1
|
Gateva P, Hristov M, Ivanova N, Vasileva D, Ivanova A, Sabit Z, Bogdanov T, Apostolova S, Tzoneva R. Antinociceptive Behavior, Glutamine/Glutamate, and Neopterin in Early-Stage Streptozotocin-Induced Diabetic Neuropathy in Liraglutide-Treated Mice under a Standard or Enriched Environment. Int J Mol Sci 2024; 25:10786. [PMID: 39409118 PMCID: PMC11477071 DOI: 10.3390/ijms251910786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00-11.00) vs. 29.00 (2.25-41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Pavlina Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Debora Vasileva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Alexandrina Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Todor Bogdanov
- Department of Medical Physics and Biophysics, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| |
Collapse
|
2
|
Mohapatra A, Mohanty A, Park IK. Inorganic Nanomedicine-Mediated Ferroptosis: A Synergistic Approach to Combined Cancer Therapies and Immunotherapy. Cancers (Basel) 2024; 16:3210. [PMID: 39335181 PMCID: PMC11430644 DOI: 10.3390/cancers16183210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has generated substantial interest in cancer therapy. Various methods have been developed to induce ferroptosis in tumor cells, including approved drugs, experimental compounds, and nanomedicine formulations. Unlike apoptosis, ferroptosis presents unique molecular and cellular features, representing a promising approach for cancers resistant to conventional treatments. Recent research indicates a strong link between ferroptosis and the tumor immune microenvironment, suggesting the potential of ferroptosis to trigger robust antitumor immune responses. Multiple cellular metabolic pathways control ferroptosis, including iron, lipid, and redox metabolism. Thus, understanding the interaction between tumor metabolism and ferroptosis is crucial for developing effective anticancer therapies. This review provides an in-depth discussion on combining inorganic nanoparticles with cancer therapies such as phototherapy, chemotherapy, radiotherapy, and immunotherapy, and the role of ferroptosis in these combination treatments. Furthermore, this paper explores the future of tumor treatment using nanomedicine, focusing on how inorganic nanoparticles can enhance ferroptosis in tumor cells and boost antitumor immunity. The goal is to advance ferroptosis-based nanomedicine from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| |
Collapse
|
3
|
Zhang Z, Li L, Fu W, Fu Z, Si M, Wu S, Shou Y, Pei X, Yan X, Zhang C, Wang T, Liu F. Therapeutic effects of natural compounds against diabetic complications via targeted modulation of ferroptosis. Front Pharmacol 2024; 15:1425955. [PMID: 39359249 PMCID: PMC11445066 DOI: 10.3389/fphar.2024.1425955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder, can result in serious tissue and organ damage due to long-term metabolic dysfunction, leading to various complications. Therefore, exploring the pathogenesis of diabetic complications and developing effective prevention and treatment drugs is crucial. The role of ferroptosis in diabetic complications has emerged as a significant area of research in recent years. Ferroptosis, a recently discovered form of regulated cell death closely linked to iron metabolism imbalance and lipid peroxidation, has garnered increasing attention in studies exploring the potential role of natural products in its regulation. This review provides an overview of the mechanisms underlying ferroptosis, outlines detection methods, and synthesizes information from natural product databases. It also summarizes current research on how natural products may regulate ferroptosis in diabetic complications. Studies have shown that these products can modulate the ferroptosis process by influencing iron ion balance and combating oxidative stress. This highlights the potential of natural products in treating diabetic complications by regulating ferroptosis, offering a new strategy for managing such complications.
Collapse
Affiliation(s)
- Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Fu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengchao Fu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Mahang Si
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Siyu Wu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yueying Shou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xinyu Pei
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyi Yan
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Chenguang Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Tong Wang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Fei Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
4
|
Minnella A, McCusker KP, Amagata A, Trias B, Weetall M, Latham JC, O'Neill S, Wyse RK, Klein MB, Trimmer JK. Targeting ferroptosis with the lipoxygenase inhibitor PTC-041 as a therapeutic strategy for the treatment of Parkinson's disease. PLoS One 2024; 19:e0309893. [PMID: 39292705 PMCID: PMC11410249 DOI: 10.1371/journal.pone.0309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/18/2024] [Indexed: 09/20/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting nearly 10 million people worldwide. Ferroptosis, a recently identified form of regulated cell death characterized by 15-lipoxygenase-mediated hydroperoxidation of membrane lipids, has been implicated in neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Pharmacological inhibition of 15 -lipoxygenase to prevent iron- and lipid peroxidation-associated ferroptotic cell death is a rational strategy for the treatment of Parkinson's disease. We report here the characterization of PTC-041 as an anti-ferroptotic reductive lipoxygenase inhibitor developed for the treatment of Parkinson's disease. In these studies, PTC-041 potently protects primary human Parkinson's disease patient-derived fibroblasts from lipid peroxidation and subsequent ferroptotic cell death and prevents ferroptosis-related neuronal loss and astrogliosis in primary rat neuronal cultures. Additionally, PTC-041 prevents ferroptotic-mediated α-synuclein protein aggregation and nitrosylation in vitro, suggesting a potential role for anti-ferroptotic lipoxygenase inhibitors in mitigating pathogenic aspects of synucleinopathies such as Parkinson's disease. We further found that PTC-041 protects against synucleinopathy in vivo, demonstrating that PTC-041 treatment of Line 61 transgenic mice protects against α-synuclein aggregation and phosphorylation as well as prevents associated neuronal and non-neuronal cell death. Finally, we show that. PTC-041 protects against 6-hydroxydopamine-induced motor deficits in a hemiparkinsonian rat model, further validating the potential therapeutic benefits of lipoxygenase inhibitors in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Angela Minnella
- PTC Therapeutics, Mountain View, California, United States of America
| | - Kevin P McCusker
- PTC Therapeutics, Mountain View, California, United States of America
| | - Akiko Amagata
- PTC Therapeutics, Mountain View, California, United States of America
| | - Beatrice Trias
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Marla Weetall
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Joey C Latham
- PTC Therapeutics, Mountain View, California, United States of America
| | - Sloane O'Neill
- PTC Therapeutics, Mountain View, California, United States of America
| | | | - Matthew B Klein
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Jeffrey K Trimmer
- PTC Therapeutics, Mountain View, California, United States of America
| |
Collapse
|
5
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
6
|
Kline GM, Madrazo N, Cole CM, Pannikkat M, Bollong MJ, Rosarda JD, Kelly JW, Wiseman RL. Metabolically activated proteostasis regulators that protect against erastin-induced ferroptosis. RSC Chem Biol 2024; 5:866-876. [PMID: 39211477 PMCID: PMC11353103 DOI: 10.1039/d4cb00027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
We previously showed that the proteostasis regulator compound AA147 (N-(2-hydroxy-5-methylphenyl)benzenepropanamide) potently protects against neurotoxic insults, such as glutamate-induced oxytosis. Though AA147 is a selective activator of the ATF6 arm of the unfolded protein response in non-neuronal cells, AA147-dependent protection against glutamate toxicity in cells of neuronal origin is primarily mediated through activation of the NRF2 oxidative stress response. AA147 activates NRF2 through a mechanism involving metabolic activation of AA147 by endoplasmic reticulum (ER) oxidases, affording an AA147-based quinone methide that covalently targets the NRF2 repressor protein KEAP1. Previous results show that the 2-amino-p-cresol A-ring of AA147 is required for NRF2 activation, while the phenyl B-ring of AA147 is amenable to modification. Here we explore whether the protease-sensitive amide linker between the A- and B-rings of this molecule can be modified to retain NRF2 activation. We show that replacement of the amide linker of AA147 with a carbamate linker retains NRF2 activation in neuronal cells and improves protection against neurotoxic insults, including glutamate-induced oxytosis and erastin-induced ferroptosis. Moreover, we demonstrate that inclusion of this carbamate linker facilitates identification of next-generation AA147 analogs with improved cellular tolerance and activity in disease-relevant assays.
Collapse
Affiliation(s)
- Gabriel M Kline
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Nicole Madrazo
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Christian M Cole
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Meera Pannikkat
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences Bethesda MD 20814 USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
7
|
Pandrangi SL, Chittineedi P, Manthari RK, Suhruth B. Impact of oxytosis on the cross-talk of mTORC with mitochondrial proteins in drug-resistant cancer stem cells. J Cell Physiol 2024:e31421. [PMID: 39188055 DOI: 10.1002/jcp.31421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
By delivering the environmental inputs to transport nutrients and growth factors, Mechanistic Target of Rapamycin (mTOR) plays a significant role in the growth and metabolism of eukaryotic cells through the regulation of numerous elementary cellular processes such as autophagy, protein synthesis, via translation of mitochondrial protein transcription factor A mitochondrial, mitochondrial ribosomal proteins, and mitochondrial respiratory complexes I &V that are encoded in the nucleus with the help of translation initiation factor 4E-BP. These mitochondrial proteins are involved in cell signaling to regulate proper cell growth, proliferation, and death which are essential for tumor growth and proliferation. This suggests that tumor cells are dependent on mTORC1 for various metabolic pathways. However, this crucial regulator is activated and regulated by calcium homeostasis. Mounting evidence suggests the role of calcium ions in regulating mitochondrial enzymes and proteins. Hence, disrupting calcium homeostasis leads to calcium-dependent cell death called "Oxytosis" through hampering the expression of various mitochondrial proteins. "Oxytosis" is a novel non-apoptotic cell death characterized by glutamate cytotoxicity and ferritin degradation. The present review focuses on the crosstalk between mTORC1 and mitochondrial proteins in the cancer pathophysiology and the impact of calcium ions on disrupting mTORC1 leading to the induction of "Oxytosis."
Collapse
Affiliation(s)
- Santhi L Pandrangi
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Prasanthi Chittineedi
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Ram K Manthari
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Balaji Suhruth
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| |
Collapse
|
8
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
9
|
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, Liu X, Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res 2024; 38:3954-3972. [PMID: 38837315 DOI: 10.1002/ptr.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Collapse
Affiliation(s)
- Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Muqing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomeng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity. Immunology 2024; 172:547-565. [PMID: 38566448 DOI: 10.1111/imm.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Hirata Y, Takemori H, Furuta K, Kamatari YO, Sawada M. Ferroptosis induces nucleolar stress as revealed by live-cell imaging using thioflavin T. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100196. [PMID: 39077682 PMCID: PMC11284673 DOI: 10.1016/j.crphar.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
Nucleolar stress induced by stressors like hypoxia, UV irradiation, and heat shock downregulates ribosomal RNA transcription, thereby impairing protein synthesis capacity and potentially contributing to cell senescence and various human diseases such as neurodegenerative disorders and cancer. Live-cell imaging of the nucleolus may be a feasible strategy for investigating nucleolar stress, but currently available nucleolar stains are limited for this application. In this study using mouse hippocampal HT22 cells, we demonstrate that thioflavin T (ThT), a benzothiazole dye that binds RNA with high affinity, is useful for nucleolar imaging in cells where RNAs predominate over protein aggregates. Nucleoli were stained with high intensity simply by adding ThT to the cell culture medium, making it suitable for use even in damaged cells. Further, ThT staining overlapped with specific nucleolar stains in both live and fixed cells, but did not overlap with markers for mitochondria, lysosomes, endoplasmic reticulum, and double-stranded DNA. Ferroptosis, an iron-dependent nonapoptotic cell death pathway characterized by lipid peroxide accumulation, reduced the number of ThT-positive puncta while endoplasmic reticulum stress did not. These findings suggest that ferroptosis is associated with oxidative damage to nucleolar RNA molecules and ensuing loss of nucleolar function.
Collapse
Affiliation(s)
- Yoko Hirata
- Life Science Research Center, Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1193, Japan
| | | | - Yuji O. Kamatari
- Life Science Research Center, Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| |
Collapse
|
12
|
Veeckmans G, Van San E, Vanden Berghe T. A guide to ferroptosis, the biological rust of cellular membranes. FEBS J 2024; 291:2767-2783. [PMID: 37935445 DOI: 10.1111/febs.16993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Unprotected iron can rust due to oxygen exposure. Similarly, in our body, oxidative stress can kill cells in an iron-dependent manner, which can give rise to devastating diseases. This type of cell death is referred to as ferroptosis. Generally, ferroptosis is defined as an iron-catalyzed form of regulated necrosis that occurs through excessive peroxidation of polyunsaturated fatty acids within cellular membranes. This review summarizes how ferroptosis is executed by a rather primitive biochemical process, under tight regulation of lipid, iron, and redox metabolic processes. An overview is given of major classes of ferroptosis inducers and inhibitors, and how to detect ferroptosis. Finally, its detrimental role in disease is briefly discussed.
Collapse
Affiliation(s)
| | - Emily Van San
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium
- VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
13
|
Dirik H, Taşkıran AŞ, Joha Z. Ferroptosis inhibitor ferrostatin-1 attenuates morphine tolerance development in male rats by inhibiting dorsal root ganglion neuronal ferroptosis. Korean J Pain 2024; 37:233-246. [PMID: 38946696 PMCID: PMC11220380 DOI: 10.3344/kjp.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
Background Ferrostatin-1 and liproxstatin-1, both ferroptosis inhibitors, protect cells. Liproxstatin-1 decreases morphine tolerance. Yet, ferrostatin-1's effect on morphine tolerance remains unexplored. This study aimed to evaluate the influence of ferrostatin-1 on the advancement of morphine tolerance and understand the underlying mechanisms in male rats. Methods This experiment involved 36 adult male Wistar albino rats with an average weight ranging from 220 to 260 g. These rats were categorized into six groups: Control, single dose ferrostatin-1, single dose morphine, single dose ferrostatin-1 + morphine, morphine tolerance (twice daily for five days), and ferrostatin-1 + morphine tolerance (twice daily for five days). The antinociceptive action was evaluated using both the hot plate and tail-flick tests. After completing the analgesic tests, tissue samples were gathered from the dorsal root ganglia (DRG) for subsequent analysis. The levels of glutathione, glutathione peroxidase 4 (GPX4), and nuclear factor erythroid 2-related factor 2 (Nrf2), along with the measurements of total oxidant status (TOS) and total antioxidant status (TAS), were assessed in the tissues of the DRG. Results After tolerance development, the administration of ferrostatin-1 resulted in a significant decrease in morphine tolerance (P < 0.001). Additionally, ferrostatin-1 treatment led to elevated levels of glutathione, GPX4, Nrf2, and TOS (P < 0.001), while simultaneously causing a decrease in TAS levels (P < 0.001). Conclusions The study found that ferrostatin-1 can reduce morphine tolerance by suppressing ferroptosis and reducing oxidative stress in DRG neurons, suggesting it as a potential therapy for preventing morphine tolerance.
Collapse
Affiliation(s)
- Hasan Dirik
- Ankara City Hospital, Anesthesia and Intensive Care, Ankara, Turkey
| | - Ahmet Şevki Taşkıran
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ziad Joha
- Departments of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
14
|
Liang Z, Candib A, Soriano-Castell D, Fischer W, Finley K, Maher P. Fragment-based drug discovery and biological evaluation of novel cannabinol-based inhibitors of oxytosis/ferroptosis for neurological disorders. Redox Biol 2024; 72:103138. [PMID: 38581858 PMCID: PMC11002867 DOI: 10.1016/j.redox.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
The oxytosis/ferroptosis regulated cell death pathway is an emerging field of research owing to its pathophysiological relevance to a wide range of neurological disorders, including Alzheimer's and Parkinson's diseases and traumatic brain injury. Developing novel neurotherapeutics to inhibit oxytosis/ferroptosis offers exciting opportunities for the treatment of these and other neurological diseases. Previously, we discovered cannabinol (CBN) as a unique, potent inhibitor of oxytosis/ferroptosis by targeting mitochondria and modulating their function in neuronal cells. To further elucidate which key pharmacophores and chemical space are essential to the beneficial effects of CBN, we herein introduce a fragment-based drug discovery strategy in conjunction with cell-based phenotypic screens using oxytosis/ferroptosis to determine the structure-activity relationship of CBN. The resulting information led to the development of four new CBN analogs, CP1-CP4, that not only preserve the sub-micromolar potency of neuroprotection and mitochondria-modulating activities seen with CBN in neuronal cell models but also have better druglike properties. Moreover, compared to CBN, the analog CP1 shows improved in vivo efficacy in the Drosophila model of mild traumatic brain injury. Together these studies identify the key molecular scaffolds of cannabinoids that contribute to neuroprotection against oxytosis/ferroptosis. They also highlight the advantageous approach of combining in vitro cell-based assays and rapid in vivo studies using Drosophila models for evaluating new therapeutic compounds.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| | - Alec Candib
- Shiley Bioscience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Wolfgang Fischer
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kim Finley
- Shiley Bioscience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
15
|
Liu B, Qian D. Hsp90α and cell death in cancers: a review. Discov Oncol 2024; 15:151. [PMID: 38727789 PMCID: PMC11087423 DOI: 10.1007/s12672-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
16
|
Wang Q, Liu C, Chen M, Zhao J, Wang D, Gao P, Zhang C, Zhao H. Mastoparan M promotes functional recovery in stroke mice by activating autophagy and inhibiting ferroptosis. Biomed Pharmacother 2024; 174:116560. [PMID: 38583338 DOI: 10.1016/j.biopha.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 μg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 μg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
17
|
Jia J, Zhao X, Jia P, Zhang X, Li D, Liu Y, Huang L. Ecophysiological responses of Phragmites australis populations to a tidal flat gradient in the Yangtze River Estuary, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1326345. [PMID: 38756962 PMCID: PMC11097105 DOI: 10.3389/fpls.2024.1326345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Phragmites australis is a prevalent species in the Chongming Dongtan wetland and is capable of thriving in various tidal flat environments, including high salinity habitats. P. australis population displays inconsistent ecological performances, highlighting the need to uncover their survival strategies and mechanisms in tidal flats with diverse soil salinities. Upon comparing functional traits of P. australis at multiple tidal flats (low, middle, and high) and their responses to soil physicochemical properties, this study aimed to clarify the salt-tolerant strategy of P. australis and the corresponding mechanisms. These results showed that leaf characteristics, such as specific leaf area and leaf dry matter content, demonstrated more robust stability to soil salinity than shoot height and dry weight. Furthermore, as salt stress intensified, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxisome (POD) in P. australis leaves at low tidal flat exhibited an increased upward trend compared to those at other tidal flats. The molecular mechanism of salt tolerance in Phragmites australis across various habitats was investigated using transcriptome sequencing. Weighted correlation network analysis (WGCNA) combined with differentially expressed genes (DEGs) screened out 3 modules closely related to high salt tolerance and identified 105 core genes crucial for high salt tolerance. Further research was carried out on the few degraded populations at low tidal flat, and 25 core genes were identified by combining WGCNA and DEGs. A decrease in the activity of ferroptosis marker gonyautoxin-4 and an increase in the content of Fe3+ in the degenerated group were observed, indicating that ferroptosis might participate in degradation. Furthermore, correlation analysis indicated a possible regulatory network between salt tolerance and ferroptosis. In short, this study provided new insights into the salt tolerance mechanism of P. australis population along tidal flats.
Collapse
Affiliation(s)
- Jing Jia
- East China Normal University, Shanghai, China
| | | | - Peng Jia
- East China Normal University, Shanghai, China
| | - Xin Zhang
- GeneMind Biosciences, Shenzhen, China
| | - Dezhi Li
- East China Normal University, Shanghai, China
| | | | | |
Collapse
|
18
|
Morante-Carriel J, Živković S, Nájera H, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Obrebska A, Samper-Herrero A, Bru-Martínez R. Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1211. [PMID: 38732426 PMCID: PMC11085352 DOI: 10.3390/plants13091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Suzana Živković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Susana Sellés-Marchart
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| |
Collapse
|
19
|
Goujon M, Liang Z, Soriano-Castell D, Currais A, Maher P. The Neuroprotective Flavonoids Sterubin and Fisetin Maintain Mitochondrial Health under Oxytotic/Ferroptotic Stress and Improve Bioenergetic Efficiency in HT22 Neuronal Cells. Antioxidants (Basel) 2024; 13:460. [PMID: 38671908 PMCID: PMC11047672 DOI: 10.3390/antiox13040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The global increase in the aging population has led to a rise in many age-related diseases with continuing unmet therapeutic needs. Research into the molecular mechanisms underlying both aging and neurodegeneration has identified promising therapeutic targets, such as the oxytosis/ferroptosis cell death pathway, in which mitochondrial dysfunction plays a critical role. This study focused on sterubin and fisetin, two flavonoids from the natural pharmacopeia previously identified as strong inhibitors of the oxytosis/ferroptosis pathway. Here, we investigated the effects of the compounds on the mitochondrial physiology in HT22 hippocampal nerve cells under oxytotic/ferroptotic stress. We show that the compounds can restore mitochondrial homeostasis at the level of redox regulation, calcium uptake, biogenesis, fusion/fission dynamics, and modulation of respiration, leading to the enhancement of bioenergetic efficiency. However, mitochondria are not required for the neuroprotective effects of sterubin and fisetin, highlighting their diverse homeostatic impacts. Sterubin and fisetin, thus, provide opportunities to expand drug development strategies for anti-oxytotic/ferroptotic agents and offer new perspectives on the intricate interplay between mitochondrial function, cellular stress, and the pathophysiology of aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Marie Goujon
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| |
Collapse
|
20
|
Ismail M, Großmann D, Hermann A. Increased Vulnerability to Ferroptosis in FUS-ALS. BIOLOGY 2024; 13:215. [PMID: 38666827 PMCID: PMC11048265 DOI: 10.3390/biology13040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxide accumulation, plays a pivotal role in various pathological conditions, including neurodegenerative diseases. While reasonable evidence for ferroptosis exists, e.g., in Parkinson's disease or Alzheimer's disease, there are only a few reports on amyotrophic lateral sclerosis (ALS), a fast progressive and incurable neurodegenerative disease characterized by progressive motor neuron degeneration. Interestingly, initial studies have suggested that ferroptosis might be significantly involved in ALS. Key features of ferroptosis include oxidative stress, glutathione depletion, and alterations in mitochondrial morphology and function, mediated by proteins such as GPX4, xCT, ACSL4 FSP1, Nrf2, and TfR1. Induction of ferroptosis involves small molecule compounds like erastin and RSL3, which disrupt system Xc- and GPX4 activity, respectively, resulting in lipid peroxidation and cellular demise. Mutations in fused in sarcoma (FUS) are associated with familial ALS. Pathophysiological hallmarks of FUS-ALS involve mitochondrial dysfunction and oxidative damage, implicating ferroptosis as a putative cell-death pathway in motor neuron demise. However, a mechanistic understanding of ferroptosis in ALS, particularly FUS-ALS, remains limited. Here, we investigated the vulnerability to ferroptosis in FUS-ALS cell models, revealing mitochondrial disturbances and increased susceptibility to ferroptosis in cells harboring ALS-causing FUS mutations. This was accompanied by an altered expression of ferroptosis-associated proteins, particularly by a reduction in xCT expression, leading to cellular imbalance in the redox system and increased lipid peroxidation. Iron chelation with deferoxamine, as well as inhibition of the mitochondrial calcium uniporter (MCU), significantly alleviated ferroptotic cell death and lipid peroxidation. These findings suggest a link between ferroptosis and FUS-ALS, offering potential new therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Ismail
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (M.I.); (D.G.)
| | - Dajana Großmann
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (M.I.); (D.G.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (M.I.); (D.G.)
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
21
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
22
|
Hirata Y, Mishima E. Membrane Dynamics and Cation Handling in Ferroptosis. Physiology (Bethesda) 2024; 39:73-87. [PMID: 38193763 PMCID: PMC11283900 DOI: 10.1152/physiol.00029.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
24
|
Wang Y, Yuan X, Ren M, Wang Z. Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:161-181. [PMID: 38328829 DOI: 10.1142/s0192415x24500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ferroptosis, an iron-dependent cell death mechanism driven by an accumulation of lipid peroxides on cellular membranes, has emerged as a promising strategy to treat various diseases, including cancer. Ferroptosis inducers not only exhibit cytotoxic effects on multiple cancer cells, including drug-resistant cancer variants, but also hold potential as adjuncts to enhance the efficacy of other anti-cancer therapies, such as immunotherapy. In addition to synthetic inducers, natural compounds, such as artemisinin, can be considered ferroptosis inducers. Artemisinin, extracted from Artemisia annua L., is a poorly water-soluble antimalarial drug. For clinical applications, researchers have synthesized various water-soluble artemisinin derivatives such as dihydroartemisinin, artesunate, and artemether. Artemisinin and artemisinin derivatives (ARTEs) upregulate intracellular free iron levels and promote the accumulation of intracellular lipid peroxides to induce cancer cell ferroptosis, alleviating cancer development and resulting in strong anti-cancer effects in vitro and in vivo. In this review, we introduce the mechanisms of ferroptosis, summarize the research on ARTEs-induced ferroptosis in cancer cells, and discuss the clinical research progress and current challenges of ARTEs in anti-cancer treatment. This review deepens the current understanding of the relationship between ARTEs and ferroptosis and provides a theoretical basis for the clinical anti-cancer application of ARTEs in the future.
Collapse
Affiliation(s)
- Youke Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
- Guangdong Provincial Key Laboratory of Clinical, Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, Guangdong, P. R. China
| | - Xiang Yuan
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
| | - Min Ren
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Clinical, Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, Guangdong, P. R. China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
25
|
Campos J, Gleitze S, Hidalgo C, Núñez MT. IP 3R-Mediated Calcium Release Promotes Ferroptotic Death in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:196. [PMID: 38397794 PMCID: PMC10886377 DOI: 10.3390/antiox13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.
Collapse
Affiliation(s)
- Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile
| |
Collapse
|
26
|
Wang P, Huang Y, Sun B, Chen H, Ma Y, Liu Y, Yang T, Jin H, Qiao Y, Cao Y. Folic acid blocks ferroptosis induced by cerebral ischemia and reperfusion through regulating folate hydrolase transcriptional adaptive program. J Nutr Biochem 2024; 124:109528. [PMID: 37979712 DOI: 10.1016/j.jnutbio.2023.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is notably linked with folic acid (FA) deficiency. The aim of our investigation was to explore the effects and underlying mechanisms by which FA mitigates I/R, specifically through regulating the GCPII transcriptional adaptive program. Initially, we discovered that following cerebral I/R, levels of FA, methionine synthase (MTR), and methylenetetrahydrofolate reductase (MTHFR) were decreased, while GCPII expression was elevated. Secondly, administering FA could mitigate cognitive impairment and neuronal damage induced by I/R. Thirdly, the mechanism of FA supplementation involved suppressing the transcriptional factor Sp1, subsequently inhibiting GCPII transcription, reducing Glu content, obstructing cellular ferroptosis, and alleviating cerebral I/R injury. In summary, our data demonstrate that FA affords protection against cerebral I/R injury by inhibiting the GCPII transcriptional adaptive response. These findings unveil that targeting GCPII might be a viable therapeutic strategy for cerebral I/R.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yangyang Huang
- Department of Pediatrics, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Buxun Sun
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongpeng Chen
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - YiFan Ma
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yuhang Liu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuandong Qiao
- Department of Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| | - Yongggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| |
Collapse
|
27
|
Zhang Y, Shaabani S, Vowinkel K, Trombetta-Lima M, Sabogal-Guáqueta AM, Chen T, Hoekstra J, Lembeck J, Schmidt M, Decher N, Dömling A, Dolga AM. Novel SK channel positive modulators prevent ferroptosis and excitotoxicity in neuronal cells. Biomed Pharmacother 2024; 171:116163. [PMID: 38242037 DOI: 10.1016/j.biopha.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.
Collapse
Affiliation(s)
- Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technologies and Biopharmacy, Research Institute of Pharmacy, University of Groningen, the Netherlands
| | | | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Hoekstra
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Lembeck
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
28
|
Park I, Kim KE, Kim J, Kim AK, Bae S, Jung M, Choi J, Mishra PK, Kim TM, Kwak C, Kang MG, Yoo CM, Mun JY, Liu KH, Lee KS, Kim JS, Suh JM, Rhee HW. Mitochondrial matrix RTN4IP1/OPA10 is an oxidoreductase for coenzyme Q synthesis. Nat Chem Biol 2024; 20:221-233. [PMID: 37884807 PMCID: PMC10830421 DOI: 10.1038/s41589-023-01452-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.
Collapse
Affiliation(s)
- Isaac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea
| | - Subin Bae
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | | | - Taek-Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Wang H, Liu Y, Che S, Li X, Tang D, Lv S, Zhao H. Deciphering the link: ferroptosis and its role in glioma. Front Immunol 2024; 15:1346585. [PMID: 38322268 PMCID: PMC10844450 DOI: 10.3389/fimmu.2024.1346585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma, as the most frequently occurring primary malignancy in the central nervous system, significantly impacts patients' quality of life and cognitive abilities. Ferroptosis, a newly discovered form of cell death, is characterized by significant iron accumulation and lipid peroxidation. This process is fundamentally dependent on iron. Various factors inducing ferroptosis can either directly or indirectly influence glutathione peroxidase, leading to reduced antioxidant capabilities and an increase in lipid reactive oxygen species (ROS) within cells, culminating in oxidative cell death. Recent research indicates a strong connection between ferroptosis and a range of pathophysiological conditions, including tumors, neurological disorders, ischemia-reperfusion injuries, kidney damage, and hematological diseases. The regulation of ferroptosis to intervene in the progression of these diseases has emerged as a major area of interest in etiological research and therapy. However, the exact functional alterations and molecular mechanisms underlying ferroptosis remain to be extensively studied. The review firstly explores the intricate relationship between ferroptosis and glioma, highlighting how ferroptosis contributes to glioma pathogenesis and how glioma cells may resist this form of cell death. Then, we discuss recent studies that have identified potential ferroptosis inducers and inhibitors, which could serve as novel therapeutic strategies for glioma. We also examine the current challenges in targeting ferroptosis in glioma treatment, including the complexity of its regulation and the need for precise delivery methods. This review aims to provide a comprehensive overview of the current state of research on ferroptosis in glioma, offering insights into future therapeutic strategies and the broader implications of this novel cell death pathway in cancer biology.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Li
- Department of Breast Surgery, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Dongxue Tang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaojing Lv
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
30
|
Currais A, Raschke W, Maher P. CMS121, a Novel Drug Candidate for the Treatment of Alzheimer's Disease and Age-Related Dementia. J Alzheimers Dis 2024; 101:S179-S192. [PMID: 39422940 DOI: 10.3233/jad-231062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Old age is the major risk factor for sporadic Alzheimer's disease (AD). However, old age-related changes in brain physiology have generally not been taken into consideration in developing drug candidates for the treatment of AD. This is at least partly because the role of these age-related processes in the development and progression of AD are still not well understood. Nevertheless, we and others have described an association between the oxytosis/ferroptosis non-apoptotic regulated cell death pathway and aging. Based on this association, we incorporated protection against this pathway as part of a cell-based phenotypic screening approach to identify novel drug candidates for the treatment of AD. Using this approach, we identified the fisetin derivative CMS121 as a potent neuroprotective molecule that is able to maintain cognitive function in multiple pre-clinical models of AD. Furthermore, we identified a key target of CMS121 as fatty acid synthase, a protein which had not been previously considered in the context of AD. Herein, we provide a comprehensive description of the development of CMS121, its preclinical activities, and the results of the toxicology testing that led to its IND approval.
Collapse
Affiliation(s)
| | | | - Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
31
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
32
|
Tan Y, Dong X, Zhuang D, Cao B, Jiang H, He Q, Zhao M. Emerging roles and therapeutic potentials of ferroptosis: from the perspective of 11 human body organ systems. Mol Cell Biochem 2023; 478:2695-2719. [PMID: 36913150 DOI: 10.1007/s11010-023-04694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Since ferroptosis was first described as an iron-dependent cell death pattern in 2012, there has been increasing interest in ferroptosis research. In view of the immense potential of ferroptosis in treatment efficacy and its rapid development in recent years, it is essential to track and summarize the latest research in this field. However, few writers have been able to draw on any systematic investigation into this field based on human body organ systems. Hence, in this review, we provide a comprehensive description of the latest progress in unveiling the roles and functions, as well as the therapeutic potential of ferroptosis, in treating diseases from the aspects of 11 human body organ systems (including the nervous system, respiratory system, digestive system, urinary system, reproductive system, integumentary system, skeletal system, immune system, cardiovascular system, muscular system, and endocrine system) in the hope of providing references for further understanding the pathogenesis of related diseases and bringing an innovative train of thought for reformative clinical treatment.
Collapse
Affiliation(s)
- Yaochong Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Xueting Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Donglin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Buzi Cao
- Hunan Normal University School of Medicine, Changsha, 410081, Hunan, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
33
|
Marmolejo-Garza A, Krabbendam IE, Luu MDA, Brouwer F, Trombetta-Lima M, Unal O, O'Connor SJ, Majerníková N, Elzinga CRS, Mammucari C, Schmidt M, Madesh M, Boddeke E, Dolga AM. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell Death Dis 2023; 14:772. [PMID: 38007529 PMCID: PMC10676387 DOI: 10.1038/s41419-023-06290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca2+]m) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨm), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death. Mitochondrial calcium levels are controlled via the mitochondrial calcium uniporter (MCU), the main entry point of Ca2+ into the mitochondrial matrix. Therefore, we have hypothesized that negative modulation of MCU complex may confer protection against ferroptosis. Here we evaluated whether the known negative modulators of MCU complex, ruthenium red (RR), its derivative Ru265, mitoxantrone (MX), and MCU-i4 can prevent mitochondrial dysfunction and ferroptotic cell death. These compounds mediated protection in HT22 cells, in human dopaminergic neurons and mouse primary cortical neurons against ferroptotic cell death. Depletion of MICU1, a [Ca2+]m gatekeeper, demonstrated that MICU is protective against ferroptosis. Taken together, our results reveal that negative modulation of MCU complex represents a therapeutic option to prevent degenerative conditions, in which ferroptosis is central to the progression of these pathologies.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Minh Danh Anh Luu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Famke Brouwer
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Osman Unal
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Shane J O'Connor
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Naďa Majerníková
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina R S Elzinga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Martina Schmidt
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Muniswamy Madesh
- Department of Medicine/Cardiology, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
34
|
Hao M, Jiang Y, Zhang Y, Yang X, Han J. Ferroptosis regulation by methylation in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188972. [PMID: 37634887 DOI: 10.1016/j.bbcan.2023.188972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic regulation plays a critical role in cancer development and progression. Methylation is an important epigenetic modification that influences gene expression by adding a methyl group to nucleic acids and proteins. Ferroptosis is a new form of regulated cell death triggered by the accumulation of iron and lipid peroxidation. Emerging evidence have shown that methylation regulation plays a significant role in the regulation of ferroptosis in cancer. This review aims to explore the methylation regulation of ferroptosis in cancer, including reactive oxygen species and iron bio-logical activity, amino acid and lipid metabolism, and drugs interaction. The findings of this review may provide new insights and strategies for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Mengqiu Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yixin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
35
|
Chen T, Majerníková N, Marmolejo-Garza A, Trombetta-Lima M, Sabogal-Guáqueta AM, Zhang Y, Ten Kate R, Zuidema M, Mulder PPMFA, den Dunnen W, Gosens R, Verpoorte E, Culmsee C, Eisel ULM, Dolga AM. Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radic Biol Med 2023; 208:62-72. [PMID: 37536459 DOI: 10.1016/j.freeradbiomed.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Ferroptosis is a type of oxidative cell death that can occur in neurodegenerative diseases and involves damage to mitochondria. Previous studies demonstrated that preventing mitochondrial dysfunction can rescue cells from ferroptotic cell death. However, the complexity of mitochondrial dysfunction and the timing of therapeutic interventions make it difficult to develop an effective treatment strategy against ferroptosis in neurodegeneration conditions. In this study, we explored the use of mitochondrial transplantation as a novel therapeutic approach for preventing ferroptotic neuronal cell death. Our data showed that isolated exogenous mitochondria were incorporated into both healthy and ferroptotic immortalized hippocampal HT-22 cells and primary cortical neurons (PCN). The mitochondrial incorporation was accompanied by increased metabolic activity and cell survival through attenuating lipid peroxidation and mitochondrial superoxide production. Further, the function of mitochondrial complexes I, III and V activities contributed to the neuroprotective activity of exogenous mitochondria. Similarly, we have also showed the internalization of exogenous mitochondria in mouse PCN; these internalized mitochondria were found to effectively preserve the neuronal networks when challenged with ferroptotic stimuli. The administration of exogenous mitochondria into the axonal compartment of a two-compartment microfluidic device induced mitochondrial transportation to the cell body, which prevented fragmentation of the neuronal network in ferroptotic PCN. These findings suggest that mitochondria transplantation may be a promising therapeutic approach for protecting neuronal cells from ferroptotic cell death.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Nad'a Majerníková
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Ruth Ten Kate
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Minte Zuidema
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Patty P M F A Mulder
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Verpoorte
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
36
|
Hirata Y, Hashimoto T, Ando K, Kamatari YO, Takemori H, Furuta K. Structural features localizing the ferroptosis inhibitor GIF-2197-r to lysosomes. RSC Adv 2023; 13:32276-32281. [PMID: 37928844 PMCID: PMC10620646 DOI: 10.1039/d3ra06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
We previously reported that N,N-dimethylaniline derivatives are potent ferroptosis inhibitors. Among them, the novel aminoindan derivative GIF-2197-r (the racemate of GIF-2115 (R-form) and GIF-2196 (S-form)) is effective at a concentration of 0.01 μM due to its localization to lysosomes and ferrous ion coordination capacity. The current study demonstrates that the aliphatic tertiary amine moiety of GIF-2197-r is responsible for lysosomal localization. Although N,N-dimethylaniline derivatives cannot form chelate structures with Fe2+, density functional theory computation demonstrates that they can form stable monodentate complexes with a hydrated ferrous ion, likely due to the highly electron-rich nature of the (dialkylamino)phenyl ring. Furthermore, the results suggest that the aliphatic tertiary amine moiety contributes to stabilizing the complexation. These findings could prove useful for developing improved lysosomotropic ferroptosis inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoko Hirata
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
| | - Tomohiro Hashimoto
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kaori Ando
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Yuji O Kamatari
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
- Graduate School of Natural Science and Technology, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| |
Collapse
|
37
|
Zaa CA, Marcelo ÁJ, An Z, Medina-Franco JL, Velasco-Velázquez MA. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023; 13:1598. [PMID: 38002280 PMCID: PMC10669056 DOI: 10.3390/biom13111598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Anthocyanins are a type of flavonoids that give plants and fruits their vibrant colors. They are known for their potent antioxidant properties and have been linked to various health benefits. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lower the risk of neurodegenerative diseases. Anthocyanins exhibit neuroprotective effects that could potentially alleviate symptoms associated with such diseases. In this review, we compiled and discussed a large body of evidence supporting the neuroprotective role of anthocyanins. Our examination encompasses human studies, animal models, and cell cultures. We delve into the connection between anthocyanin bioactivities and the mechanisms underlying neurodegeneration. Our findings highlight how anthocyanins' antioxidant, anti-inflammatory, and anti-apoptotic properties contribute to their neuroprotective effects. These effects are particularly relevant to key signaling pathways implicated in the development of Alzheimer's and Parkinson's diseases. In conclusion, the outcome of this review suggests that integrating anthocyanin-rich foods into human diets could potentially serve as a therapeutic approach for neurological conditions, and we identify promising avenues for further exploration in this area.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Álvaro J. Marcelo
- School of Biology, Universidad Nacional Federico Villarreal, Lima 15088, Peru;
| | - Zhiqiang An
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| |
Collapse
|
38
|
Dvoriantchikova G, Fleishaker M, Ivanov D. Molecular mechanisms of NMDA excitotoxicity in the retina. Sci Rep 2023; 13:18471. [PMID: 37891222 PMCID: PMC10611720 DOI: 10.1038/s41598-023-45855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
NMDA excitotoxicity, as a part of glutamate excitotoxicity, has been proposed to contribute significantly to many retinal diseases. Therefore, understanding mechanisms of NMDA excitotoxicity will provide further insight into the mechanisms of many retinal diseases. To study mechanisms of NMDA excitotoxicity in vivo, we used an animal model in which NMDA (20 mM, 2 µL) was injected into the vitreous of mice. We also used high-throughput expression profiling, various animals with reduced expression of target genes, and animals treated with the oral iron chelator deferiprone. We found that the expression of many genes involved in inflammation, programmed cell death, free radical production, oxidative stress, and iron and calcium signaling was significantly increased 24 h after NMDA treatment. Meanwhile, decreased activity of the pro-inflammatory TNF signaling cascade and decreased levels of ferrous iron (Fe2+, required for free radical production) led to significant neuroprotection in NMDA-treated retinas. Since increased TNF signaling activity and high Fe2+ levels trigger regulated necrosis, which, in turn, lead to inflammation, we proposed an important role in NMDA excitotoxicity of a positive feedback loop in which regulated necrosis promotes inflammation, which subsequently triggers regulated necrosis.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Michelle Fleishaker
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
39
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
40
|
García-Arroyo R, Domènech EB, Herrera-Úbeda C, Asensi MA, Núñez de Arenas C, Cuezva JM, Garcia-Fernàndez J, Pallardó FV, Mirra S, Marfany G. Exacerbated response to oxidative stress in the Retinitis Pigmentosa Cerkl KD/KO mouse model triggers retinal degeneration pathways upon acute light stress. Redox Biol 2023; 66:102862. [PMID: 37660443 PMCID: PMC10491808 DOI: 10.1016/j.redox.2023.102862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.
Collapse
Affiliation(s)
- Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Elena B Domènech
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Miguel A Asensi
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Cristina Núñez de Arenas
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
41
|
Ruiu R, Cossu C, Iacoviello A, Conti L, Bolli E, Ponzone L, Magri J, Rumandla A, Calautti E, Cavallo F. Cystine/glutamate antiporter xCT deficiency reduces metastasis without impairing immune system function in breast cancer mouse models. J Exp Clin Cancer Res 2023; 42:254. [PMID: 37770957 PMCID: PMC10540318 DOI: 10.1186/s13046-023-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The upregulation of antioxidant mechanisms is a common occurrence in cancer cells, as they strive to maintain balanced redox state and prevent oxidative damage. This includes the upregulation of the cystine/glutamate antiporter xCT, which plays a crucial role in protecting cancer cells from oxidative stress. Consequently, targeting xCT has become an attractive strategy for cancer treatment. However, xCT is also expressed by several types of immune cells where it has a role in proliferation and effector functions. In light of these observations, a comprehensive understanding of the specific role of xCT in the initiation and progression of cancer, as well as its potential impact on the immune system within the tumor microenvironment and the anti-tumor response, require further investigation. METHODS We generated xCTnull BALB/c mice to investigate the role of xCT in the immune system and xCTnull/Erbb2-transgenic BALB-neuT mice to study the role of xCT in a mammary cancer-prone model. We also used mammary cancer cells derived from BALB-neuT/xCTnull mice and xCTKO 4T1 cells to test the contribution of xCT to malignant properties in vitro and in vivo. RESULTS xCT depletion in BALB-neuT/xCTnull mice does not alter autochthonous tumor initiation, but tumor cells isolated from these mice display proliferation and redox balance defects in vitro. Although xCT disruption sensitizes 4T1 cells to oxidative stress, it does not prevent transplantable tumor growth, but reduces cell migration in vitro and lung metastasis in vivo. This is accompanied by an altered immune cell recruitment in the pre-metastatic niche. Finally, systemic depletion of xCT in host mice does not affect transplantable tumor growth and metastasis nor impair the proper mounting of both humoral and cellular immune responses in vivo. CONCLUSIONS xCT is dispensable for proper immune system function, thus supporting the safety of xCT targeting in oncology. Nevertheless, xCT is involved in several processes required for the metastatic seeding of mammary cancer cells, thus broadening the scope of xCT-targeting approaches.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Jolanda Magri
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Laboratory of Immunotherapy, IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Alekya Rumandla
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Biocon Bristol Myers Squibb R&D Center, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy.
| |
Collapse
|
42
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
43
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
44
|
Wang X, Quan J, Xiu C, Wang J, Zhang J. Gegen Qinlian decoction (GQD) inhibits ulcerative colitis by modulating ferroptosis-dependent pathway in mice and organoids. Chin Med 2023; 18:110. [PMID: 37649073 PMCID: PMC10466729 DOI: 10.1186/s13020-023-00819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Gegen Qinlian decoction (GQD) is a classic prescription for treating ulcerative colitis (UC) in traditional Chinese medicine. However, the therapeutic mechanism has not been fully clarified. PURPOSE In the present study, we aimed to evaluate the role of ferroptosis-mediated IEC death in UC treated mice with GQD by using DSS-induced a colitis mouse model and RSL3-induced ferroptosis in intestinal organoids. METHODS The effects of GQD on DSS-treated colitis were examined via daily body weight, DAI, colon length, HE staining, PAS staining, ZO-1 and Occludin immunohistochemical staining. Ferroptosis was determined by analysis of iron load, MDA, GSH, mitochondrial morphology, and expression of ferroptosis-associated proteins (GPX4, SLC7A11 and ACSL4). RESULTS In vivo, GQD administration reduced body weight loss and DAI scores, increased colon length, and improved intestinal histological characteristics and epithelial barrier dysfunction. GQD administration obviously improved the levels of ferroptosis markers (iron load, MDA, GSH, and mitochondrial morphology) and the expression of ferroptosis-associated proteins (GPX4, SLC7A11 and ACSL4). Consistent with in vivo results, GQD administration partially reversed the levels of mtROS, Fe2+ and MDA in intestinal organoids induced by RSL3, and notably improved morphological destruction, histological damage and epithelial barrier dysfunction in organoids. CONCLUSIONS In this study, we demonstrated that ferroptosis was triggered in DSS-induced experimental colitis and that GQD adiministration could protect against colonic damage and intestinal epithelial barrier dysfunction by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Preventional and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianye Quan
- Beijing Key Laboratory of Research of Chinese Medicine on Preventional and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Research of Chinese Medicine on Preventional and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiali Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Preventional and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan Playground, Haidian District, Beijing, 100091, China.
| |
Collapse
|
45
|
Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G, Michalke B, Zheng J, Meierjohann S, Girardi E, Espinet E, Flórez AF, dos Santos AF, Aroua N, Cheytan T, Haenlin J, Schlicker L, Xavier da Silva TN, Przybylla A, Zeisberger P, Superti‐Furga G, Eilers M, Conrad M, Fabiano M, Schweizer U, Fischer M, Schulze A, Trumpp A, Friedmann Angeli JP. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med 2023; 15:e18014. [PMID: 37435859 PMCID: PMC10405063 DOI: 10.15252/emmm.202318014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.
Collapse
Affiliation(s)
- Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Zhiyi Chen
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Umut Yildiz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology Laboratory, Genome Biology UnitHeidelbergGermany
| | - Florencio Porto Freitas
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Felix C E Vogel
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julianna Patricia Varga
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology OrganizationHeidelbergGermany
| | - Jasmin Batani
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Gabriele Büchel
- Mildred Scheel Early Career CenterUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistryHelmholtz Center München (HMGU)NeuherbergGermany
| | - Jashuo Zheng
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | | | - Enrico Girardi
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Solgate GmbHKlosterneuburgAustria
| | - Elisa Espinet
- Anatomy Unit, Department of Pathology and Experimental Therapy, School of MedicineUniversity of Barcelona (UB), L'Hospitalet de LlobregatBarcelonaSpain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell)Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| | - Andrés F Flórez
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMAUSA
| | - Ancely Ferreira dos Santos
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tasneem Cheytan
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julie Haenlin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lisa Schlicker
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Thamara N Xavier da Silva
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Petra Zeisberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Giulio Superti‐Furga
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Marcus Conrad
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Almut Schulze
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| |
Collapse
|
46
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
47
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Dvoriantchikova G, Adis E, Lypka K, Ivanov D. Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion. Int J Mol Sci 2023; 24:9892. [PMID: 37373037 DOI: 10.3390/ijms24129892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Retinal ischemia-reperfusion (IR)-which ultimately results in retinal ganglion cell (RGC) death-is a common cause of visual impairment and blindness worldwide. IR results in various types of programmed cell death (PCD), which are of particular importance since they can be prevented by inhibiting the activity of their corresponding signaling cascades. To study the PCD pathways in ischemic RGCs, we used a mouse model of retinal IR and a variety of approaches including RNA-seq analysis, knockout animals, and animals treated with an iron chelator. In our RNA-seq analysis, we utilized RGCs isolated from retinas 24 h after IR. In ischemic RGCs, we found increased expression of many genes that regulate apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos. Our data indicate that genetic ablation of death receptors protects RGCs from IR. We showed that the signaling cascades regulating ferrous iron (Fe2+) metabolism undergo significant changes in ischemic RGCs, leading to retinal damage after IR. This data suggests that the activation of death receptors and increased Fe2+ production in ischemic RGCs promote the simultaneous activation of apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos pathways. Thus, a therapy is needed that concurrently regulates the activity of the multiple PCD pathways to reduce RGC death after IR.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Emily Adis
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karin Lypka
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
49
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
50
|
Pham TB, Boussaty EC, Currais A, Maher P, Schubert DR, Manor U, Friedman RA. Attenuation of Age-Related Hearing Impairment in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice Treated with Fatty Acid Synthase Inhibitor CMS121. J Mol Neurosci 2023; 73:307-315. [PMID: 37097512 PMCID: PMC10200781 DOI: 10.1007/s12031-023-02119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
In the senescence-accelerated mouse prone 8 (SAMP8) mouse model, oxidative stress leads to premature senescence and age-related hearing impairment (ARHI). CMS121 inhibits oxytosis/ferroptosis by targeting fatty acid synthase. The aim of our study was to determine whether CMS121 is protective against ARHI in SAMP8 mice. Auditory brainstem responses (ABRs) were used to assess baseline hearing in sixteen 4-week-old female SAMP8 mice, which were divided into two cohorts. The control group was fed a vehicle diet, while the experimental group was fed a diet containing CMS121. ABRs were measured until 13 weeks of age. Cochlear immunohistochemistry was performed to analyze the number of paired ribbon-receptor synapses per inner hair cell (IHC). Descriptive statistics are provided with mean ± SEM. Two-sample t-tests were performed to compare hearing thresholds and paired synapse count across the two groups, with alpha = 0.05. Baseline hearing thresholds in the control group were statistically similar to those of the CMS121 group. At 13 weeks of age, the control group had significantly worse hearing thresholds at 12 kHz (56.5 vs. 39.8, p = 0.044) and 16 kHz (64.8 vs. 43.8, p = 0.040) compared to the CMS121 group. Immunohistochemistry showed a significantly lower synapse count per IHC in the control group (15.7) compared to the CMS121 group (18.4), p = 0.014. Our study shows a significant reduction in ABR threshold shifts and increased preservation of IHC ribbon synapses in the mid-range frequencies among mice treated with CMS121 compared to untreated mice.
Collapse
Affiliation(s)
- Tammy B Pham
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA
| | - Ely Cheikh Boussaty
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - David R Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Rick A Friedman
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA.
| |
Collapse
|