P < 0.001) and <10 years group (OR = 1.68; 95% CI: 1.30-2.19; I2 = 95.4%, P < 0.001). Conclusions This meta-analysis indicates a strong association between schizophrenia and an elevated risk of developing diabetes, suggesting that schizophrenia may function as an independent risk factor for T2DM. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023465826.
Collapse
Affiliation(s)
- Kai Dong
- College of Mental Health, Jining Medical University, Jining, China
- Qingdao Mental Health Center, Qingdao, China
| | | | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao, China
| | - Kewei Zheng
- College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
2
|
Sun X, He R, Xiao Y, Xiu M, Sun M, Wu F, Zhang XY. Interaction between baseline BMI and baseline disease severity predicts greater improvement in negative symptoms in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1327-1332. [PMID: 38536473 DOI: 10.1007/s00406-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/13/2024] [Indexed: 08/30/2024]
Abstract
Several studies have reported that baseline symptom severity in patients with schizophrenia (SCZ) is associated with the efficacy of antipsychotic medication. Overweight/obesity is common in SCZ and has also been reported to be correlated with therapeutic response to antipsychotics. This study aimed to evaluate whether baseline body mass index (BMI) and disease severity were associated with improvements in negative symptoms in patients with first-episode and medication-naïve (FEMN) SCZ. A total of 241 FEMN patients were recruited in this study and treated with oral risperidone over 3 months. Clinical symptoms were measured by the Positive and Negative Syndrome Scale (PANSS) and BMI was assessed at baseline and 3-month follow-up. We found that baseline BMI was correlated with the baseline severity of symptoms. Baseline BMI or baseline disease severity was associated with improvement in negative symptoms after 3 months of treatment. Linear regression analysis indicated that the interaction of BMI and disease severity at baseline was associated with improvement in negative symptoms in the early stage of SCZ after controlling for sex, age, and dose of risperidone. Our study suggests that the interaction of baseline BMI and disease severity may play a role in predicting negative symptom improvement after 3 months of risperidone treatment.
Collapse
Affiliation(s)
- Xiaobing Sun
- Jiahui International Hospital (Shanghai), Shanghai, China
| | - Ruiqing He
- Jiahui International Hospital (Shanghai), Shanghai, China
| | - Yuan Xiao
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Maodi Sun
- North University of China, Taiyuan, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiang Yang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhu T, Zhao H, Chao Y, Gao S, Dong X, Wang Z. Olanzapine-induced weight gain and lipid dysfunction in mice between different gender. Biomed Chromatogr 2024; 38:e5864. [PMID: 38551083 DOI: 10.1002/bmc.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/21/2024]
Abstract
As one of the most common antipsychotics, olanzapine may cause metabolic-related adverse effects, but it is still unknown how olanzapine alters lipid metabolism. In this study, we found that olanzapine-treated mice showed varying degrees of dyslipidemia, which was particularly pronounced in female mice. Based on ultra-performance liquid chromatography-quadrupole time-of-flight-MS (UPLC-Q-TOF-MS) technology and lipid metabolomics, we mapped the changes in lipid metabolism in olanzapine-treated mice and then compared the changes in lipid metabolism between male and female mice. There were 98 metabolic differentiators between the olanzapine-treated and control groups in females and 79 in males. These metabolites were glycerolipids, glycerophospholipids, fatty amides, and sphingolipids, which are involved in glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. These results suggest that olanzapine-induced changes in the levels of lipid metabolites are closely associated with disturbances in lipid metabolic pathways, which may underlie lipemia. This lipidome profiling study not only visualizes changes in lipid metabolism in liver tissue but also provides a foundation for understanding the regulatory pathways and mechanisms involved in olanzapine-induced lipid metabolism disorders. Furthermore, this study demonstrates differences in lipid metabolism between males and females, providing a reference for clinical treatment regimen selection.
Collapse
Affiliation(s)
- Tong Zhu
- School of Medicine, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Zuowei Wang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, China
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Ma K, Zhou T, Pu C, Cheng Z, Han X, Yang L, Yu X. The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China. Brain Sci 2024; 14:310. [PMID: 38671962 PMCID: PMC11048552 DOI: 10.3390/brainsci14040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with schizophrenia often encounter notable weight gain during their illness, heightening the risk of metabolic diseases. While previous studies have noted a correlation between obesity and cognitive impairment in schizophrenia, many were cross-sectional, posing challenges in establishing a causal relationship between weight gain and cognitive function. The aim of this longitudinal study is to examine the relationship between weight gain and cognitive function in patients with first-episode schizophrenia (FES) during the initial 6-month antipsychotic treatments. Employing linear and logistic regression analyses, the study involved 337 participants. Significantly, baseline scores in processing speed (OR = 0.834, p = 0.007), working memory and attention (OR = 0.889, p = 0.043), and executive function (OR = 0.862, p = 0.006) were associated with clinically relevant weight gain (CRW, defined as an increase in body weight > 7%) at the 6-month endpoint. On the other hand, CRW correlated with improvements in the Brief Visuospatial Memory Test (p = 0.037). These findings suggest that patients with lower baseline cognitive performance undergo more substantial weight gain. Conversely, weight gain was correlated with cognitive improvements, particularly in the domain of visual learning and memory. This suggested a potential bidirectional relationship between weight gain and cognitive function in first-episode schizophrenia patients.
Collapse
Affiliation(s)
- Ke Ma
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tianhang Zhou
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Chengcheng Pu
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Zhang Cheng
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xue Han
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Lei Yang
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xin Yu
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Chen X, Fan Y, Ren W, Sun M, Guan X, Xiu M, Li S. Baseline BMI is associated with clinical symptom improvements in first-episode schizophrenia: a longitudinal study. Front Pharmacol 2023; 14:1264591. [PMID: 38026922 PMCID: PMC10670888 DOI: 10.3389/fphar.2023.1264591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background: There is sufficient evidence of the high prevalence of obesity in schizophrenia (SZ) compared to the general population. Previous studies have reported that weight gain correlated with the response to antipsychotics in patients with SZ. Nonetheless, the relationship between body mass index (BMI) and therapeutic benefits remains unclear. This study was designed to investigate the association between baseline BMI and improvements in clinical symptoms after treatment with antipsychotics in first-episode and medication-naïve SZ (FEMNS). Methods: A total of 241 FEMNS patients were enrolled and received risperidone over 12 weeks. The severity of symptoms was assessed by the Positive and Negative Syndrome Scale (PANSS) and BMI was measured at baseline and 12-week follow-up. Results: We found that risperidone treatment raised the body weight of FEMNS patients and baseline BMI was negatively correlated with the improvement in negative symptoms (r = -0.14, p = 0.03) after 12-week treatment. Linear regression analysis indicated that baseline BMI was an independent predictor of response to risperidone in the early stage of SZ. Conclusion: The current study suggests a close relationship between baseline BMI and improvement in negative symptoms in SZ.
Collapse
Affiliation(s)
- Xiaofang Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Yong Fan
- Qingdao Mental Health Center, Qingdao, China
| | - Wenchao Ren
- Qingdao Mental Health Center, Qingdao, China
| | - Maodi Sun
- North University of China, Taiyuan, China
| | - Xiaoni Guan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Meihong Xiu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Shuyun Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Blandino G, Fiorani M, Canonico B, De Matteis R, Guidarelli A, Montanari M, Buffi G, Coppo L, Arnér ESJ, Cantoni O. Clozapine suppresses NADPH oxidase activation, counteracts cytosolic H 2O 2, and triggers early onset mitochondrial dysfunction during adipogenesis of human liposarcoma SW872 cells. Redox Biol 2023; 67:102915. [PMID: 37866162 PMCID: PMC10623370 DOI: 10.1016/j.redox.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein β and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.
Collapse
Affiliation(s)
- Giulia Blandino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
7
|
Chen W, Feng J, Jiang S, Guo J, Zhang X, Zhang X, Wang C, Ma Y, Dong Z. Mendelian randomization analyses identify bidirectional causal relationships of obesity with psychiatric disorders. J Affect Disord 2023; 339:807-814. [PMID: 37474010 DOI: 10.1016/j.jad.2023.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Obesity have been showed to be strongly associated with psychiatric disorders, but the exact causality and the direction of the relationship remain inconclusive. Thus, we aimed to identify the causal associations between obesity and psychiatric disorders using two-sample Mendelian randomization (MR). METHODS Single-nucleotide polymorphisms associated with obesity, including body mass index (BMI), waist-hip ratio (WHR), and waist-hip ratio adjusted for BMI (WHRadjBMI), were extracted from a genome-wide association study of 694,649 European ancestry from the GIANT consortium. Summary level data for 10 psychiatric disorders were obtained from the Psychiatric Genomics Consortium. Inverse-variance weighted (IVW) method was used as the primary analysis, while several sensitivity analyses were applied to evaluate heterogeneity and pleiotropy. RESULTS The main MR results suggested higher BMI or WHR was positively causally associated with an increased risk of attention deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), post-traumatic stress disorder (PTSD), major depressive disorder (MDD) and Alzheimer's disease (ALZ), but negatively causally associated with an increased risk of obsessive-compulsive disorder (OCD) and schizophrenia. For the reverse direction, ADHD and MDD were associated with an increased risk of obesity, but schizophrenia and ALZ were associated with a decreased risk of obesity. CONCLUSION Our findings support evidence of causal relationships between obesity and ADHD, MDD, PTSD, ALZ, SCZ, AN, and OCD, and confirmed the bidirectional causal relationships between obesity and ADHD, MDD, SCZ, and ALZ.
Collapse
Affiliation(s)
- Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jia Feng
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, China
| | - Shuwen Jiang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jie Guo
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - XiaoLin Zhang
- Department of General Surgery, The Fifth Affiliated Hospital of Jinnan University (Shenhe People's Hospital), Heyuan 517300, China
| | - Xiaoguan Zhang
- Department of General Surgery, Dalang Hospital of Dongguan, Dongguan 523000, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, China.
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Hönig G, Daray FM, Rodante D, Drucaroff L, Gutiérrez ML, Lenze M, García Bournissen F, Wikinski S. Body mass index, waist circumference, insulin, and leptin plasma levels differentiate between clozapine-responsive and clozapine-resistant schizophrenia. J Psychopharmacol 2023; 37:1023-1029. [PMID: 37377097 DOI: 10.1177/02698811231181565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Between 25% and 50% of patients suffering from treatment-resistant schizophrenia fail to achieve a clinical response with clozapine. The rapid identification and treatment of this subgroup of patients represents a challenge for healthcare practice. AIMS To evaluate the relationship between metabolic alterations and the clinical response to clozapine. METHODS A multicenter, observational, case-control study was performed. Patients diagnosed with schizophrenia treated with clozapine were eligible (minimum dose 400 mg/d for at least 8 weeks and/or clozapine plasma levels ⩾ 350 µg/mL). According to the Positive and Negative Syndrome Scale (PANSS) total score, patients were classified as clozapine-responsive (CR) (<80 points) or clozapine non-responsive (CNR) (⩾80 points). Groups were compared based on demographic and treatment-related characteristics, together with body mass index (BMI), waist circumference, insulin, leptin, and C-reactive protein plasma levels. Plasma levels of clozapine and its main metabolite, nor-clozapine, were measured in all the participants. In addition, the potential relationship between PANSS scores and leptin or insulin plasma levels was assessed. RESULTS A total of 46 patients were included: 25 CR and 21 CNR. BMI and waist circumference, fasting insulin and leptin plasma levels were lower in the CNR group, while C-reactive protein was not different. Moreover, significant negative correlations were observed between PANSS positive and general psychopathology subscores, on one hand, and insulin and leptin plasma levels, on the other hand, as well as between PANSS negative subscores and leptin plasma levels. CONCLUSIONS Our results suggest that the lack of metabolic effect induced by clozapine is associated with the lack of clinical response.
Collapse
Affiliation(s)
- Guillermo Hönig
- Hospital Interdisciplinario Psicoasistencial José Tiburcio Borda, Ciudad de Buenos Aires, Argentina
| | - Federico M Daray
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Demián Rodante
- Hospital Neuropsiquiátrico Braulio A. Moyano, Ciudad de Buenos Aires, Argentina
| | - Lucas Drucaroff
- Instituto de Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - María Laura Gutiérrez
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mariela Lenze
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Facundo García Bournissen
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Silvia Wikinski
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
9
|
Smith ECC, Au E, Pereira S, Sharma E, Venkatasubramanian G, Remington G, Agarwal SM, Hahn M. Clinical improvement in schizophrenia during antipsychotic treatment in relation to changes in glucose parameters: A systematic review. Psychiatry Res 2023; 328:115472. [PMID: 37722239 DOI: 10.1016/j.psychres.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Antipsychotics (APs) are the cornerstone of treatment for schizophrenia (SCZ) spectrum disorders. Previous research suggests that there may be a positive association between AP-induced weight gain and/or dyslipidemia and improvement in psychiatric symptoms, often referred to as a "metabolic threshold". To determine whether a similar relationship exists for glucose parameters, we conducted a systematic search in six databases from inception to June 2022 for all longitudinal studies that directly examined the relationship between changes in glucose-related outcomes and changes in psychopathology among patients with SCZ treated with APs. We identified 10 relevant studies and one additional study that considered cognition. In most cases, we found that increased levels of fasting glucose and insulin following treatment were associated with clinical improvement. These findings contribute to existing literature that could suggest a common mechanism between AP action and metabolic side effects and support a need for additional work aimed at exploring the validity of a glucose-psychopathology relation in SCZ.
Collapse
Affiliation(s)
- Emily Chen Chen Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Department of Pharmacology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4207, Toronto, ON, Canada
| | - Sandra Pereira
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, 3rd floor, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore - 560029, Karnataka, India
| | | | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, 12th Floor, Room 12E248, Toronto, ON M5G 2C4, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, 12th Floor, Room 12E248, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
10
|
Jiang MC, Ding HY, Huang YH, Cheng CK, Lau CW, Xia Y, Yao XQ, Wang L, Huang Y. Thioridazine protects against disturbed flow-induced atherosclerosis by inhibiting RhoA/YAP-mediated endothelial inflammation. Acta Pharmacol Sin 2023; 44:1977-1988. [PMID: 37217602 PMCID: PMC10545737 DOI: 10.1038/s41401-023-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Atherosclerotic diseases remain the leading cause of adult mortality and impose heavy burdens on health systems globally. Our previous study found that disturbed flow enhanced YAP activity to provoke endothelial activation and atherosclerosis, and targeting YAP alleviated endothelial inflammation and atherogenesis. Therefore, we established a luciferase reporter assay-based drug screening platform to seek out new YAP inhibitors for anti-atherosclerotic treatment. By screening the FDA-approved drug library, we identified that an anti-psychotic drug thioridazine markedly suppressed YAP activity in human endothelial cells. Thioridazine inhibited disturbed flow-induced endothelial inflammatory response in vivo and in vitro. We verified that the anti-inflammatory effects of thioridazine were mediated by inhibition of YAP. Thioridazine regulated YAP activity via restraining RhoA. Moreover, administration of thioridazine attenuated partial carotid ligation- and western diet-induced atherosclerosis in two mouse models. Overall, this work opens up the possibility of repurposing thioridazine for intervention of atherosclerotic diseases. This study also shed light on the underlying mechanisms that thioridazine inhibited endothelial activation and atherogenesis via repression of RhoA-YAP axis. As a new YAP inhibitor, thioridazine might need further investigation and development for the treatment of atherosclerotic diseases in clinical practice.
Collapse
Affiliation(s)
- Min-Chun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huan-Yu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Hong Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
du Plessis S, Chand GB, Erus G, Phahladira L, Luckhoff HK, Smit R, Asmal L, Wolf DH, Davatzikos C, Emsley R. Two Neuroanatomical Signatures in Schizophrenia: Expression Strengths Over the First 2 Years of Treatment and Their Relationships to Neurodevelopmental Compromise and Antipsychotic Treatment. Schizophr Bull 2023; 49:1067-1077. [PMID: 37043772 PMCID: PMC10318886 DOI: 10.1093/schbul/sbad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND HYPOTHESIS Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia.
Collapse
Affiliation(s)
- Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Ganesh B Chand
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Radiology and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lebogang Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Hilmar K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Retha Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
12
|
O'Connell KS, Koch E, Lenk HÇ, Akkouh IA, Hindley G, Jaholkowski P, Smith RL, Holen B, Shadrin AA, Frei O, Smeland OB, Steen NE, Dale AM, Molden E, Djurovic S, Andreassen OA. Polygenic overlap with body-mass index improves prediction of treatment-resistant schizophrenia. Psychiatry Res 2023; 325:115217. [PMID: 37146461 PMCID: PMC10788293 DOI: 10.1016/j.psychres.2023.115217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.
Collapse
Affiliation(s)
- Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Guy Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, United Kingdom
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Robert Løvsletten Smith
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
Friedrich M, Fugiel J, Sadowska J. Assessing Effects of Diet Alteration on Carbohydrate-Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients 2023; 15:nu15081871. [PMID: 37111089 PMCID: PMC10144484 DOI: 10.3390/nu15081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed at finding whether healthy eating habits could be introduced to and maintained by chronically mentally ill permanent residents of a nursing home. Of interest was also if the effects of the dietary intervention would be observable as improved carbohydrate and lipid metabolism indicators were selected. Assays covered 30 antipsychotics-treated residents diagnosed with schizophrenia. The prospective method applied involved questionnaires, nutrition-related interviews, anthropometric measurements, and determination of selected biochemical parameters of the blood. The dietary intervention as well as the parallel health-promoting nutrition-related education was aimed at balancing the energy and nutrient contents. Schizophrenia patients were shown to be capable of accepting and observing the principles of appropriate nutrition. The intervention was strong enough to result in a significant blood glucose concentration drop to the reference level in all patients, regardless of the antipsychotic they were treated with. The blood lipid levels also improved, but the reduction in triacylglycerols, total cholesterol and LDL-cholesterol levels was significant in the male patients only. Nutritional changes were reflected in overweight and obese women only, in body weight reduction and in waist adipose tissue loss.
Collapse
Affiliation(s)
- Mariola Friedrich
- Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, ul. Papieża Pawła VI 3, 71-459 Szczecin, Poland
| | - Joanna Fugiel
- Social Welfare Home Names Dr. E. Wojtyły in Szczecin, ul. Stanisława Herakliusza Lubomirskiego 7, 71-505 Szczecin, Poland
| | - Joanna Sadowska
- Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, ul. Papieża Pawła VI 3, 71-459 Szczecin, Poland
| |
Collapse
|
14
|
Cai L, Chen G, Yang H, Bai Y. Efficacy and safety profiles of mood stabilizers and antipsychotics for bipolar depression: a systematic review. Int Clin Psychopharmacol 2023:00004850-990000000-00058. [PMID: 36947416 DOI: 10.1097/yic.0000000000000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The whole picture of psychotropics for bipolar depression (BPD) remains unclear. This review compares the differences in efficacy and safety profiles among common psychotropics for BPD. MEDLINE, EMBASE, and PsycINFO were searched for proper studies. The changes in the depressive rating scale, remission/response rates, nervous system adverse events (NSAEs), gastrointestinal adverse events (GIAEs), metabolic parameters, and prolactin were compared between medication and placebo or among medications with the Cohen's d or number needed to treat/harm. The search provided 10 psychotropics for comparison. Atypical antipsychotics (AAPs) were superior to lithium and lamotrigine at alleviating acute depressive symptoms. Lithium was more likely to induce dry mouth and nausea. Cariprazine and aripiprazole seemed to be associated with an increased risk of akathisia and upper GIAEs. Lurasidone was associated with an increased risk of developing akathisia and hyperprolactinemia. Olanzapine, olanzapine-fluoxetine combination (OFC), and quetiapine were associated with an increased risk of NSAEs, metabolic risk, dry mouth, and constipation. Cariprazine, lurasidone, OFC, or quetiapine was optimal monotherapy for BPD. Further studies are needed to assess the efficacy and safety of lamotrigine for treating BPD. Adverse events varied widely across different drug types due to variations in psychopharmacological mechanisms, dosages, titration, and ethnicities.
Collapse
Affiliation(s)
| | - Guanjie Chen
- Teaching Management Office, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | | | | |
Collapse
|
15
|
Fulone I, Silva MT, Lopes LC. Use of atypical antipsychotics in the treatment of schizophrenia in the Brazilian National Health System: a cohort study, 2008-2017. EPIDEMIOLOGIA E SERVIÇOS DE SAÚDE 2023; 32:e2022556. [PMID: 36946832 PMCID: PMC10072313 DOI: 10.1590/s2237-96222023000300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/11/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE to investigate sociodemographic and clinical characteristics of users of atypical antipsychotics receiving care via the Specialized Component of Pharmaceutical Assistance (Componente Especializado da Assistência Farmacêutica - CEAF), for the treatment of schizophrenia in Brazil, between 2008 and 2017. METHODS this was a retrospective cohort study using records of the authorizations for high complexity procedures retrieved from the Outpatient Information System of the Brazilian National Health System, from all Brazilian states. RESULTS of the 759,654 users, 50.5% were female, from the Southeast region (60.2%), diagnosed with paranoid schizophrenia (77.6%); it could be seen a higher prevalence of the use of risperidone (63.3%) among children/adolescents; olanzapine (34.0%) in adults; and quetiapine (47.4%) in older adults; about 40% of children/adolescents were in off-label use of antipsychotics according to age; adherence to CEAF was high (82%), and abandonment within six months was 24%. CONCLUSION the findings expand knowledge about the sociodemographic and clinical profile of users and highlight the practice of off-label use.
Collapse
Affiliation(s)
- Izabela Fulone
- Universidade de Sorocaba, Departamento de Pós-Graduação em Ciências Farmacêuticas, Sorocaba, SP, Brazil
| | - Marcus Tolentino Silva
- Universidade de Sorocaba, Departamento de Pós-Graduação em Ciências Farmacêuticas, Sorocaba, SP, Brazil
| | - Luciane Cruz Lopes
- Universidade de Sorocaba, Departamento de Pós-Graduação em Ciências Farmacêuticas, Sorocaba, SP, Brazil
| |
Collapse
|
16
|
Muntané G, Vázquez-Bourgon J, Sada E, Martorell L, Papiol S, Bosch E, Navarro A, Crespo-Facorro B, Vilella E. Polygenic risk scores enhance prediction of body mass index increase in individuals with a first episode of psychosis. Eur Psychiatry 2023; 66:e28. [PMID: 36852609 PMCID: PMC10044301 DOI: 10.1192/j.eurpsy.2023.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Individuals with a first episode of psychosis (FEP) show rapid weight gain during the first months of treatment, which is associated with a reduction in general physical health. Although genetics is assumed to be a significant contributor to weight gain, its exact role is unknown. METHODS We assembled a population-based FEP cohort of 381 individuals that was split into a Training (n = 224) set and a Validation (n = 157) set to calculate the polygenic risk score (PRS) in a two-step process. In parallel, we obtained reference genome-wide association studies for body mass index (BMI) and schizophrenia (SCZ) to examine the pleiotropic landscape between the two traits. BMI PRSs were added to linear models that included sociodemographic and clinical variables to predict BMI increase (∆BMI) in the Validation set. RESULTS The results confirmed considerable shared genetic susceptibility for the two traits involving 449 near-independent genomic loci. The inclusion of BMI PRSs significantly improved the prediction of ∆BMI at 12 months after the onset of antipsychotic treatment by 49.4% compared to a clinical model. In addition, we demonstrated that the PRS containing pleiotropic information between BMI and SCZ predicted ∆BMI better at 3 (12.2%) and 12 months (53.2%). CONCLUSIONS We prove for the first time that genetic factors play a key role in determining ∆BMI during the FEP. This finding has important clinical implications for the early identification of individuals most vulnerable to weight gain and highlights the importance of examining genetic pleiotropy in the context of medically important comorbidities for predicting future outcomes.
Collapse
Affiliation(s)
- Gerard Muntané
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Departamento de Medicina y Psiquiatría, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ester Sada
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elena Bosch
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Barcelonaβeta Brain Research Center, Fundació Pasqual Maragall, Barcelona, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Instituto de Biomedicina de Sevilla (IBiS), University Hospital Virgen del Rocío, Seville, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
17
|
Zhou J, Guo X, Liu X, Luo Y, Chang X, He H, Duan M, Li S, Li Q, Tan Y, Yao G, Yao D, Luo C. Intrinsic Therapeutic Link between Recuperative Cerebellar Con-Nectivity and Psychiatry Symptom in Schizophrenia Patients with Comorbidity of Metabolic Syndrome. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010144. [PMID: 36676092 PMCID: PMC9863013 DOI: 10.3390/life13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Components of metabolic syndrome might be predictors of the therapeutic outcome of psychiatric symptom in schizophrenia, whereas clinical results are inconsistent and an intrinsic therapeutic link between weaker psychiatric symptoms and emergent metabolic syndrome remains unclear. This study aims to reveal the relationship and illustrate potential mechanism by exploring the alteration of cerebellar functional connectivity (FC) in schizophrenia patients with comorbidity metabolic syndrome. Thirty-six schizophrenia patients with comorbidity of metabolic syndrome (SCZ-MetS), 45 schizophrenia patients without metabolic syndrome (SCZ-nMetS) and 39 healthy controls (HC) were recruited in this study. We constructed FC map of cerebello-cortical circuit and used moderation effect analysis to reveal complicated relationship among FC, psychiatric symptom and metabolic disturbance. Components of metabolic syndrome were significantly correlated with positive symptom score and negative symptom score. Importantly, the dysconnectivity between cognitive module of cerebellum and left middle frontal gyrus in SCZ-nMetS was recuperative increased in SCZ-MetS, and was significantly correlated with general symptom score. Finally, we observed significant moderation effect of body mass index on this correlation. The present findings further supported the potential relationship between emergence of metabolic syndrome and weaker psychiatric symptom, and provided neuroimaging evidence. The mechanism of intrinsic therapeutic link involved functional change of cerebello-cortical circuit.
Collapse
Affiliation(s)
- Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xiao Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xiaoli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Yuling Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shicai Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ying Tan
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610093, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| | - Gang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| |
Collapse
|
18
|
Kang D, Lu J, Liu W, Shao P, Wu R. Association between olanzapine concentration and metabolic dysfunction in drug-naive and chronic patients: similarities and differences. SCHIZOPHRENIA 2022; 8:9. [PMID: 35228573 PMCID: PMC8885747 DOI: 10.1038/s41537-022-00211-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
AbstractSecond-generation antipsychotics are widely used to treat schizophrenia but their use could induce metabolic dysfunction. To balance efficacy and side effects, various guidelines recommend the use of therapeutic drug monitoring. Given the controversial relationship between olanzapine serum concentration and metabolic dysfunction, its use in clinical practice is still debated. To address this issue, we conducted a prospective cohort study to explore the associations in patients with schizophrenia. Specifically, first-episode drug-naive patients and patients with chronic schizophrenia were recruited. All participants received olanzapine monotherapy for 8 weeks. Anthropometric parameters and metabolic indices were tested at baseline and at week 8, and olanzapine serum concentration was tested at week 4. After 8 weeks of observation, body weight and BMI increased significantly in drug-naive patients. Moreover, triglycerides and LDL increased significantly in both drug-naive and chronic patients. Among chronic patients, those who have never used olanzapine/clozapine before had a significantly higher increase in weight and BMI than those who have previously used olanzapine/clozapine. Furthermore, olanzapine concentration was associated with changes in weight, BMI, and LDL levels in the drug-naive group and glucose, triglyceride and LDL levels in chronic patients who have not used olanzapine/clozapine previously. In conclusion, the metabolic dysfunction induced by olanzapine is more severe and dose-dependent in drug-naive patients but independent in patients with chronic schizophrenia. Future studies with a longer period of observation and a larger sample are warranted.
Collapse
|
19
|
Horska K, Ruda-Kucerova J, Skrede S. GLP-1 agonists: superior for mind and body in antipsychotic-treated patients? Trends Endocrinol Metab 2022; 33:628-638. [PMID: 35902330 DOI: 10.1016/j.tem.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Antipsychotics (APDs) represent a core treatment for severe mental disorders (SMEs). Providing symptomatic relief, APDs do not exert therapeutic effects on another clinically significant domain of serious mental disorders, cognitive impairment. Moreover, adverse metabolic effects (diabetes, weight gain, dyslipidemia, and increased cardiovascular risk) are common during treatment with APDs. Among pharmacological candidates reversing APD-induced metabolic adverse effects, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), approved for both diabetes and recently for obesity treatment, stand out due to their favorable effects on peripheral metabolic parameters. Interestingly, GLP-1 RAs are also proposed to have pro-cognitive effects. Particularly in terms of dual therapeutic mechanisms potentially improving both central nervous system (CNS) deficits and metabolic burden, GLP-1 RAs open a new perspective and assume a clinically advantageous position.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
20
|
Luckhoff HK, Asmal L, Scheffler F, Phahladira L, Smit R, van den Heuvel L, Fouche JP, Seedat S, Emsley R, du Plessis S. Associations between BMI and brain structures involved in food intake regulation in first-episode schizophrenia spectrum disorders and healthy controls. J Psychiatr Res 2022; 152:250-259. [PMID: 35753245 DOI: 10.1016/j.jpsychires.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Structural brain differences have been described in first-episode schizophrenia spectrum disorders (FES), and often overlap with those evident in the metabolic syndrome (MetS). We examined the associations between body mass index (BMI) and brain structures involved in food intake regulation in minimally treated FES patients (n = 117) compared to healthy controls (n = 117). The effects of FES diagnosis, BMI and their interactions on our selected prefrontal cortical thickness and subcortical gray matter volume regions of interest (ROIs) were investigated with hierarchical multivariate regressions, followed by post-hoc regressions for the individual ROIs. In a secondary analysis, we examined the relationships of other MetS risk factors and psychopathology with the brain ROIs. Both illness and BMI significantly predicted the grouped prefrontal cortical thickness ROIs, whereas only BMI predicted the grouped subcortical volume ROIs. For the individual ROIs, schizophrenia diagnosis predicted thinner left and right frontal pole and right lateral OFC thickness, and increased BMI predicted thinner left and right caudal ACC thickness. There were no significant main or interaction effects for diagnosis and BMI on any of the individual subcortical volume ROIs. Secondary analyses suggest associations between several brain ROIs and individual MetS risk factors, but not with psychopathology. Our findings indicate differential, independent effects for FES diagnosis and BMI on brain structures. Limited evidence suggests that the BMI effects are more prominent in FES. Exploratory analyses suggest associations between other MetS risk factors and some brain ROIs.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa.
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L van den Heuvel
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - J P Fouche
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| |
Collapse
|
21
|
Abstract
Mirtazapine has often been prescribed as add-on treatment for schizophrenia in patients with suboptimal response to conventional treatments. In this review, we evaluate the existing evidence for efficacy and effectiveness of add-on mirtazapine in schizophrenia and reappraise the practical and theoretical aspects of mirtazapine-antipsychotic combinations. In randomized controlled trials (RCTs), mirtazapine demonstrated favourable effects on negative and cognitive (although plausibly not depressive) symptoms, with no risk of psychotic exacerbation. Mirtazapine also may have a desirable effect on antipsychotic-induced sexual dysfunction, but seems not to alleviate extrapyramidal symptoms, at least if combined with second-generation antipsychotics. It is noteworthy that all published RCTs have been underpowered and relatively short in duration. In the only large pragmatic effectiveness study that provided analyses by add-on antidepressant, only mirtazapine was associated with both decreased rate of hospital admissions and number of in-patient days. Mirtazapine hardly affects the pharmacokinetics of antipsychotics. However, possible pharmacodynamic interactions (sedation and metabolic offence) should be borne in mind. The observed desired clinical effects of mirtazapine may be due to its specific receptor-blocking properties. Alternative theoretical explanations include its possible neuroprotective effect. Further well-designed RCTs and real-world effectiveness studies are needed to determine whether add-on mirtazapine should be recommended for difficult-to-treat schizophrenia.
Collapse
|
22
|
Manusheva N, Babinkostova Z, Arsova S, Hadjihamza K, Naumovska A, Markovic S. Metabolic disturbances during treatment with second generation antipsychotics. Arch Public Health 2022. [DOI: 10.3889/aph.2022.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Second generation antipsychotics (SGA) cause side effects through weight gain, dyslipidemias (cholesterolemia, hypertriglyceridemia) as well as affected glucose homeostasis in terms of hyperglycemia,insulin resistance and the incidence of type 2 diabetes mellitus. The aim of this study was to investigate metabolic changes in patients treated with SGA. Materials and methods: This was a prospective study of 50 patients treated with SGA (olanzapine, clozapine, risperidone, quetiapine, aripiprazole) at the PHI University Clinic of Psychiatry who met the relevant ICD-10 criteria. The following parameters were monitored: history and clinical examination, blood pressure and pulse, height, weight, body mass index (BMI), Brief Psychiatric Rating Scale (BPRS), Clinical Global Impression Scale (CGI-S), dose of prescribed SGA,as well as: fasting glycemia, lipid status, HDL, LDL, glycosylated hemoglobin (HgA1C). The parameters were determined at the beginning and after three months of treatment. Results: The subjects in terms of the criteria of metabolic syndrome were: 64% with a larger waist circumference, 53.2% with an increase in systolic and/or diastolic blood pressure, 31.3% with a BMI>30, and 39% with an increase in glycaemia and reduced HDL values at 23.4%. Also,18% of the respondents met three or more criteria. Statistical analysis of the differences in the analyzed parameters showed statistically significant differences for the CGI-S score (p = 0.00007) and for the diastolic pressure (p = 0.038). Correlation of equivalent doses of SGA with BMI (r = -0.637) was obtained. Discussion: The study confirmed presence of metabolic disorders in patients treated with SGA. Although there was no significant difference of metabolic syndrome parameters in relation to the general population, a correlation with BMI has been established. Conclusion: This study showed that patients treated with second-generation antipsychotics should be monitored during their treatment for the parameters of the metabolic syndrome, particularly BMI.
Collapse
|
23
|
Phahladira L, Asmal L, Lückhoff HK, du Plessis S, Scheffler F, Smit R, Chiliza B, Emsley R. The trajectories and correlates of two negative symptom subdomains in first-episode schizophrenia. Schizophr Res 2022; 243:17-23. [PMID: 35228035 DOI: 10.1016/j.schres.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent studies suggest a two-factor structure for negative symptoms as assessed by the Positive and Negative Syndrome Scale (PANSS) in schizophrenia, namely experiential and expressive subdomains. Little is known about their clinical correlates and treatment trajectories. OBJECTIVES We sought to replicate the two factor-analysis derived subdomains for PANSS negative symptoms in schizophrenia and to assess their independent demographic, premorbid and treatment-related characteristics. METHODS This was a longitudinal study of 106 minimally treated participants with a first episode of a schizophrenia spectrum disorder who received treatment with flupenthixol decanoate 2-weekly injections over two years. Factor analysis was used to characterize the PANSS negative symptom subdomains and linear mixed-effect models for continuous repeated measures were constructed to assess the temporal relations between the negative symptom subdomains and premorbid and treatment related variables. RESULTS Factor analysis confirmed a two-factor solution for experiential and expressive subdomains of negative symptoms, although they were strongly correlated. The treatment response trajectories for the two subdomains did not differ significantly, and neither subdomain was significantly associated with our premorbid variables. We found significant main effects for disorganised symptoms and extrapyramidal symptoms on the expressive subdomain, and for disorganised symptoms and depressive symptoms on the experiential subdomain. Post-hoc testing indicated that reductions in HDL-cholesterol levels were associated with less improvement in both expressive and experiential subdomain scores. CONCLUSION The two negative symptom subdomains are closely related, have similar premorbid correlates and respond similarly to antipsychotic treatment. Depression affects the experiential subdomain, whereas extrapyramidal symptoms affect the expressive subdomain.
Collapse
Affiliation(s)
| | - Laila Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | | | | | - Freda Scheffler
- Department of Psychiatry, Stellenbosch University, South Africa
| | - Retha Smit
- Department of Psychiatry, Stellenbosch University, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, South Africa
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
24
|
Humble MB, Bejerot S. Inflammasome activation in psychosis - Consequence of peripheral dyslipidaemia or reflection of an inflammatory pathogenesis? Brain Behav Immun 2022; 101:284-285. [PMID: 35065195 DOI: 10.1016/j.bbi.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mats B Humble
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Susanne Bejerot
- School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, University Health Care Research Center, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Al-Tobi Z, Al Suleimani Y, Al-Rasadi K, Al-Shabibi S, Al Mahrizi A, Al-Maqbali J, Al-Waili K, Al-Adawi S, Al-Zakwani I. Metabolic Side Effects of Olanzapine in Patients With Psychotic Disorders in Oman: A Retrospective Cohort Study. Angiology 2022; 73:976-984. [PMID: 35113727 DOI: 10.1177/00033197211072340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the impact of olanzapine on metabolic changes in patients with psychotic disorders. This was a retrospective cohort study involving patients prescribed olanzapine and attending Sultan Qaboos University Hospital (Muscat, Oman). Patients were followed up retrospectively from March 2006 until April 2021. Cardiovascular treatment targets were evaluated as per the 2019 European Society of Cardiology guidelines. We enrolled 253 patients (mean age: 40±17 years). Olanzapine monotherapy was associated with increased body weight (+8 kg; 95% confidence interval (CI): 6-9; P < .001), body mass index (+3 kg/m2; 95% CI: 2-4; P < .001), total cholesterol (+.4 mmol/L; 95% CI: .3-.5; P < .001), low-density lipoprotein cholesterol (LDL-C) (+.3 mmol/L; 95% CI: .1-.4; P < .001), fasting triglycerides (+.2 mmol/L; 95% CI: .1-.3; P<.001), fasting glucose (+.6 mmol/L; 95% CI: .4-.7; P< .001), HbA1c (+.3%; 95% CI: .2-.4; P < .001), systolic blood pressure (BP) (+9 mmHg; 95% CI: 6-12; P < .001) and diastolic BP (+4 mmHg; 95% CI: 2-6; P < .001) levels. Cardiovascular therapeutic goals were attained in 38% (n = 97), 61% (n = 154), 71% (n = 180), and 59% (n = 150) for LDL-C, non-high-density lipoprotein cholesterol, triglycerides, and BP, respectively. Olanzapine was associated with adverse metabolic changes. Therefore, many patients were not at their target cardiovascular treatment goals.
Collapse
Affiliation(s)
- Zainab Al-Tobi
- Department of Pharmacology & Clinical Pharmacy, College of Medicine & Health Sciences, 37611Sultan Qaboos University, Muscat, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology & Clinical Pharmacy, College of Medicine & Health Sciences, 37611Sultan Qaboos University, Muscat, Oman
| | - Khalid Al-Rasadi
- Medical Research Centre, College of Medicine & Health Sciences, 37611Department of Biochemistry, Sultan Qaboos University, Muscat, Oman
| | - Saud Al-Shabibi
- Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman
| | - Anwar Al Mahrizi
- Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Khalid Al-Waili
- Department of Biochemistry, 194179Sultan Qaboos University Hospital, Muscat, Oman
| | - Samir Al-Adawi
- Department of Behavioral Medicine, College of Medicine & Health Sciences, 194179Sultan Qaboos University, Muscat, Oman
| | - Ibrahim Al-Zakwani
- Department of Pharmacology & Clinical Pharmacy, College of Medicine & Health Sciences, 37611Sultan Qaboos University, Muscat, Oman.,Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
26
|
Singh R, Stogios N, Smith E, Lee J, Maksyutynsk K, Au E, Wright DC, De Palma G, Graff-Guerrero A, Gerretsen P, Müller DJ, Remington G, Hahn M, Agarwal SM. Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: a scoping review. Ther Adv Psychopharmacol 2022; 12:20451253221096525. [PMID: 35600753 PMCID: PMC9118432 DOI: 10.1177/20451253221096525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with high morbidity and lifetime disability rates. Patients with SCZ have a higher risk of developing metabolic comorbidities such as obesity and diabetes mellitus, leading to increased mortality. Antipsychotics (APs), which are the mainstay in the treatment of SCZ, increase the risk of these metabolic perturbations. Despite extensive research, the mechanism underlying SCZ pathophysiology and associated metabolic comorbidities remains unclear. In recent years, gut microbiota (GMB) has been regarded as a 'chamber of secrets', particularly in the context of severe mental illnesses such as SCZ, depression, and bipolar disorder. In this scoping review, we aimed to investigate the underlying role of GMB in the pathophysiology of SCZ and metabolic alterations associated with APs. Furthermore, we also explored the therapeutic benefits of prebiotic and probiotic formulations in managing SCZ and AP-induced metabolic alterations. A systematic literature search yielded 46 studies from both preclinical and clinical settings that met inclusion criteria for qualitative synthesis. Preliminary evidence from preclinical and clinical studies indicates that GMB composition changes are associated with SCZ pathogenesis and AP-induced metabolic perturbations. Fecal microbiota transplantation from SCZ patients to mice has been shown to induce SCZ-like behavioral phenotypes, further supporting the plausible role of GMB in SCZ pathogenesis. This scoping review recapitulates the preclinical and clinical evidence suggesting the role of GMB in SCZ symptomatology and metabolic adverse effects associated with APs. Moreover, this scoping review also discusses the therapeutic potentials of prebiotic/probiotic formulations in improving SCZ symptoms and attenuating metabolic alterations related to APs.
Collapse
Affiliation(s)
- Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Kateryna Maksyutynsk
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - David C Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Philip Gerretsen
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Staff Psychiatrist and Clinician-Scientist, Medical Head, Clinical Research, Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen Street W, Toronto, ON M6J 1H3, Canada
| |
Collapse
|
27
|
Garriga M, Mallorquí A, Bernad S, Ruiz-Cortes V, Oliveira C, Amoretti S, Mezquida G, Bioque M, Molina O, Gómez-Ramiro M, Vieta E, Bernardo M, Parellada E, García-Rizo C. Antipsychotic-Associated Weight Gain and Clinical Improvement Under Clozapine Treatment. J Clin Psychopharmacol 2022; 42:75-80. [PMID: 34928563 DOI: 10.1097/jcp.0000000000001483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antipsychotic-associated weight gain is a common adverse effect with several negative outcomes in the clinical evolution of patients, which might also affect patients' self-identity from physical appearance and imply treatment discontinuation. However, recent research has drawn attention to an unexpected clinical improvement associated with weight gain, mostly in patients under treatment with clozapine or olanzapine. METHODS Twenty-three treatment-resistant psychosis patients initiating clozapine were evaluated. Longitudinal psychopathological assessment through the Positive and Negative Syndrome Scale (PANSS) and anthropometric evaluation were performed at baseline, week 8, and 18. RESULTS Body mass index (BMI) change during clozapine treatment was associated with clinical improvement measured with PANSS total score at week 8 (P = 0.021) while showed a trend at week 18 (P = 0.058). The PANSS general score was also associated with weight gain at week 8 (P = 0.022), whereas negative subscale score showed a trend at week 8 (P = 0.088) and was associated between week 8 and 18 (P = 0.018). Sex differences applied at week 8 for PANSS total score, where clinical improvement was significantly associated with BMI in male subjects (P = 0.024). We also stratified for time to initiate clozapine, finding significant associations in negative symptom at week 8 (P = 0.023) and week 18 (P = 0.003) for subjects, which started clozapine after 3 years of illness. CONCLUSIONS Our results suggest that in subjects initiating clozapine, clinical improvement is associated with BMI increase, mostly in negative symptom and in patients after 3 years of antipsychotic use. Our findings were already described in the preantipsychotic era, suggesting some pathophysiological mechanism underlying both conditions.
Collapse
Affiliation(s)
| | - Andrea Mallorquí
- Clinical Institute of Neurosciences, Hospital Clínic of Barcelona
| | - Sonia Bernad
- Clinical Institute of Neurosciences, Hospital Clínic of Barcelona
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 2021; 22:ijms222413185. [PMID: 34947997 PMCID: PMC8704992 DOI: 10.3390/ijms222413185] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
- Correspondence:
| | - Heather Dworak
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Courtney Zeni
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Oliver D. Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London SE5 8AF, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
29
|
Chang SC, Goh KK, Lu ML. Metabolic disturbances associated with antipsychotic drug treatment in patients with schizophrenia: State-of-the-art and future perspectives. World J Psychiatry 2021; 11:696-710. [PMID: 34733637 PMCID: PMC8546772 DOI: 10.5498/wjp.v11.i10.696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic disturbances and obesity are major cardiovascular risk factors in patients with schizophrenia, resulting in a higher mortality rate and shorter life expectancy compared with those in the general population. Although schizophrenia and metabolic disturbances may share certain genetic or pathobiological risks, antipsychotics, particularly those of second generation, may further increase the risk of weight gain and metabolic disturbances in patients with schizophrenia. This review included articles on weight gain and metabolic disturbances related to antipsychotics and their mechanisms, monitoring guidelines, and interventions. Nearly all antipsychotics are associated with weight gain, but the degree of the weight gain varies considerably. Although certain neurotransmitter receptor-binding affinities and hormones are correlated with weight gain and specific metabolic abnormalities, the precise mechanisms underlying antipsychotic-induced weight gain and metabolic disturbances remain unclear. Emerging evidence indicates the role of genetic polymorphisms associated with antipsychotic-induced weight gain and antipsychotic-induced metabolic disturbances. Although many guidelines for screening and monitoring antipsychotic-induced metabolic disturbances have been developed, they are not routinely implemented in clinical care. Numerous studies have also investigated strategies for managing antipsychotic-induced metabolic disturbances. Thus, patients and their caregivers must be educated and motivated to pursue a healthier life through smoking cessation and dietary and physical activity programs. If lifestyle intervention fails, switching to another antipsychotic drug with a lower metabolic risk or adding adjunctive medication to mitigate weight gain should be considered. Antipsychotic medications are essential for schizophrenia treatment, hence clinicians should monitor and manage the resulting weight gain and metabolic disturbances.
Collapse
Affiliation(s)
- Shen-Chieh Chang
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 116, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
30
|
Association of CNR1 and INSIG2 polymorphisms with antipsychotics-induced weight gain: a prospective nested case-control study. Sci Rep 2021; 11:15304. [PMID: 34315947 PMCID: PMC8316361 DOI: 10.1038/s41598-021-94700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Weight gain is a frequent and severe adverse reaction in patients taking antipsychotics. The objective was to further investigate in a natural setting influential risk factors associated with clinically significant weight gain. An observational follow-up study was conducted. Patients when initiating treatment with whatever antipsychotic were included; a structured questionnaire was applied at baseline, 3 and 6 months later; a blood sample was obtained. In a nested case-control approach, patients with an increase ≥ 7% of their initial weight were considered as cases, the remaining, as controls. The results showed that, out of 185 patients, 137 completed the 6-month follow-up (cases, 38; controls, 99). Weight gain gradually and significantly increased in cases (baseline, 65.0 kg; 6 months, 74.0 kg) but not in controls (65.6 kg and 65.8 kg, respectively). Age (adjusted OR = 0.97, 95% CI = 0.96-0.99, p = 0.004), olanzapine (adjusted OR = 2.98, 95% CI = 1.13-7.80, p = 0.027) and quetiapine (adjusted OR = 0.25, 95% = 0.07-0.92, p = 0.037) significantly associated with weight gain. An association was also found for the CNR1 (rs1049353) and INSIG2 (rs7566605) polymorphisms. In conclusion, an increased risk of antipsychotics-induced weight gain was observed for younger age and olanzapine, and a relative lower risk for quetiapine. A potential role of CNR1 rs1049353 and INSIG2 rs7566605 polymorphisms is suggested.
Collapse
|
31
|
Veeraraghavan V. Obesogenic Behavior and Binge Eating Disorder in an Elderly Female with Schizophrenia. J Obes Metab Syndr 2021; 30:184-187. [PMID: 33820877 PMCID: PMC8277593 DOI: 10.7570/jomes20096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/02/2022] Open
Abstract
Eating disorders, like binge eating, have a strong association with schizophrenia. Illness characteristics like disordered eating, cognition, and behavior can lead to eating disorders. Previous research highlighted the neurobiological structural similarity and the role of hormonal factors, like hypocretin, in the etiology of eating disorders in schizophrenia. Modifying the obesogenic environment by adapting healthy eating styles has been effective in reducing binging episodes. Antipsychotic medications also have a role in altering eating patterns that result in binge eating disorder. Adolescents with psychosis have a higher incidence of eating disorders. Here, we present an elderly female with schizophrenia who had obesogenic behaviors along with binge eating disorder. Interestingly, the patient had atypical age of onset and presentation and no psychopathological symptoms as a reason for binging.
Collapse
|
32
|
Prestwood TR, Asgariroozbehani R, Wu S, Agarwal SM, Logan RW, Ballon JS, Hahn MK, Freyberg Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res 2021; 402:113101. [PMID: 33453341 PMCID: PMC7882027 DOI: 10.1016/j.bbr.2020.113101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a debilitating psychiatric illness that remains poorly understood. While the bulk of symptomatology has classically been associated with disrupted brain functioning, accumulating evidence demonstrates that schizophrenia is characterized by systemic inflammation and disturbances in metabolism. Indeed, metabolic disease is a major determinant of the high mortality rate associated with schizophrenia. Antipsychotic drugs (APDs) have revolutionized management of psychosis, making it possible to rapidly control psychotic symptoms. This has ultimately reduced relapse rates of psychotic episodes and improved overall quality of life for people with schizophrenia. However, long-term APD use has also been associated with significant metabolic disturbances including weight gain, dysglycemia, and worsening of the underlying cardiometabolic disease intrinsic to schizophrenia. While the mechanisms for these intrinsic and medication-induced metabolic effects remain unclear, inflammation appears to play a key role. Here, we review the evidence for roles of inflammatory mechanisms in the disease features of schizophrenia and how these mechanisms interact with APD treatment. We also discuss the effects of common inflammatory mediators on metabolic disease. Then, we review the evidence of intrinsic and APD-mediated effects on systemic inflammation in schizophrenia. Finally, we speculate about possible treatment strategies. Developing an improved understanding of inflammatory processes in schizophrenia may therefore introduce new, more effective options for treating not only schizophrenia but also primary metabolic disorders.
Collapse
Affiliation(s)
- Tyler R Prestwood
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Canada
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jacob S Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Canada.
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Verhaegen AA, Van Gaal LF. Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function-Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Curr Obes Rep 2021; 10:1-13. [PMID: 33400222 DOI: 10.1007/s13679-020-00419-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Weight gain and body fat redistribution are common side effects of many widely used drugs. We summarize recent literature on prevalence data and mechanisms associated with drug-induced body fat changes and mechanisms to prevent or treat metabolic side effects. RECENT FINDINGS The highest prevalence of metabolic complications is seen with antipsychotics and antiretroviral drugs used in the treatment of HIV and may, at least partly, be responsible for the increased risk for co-morbid diseases such as diabetes, steatosis of the liver, and cardiovascular disease. The pathogenetic mechanisms leading to weight gain from antipsychotics are increasingly known and help to unravel the complex interaction that exists between psychopathology and metabolic complications. Although the classic lipodystrophy mainly occurred with older HIV drugs, also with the newer HIV treatment, weight gain seems to be a major side effect. Early detection of the metabolic consequences of drugs can lead to an early diagnosis of the complications and their treatment. Different medications, including the newer antidiabetics, are being studied in the therapy of drug-induced obesity. Future research should focus on identifying individuals at risk for metabolic side effects and on early markers to identify individuals with side effects so that timely treatment of metabolic complications can be initiated.
Collapse
Affiliation(s)
- Ann A Verhaegen
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Department of Endocrinology, ZNA - Jan Palfijn, Lange Bremstraat 70,, 2170, Merksem, Belgium.
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
34
|
Nolin MA, Demers MF, Rauzier C, Bouchard RH, Cadrin C, Després JP, Roy MA, Alméras N, Picard F. Circulating IGFBP-2 levels reveal atherogenic metabolic risk in schizophrenic patients using atypical antipsychotics. World J Biol Psychiatry 2021; 22:175-182. [PMID: 32552257 DOI: 10.1080/15622975.2020.1770858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Second generation antipsychotics (SGAs) induce weight gain and dyslipidemia, albeit with important intervariability. Insulin-like growth factor binding protein (IGFBP)-2 is proposed as a circulating biomarker negatively associated with waist circumference and hypertriglyceridemia. Thus, we tested whether metabolic alterations developed upon the use of SGAs are associated with plasma IGFBP-2 levels. METHODS A cross-sectional study was performed in 87 men newly diagnosed with schizophrenia and administered for approximately 20 months with olanzapine or risperidone as their first antipsychotic treatment. Plasma IGFBP-2 concentration, anthropometric data, as well as glucose and lipid profiles were determined at the end of the treatments. RESULTS IGFBP-2 levels were similar between patients using olanzapine or risperidone and were negatively correlated with waist circumference, insulin sensitivity, and plasma triglycerides (TG). A higher proportion of men with a hypertriglyceridemic (hyperTG) waist phenotype was found in patients with IGFBP-2 levels lower than 220 ng/mL (43% for olanzapine and 13% for risperidone) compared to those with IGFBP-2 above this threshold (10% and 0%, respectively). CONCLUSIONS IGFBP-2 may have a role in altering metabolic risk in schizophrenic patients using SGAs. Longitudinal studies are required to evaluate whether IGFBP-2 can predict the development of a hyperTG waist phenotype in this population.
Collapse
Affiliation(s)
- Marc-André Nolin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Marie-France Demers
- Faculty of Pharmacy, Université Laval, Québec, Canada.,Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada
| | - Chloé Rauzier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Roch-Hugo Bouchard
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Camille Cadrin
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Centre de recherche sur les soins et les services de première ligne - Université Laval, Québec, Canada
| | - Marc-André Roy
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Frédéric Picard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| |
Collapse
|
35
|
Shi H, Guan XN, Liu DY, Zhu L, Wu ZW, Luo GZ, Wang J, Xiu MH, Zhang XY. Sex-specific Association of Antipsychotic-induced Weight Gain and Treatment Response for Antipsychotic-Naive First Episode Schizophrenia Patients: A Prospective 8-week Longitudinal Study. PHARMACOPSYCHIATRY 2021; 54:68-74. [PMID: 33626593 DOI: 10.1055/a-1353-6544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with antipsychotic-naïve first-episode (ANFE) schizophrenia (SZ) can help clarify many confounding factors in determining sex differences in antipsychotic drug induced weight gain and its association with symptom improvement. METHODS This 8-week longitudinal trial of ANFE patients with SZ enrolled 526 patients and 313 healthy controls. We evaluated bodyweight and the efficacy of antipsychotics on the Positive and Negative Syndrome Scale (PANSS) at baseline and at the end of week 8. RESULTS Males and females after treatment showed no sex difference in weight gain, BMI increase, and percentage of weight gain. However, at baseline, male patients had more positive symptoms than female patients, and decreases in positive symptoms, general psychopathology, and total PANSS scores were less in male than female patients. Adjusting for confounding factors using multiple linear regression confirmed that weight gain was significantly associated with these decreases in PANSS symptoms only in men not women. CONCLUSIONS The relationship between weight gain and symptom reduction after 8 weeks of antipsychotic treatment exists only in male patients with ANFE SZ and not in female patients.
Collapse
Affiliation(s)
- Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiao Ni Guan
- Peking University Hui Long Guan Clinical Medical School, Beijing Hui Long Guan Hospital, Beijing, China
| | - Dian Ying Liu
- Department of Psychiatry, The Third People's Hospital of Ganzhou, Ganzhou, Jiangxi, China
| | - Lin Zhu
- Department of Psychiatry, The Third People's Hospital of Ganzhou, Ganzhou, Jiangxi, China
| | - Zhi Wei Wu
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.,Shenzhen Mental Health center. Shenzhen, Guangdong, China
| | - Guo Zhi Luo
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.,Shenzhen Mental Health center. Shenzhen, Guangdong, China
| | - Jun Wang
- Peking University Hui Long Guan Clinical Medical School, Beijing Hui Long Guan Hospital, Beijing, China
| | - Mei Hong Xiu
- Peking University Hui Long Guan Clinical Medical School, Beijing Hui Long Guan Hospital, Beijing, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Mono-ubiquitination of Rabphilin 3A by UBE3A serves a non-degradative function. Sci Rep 2021; 11:3007. [PMID: 33542309 PMCID: PMC7862399 DOI: 10.1038/s41598-021-82319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.
Collapse
|
37
|
Zhang Y, Li X, Yao X, Yang Y, Ning X, Zhao T, Xia L, Zhang Y, Zhang K, Liu H. Do Leptin Play a Role in Metabolism-Related Psychopathological Symptoms? Front Psychiatry 2021; 12:710498. [PMID: 34566714 PMCID: PMC8460901 DOI: 10.3389/fpsyt.2021.710498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Objectives: Leptin is a crucial regulator of energy balance and is associated with obesity. In recent years, it has also been recognized as involved in the psychopathological mechanism. Our study aimed to elucidate the relationships between serum leptin levels, body mass index (BMI), and psychopathology symptoms in patients with schizophrenia. Methods: A cross-sectional assessment of 324 inpatients with schizophrenia was conducted. Schizophrenia symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) and the Brief Psychiatric Rating Scale (BPRS). Serum leptin levels were assessed by the Enzyme-Linked Immunosorbent Assay (ELISA). Results: Significant differences in sex, BMI, and negative symptom subscale (PANSS-N) scores were found between the groups with high and low leptin levels in the study. Leptin levels were positively correlated with BMI (B = 2.322, t = 9.557, P < 0.001) and negatively correlated with PANSS-N scores (B = -0.303, t = -2.784, P = 0.006). Conclusions: Our results suggest that the increase in leptin levels is responsible for antipsychotic-induced weight gain and improved psychopathological symptoms.
Collapse
Affiliation(s)
- Yelei Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoyue Li
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Xianhu Yao
- Maanshan Fourth People's Hospital, Maanshan, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoshuai Ning
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Tongtong Zhao
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
39
|
Abd El-Hameed AM, Eskandrani AA, Elroby FA. Assessment of the ameliorative effect of Hypericum perforatum on olanzapine-induced hepatic oxidative stress and metabolic abnormalities in experimental male albino rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1834757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abeer M. Abd El-Hameed
- Faculty of Science, Chemistry Department, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| | - Areej A. Eskandrani
- Faculty of Science, Chemistry Department, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| | - Fadwa A. Elroby
- Faculty of Medicine, Forensic Medicine &Toxicology Department, Beni-Suef University, Egypt
| |
Collapse
|
40
|
Sridhar GR. On Psychology and Psychiatry in Diabetes. Indian J Endocrinol Metab 2020; 24:387-395. [PMID: 33489842 PMCID: PMC7810053 DOI: 10.4103/ijem.ijem_188_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022] Open
Abstract
Managing diabetes requires dealing with diet, medications, and self-monitoring, besides other pressures of daily living. It, therefore, requires collaboration among individuals with diabetes, their families, and significant others including the social milieu in which they reside. Psychological stress plays critical role in the cause and course of diabetes, particularly in mastering various self-management skills, which are essential for adequate management of diabetes. It is possible to measure and to resolve such stressors. Besides the patient and the family, the built environment which the person occupies must be conducive for healthy living. This is a key component in providing an appropriate physical and psychosocial environment. Lacunae in any of the built environmental parameters compromise social and psychological well-being. Psychiatric conditions are also common in diabetes. Both depression and distress are bi-directionally associated with diabetes. The presence of one condition increases the risk of developing the other. In addition, medications used for the treatment of psychiatric conditions have adverse effects on body weight and insulin sensitivity. One must carefully weigh the risk and benefit of the drug class with potential adverse effects. Therefore, identification and management of psychological and psyciatric aspects in subjects with diabetes is an integral and critical component in treating subjects with diabetes.
Collapse
|
41
|
Parksepp M, Leppik L, Koch K, Uppin K, Kangro R, Haring L, Vasar E, Zilmer M. Metabolomics approach revealed robust changes in amino acid and biogenic amine signatures in patients with schizophrenia in the early course of the disease. Sci Rep 2020; 10:13983. [PMID: 32814830 PMCID: PMC7438522 DOI: 10.1038/s41598-020-71014-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
The primary objective of this study was to evaluate how schizophrenia (SCH) spectrum disorders and applied antipsychotic (AP) treatment affect serum level of amino acids (AAs) and biogenic amines (BAs) in the early course of the disorder. We measured 21 different AAs and 10 BAs in a sample of antipsychotic (AP)-naïve first-episode psychosis (FEP) patients (n = 52) at baseline, after 0.6-year as well as after 5.1-year treatment compared to control subjects (CSs, n = 37). Serum levels of metabolites were determined with AbsoluteIDQ p180 kit using flow injection analysis tandem mass spectrometry and liquid chromatography technique. Elevated level of taurine and reduced level of proline and alpha-aminoadipic acid (alpha-AAA) were established as metabolites with significant change in AP-naïve FEP patients compared to CSs. The following 0.6-year treatment restored these alterations. However, further continuous 5.1-year AP treatment changed the metabolic profile substantially. Significantly elevated levels of asparagine, glutamine, methionine, ornithine and taurine, alongside with decreased levels of aspartate, glutamate and alpha-AAA were observed in the patient group compared to CSs. These biomolecule profile alterations provide further insights into the pathophysiology of SCH spectrum disorders and broaden our understanding of the impact of AP treatment in the early stages of the disease.
Collapse
Affiliation(s)
- Madis Parksepp
- Department of Psychiatry, Institute of Clinical Medicine, University of Tartu, 31 Raja Street, 50417, Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 6 Pargi tee Street, 71024, Viljandi County, Estonia
| | - Liisa Leppik
- Psychiatry Clinic of Viljandi Hospital, 6 Pargi tee Street, 71024, Viljandi County, Estonia
| | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 18 Narva mnt, 51009, Tartu, Estonia
| | - Liina Haring
- Department of Psychiatry, Institute of Clinical Medicine, University of Tartu, 31 Raja Street, 50417, Tartu, Estonia.
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia.
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
42
|
de Almeida V, Alexandrino GL, Aquino A, Gomes AF, Murgu M, Dobrowolny H, Guest PC, Steiner J, Martins-de-Souza D. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109945. [PMID: 32304808 DOI: 10.1016/j.pnpbp.2020.109945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Atypical antipsychotics are widely used to manage schizophrenia symptoms. However, these drugs can induce deleterious side effects, such as MetS, which are associated with an increased cardiovascular risk to patients. Lipids play a central role in this context, and changes in lipid metabolism have been implicated in schizophrenia's pathobiology. Furthermore, recent evidence suggests that lipidome changes may be related to antipsychotic treatment response. The aim of this study was to evaluate the lipidome changes in blood plasma samples of schizophrenia patients before and after 6 weeks of treatment with either risperidone, olanzapine, or quetiapine. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis showed changes in the levels of ceramides (Cer), glycerophosphatidic acids (PA), glycerophosphocholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), glycerophosphoglycerols (PG), and phosphatidylserines (PS) for all treatments. However, the treatment with risperidone also affected diacylglycerides (DG), ceramide 1-phosphates (CerP), triglycerides (TG), sphingomyelins (SM), and ceramide phosphoinositols (PI-Cer). Moreover, specific lipid profiles were observed that could be used to distinguish poor and good responders to the different antipsychotics. As such, further work in this area may lead to lipid-based biomarkers that could be used to improve the clinical management of schizophrenia patients.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme L Alexandrino
- Gas Chromatography Laboratory, Chemistry Institute, University of Campinas(UNICAMP), Campinas, SP, Brazil
| | - Adriano Aquino
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre F Gomes
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Michael Murgu
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
43
|
Severe weight gain as an adverse drug reaction of psychotropics: Data from the AMSP project between 2001 and 2016. Eur Neuropsychopharmacol 2020; 36:60-71. [PMID: 32536570 DOI: 10.1016/j.euroneuro.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Severe weight gain induced by psychotropics is a known problem in psychiatry. Various drugs from different classes may lead to weight gain that may further lead to potentially life-shortening diseases, such as diabetes or cardiovascular disease. A total of 344 cases of severe weight gain (>10% of body weight) have been documented by the drug safety in psychiatry program AMSP between 2001 and 2016. Patients gained 12.7 ± 5.5 kg weight within 12±15 weeks. This equals a Body Mass Index (BMI) gain of 4.4 ± 1.9 kg/m² to a final BMI of 28.8 ± 5.5 kg/m². In addition, 142 retrospective reports documented at admission have been analyzed. Within one year these patients gained 6.4 ± 4.0 kg/m² to a final BMI of 31.9 kg/m². The weight gain was extreme in some cases. For example, 35% of the patients gained more than 20 kg. On average the patients reached overweight or even adiposity. Only 27% of the patients could loose some weight at the end of their stay. This emphasizes the relevance of this long-term problem for the patients' health. Mostly second generation antipsychotics, and therein olanzapine, as well as antidepressants and anticonvulsants have been imputed. Severe weight gain is a slow process and it is rarely documented as adverse drug reaction under real-life conditions compared to the high percentage of patients with weight gain in clinical studies. It might often remain unnoticed due to shorter stationary treatment and changing treatment settings.
Collapse
|
44
|
Bahrami S, Steen NE, Shadrin A, O’Connell K, Frei O, Bettella F, Wirgenes KV, Krull F, Fan CC, Dale AM, Smeland OB, Djurovic S, Andreassen OA. Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry 2020; 77:503-512. [PMID: 31913414 PMCID: PMC6990967 DOI: 10.1001/jamapsychiatry.2019.4188] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023]
Abstract
Importance People with major psychiatric disorders (MPDs) have a 10- to 20-year shorter life span than the rest of the population, and this difference is mainly due to comorbid cardiovascular diseases. Genome-wide association studies have identified common variants involved in schizophrenia (SCZ), bipolar disorder (BIP), and major depression (MD) and body mass index (BMI), a key cardiometabolic risk factor. However, genetic variants jointly influencing MPD and BMI remain largely unknown. Objective To assess the extent of the overlap between the genetic architectures of MPDs and BMI and identify genetic loci shared between them. Design, Setting, and Participants Using a conditional false discovery rate statistical framework, independent genome-wide association study data on individuals with SCZ (n = 82 315), BIP (n = 51 710), MD (n = 480 359), and BMI (n = 795 640) were analyzed. The UK Biobank cohort (n = 29 740) was excluded from the MD data set to avoid sample overlap. Data were collected from August 2017 to May 2018, and analysis began July 2018. Main Outcomes and Measures The primary outcomes were a list of genetic loci shared between BMI and MPDs and their functional pathways. Results Genome-wide association study data from 1 380 284 participants were analyzed, and the genetic correlation between BMI and MPDs varied (SCZ: r for genetic = -0.11, P = 2.1 × 10-10; BIP: r for genetic = -0.06, P = .0103; MD: r for genetic = 0.12, P = 6.7 × 10-10). Overall, 63, 17, and 32 loci shared between BMI and SCZ, BIP, and MD, respectively, were analyzed at conjunctional false discovery rate less than 0.01. Of the shared loci, 34% (73 of 213) in SCZ, 52% (36 of 69) in BIP, and 57% (56 of 99) in MD had risk alleles associated with higher BMI (conjunctional false discovery rate <0.05), while the rest had opposite directions of associations. Functional analyses indicated that the overlapping loci are involved in several pathways including neurodevelopment, neurotransmitter signaling, and intracellular processes, and the loci with concordant and opposite association directions pointed mostly to different pathways. Conclusions and Relevance In this genome-wide association study, extensive polygenic overlap between BMI and SCZ, BIP, and MD were found, and 111 shared genetic loci were identified, implicating novel functional mechanisms. There was mixture of association directions in SCZ and BMI, albeit with a preponderance of discordant ones.
Collapse
Affiliation(s)
- Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kevin O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Florian Krull
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Chun C. Fan
- Department of Radiology, University of California, San Diego, La Jolla
- Department of Cognitive Science, University of California, San Diego, La Jolla
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla
- Multimodal Imaging Laboratory, University of California, San Diego, La Jolla
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Neurosciences, University of California, San Diego, La Jolla
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
45
|
ter Hark SE, Jamain S, Schijven D, Lin BD, Bakker MK, Boland-Auge A, Deleuze JF, Troudet R, Malhotra AK, Gülöksüz S, Vinkers CH, Ebdrup BH, Kahn RS, Leboyer M, Luykx JJ. A new genetic locus for antipsychotic-induced weight gain: A genome-wide study of first-episode psychosis patients using amisulpride (from the OPTiMiSE cohort). J Psychopharmacol 2020; 34:524-531. [PMID: 32126890 PMCID: PMC7222287 DOI: 10.1177/0269881120907972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Antipsychotic-induced weight gain is a common and debilitating side effect of antipsychotics. Although genome-wide association studies of antipsychotic-induced weight gain have been performed, few genome-wide loci have been discovered. Moreover, these genome-wide association studies have included a wide variety of antipsychotic compounds. AIMS We aim to gain more insight in the genomic loci affecting antipsychotic-induced weight gain. Given the variable pharmacological properties of antipsychotics, we hypothesized that targeting a single antipsychotic compound would provide new clues about genomic loci affecting antipsychotic-induced weight gain. METHODS All subjects included for this genome-wide association study (n=339) were first-episode schizophrenia spectrum disorder patients treated with amisulpride and were minimally medicated (defined as antipsychotic use <2 weeks in the previous year and/or <6 weeks lifetime). Weight gain was defined as the increase in body mass index from before until approximately 1 month after amisulpride treatment. RESULTS Our genome-wide association analyses for antipsychotic-induced weight gain yielded one genome-wide significant hit (rs78310016; β=1.05; p=3.66 × 10-08; n=206) in a locus not previously associated with antipsychotic-induced weight gain or body mass index. Minor allele carriers had an odds ratio of 3.98 (p=1.0 × 10-03) for clinically meaningful antipsychotic-induced weight gain (⩾7% of baseline weight). In silico analysis elucidated a chromatin interaction with 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. In an attempt to replicate single-nucleotide polymorphisms previously associated with antipsychotic-induced weight gain, we found none were associated with amisulpride-induced weight gain. CONCLUSION Our findings suggest the involvement of rs78310016 and possibly 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 in antipsychotic-induced weight gain. In line with the unique binding profile of this atypical antipsychotic, our findings furthermore hint that biological mechanisms underlying amisulpride-induced weight gain differ from antipsychotic-induced weight gain by other atypical antipsychotics.
Collapse
Affiliation(s)
- Sophie E ter Hark
- Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
| | - Stéphane Jamain
- Psychiatrie Translationnelle, Inserm U955, Créteil, France,Faculté de Médecine, Université Paris Est, Créteil, France,Fondation FondaMental, Créteil, France
| | - Dick Schijven
- Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
| | - Bochao D Lin
- Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
| | - Mark K Bakker
- Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
| | - Anne Boland-Auge
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Evry, France
| | - Réjane Troudet
- Psychiatrie Translationnelle, Inserm U955, Créteil, France,Faculté de Médecine, Université Paris Est, Créteil, France,Fondation FondaMental, Créteil, France
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, United States of America
| | - Sinan Gülöksüz
- Department of Psychiatry and Neuropsychology, School for Mental Health Neuroscience Maastricht University Medical Center, Maastricht, The Netherlands,Department of Psychiatry, Yale School of Medicine, New Haven, United States of America
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands,Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Glostrup, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine, Mount Sinai, United States of America
| | - Marion Leboyer
- Psychiatrie Translationnelle, Inserm U955, Créteil, France,Faculté de Médecine, Université Paris Est, Créteil, France,Fondation FondaMental, Créteil, France,AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d’addictologie des Hôpitaux universitaires Henri Mondor, Créteil, France
| | - Jurjen J Luykx
- Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands,GGNet Mental Health, Apeldoorn, The Netherlands,Jurjen J Luykx, Departments of Translational Neuroscience and Psychiatry, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
46
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
47
|
Chen X, Yu Y, Zheng P, Jin T, He M, Zheng M, Song X, Jones A, Huang XF. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the hypothalamic neurons of mice. Psychoneuroendocrinology 2020; 114:104594. [PMID: 32007669 DOI: 10.1016/j.psyneuen.2020.104594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Second generation antipsychotics, particularly olanzapine, induce severe obesity, which is associated with their antagonistic effect on the histamine H1 receptor (H1R). We have previously demonstrated that oral administration of olanzapine increases the concentration of neuropeptide Y (NPY) in the hypothalamus of rats, accompanied by hyperphagia and weight gain. However, it is unclear if the increased NPY after olanzapine administration is due to its direct effect on hypothalamic neurons and its H1R antagonistic property. In the present study, we showed that with an inverted U-shape dose-response curve, olanzapine increased NPY expression in the NPY-GFP hypothalamic neurons; however, this was not the case in the hypothalamic neurons of H1R knockout mice. Olanzapine inhibited the interaction of H1R and GHSR1a (ghrelin receptor) in the primary mouse hypothalamic neurons and NPY-GFP neurons examined by confocal fluorescence resonance energy transfer (FRET) technology. Furthermore, an H1R agonist, FMPH inhibited olanzapine activation of GHSR1a downstream signaling pAMPK and transcription factors of NPY (pFOXO1 and pCREB) in the hypothalamic NPY-GFP cell. However, an olanzapine analogue (E-Olan) with lower affinity to H1R presented negligible enhancement of pCREB within the nucleus of NPY neurons. These findings suggest that the H1R antagonist property of olanzapine inhibits the interaction of H1R and GHSR1a, activates GHSR1a downstream signaling pAMPK-FOXO1/pCREB and increases hypothalamic NPY: this could be one of the important molecular mechanisms of H1R antagonism of olanzapine-induced obesity in antipsychotic management of psychiatric disorders.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Endocrinology and Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Yinghua Yu
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China.
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Tiantian Jin
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Meng He
- School of Chemistry, Wuhan University of Technology, Wuhan, China
| | - Mingxuan Zheng
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China
| | - Xueqin Song
- School of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alison Jones
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
48
|
Endomba FT, Tankeu AT, Nkeck JR, Tochie JN. Leptin and psychiatric illnesses: does leptin play a role in antipsychotic-induced weight gain? Lipids Health Dis 2020; 19:22. [PMID: 32033608 PMCID: PMC7006414 DOI: 10.1186/s12944-020-01203-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is the most prevalent somatic adverse event occurring in patients treated by antipsychotics, especially atypical antipsychotics. It is of particular interest because of its repercussion on cardiovascular morbidity and mortality especially now that the use of second-generation antipsychotics has been extended to other mental health illnesses such as bipolar disorders and major depressive disorder. The mechanism underlying antipsychotics-induced weight gain is still poorly understood despite a significant amount of work on the topic. Recently, there has been an on-going debate of tremendous research interest on the relationship between antipsychotic-induced weight gain and body weight regulatory hormones such as leptin. Given that, researchers have brought to light the question of leptin's role in antipsychotic-induced weight gain. Here we summarize and discuss the existing evidence on the link between leptin and weight gain related to antipsychotic drugs, especially atypical antipsychotics.
Collapse
Affiliation(s)
- Francky Teddy Endomba
- Psychiatry Internship Program, University of Bourgogne, 21000, Dijon, France.,Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurel T Tankeu
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,Aging and Metabolism Laboratory, Department of physiology, University of Lausanne, Lausanne, Switzerland
| | - Jan René Nkeck
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joel Noutakdie Tochie
- Department of Anaesthesiology and Critical Care Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. .,Human Research Education and Networking, Yaoundé, Cameroon.
| |
Collapse
|
49
|
Meftah AM, Deckler E, Citrome L, Kantrowitz JT. New discoveries for an old drug: a review of recent olanzapine research. Postgrad Med 2020; 132:80-90. [DOI: 10.1080/00325481.2019.1701823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir M Meftah
- Department of Psychiatry, Columbia University, New York, NY, USA
- Schizophrenia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elizabeth Deckler
- Department of Psychiatry, Columbia University, New York, NY, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leslie Citrome
- Department of Psychiatry, New York Medical College, Valhalla, NY, USA
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, New York, NY, USA
- Schizophrenia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
50
|
Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, Beck K, Natesan S, Efthimiou O, Cipriani A, Howes OD. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry 2020; 7:64-77. [PMID: 31860457 PMCID: PMC7029416 DOI: 10.1016/s2215-0366(19)30416-x] [Citation(s) in RCA: 497] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antipsychotic treatment is associated with metabolic disturbance. However, the degree to which metabolic alterations occur in treatment with different antipsychotics is unclear. Predictors of metabolic dysregulation are poorly understood and the association between metabolic change and change in psychopathology is uncertain. We aimed to compare and rank antipsychotics on the basis of their metabolic side-effects, identify physiological and demographic predictors of antipsychotic-induced metabolic dysregulation, and investigate the relationship between change in psychotic symptoms and change in metabolic parameters with antipsychotic treatment. METHODS We searched MEDLINE, EMBASE, and PsycINFO from inception until June 30, 2019. We included blinded, randomised controlled trials comparing 18 antipsychotics and placebo in acute treatment of schizophrenia. We did frequentist random-effects network meta-analyses to investigate treatment-induced changes in body weight, BMI, total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, and glucose concentrations. We did meta-regressions to examine relationships between metabolic change and age, sex, ethnicity, baseline weight, and baseline metabolic parameter level. We examined the association between metabolic change and psychopathology change by estimating the correlation between symptom severity change and metabolic parameter change. FINDINGS Of 6532 citations, we included 100 randomised controlled trials, including 25 952 patients. Median treatment duration was 6 weeks (IQR 6-8). Mean differences for weight gain compared with placebo ranged from -0·23 kg (95% CI -0·83 to 0·36) for haloperidol to 3·01 kg (1·78 to 4·24) for clozapine; for BMI from -0·25 kg/m2 (-0·68 to 0·17) for haloperidol to 1·07 kg/m2 (0·90 to 1·25) for olanzapine; for total-cholesterol from -0·09 mmol/L (-0·24 to 0·07) for cariprazine to 0·56 mmol/L (0·26-0·86) for clozapine; for LDL cholesterol from -0·13 mmol/L (-0.21 to -0·05) for cariprazine to 0·20 mmol/L (0·14 to 0·26) for olanzapine; for HDL cholesterol from 0·05 mmol/L (0·00 to 0·10) for brexpiprazole to -0·10 mmol/L (-0·33 to 0·14) for amisulpride; for triglycerides from -0·01 mmol/L (-0·10 to 0·08) for brexpiprazole to 0·98 mmol/L (0·48 to 1·49) for clozapine; for glucose from -0·29 mmol/L (-0·55 to -0·03) for lurasidone to 1·05 mmol/L (0·41 to 1·70) for clozapine. Greater increases in glucose were predicted by higher baseline weight (p=0·0015) and male sex (p=0·0082). Non-white ethnicity was associated with greater increases in total cholesterol (p=0·040) compared with white ethnicity. Improvements in symptom severity were associated with increases in weight (r=0·36, p=0·0021), BMI (r=0·84, p<0·0001), total-cholesterol (r=0·31, p=0·047), and LDL cholesterol (r=0·42, p=0·013), and decreases in HDL cholesterol (r=-0·35, p=0·035). INTERPRETATION Marked differences exist between antipsychotics in terms of metabolic side-effects, with olanzapine and clozapine exhibiting the worst profiles and aripiprazole, brexpiprazole, cariprazine, lurasidone, and ziprasidone the most benign profiles. Increased baseline weight, male sex, and non-white ethnicity are predictors of susceptibility to antipsychotic-induced metabolic change, and improvements in psychopathology are associated with metabolic disturbance. Treatment guidelines should be updated to reflect our findings. However, the choice of antipsychotic should be made on an individual basis, considering the clinical circumstances and preferences of patients, carers, and clinicians. FUNDING UK Medical Research Council, Wellcome Trust, National Institute for Health Research Oxford Health Biomedical Research Centre.
Collapse
Affiliation(s)
- Toby Pillinger
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Luke Vano
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Yuya Mizuno
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Atheeshaan Arumuham
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy Hindley
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sridhar Natesan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|