1
|
Jing P, Yu H, Sun W, Liang M, Xia T, Yang H, Chen P, Li J, Zhang X. The Association of Mitochondrial tRNA Cys G5783A Mutation with Major Depressive Disorder in Two Han Chinese Families. Neuropsychiatr Dis Treat 2025; 21:15-24. [PMID: 39776895 PMCID: PMC11705967 DOI: 10.2147/ndt.s465744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Objective In this study, we examined the genetic, medical, and molecular traits of two Han Chinese families with the tRNACys G5783A mutation to investigate the relationship between mitochondrial DNA (mtDNA) mutations and major depressive disorder (MDD). Methods Clinical data and comprehensive mitochondrial genomes were collected from the two families. Variants were assessed for evolutionary conservation, allelic frequencies, and their structural and functional impacts. The study involved detailed mitochondrial whole genome analysis, as well as phylogenetic and haplotype analyses of the probands and other family members. Results We detailed the genetic, clinical, and molecular profiles of two Han Chinese families with MDD. These families exhibited a range of depression severities and notably low penetrance of MDD. Analysis of the mitochondrial genomes revealed a homoplasmic tRNACys G5783A mutation. This mutation was found at a highly conserved cytosine at position 50 (C50) in the TΨC stem of tRNACys, with a conserved coefficient of 100% across 17 species. Additionally, distinctive mtDNA polymorphisms associated with haplogroups H2 were identified. Conclusion The identification of the tRNACys G5783A mutation in two unrelated individuals with depression strongly suggests that this mutation may play a role in the development of major depressive disorder (MDD). These Chinese families revealed low penetrances of MDD. Thus, the phenotypic tRNACys G5783A mutation expression associated with MDD may be impacted by nuclear modifier gene(s) or environmental factors.
Collapse
Affiliation(s)
- Pan Jing
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, People’s Republic of China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, People’s Republic of China
| | - Haihang Yu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, People’s Republic of China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, People’s Republic of China
| | - Wenxi Sun
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, People’s Republic of China
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ming Liang
- Department of Psychiatry, Xiangshan Third People’s Hospital, Ningbo, People’s Republic of China
| | - Tingting Xia
- Department of Psychiatry, Xiangshan Third People’s Hospital, Ningbo, People’s Republic of China
| | - Haidong Yang
- Department of Psychiatry, Lianyungang Fourth People’s Hospital, Lianyungang, People’s Republic of China
| | - Peng Chen
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, People’s Republic of China
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jin Li
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, People’s Republic of China
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiaobin Zhang
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, People’s Republic of China
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
2
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Parfitt F, Graff-Radford MR, Wszolek ZK, Graff-Radford N, Valentino RR, Ross OA. Associations of mitochondrial genomic variation with successful neurological aging. Mitochondrion 2024; 78:101948. [PMID: 39179138 DOI: 10.1016/j.mito.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Mitochondrial health is an integral factor in aging, with mitochondrial dysfunction known to increase with age and contribute to the development of age-related neurodegenerative disorders. Additionally, the mitochondrial genome (mtDNA) has been shown to acquire potentially damaging somatic variation as part of the aging process, while mtDNA single nucleotide polymorphism (SNPs) have been shown to be both protective and detrimental for various neurodegenerative diseases. Yet, little is known about the involvement of mtDNA variation in longevity and successful neurological aging. In this study, we examined the association of mtDNA SNPs, in the form of mitochondrial haplogroups, with successful neurological aging in 1,405 unrelated neurologically healthy subjects. Although not quite significant after correcting for multiple testing (P < 0.0017 considered as significant), we detected a nominally significant association between the I haplogroup (N = 45, 3.2 %) and a younger age (β: -5.00, P = 0.006), indicating that this haplogroup is observed less frequently in older neurologically healthy individuals and may be associated with decreased survival. Replication of this finding in independent neurologically healthy cohorts will be imperative for shaping our understanding of the biological processes underlying healthy neurological aging.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francine Parfitt
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Chang X, Qu HQ, Liu Y, Glessner JT, Hakonarson H. Mitochondrial DNA Haplogroup K Is Protective Against Autism Spectrum Disorder Risk in Populations of European Ancestry. J Am Acad Child Adolesc Psychiatry 2024; 63:835-844. [PMID: 38072244 PMCID: PMC11186604 DOI: 10.1016/j.jaac.2023.09.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD. PLAIN LANGUAGE SUMMARY Increasing evidence indicates that mitochondrial dysfunction may be linked to autism spectrum disorder (ASD). This study investigated potential associations of mitochondrial DNA (mtDNA) variants in 2 European and Ashkenazi Jewish cohorts including 2,062 individuals with ASD and 4,632 healthy controls. Researchers found that the ancient mtDNA haplogroup K was linked to a reduced risk of ASD in both European and Ashkenazi Jewish populations. Additionally, specific mtDNA variants were associated with ASD risk and were shown to influence the expression of nearby genes in the brain. These findings highlight the potential involvement of mtDNA in ASD development, offering new insights into the genetic mechanisms underlying the disorder.
Collapse
Affiliation(s)
- Xiao Chang
- Children's Hospital of Philadelphia, Pennsylvania, United States; Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Hui-Qi Qu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Yichuan Liu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | | | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Pennsylvania, United States; The Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
5
|
Dobner J, Nguyen T, Pavez-Giani MG, Cyganek L, Distelmaier F, Krutmann J, Prigione A, Rossi A. mtDNA analysis using Mitopore. Mol Ther Methods Clin Dev 2024; 32:101231. [PMID: 38572068 PMCID: PMC10988129 DOI: 10.1016/j.omtm.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for the diagnosis of mitochondrial disorders, forensic investigations, and basic research. Existing pipelines are complex, expensive, and require specialized personnel. In many cases, including the diagnosis of detrimental single nucleotide variants (SNVs), mtDNA analysis is still carried out using Sanger sequencing. Here, we developed a simple workflow and a publicly available webserver named Mitopore that allows the detection of mtDNA SNVs, indels, and haplogroups. To simplify mtDNA analysis, we tailored our workflow to process noisy long-read sequencing data for mtDNA analysis, focusing on sequence alignment and parameter optimization. We implemented Mitopore with eliBQ (eliminate bad quality reads), an innovative quality enhancement that permits the increase of per-base quality of over 20% for low-quality data. The whole Mitopore workflow and webserver were validated using patient-derived and induced pluripotent stem cells harboring mtDNA mutations. Mitopore streamlines mtDNA analysis as an easy-to-use fast, reliable, and cost-effective analysis method for both long- and short-read sequencing data. This significantly enhances the accessibility of mtDNA analysis and reduces the cost per sample, contributing to the progress of mtDNA-related research and diagnosis.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Mario Gustavo Pavez-Giani
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
7
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
8
|
Dobner J, Nguyen T, Dunkel A, Prigione A, Krutmann J, Rossi A. Mitochondrial DNA integrity and metabolome profile are preserved in the human induced pluripotent stem cell reference line KOLF2.1J. Stem Cell Reports 2024; 19:343-350. [PMID: 38402620 PMCID: PMC10937150 DOI: 10.1016/j.stemcr.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
9
|
Moutsouri I, Manoli P, Christofi V, Bashiardes E, Keravnou A, Xenophontos S, Cariolou MA. Deciphering the maternal ancestral lineage of Greek Cypriots, Armenian Cypriots and Maronite Cypriots. PLoS One 2024; 19:e0292790. [PMID: 38315645 PMCID: PMC10843121 DOI: 10.1371/journal.pone.0292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/28/2023] [Indexed: 02/07/2024] Open
Abstract
Cyprus was conquered from several populations because of its special geographical location. In this study, 406 unrelated Cypriot samples were tested based on their mitochondrial DNA. In more detail, 185 were Greek Cypriots, 114 Armenian Cypriots and 107 Maronite Cypriots. This is the first time where the mitochondrial DNA of Greek Cypriots, Armenian Cypriots and Maronite Cypriots is compared with the aim of characterizing the maternal ancestry of Cypriots. The control region of the mtDNA is the most informative in terms of studying maternal ancestry and consists of three hypervariable regions (HVS-I, HVS-II, HVS-III). The hypervariable regions can provide important information regarding the maternal ancestor of the tested samples. The entire control region of the mtDNA was used to determine the mitotypes and subsequently the haplogroups of all the Cypriot DNA samples. Based on the aforementioned analyses, Greek Cypriots were found to be genetically closer to Armenian Cypriots, while Greek Cypriots and Armenian Cypriots showed moderate genetic differentiation with Maronite Cypriots. The most prevalent haplogroups among Cypriots were haplogroups H and U, while R0 is common but in different frequencies for Greek Cypriots, Armenian Cypriots and Maronite Cypriots. It is proposed that the maternal ancestor may have originated during the Neolithic period and/or the Bronze age.
Collapse
Affiliation(s)
- Irene Moutsouri
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiotis Manoli
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vasilis Christofi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anna Keravnou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stavroulla Xenophontos
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios A Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
10
|
Wendelboe Olsen K, Hedley PL, Hagen CM, Rode L, Placing S, Wøjdemann KR, Shalmi AC, Sundberg K, Nørremølle A, Tabor A, Elson JL, Christiansen M. The significance of mitochondrial haplogroups in preeclampsia risk. Pregnancy Hypertens 2023; 34:146-151. [PMID: 37979242 DOI: 10.1016/j.preghy.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE To determine whether mitochondrial haplogroups function as disease-modifiers or as susceptibility factors in preeclampsia using a traditional haplogroup association model. METHODS This retrospective study haplotyped 235 control and 78 preeclamptic pregnancies from Denmark using either real-time PCR or Sanger sequencing depending on the rarity of the haplogroup. RESULTS No significant association between haplogroups and the risk of preeclampsia was found, nor was any role for haplogroups in disease severity uncovered. CONCLUSION Mitochondrial haplogroups are not associated with preeclampsia or the severity of preeclampsia in the Danish population. However, this study cannot exclude a role for less common mtDNA variation. Models that can examine these should be applied in preeclamptic patients.
Collapse
Affiliation(s)
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Brazen Bio, Los Angeles, CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line Rode
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, 2600 Glostrup, Denmark
| | - Sophie Placing
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Karen R Wøjdemann
- Department of Gynecology and Obstetrics, Bornholm Hospital, 3700 Rønne, Bornholm, Denmark
| | | | - Karin Sundberg
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Ann Tabor
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joanna L Elson
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Biosciences Institute Newcastle University, Newcastle, UK; The Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Hayman J, Fortune DW. Sexual Orientation in Twins: Evidence That Human Sexual Identity May Be Determined Five Days Following Fertilization. Cureus 2023; 15:e51346. [PMID: 38161549 PMCID: PMC10757681 DOI: 10.7759/cureus.51346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 01/03/2024] Open
Abstract
Human same-sex sexual attraction has been recorded from the beginning of written history. It remains a controversial topic, but recent theories favor prenatal influences. A paradox is the occurrence of same-sex orientation in twins in that there is a higher level of concordance in monozygous twins compared to that in dizygous twins or non-twin siblings. If sexual orientation was entirely genetically determined monozygous twins would be expected to have identical sexual inclinations. Monozygous twins have twice the incidence of sexual concordance in comparison to dizygous twins but a third of these pairs have different sexual identities. An explanation for this disparity may lie in the time an embryo splits to form two separate fetuses. If splitting occurs early in twin development each twin may develop his or her own sexual identity; splitting occurring later results in twins that have the same sexual dispositions. A possible process for such determination may be in the mitochondria, with universal maternal inheritance of a proportion of normal functioning but alternate mitochondria. Variation in the distribution of these mitochondria in neural precursor cells becomes a mechanism for the development of intrinsic sexual orientation and for the spectrum of human sexual inclinations. The timing of embryonic splitting may be determined from the examination of fetal membranes, and the concept of early fetal sexual orientation is open to support or disproval.
Collapse
Affiliation(s)
- John Hayman
- Clinical Pathology, The University of Melbourne, Melbourne, AUS
| | | |
Collapse
|
12
|
Zeber-Lubecka N, Kulecka M, Suchta K, Dąbrowska M, Ciebiera M, Hennig EE. Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis. Antioxidants (Basel) 2023; 12:1983. [PMID: 38001836 PMCID: PMC10669137 DOI: 10.3390/antiox12111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The prevalence of Hashimoto's thyroiditis (HT) among women with polycystic ovary syndrome (PCOS) is higher than in the general female population, but the factors predisposing to the coexistence of these disorders remain unclear. This study employed whole genome sequencing of mitochondrial DNA to identify genetic variants potentially associated with the development of PCOS and HT and predisposing to their joint occurrence. RESULTS A total of 84 women participated, including patients with PCOS, HT, coexisting PCOS and HT (PCOS + HT) and healthy women. Both Fisher's exact and Mann-Whitney U statistical analyses were performed to compare the frequency of variants between groups. Ten differentiating variants were common to both analyses in PCOS + HT vs. PCOS, one in PCOS + HT vs. HT, and six in PCOS + HT vs. control. Several variants differentiating the PCOS + HT group from PCOS and controls were identified, located both in the mitochondrial genes (including the MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND6, MT-CO1, MT-CO3) and the D-loop region. Only two variants differentiated PCOS + HT and HT groups. One variant (13237a in MT-ND5) was common for all three comparisons and underrepresented in the PCOS + HT group. Functional enrichment analysis showed 10 pathways that were unique for the comparison of PCOS + HT and PCOS groups, especially related to ATP production and oxidative phosphorylation, and one pathway, the NADH-quinone oxidoreductase, chain M/4, that was unique for the comparison of PCOS + HT and control groups. Notably, nine pathways shared commonality between PCOS + HT vs. PCOS and PCOS + HT vs. control, related to the biogenesis and assembly of Complex I. CONCLUSION This study provides novel insights into the genetic variants associated with oxidative stress in women with coexisting PCOS and HT. Mitochondrial dysfunction and oxidative stress appear to play a role in the pathogenesis of both conditions. However, more mitochondrial variants were found to differentiate women with both PCOS and HT from those with PCOS alone than from those with HT alone.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
13
|
Takeda Y, Hyslop L, Choudhary M, Robertson F, Pyle A, Wilson I, Santibanez‐Koref M, Turnbull D, Herbert M, Hudson G. Feasibility and impact of haplogroup matching for mitochondrial replacement treatment. EMBO Rep 2023; 24:e54540. [PMID: 37589175 PMCID: PMC10561356 DOI: 10.15252/embr.202154540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial replacement technology (MRT) aims to reduce the risk of serious disease in children born to women who carry pathogenic mitochondrial DNA (mtDNA) variants. By transplanting nuclear genomes from eggs of an affected woman to enucleated eggs from an unaffected donor, MRT creates new combinations of nuclear and mtDNA. Based on sets of shared sequence variants, mtDNA is classified into ~30 haplogroups. Haplogroup matching between egg donors and women undergoing MRT has been proposed as a means of reducing mtDNA sequence divergence between them. Here we investigate the potential effect of mtDNA haplogroup matching on clinical delivery of MRT and on mtDNA sequence divergence between donor/recipient pairs. Our findings indicate that haplogroup matching would limit the availability of egg donors such that women belonging to rare haplogroups may have to wait > 4 years for treatment. Moreover, we find that intra-haplogroup sequence variation is frequently within the range observed between randomly matched mtDNA pairs. We conclude that haplogroup matching would restrict the availability of MRT, without necessarily reducing mtDNA sequence divergence between donor/recipient pairs.
Collapse
Affiliation(s)
- Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Louise Hyslop
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
| | - Meenakshi Choudhary
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Ian Wilson
- Biosciences Institute, Centre for LifeNewcastle upon TyneUK
| | | | - Douglass Turnbull
- Wellcome Centre for Mitochondrial ResearchInstitute of Clinical Translational Research, Newcastle UniversityNewcastle upon TyneUK
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Newcastle Fertility Centre, Biomedicine West WingCentre for LifeNewcastle upon TyneUK
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
14
|
Chen Y, Wu WJ, Xing LW, Zhang XJ, Wang J, Xia XY, Zhao R, Zhao R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: implications for clinical phenotypes in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1206995. [PMID: 37745710 PMCID: PMC10512090 DOI: 10.3389/fendo.2023.1206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background The presence of genetic variations in mitochondrial DNA (mtDNA) has been associated with a diverse array of diseases. The objective of this study was to examine the correlations between mtDNA D-loop, its haplotypes, and polycystic ovary syndrome (PCOS) in the Chinese population, and the associations between mtDNA D-loop and symptoms of PCOS. The study also sought to determine whether the mtDNA copy number in Chinese patients with PCOS differed from that of individuals in the control group. Methods Infertile individuals who only had tubal or male factor treatment were the focus of research by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). mtDNA haplotypes were categorized using polymorphic D-loop sites. mtDNA D-loop, PCOS features, and mtDNA haplotypes were analyzed using R software to determine the strength of the association between the three. There are certain DNA haplotypes linked to PCOS. Microdroplet digital polymerase chain reaction (PCR) was used to determine the mtDNA copy number in a convenience sample of 168 PCOS patients and 83 controls. Results Among the research group, the majority of D-loop mutations were infrequent (frequency< 1%), with only 45 variants displaying a minimum allele frequency (MAF) of 5% or higher. No association was found between polymorphism loci in PCOS patients and body mass index (BMI). Noteworthy, C194T, 1A200G, 523delAC, and C16234T showed positive correlations with elevated LH/FSH levels. Additionally, specific polymorphic loci G207A, 16036GGins, and 16049Gins within the D-loop region of mtDNA potentially exerted a protective role in PCOS development. Conversely, no statistical significance was observed in the expression levels of C16291T and T489C. Chinese women with mtDNA haplotype A15 exhibited a decreased risk of developing PCOS. Moreover, a significant difference in mtDNA copy number was detected, with controls averaging 25.87 (21.84, 34.81), while PCOS patients had a mean of 129.91 (99.38, 168.63). Conclusion Certain mtDNA D-loop mutations and haplotypes appear to confer protection against PCOS in Chinese women. In addition, elevated mtDNA copy number may serve as an indicator during early stages of PCOS.
Collapse
Affiliation(s)
- Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Wei-jia Wu
- Department of Scientific Research, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Li-wei Xing
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-juan Zhang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jing Wang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiao-yan Xia
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rui Zhao
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rong Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
15
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
O’Neill KN, Aubrey E, Howe LD, Stergiakouli E, Rodriguez S, Kearney PM, O’Keeffe LM. Mitochondrial DNA haplogroups and trajectories of cardiometabolic risk factors during childhood and adolescence: A prospective cohort study. PLoS One 2023; 18:e0284226. [PMID: 37043466 PMCID: PMC10096512 DOI: 10.1371/journal.pone.0284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Mitochondria are organelles responsible for converting glucose into energy. Mitochondrial DNA is exclusively maternally inherited. The role of mitochondrial DNA haplogroups in the aetiology of cardiometabolic disease risk is not well understood. METHODS Sex-specific associations between common European mitochondrial DNA haplogroups (H, U, J, T, K, V, W, I and X) and trajectories of cardiometabolic risk factors from birth to 18 years were examined in a prospective cohort. Cardiometabolic risk factors measured from birth/mid-childhood to 18 years included body mass index (BMI), fat and lean mass, systolic and diastolic blood pressure, pulse rate, high-density lipoprotein cholesterol (HDL-c), non-HDL-c and triglycerides. Fractional polynomial and linear spline multilevel models explored the sex-specific association between haplogroups and risk factor trajectories. RESULTS Among a total of 7,954 participants with 79,178 repeated measures per outcome, we found no evidence that haplogroups U, T, J, K and W were associated with cardiometabolic risk factors compared to haplogroup H. In females, haplogroup V was associated with 4.0% (99% CI: -7.5, -0.6) lower BMI at age one but associations did not persist at age 18. Haplogroup X was associated with 1.3kg (99% CI: -2.5, -0.2) lower lean mass at age 9 which persisted at 18. Haplogroup V and X were associated with 9.3% (99% CI: -0.4, 19.0) and 16.4% (99% CI: -0.5,33.3) lower fat mass at age 9, respectively, although confidence intervals spanned the null and associations did not persist at 18. In males, haplogroup I was associated with 2.4% (99% CI: -0.5, 5.3) higher BMI at age 7; widening to 5.1% (99% CI: -0.5, 10.6) at 18 with confidence intervals spanning the null. CONCLUSIONS Our study demonstrated little evidence of sex-specific associations between mitochondrial DNA haplogroups and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Kate N. O’Neill
- School of Public Health, University College Cork, Cork, Ireland
| | - Emily Aubrey
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Laura D. Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | | | - Linda M. O’Keeffe
- School of Public Health, University College Cork, Cork, Ireland
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| |
Collapse
|
17
|
Legati A, Ghezzi D, Viscomi C. Mitochondrial DNA Sequencing and Heteroplasmy Quantification by Next Generation Sequencing. Methods Mol Biol 2023; 2615:381-395. [PMID: 36807805 DOI: 10.1007/978-1-0716-2922-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Over the last 10 years, next generation sequencing (NGS) became the gold standard for both diagnosis and discovery of new disease genes responsible for heterogeneous disorders, such as mitochondrial encephalomyopathies. The application of this technology to mtDNA mutations poses extra challenges compared to other genetic conditions because of the peculiarities of mitochondrial genetics and the requirement for proper NGS data management and analysis. Here, we describe a detailed, clinically relevant protocol to sequence the whole mtDNA and quantify heteroplasmy levels of mtDNA variants, starting from total DNA through the generation of a single PCR amplicon.
Collapse
Affiliation(s)
- Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Lab of Neurogenetics and Mitochondrial Disorders, Fondazione IRCCS Istituto Neurologico Carlo Besta/Università degli Studi di Milano, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
19
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
20
|
Valentino RR, Ramnarine C, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Kasanuki K, Murray ME, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA. Mitochondrial genomic variation in dementia with Lewy bodies: association with disease risk and neuropathological measures. Acta Neuropathol Commun 2022; 10:103. [PMID: 35836284 PMCID: PMC9281088 DOI: 10.1186/s40478-022-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted.
Collapse
Affiliation(s)
- Rebecca R Valentino
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Chloe Ramnarine
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
21
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
22
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
23
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
24
|
The role of mtDNA haplogroups on metabolic features in narcolepsy type 1. Mitochondrion 2022; 63:37-42. [PMID: 35051655 DOI: 10.1016/j.mito.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Narcolepsy type 1 (NT1) is due to selective loss of hypocretin (hcrt)-producing-neurons. Hcrt is a neuropeptide regulating the sleep/wake cycle, as well as feeding behavior. A subset of NT1 patients become overweight/obese, with a dysmetabolic phenotype. We hypothesized that mitochondrial DNA (mtDNA) sequence variation might contribute to the metabolic features in NT1 and we undertook an exploratory survey of mtDNA haplogroups in a cohort of well-characterized patients. We studied 246 NT1 Italian patients, fully defined for their metabolic features, including obesity, hypertension, low HDL, hypertriglyceridemia and hyperglycemia. For haplogroup assignment, the mtDNA control region was sequenced in combination with an assessment of diagnostic markers in the coding region. NT1 patients displayed the same mtDNA haplogroups (H, HV, J, K, T, U) frequency as those reported in the general Italian population. The majority of NT1 patients (64%) were overweight: amongst these, 35% were obese, 48% had low HDL cholesterol levels, and 31% had hypertriglyceridemia. We identified an association between haplogroups J, K and hypertriglyceridemia (P=0.03, 61.5% and 61.5%, respectively vs. 31.3% of the whole sample) and after correction for age and sex, we observed a reduction of these associations (OR=3.65, 95%CI=0.76-17.5, p=0.106 and 1.73, 0.52-5.69, p=0.368, respectively). The low HDL level showed a trend for association with haplogroup J (P=0.09, 83.3% vs. 47.4% of the whole sample) and after correction we observed an OR=6.73, 95%CI=0.65-69.9, p=0.110. Our study provides the first indication that mtDNA haplogroups J and K can modulate metabolic features of NT1 patients, linking mtDNA variation to the dysmetabolic phenotype in NT1.
Collapse
|
25
|
Bao A, Nashine S, Atilano S, Chwa M, Federoff H, Kenney MC. Differential responses of AMD mitochondrial DNA haplogroups to PU-91, a mitochondria-targeting drug. Mitochondrion 2021; 60:189-200. [PMID: 34400356 DOI: 10.1016/j.mito.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial DNA (mtDNA) dysfunction and variation in mtDNA haplogroups play a key role in the etiology of Age-related Macular Degeneration (AMD). This study examined the response(s) of AMD ARPE-19 transmitochondrial cybrids having U, K, and J mtDNA haplogroups to treatment with a mitochondria-targeting PU-91 drug. PU-91 exerts its cytoprotective effects by upregulating PGC-1α (Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha) which is a primary regulator of the mitochondrial biogenesis pathway. The effects of PU-91 drug were determined using cell-based assays and gene expression analyses. Our study revealed that AMD cybrids with different mtDNA haplogroups i.e., U, K, J haplogroups respond differentially to PU-91 drug treatment; and that the PU-91 drug increases viable cell number, improves mitochondrial health, and protects AMD cybrids against oxidative stress across the board irrespective of their haplogroup variation. This study suggests that mtDNA haplogroups may contribute to the differential responses of AMD cybrid cells to PU-91 drug in vitro and may also influence AMD patients' responses to drug treatment.
Collapse
Affiliation(s)
- Andrea Bao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Shari Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Howard Federoff
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Cai N, Gomez-Duran A, Yonova-Doing E, Kundu K, Burgess AI, Golder ZJ, Calabrese C, Bonder MJ, Camacho M, Lawson RA, Li L, Williams-Gray CH, Di Angelantonio E, Roberts DJ, Watkins NA, Ouwehand WH, Butterworth AS, Stewart ID, Pietzner M, Wareham NJ, Langenberg C, Danesh J, Walter K, Rothwell PM, Howson JMM, Stegle O, Chinnery PF, Soranzo N. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat Med 2021; 27:1564-1575. [PMID: 34426706 DOI: 10.1038/s41591-021-01441-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.
Collapse
Affiliation(s)
- Na Cai
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Kousik Kundu
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Annette I Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Zoe J Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc J Bonder
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marta Camacho
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Lixin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nick A Watkins
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - John Danesh
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Klaudia Walter
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Oliver Stegle
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. .,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Nicole Soranzo
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK. .,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK. .,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. .,Department of Haematology, University of Cambridge, Cambridge, UK. .,Genomics Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
27
|
Volpe K, Samuels D, Kallianpur A, Ellis R, Franklin D, Letendre S, Heaton RK, Hulgan T. Mitochondrial DNA haplogroups and domain-specific neurocognitive performance in adults with HIV. J Neurovirol 2021; 27:557-567. [PMID: 34101088 PMCID: PMC8527871 DOI: 10.1007/s13365-021-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/14/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022]
Abstract
Neurocognitive (NC) impairment (NCI) is an important cause of morbidity in persons with HIV (PWH). In the high-energy environment of the central nervous system, mitochondria contribute to neuroinflammation and aging, which may ultimately drive the pathogenesis of neurodegenerative diseases. Mitochondrial DNA (mtDNA) haplogroups are associated with health outcomes in PWH. For example, we previously observed less global NCI in Hispanic ancestry PWH having mtDNA haplogroup B. Another study reported increased NCI among PWH having African subhaplogroup L2a. We therefore analyzed NC domains in relation to these haplogroups in CNS HIV Antiretroviral Therapy Effects Research (CHARTER), a multi-site observational neuro-HIV study. Haplogroups were assigned using mtDNA sequence in 1016 PWH. Outcomes were NCI, defined by domain deficit score and mean T-scores (TS) for seven NC domains. Ancestry-stratified analyses of NC performance included Wilcoxon rank sum, χ2, and Fisher's exact tests. Multivariable regression adjusted for NC comorbidity, antiretroviral therapy use, and nadir CD4+ T cells. Among 98 Hispanic ancestry PWH, executive function, learning, and recall performance were better with haplogroup B (N = 17) than other haplogroups. With adjustment for covariates, haplogroup B remained associated with better executive function (p = 0.04) and recall TS (p = 0.03). PWH with haplogroup B had fewer impaired domains than other haplogroups (p < 0.01). Subhaplogroup L2a (N = 89) was associated with greater NCI in learning, recall, and working memory among 478 PWH of African ancestry, and had more impaired domains than other subhaplogroups (p < 0.01). These findings may inform risk stratification for NCI and studies to define mechanisms by which mtDNA variation may influence NCI in PWH.
Collapse
Affiliation(s)
- Karen Volpe
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David Samuels
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Asha Kallianpur
- Cleveland Clinic/Lerner Research Institute, Cleveland, OH, USA
| | - Ronald Ellis
- Univ. of California San Diego, San Diego, CA, USA
| | | | | | | | - Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
29
|
Yonova-Doing E, Calabrese C, Gomez-Duran A, Schon K, Wei W, Karthikeyan S, Chinnery PF, Howson JMM. An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank. Nat Genet 2021; 53:982-993. [PMID: 34002094 PMCID: PMC7611844 DOI: 10.1038/s41588-021-00868-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial DNA (mtDNA) variation in common diseases has been underexplored, partly due to a lack of genotype calling and quality-control procedures. Developing an at-scale workflow for mtDNA variant analyses, we show correlations between nuclear and mitochondrial genomic structures within subpopulations of Great Britain and establish a UK Biobank reference atlas of mtDNA-phenotype associations. A total of 260 mtDNA-phenotype associations were new (P < 1 × 10-5), including rs2853822 /m.8655 C>T (MT-ATP6) with type 2 diabetes, rs878966690 /m.13117 A>G (MT-ND5) with multiple sclerosis, 6 mtDNA associations with adult height, 24 mtDNA associations with 2 liver biomarkers and 16 mtDNA associations with parameters of renal function. Rare-variant gene-based tests implicated complex I genes modulating mean corpuscular volume and mean corpuscular hemoglobin. Seven traits had both rare and common mtDNA associations, where rare variants tended to have larger effects than common variants. Our work illustrates the value of studying mtDNA variants in common complex diseases and lays foundations for future large-scale mtDNA association studies.
Collapse
Affiliation(s)
- Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Katherine Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Wei Wei
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
| |
Collapse
|
30
|
Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021; 34:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Translational Imaging and Precision Medicine, University of California - San Diego, La Jolla, California, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Current and New Next-Generation Sequencing Approaches to Study Mitochondrial DNA. J Mol Diagn 2021; 23:732-741. [DOI: 10.1016/j.jmoldx.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
|
32
|
Investigating the importance of individual mitochondrial genotype in susceptibility to drug-induced toxicity. Biochem Soc Trans 2021; 48:787-797. [PMID: 32453388 PMCID: PMC7329340 DOI: 10.1042/bst20190233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
The mitochondrion is an essential organelle responsible for generating cellular energy. Additionally, mitochondria are a source of inter-individual variation as they contain their own genome. Evidence has revealed that mitochondrial DNA (mtDNA) variation can confer differences in mitochondrial function and importantly, these differences may be a factor underlying the idiosyncrasies associated with unpredictable drug-induced toxicities. Thus far, preclinical and clinical data are limited but have revealed evidence in support of an association between mitochondrial haplogroup and susceptibility to specific adverse drug reactions. In particular, clinical studies have reported associations between mitochondrial haplogroup and antiretroviral therapy, chemotherapy and antibiotic-induced toxicity, although study limitations and conflicting findings mean that the importance of mtDNA variation to toxicity remains unclear. Several studies have used transmitochondrial cybrid cells as personalised models with which to study the impact of mitochondrial genetic variation. Cybrids allow the effects of mtDNA to be assessed against a stable nuclear background and thus the in vitro elucidation of the fundamental mechanistic basis of such differences. Overall, the current evidence supports the tenet that mitochondrial genetics represent an exciting area within the field of personalised medicine and drug toxicity. However, further research effort is required to confirm its importance. In particular, efforts should focus upon translational research to connect preclinical and clinical data that can inform whether mitochondrial genetics can be useful to identify at risk individuals or inform risk assessment during drug development.
Collapse
|
33
|
Valentino RR, Heckman MG, Johnson PW, Baker MC, Soto-Beasley AI, Walton RL, Koga S, Roemer SF, Suh E, Uitti RJ, Trojanowski JQ, Grossman M, Van Deerlin VM, Rademakers R, Wszolek ZK, Dickson DW, Ross OA. Association of Mitochondrial DNA Genomic Variation With Risk of Pick Disease. Neurology 2021; 96:e1755-e1760. [PMID: 33568542 DOI: 10.1212/wnl.0000000000011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/23/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether stable polymorphisms that define mitochondrial haplogroups in mitochondrial DNA (mtDNA) are associated with Pick disease risk, we genotyped 52 pathologically confirmed cases of Pick disease and 910 neurologically healthy controls and performed case-control association analysis. METHODS Fifty-two pathologically confirmed cases of Pick disease from Mayo Clinic Florida (n = 38) and the University of Pennsylvania (n = 14) and 910 neurologically healthy controls collected from Mayo Clinic Florida were genotyped for unique mtDNA haplogroup-defining variants. Mitochondrial haplogroups were determined, and in a case-control analysis, associations of mtDNA haplogroups with risk of Pick disease were evaluated with logistic regression models that were adjusted for age and sex. RESULTS No individual mtDNA haplogroups or superhaplogroups were significantly associated with risk of Pick disease after adjustment for multiple testing (p < 0.0021, considered significant). However, nominally significant (p < 0.05) associations toward an increased risk of Pick disease were observed for mtDNA haplogroup W (5.8% cases vs 1.6% controls, odds ratio [OR] 4.78, p = 0.020) and subhaplogroup H4 (5.8% cases vs 1.2% controls, OR 4.82, p = 0.021). CONCLUSION Our findings indicate that mtDNA variation is not a disease driver but may influence disease susceptibility. Ongoing genetic assessments in larger cohorts of Pick disease are currently underway.
Collapse
Affiliation(s)
- Rebecca R Valentino
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Michael G Heckman
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Patrick W Johnson
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Matthew C Baker
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Alexandra I Soto-Beasley
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Ronald L Walton
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Shunsuke Koga
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Shanu F Roemer
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - EunRan Suh
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Ryan J Uitti
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - John Q Trojanowski
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Murray Grossman
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Vivianna M Van Deerlin
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Rosa Rademakers
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Zbigniew K Wszolek
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Dennis W Dickson
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium
| | - Owen A Ross
- From the Department of Neuroscience (R.R.V., M.C.B., A.I.S.-B., R.L.W., S.K., S.F.R., R.R., D.W.D., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., P.W.J.), Department of Neurology (R.J.U., Z.K.W.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Perelman School of Medicine (E.S., J.Q.T., V.M.V.D.) and Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; and VIB-UAntwerp Center for Molecular Neurology (R.R.), University of Antwerp, Belgium.
| |
Collapse
|
34
|
Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet 2020; 140:849-861. [PMID: 33385171 PMCID: PMC8099832 DOI: 10.1007/s00439-020-02249-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial (MT) dysfunction is a hallmark of aging and has been associated with most aging-related diseases as well as immunological processes. However, little is known about aging, lifestyle and genetic factors influencing mitochondrial DNA (mtDNA) abundance. In this study, mtDNA abundance was estimated from the weighted intensities of probes mapping to the MT genome in 295,150 participants from the UK Biobank. We found that the abundance of mtDNA was significantly elevated in women compared to men, was negatively correlated with advanced age, higher smoking exposure, greater body-mass index, higher frailty index as well as elevated red and white blood cell count and lower mortality. In addition, several biochemistry markers in blood-related to cholesterol metabolism, ion homeostasis and kidney function were found to be significantly associated with mtDNA abundance. By performing a genome-wide association study, we identified 50 independent regions genome-wide significantly associated with mtDNA abundance which harbour multiple genes involved in the immune system, cancer as well as mitochondrial function. Using mixed effects models, we estimated the SNP-heritability of mtDNA abundance to be around 8%. To investigate the consequence of altered mtDNA abundance, we performed a phenome-wide association study and found that mtDNA abundance is involved in risk for leukaemia, hematologic diseases as well as hypertension. Thus, estimating mtDNA abundance from genotyping arrays has the potential to provide novel insights into age- and disease-relevant processes, particularly those related to immunity and established mitochondrial functions.
Collapse
|
35
|
Polymorphisms and haplotype of mitochondrial DNA D-loop region are associated with polycystic ovary syndrome in a Chinese population. Mitochondrion 2020; 57:173-181. [PMID: 33385542 DOI: 10.1016/j.mito.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Polymorphisms in mitochondrial DNA (mtDNA) have been linked to a range of diseases. Here we investigate the relationship between mtDNA D-loop region polymorphisms, mtDNA haplotype and polycystic ovary syndrome (PCOS), as well as the correlation of D-loop variants and clinical characteristics of PCOS, in a Chinese population. The mtDNA D-loop of whole blood samples from 421 PCOS patients and 409 controls underwent next generation sequencing. The variants G207A (PBH<0.05), 16036GGins (PBH<0.05) and 16049Gins (PBH<0.001) were associated with decreased risk of PCOS. No variants were associated with PCOS, and within the PCOS group, no statistical significance was found between D-loop polymorphisms and clinical characteristics. Patient haplotype was identified from D-loop single nucleotide polymorphisms and analysis suggested that haplotype A15 (P adjusted <0.01) was significantly associated with decreased risk of PCOS. In conclusion, mtDNA D-loop alterations and haplotype appear to confer resistance to PCOS in Chinese women.
Collapse
|
36
|
F C Lopes A. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics 2020; 12:182. [PMID: 33228792 PMCID: PMC7684747 DOI: 10.1186/s13148-020-00976-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored.
Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.
Collapse
Affiliation(s)
- Amanda F C Lopes
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK. .,Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
37
|
Valentino RR, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Wszolek ZK, Dickson DW, Ross OA. Association of mitochondrial genomic background with risk of Multiple System Atrophy. Parkinsonism Relat Disord 2020; 81:200-204. [PMID: 33189969 DOI: 10.1016/j.parkreldis.2020.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rare, sporadic, and progressive neurodegenerative disease which is characterized neuropathologically by alpha-synuclein aggregates in oligodendroglia, and clinically by parkinsonism, ataxia, and autonomic dysfunction. Mitochondrial health influences neurodegeneration and defects in mitochondria, particularly in oxidative phosphorylation, are reported in MSA. Mitochondrial DNA (mtDNA) codes for 13 critical OXPHOS proteins, however no study has investigated if mtDNA variation, in the form of mitochondrial haplogroups, influences MSA risk. Therefore, in this study we investigated the association of mtDNA haplogroups with MSA risk in a case-control manner. METHODS 176 pathologically confirmed MSA cases and 910 neurologically healthy controls from Mayo Clinic Jacksonville were genotyped for 39 unique mtDNA variants using Agena Biosciences MassARRAY iPlex technology. Mitochondrial haplogroups were assigned to mitochondrial phylogeny, and logistic regression models that were adjusted for age and sex were used to assess associations between mitochondrial haplogroups and risk of MSA. RESULTS After adjusting for multiple testing (P<0.0019 considered significant), no mitochondrial haplogroups were significantly associated with MSA risk. However, several nominally significant (P<0.05) associations were observed; haplogroup I was associated with a decreased risk of MSA (OR=0.09, P=0.021), while an increased risk of MSA was observed for haplogroups H3 (OR=2.43, P=0.017) and T1 and T2 (OR=2.04, P=0.007). CONCLUSION This study investigated whether population-specific mtDNA variation is associated with risk of MSA, and our nominally significant findings suggest mitochondrial haplogroup background may influence MSA risk. Validation of these findings and additional meta-analytic studies will be important.
Collapse
Affiliation(s)
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
| |
Collapse
|
38
|
Valentino RR, Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Wszolek ZK, Dickson DW, Ross OA. Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathol Commun 2020; 8:162. [PMID: 32943110 PMCID: PMC7495714 DOI: 10.1186/s40478-020-01035-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial health is important in ageing and dysfunctional oxidative phosphorylation (OXPHOS) accelerates ageing and influences neurodegeneration. Mitochondrial DNA (mtDNA) codes for vital OXPHOS subunits and mtDNA background has been associated with neurodegeneration; however, no study has characterised mtDNA variation in Progressive supranuclear palsy (PSP) or Corticobasal degeneration (CBD) risk or pathogenesis. In this case-control study, 910 (42.6% male) neurologically-healthy controls, 1042 (54.1% male) pathologically-confirmed PSP cases, and 171 (52.0% male) pathologically-confirmed CBD cases were assessed to determine how stable mtDNA polymorphisms, in the form of mtDNA haplogroups, were associated with risk of PSP, risk of CBD, age of PSP onset, PSP disease duration, and neuropathological tau pathology measures for neurofibrillary tangles (NFT), neuropil threads (NT), tufted astrocytes (TA), astrocytic plaques (AP), and oligodendroglial coiled bodies (CB). 764 PSP cases and 150 CBD cases had quantitative tau pathology scores. mtDNA was genotyped for 39 unique SNPs using Agena Bioscience iPlex technologies and mitochondrial haplogroups were defined to mitochondrial phylogeny. After adjustment for multiple testing, we observed an association with risk of CBD for mtDNA sub-haplogroup H4 (OR = 4.51, P = 0.001) and the HV/HV0a haplogroup was associated with a decreased severity of NT tau pathology in PSP cases (P = 0.0023). Our study reports that mitochondrial genomic background may be associated with risk of CBD and may be influencing tau pathology measures in PSP. Replication of these findings will be important.
Collapse
Affiliation(s)
| | - Nikoleta Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SURF Program Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Track, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
39
|
Vianello C, Cocetta V, Caicci F, Boldrin F, Montopoli M, Martinuzzi A, Carelli V, Giacomello M. Interaction Between Mitochondrial DNA Variants and Mitochondria/Endoplasmic Reticulum Contact Sites: A Perspective Review. DNA Cell Biol 2020; 39:1431-1443. [PMID: 32598172 DOI: 10.1089/dna.2020.5614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria contain their own genome, mitochondrial DNA (mtDNA), essential to support their fundamental intracellular role in ATP production and other key metabolic and homeostatic pathways. Mitochondria are highly dynamic organelles that communicate with all the other cellular compartments, through sites of high physical proximity. Among all, their crosstalk with the endoplasmic reticulum (ER) appears particularly important as its derangement is tightly implicated with several human disorders. Population-specific mtDNA variants clustered in defining the haplogroups have been shown to exacerbate or mitigate these pathological conditions. The exact mechanisms of the mtDNA background-modifying effect are not completely clear and a possible explanation is the outcome of mitochondrial efficiency on retrograde signaling to the nucleus. However, the possibility that different haplogroups shape the proximity and crosstalk between mitochondria and the ER has never been proposed neither investigated. In this study, we pose and discuss this question and provide preliminary data to answer it. Besides, we also address the possibility that single, disease-causing mtDNA point mutations may act also by reshaping organelle communication. Overall, this perspective review provides a theoretical platform for future studies on the interaction between mtDNA variants and organelle contact sites.
Collapse
Affiliation(s)
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,VIMM-Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS "E. Medea" Scientific Institute, Conegliano Research Center, Treviso, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med 2020; 287:634-644. [PMID: 32187761 PMCID: PMC8641369 DOI: 10.1111/joim.13047] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The first draft human mitochondrial DNA (mtDNA) sequence was published in 1981, paving the way for two decades of discovery linking mtDNA variation with human disease. Severe pathogenic mutations cause sporadic and inherited rare disorders that often involve the nervous system. However, some mutations cause mild organ-specific phenotypes that have a reduced clinical penetrance, and polymorphic variation of mtDNA is associated with an altered risk of developing several late-onset common human diseases including Parkinson's disease. mtDNA mutations also accumulate during human life and are enriched in affected organs in a number of age-related diseases. Thus, mtDNA contributes to a wide range of human pathologies. For many decades, it has generally been accepted that mtDNA is inherited exclusively down the maternal line in humans. Although recent evidence has challenged this dogma, whole-genome sequencing has identified nuclear-encoded mitochondrial sequences (NUMTs) that can give the false impression of paternally inherited mtDNA. This provides a more likely explanation for recent reports of 'bi-parental inheritance', where the paternal alleles are actually transmitted through the nuclear genome. The presence of both mutated and wild-type variant alleles within the same individual (heteroplasmy) and rapid shifts in allele frequency can lead to offspring with variable severity of disease. In addition, there is emerging evidence that selection can act for and against specific mtDNA variants within the developing germ line, and possibly within developing tissues. Thus, understanding how mtDNA is inherited has far-reaching implications across medicine. There is emerging evidence that this highly dynamic system is amenable to therapeutic manipulation, raising the possibility that we can harness new understanding to prevent and treat rare and common human diseases where mtDNA mutations play a key role.
Collapse
Affiliation(s)
- W Wei
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - P F Chinnery
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Sukhorukov VS, Voronkova AS, Litvinova NA, Baranich TI, Illarioshkin SN. The Role of Mitochondrial DNA Individuality in the Pathogenesis of Parkinson’s Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Martín-Jiménez R, Lurette O, Hebert-Chatelain E. Damage in Mitochondrial DNA Associated with Parkinson's Disease. DNA Cell Biol 2020; 39:1421-1430. [PMID: 32397749 DOI: 10.1089/dna.2020.5398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Olivier Lurette
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| |
Collapse
|
43
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Attimonelli M, Preste R, Vitale O, Lott MT, Procaccio V, Shiping Z, Wallace DC. Bioinformatics resources, databases, and tools for human mtDNA. THE HUMAN MITOCHONDRIAL GENOME 2020:277-304. [DOI: 10.1016/b978-0-12-819656-4.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Aldámiz-Echevarría T, Resino S, Bellón JM, Jiménez-Sousa MA, Miralles P, Medrano LM, Carrero A, Díez C, Pérez-Latorre L, Fanciulli C, Garcia-Broncano P, Berenguer J. European mitochondrial haplogroups predict liver-related outcomes in patients coinfected with HIV and HCV: a retrospective study. J Transl Med 2019; 17:244. [PMID: 31349790 PMCID: PMC6660654 DOI: 10.1186/s12967-019-1997-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) haplogroups have been associated with advanced liver fibrosis and cirrhosis in patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Our aim was to determine whether mtDNA haplogroups are associated with liver-related events (LREs) in HIV/HCV-coinfected patients. METHODS We carried out a retrospective cohort study in HIV/HCV-coinfected patients who were potential candidates for therapy with interferon and ribavirin (IFN/Rib) between 2000 and 2009. The primary endpoint was the occurrence of LREs (decompensation or hepatocellular carcinoma). mtDNA genotyping was performed using the Sequenom MassARRAY platform. We used Fine and Gray proportional hazards model to test the association between mtDNA haplogroups and LREs, considering death as a competitive risk. RESULTS The study population comprised 243 patients, of whom 40 had advanced fibrosis or cirrhosis. After a median follow-up of 7.7 years, 90 patients treated with IFN/Rib achieved sustained viral response (SVR), 18 patients had LREs, and 11 patients died. Patients with haplogroup H had lower cumulative incidence than patients with other haplogroups (p = 0.012). However, patients with haplogroup T had higher cumulative incidence than patients with other haplogroups (p = 0.074). In the multivariate analysis, haplogroup T was associated with an increased hazard of developing LREs [adjusted subhazard ratio (aSHR) = 3.56 (95% CI 1.13;11.30); p = 0.030]; whereas haplogroup H was not associated with lower hazard of LREs [aSHR = 0.36 (95% CI 0.10;1.25); p = 0.105]. When we excluded patients who achieved SVR during follow-up, we obtained similar SHR values. CONCLUSIONS European mitochondrial haplogroups may influence the natural history of chronic hepatitis C.
Collapse
Affiliation(s)
- Teresa Aldámiz-Echevarría
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
| | - José M. Bellón
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A. Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
| | - Pilar Miralles
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luz M. Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
| | - Ana Carrero
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Díez
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Leire Pérez-Latorre
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Chiara Fanciulli
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Pilar Garcia-Broncano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
| | - Juan Berenguer
- Unidad de enfermedades infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fundación para la Investigación Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
46
|
Mitochondrial DNA variability of the Polish population. Eur J Hum Genet 2019; 27:1304-1314. [PMID: 30903113 PMCID: PMC6777467 DOI: 10.1038/s41431-019-0381-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to define the mtDNA variability of Polish population and to visualize the genetic relations between Poles. For the first time, the study of Polish population was conducted on such a large number of individuals (5852) representing administrative units of both levels of local administration in Poland (voivodeships and counties). Additionally, clustering was used as a method of population subdivision. Performed genetic analysis, included FST, MDS plot, AMOVA and SAMOVA. Haplogroups were classified and their geographical distribution was visualized using surface interpolation maps. Results of the present study showed that Poles are characterized by the main West Eurasian mtDNA haplogroups. Furthermore, the level of differentiation within the Polish population was quite low but the existing genetic differences could be explained well with geographic distances. This may lead to a conclusion that Poles can be considered as genetically homogenous but with slight differences, highlighted at the regional level. Some patterns of variability were observed and could be explained by the history of demographic processes in Poland such as resettlements and migrations of women or relatively weaker urbanisation and higher rural population retention of some regions.
Collapse
|