1
|
Castro-Gomez S, Heneka MT. Innate immune activation in neurodegenerative diseases. Immunity 2024; 57:790-814. [PMID: 38599171 DOI: 10.1016/j.immuni.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Sergio Castro-Gomez
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany; Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Isozumi N, Sugie K, Mori E. [Biological phase separation in neuromuscular diseases]. Rinsho Shinkeigaku 2023; 63:799-805. [PMID: 37989290 DOI: 10.5692/clinicalneurol.cn-001877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Biological phase separation refers to the liquid-liquid phase separation of biomolecules such as proteins in cells. Phase separation is driven by low-complexity domains of phase-separating proteins and strictly controlled by regulatory factors. Phase separation has also been found to be disrupted by genetic abnormalities. Abnormal aggregates of causative proteins accumulate in many neuromuscular diseases. In recent years, it has become clear that phase separating proteins are associated with neuromuscular diseases, and that abnormalities in the regulation of phase separation leads to the formation of aggregates. Gains in our knowledge of biological phase separation is gradually elucidating the pathogenesis of neuromuscular diseases.
Collapse
Affiliation(s)
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University
| |
Collapse
|
3
|
Rifai OM, O’Shaughnessy J, Dando OR, Munro AF, Sewell MDE, Abrahams S, Waldron FM, Sibley CR, Gregory JM. Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts. Brain 2023; 146:5124-5138. [PMID: 37450566 PMCID: PMC10690026 DOI: 10.1093/brain/awad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.
Collapse
Affiliation(s)
- Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judi O’Shaughnessy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owen R Dando
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sharon Abrahams
- Human Cognitive Neuroscience-Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Christopher R Sibley
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FF, UK
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
4
|
Asken BM, Ljubenkov PA, Staffaroni AM, Casaletto KB, Vandevrede L, Cobigo Y, Rojas-Rodriguez JC, Rankin KP, Kornak J, Heuer H, Shigenaga J, Appleby BS, Bozoki AC, Domoto-Reilly K, Ghoshal N, Huey E, Litvan I, Masdeu JC, Mendez MF, Pascual B, Pressman P, Tartaglia MC, Kremers W, Forsberg LK, Boeve BF, Boxer AL, Rosen HJ, Kramer JH. Plasma inflammation for predicting phenotypic conversion and clinical progression of autosomal dominant frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2023; 94:541-549. [PMID: 36977552 PMCID: PMC10313977 DOI: 10.1136/jnnp-2022-330866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Measuring systemic inflammatory markers may improve clinical prognosis and help identify targetable pathways for treatment in patients with autosomal dominant forms of frontotemporal lobar degeneration (FTLD). METHODS We measured plasma concentrations of IL-6, TNFα and YKL-40 in pathogenic variant carriers (MAPT, C9orf72, GRN) and non-carrier family members enrolled in the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration consortium. We evaluated associations between baseline plasma inflammation and rate of clinical and neuroimaging changes (linear mixed effects models with standardised (z) outcomes). We compared inflammation between asymptomatic carriers who remained clinically normal ('asymptomatic non-converters') and those who became symptomatic ('asymptomatic converters') using area under the curve analyses. Discrimination accuracy was compared with that of plasma neurofilament light chain (NfL). RESULTS We studied 394 participants (non-carriers=143, C9orf72=117, GRN=62, MAPT=72). In MAPT, higher TNFα was associated with faster functional decline (B=0.12 (0.02, 0.22), p=0.02) and temporal lobe atrophy. In C9orf72, higher TNFα was associated with faster functional decline (B=0.09 (0.03, 0.16), p=0.006) and cognitive decline (B=-0.16 (-0.22, -0.10), p<0.001), while higher IL-6 was associated with faster functional decline (B=0.12 (0.03, 0.21), p=0.01). TNFα was higher in asymptomatic converters than non-converters (β=0.29 (0.09, 0.48), p=0.004) and improved discriminability compared with plasma NfL alone (ΔR2=0.16, p=0.007; NfL: OR=1.4 (1.03, 1.9), p=0.03; TNFα: OR=7.7 (1.7, 31.7), p=0.007). CONCLUSIONS Systemic proinflammatory protein measurement, particularly TNFα, may improve clinical prognosis in autosomal dominant FTLD pathogenic variant carriers who are not yet exhibiting severe impairment. Integrating TNFα with markers of neuronal dysfunction like NfL could optimise detection of impending symptom conversion in asymptomatic pathogenic variant carriers and may help personalise therapeutic approaches.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Peter A Ljubenkov
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Adam M Staffaroni
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Lawren Vandevrede
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Yann Cobigo
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Julio C Rojas-Rodriguez
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Katherine P Rankin
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Hilary Heuer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Judy Shigenaga
- Department of Medicine, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Brian S Appleby
- Departments of Neurology, Psychiatry, and Pathology, Case Western Reserve, Cleveland, Ohio, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - Edward Huey
- Departments of Psychiatry and Neurology, Columbia University, New York, New York, USA
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, La Jolla, California, USA
| | - Joseph C Masdeu
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, Texas, USA
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Belen Pascual
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, Texas, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Canadian Sports Concussion Project, Toronto, Ontario, Canada
| | - Walter Kremers
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brad F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adam L Boxer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Howie J Rosen
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Joel H Kramer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
6
|
Trageser KJ, Yang EJ, Smith C, Iban-Arias R, Oguchi T, Sebastian-Valverde M, Iqbal UH, Wu H, Estill M, Al Rahim M, Raval U, Herman FJ, Zhang YJ, Petrucelli L, Pasinetti GM. Inflammasome-Mediated Neuronal-Microglial Crosstalk: a Therapeutic Substrate for the Familial C9orf72 Variant of Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:4004-4016. [PMID: 37010807 DOI: 10.1007/s12035-023-03315-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 04/04/2023]
Abstract
Intronic G4C2 hexanucleotide repeat expansions (HRE) of C9orf72 are the most common cause of familial variants of frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). G4C2 HREs in C9orf72 undergo non-canonical repeat-associated translation, producing dipeptide repeat (DPR) proteins, with various deleterious impacts on cellular homeostasis. While five different DPRs are produced, poly(glycine-arginine) (GR) is amongst the most toxic and is the only DPR to accumulate in the associated clinically relevant anatomical locations of the brain. Previous work has demonstrated the profound effects of a poly (GR) model of C9orf72 FTD/ALS, including motor impairment, memory deficits, neurodegeneration, and neuroinflammation. Neuroinflammation is hypothesized to be a driving factor in the disease course; microglia activation is present prior to symptom onset and persists throughout the disease. Here, using an established mouse model of C9orf72 FTD/ALS, we investigate the contributions of the nod-like receptor pyrin-containing 3 (NLRP3) inflammasome in the pathogenesis of FTD/ALS. We find that inflammasome-mediated neuroinflammation is increased with microglial activation, cleavage of caspase-1, production of IL-1β, and upregulation of Cxcl10 in the brain of C9orf72 FTD/ALS mice. Excitingly, we find that genetic ablation of Nlrp3 significantly improved survival, protected behavioral deficits, and prevented neurodegeneration suggesting a novel mechanism involving HRE-mediated induction of innate immunity. The findings provide experimental evidence of the integral role of HRE in inflammasome-mediated innate immunity in the C9orf72 variant of FTD/ALS pathogenesis and suggest the NLRP3 inflammasome as a therapeutic target.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tatsunori Oguchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Umar Haris Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yong Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
7
|
Katzeff JS, Lok HC, Bhatia S, Fu Y, Halliday GM, Kim WS. ATP-binding cassette transporter expression is widely dysregulated in frontotemporal dementia with TDP-43 inclusions. Front Mol Neurosci 2022; 15:1043127. [PMID: 36385764 PMCID: PMC9663841 DOI: 10.3389/fnmol.2022.1043127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 10/17/2023] Open
Abstract
The human brain is highly enriched in lipids and increasing evidence indicates that dysregulation of lipids in the brain is associated with neurodegeneration. ATP-binding cassette subfamily A (ABCA) transporters control the movement of lipids across cellular membranes and are implicated in a number of neurodegenerative diseases. However, very little is known about the role of ABCA transporters in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), which is a common form of younger-onset dementia. We therefore undertook a comprehensive analysis of the expression of ABCA transporters (ABCA1-13) in five key brain regions (amygdala, inferior temporal cortex, superior frontal cortex, cerebellum and parietal cortex) in FTLD-TDP and controls. We found that the expression of ABCA2, ABCA3, ABCA4, ABCA7, ABCA9, ABCA10 and ABCA13 was significantly altered in FTLD-TDP in a region-specific manner. In addition, the expression of ABCA transporters correlated specifically to different neural markers and TARDBP. These results suggest substantial dysregulation of ABCA transporters and lipid metabolism in FTLD-TDP and these changes are associated with neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Woojin Scott Kim
- Brain and Mind Centre & School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Li JY, Sun XH, Shen DC, Yang XZ, Liu MS, Cui LY. Clinical characteristics and prognosis of amyotrophic lateral sclerosis with autoimmune diseases. PLoS One 2022; 17:e0266529. [PMID: 35390090 PMCID: PMC8989203 DOI: 10.1371/journal.pone.0266529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction The occurrence of autoimmune diseases (AIDs) in amyotrophic lateral sclerosis (ALS) patients is widely reported, but little is known about the associated clinical phenotype. This study aims to evaluate the clinical features and prognosis of ALS patients with AID. Methods This retrospective study was based on the ALS Registry dataset of Peking Union Medical College Hospital from 2013 to 2020. Clinical features and inflammatory biomarkers at registration were compared between ALS patients with coexisting AIDs and those without (controls). The medical records of immunotherapy were also collected. The Kaplan–Meier method and Cox proportional hazard model were used to study the survival of ALS patients. Results There are 26 (1.6%) ALS patients with AIDs in our database. The ALS patients with AIDs had older ages at onset and poorer respiratory function than controls (p<0.05). After propensity score matching by sex, onset age, and disease duration, the difference in respiratory function remained significant between groups. We found no differences in overall survival between ALS patients with and without AIDs before and after matching (p = 0.836; p = 0.395). Older age at onset, rapid disease progression, and lower erythrocyte sedimentation rate (ESR) were associated with shorter survival (p<0.05). Among ALS patients with AIDs, 8 (30.8%) had a history of immunotherapy and showed slightly prolonged survival compared with those without immunotherapy, but the results did not reach statistical significance (p = 0.355). Conclusions Patients with coexisting ALS and AIDs had older onset age and poorer respiratory function but similar overall survival than those with pure ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dong-chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Cui C, Ingre C, Yin L, Li X, Andersson J, Seitz C, Ruffin N, Pawitan Y, Piehl F, Fang F. Correlation between leukocyte phenotypes and prognosis of amyotrophic lateral sclerosis. eLife 2022; 11:74065. [PMID: 35287794 PMCID: PMC8923665 DOI: 10.7554/elife.74065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
The prognostic role of immune cells in amyotrophic lateral sclerosis (ALS) remains undetermined. Therefore, we conducted a longitudinal cohort study including 288 ALS patients with up to 5-year follow-up during 2015–2020 recruited at the only tertiary referral center for ALS in Stockholm, Sweden, and measured the levels of differential leukocytes and lymphocyte subpopulations. The primary outcome was risk of death after diagnosis of ALS and the secondary outcomes included functional status and disease progression rate. Cox model was used to evaluate the associations between leukocytes and risk of death. Generalized estimating equation model was used to assess the correlation between leukocytes and functional status and disease progression rate. We found that leukocytes, neutrophils, and monocytes increased gradually over time since diagnosis and were negatively correlated with functional status, but not associated with risk of death or disease progression rate. For lymphocyte subpopulations, NK cells (HR= 0.61, 95% CI = [0.42–0.88] per SD increase) and Th2-diffrentiated CD4+ central memory T cells (HR= 0.64, 95% CI = [0.48–0.85] per SD increase) were negatively associated with risk of death, while CD4+ effector memory cells re-expressing CD45RA (EMRA) T cells (HR= 1.39, 95% CI = [1.01–1.92] per SD increase) and CD8+ T cells (HR= 1.38, 95% CI = [1.03–1.86] per SD increase) were positively associated with risk of death. None of the lymphocyte subpopulations was correlated with functional status or disease progression rate. Our findings suggest a dual role of immune cells in ALS prognosis, where neutrophils and monocytes primarily reflect functional status whereas NK cells and different T lymphocyte populations act as prognostic markers for survival.
Collapse
Affiliation(s)
- Can Cui
- Institute of Environmental Medicine, Karolinska Institutet
| | | | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
| | - Xia Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet
| | | | - Nicolas Ruffin
- Department of Clinical Neuroscience, Karolinska Institutet
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
| | | | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet
| |
Collapse
|
10
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
11
|
Jiang L, Zhang T, Lu K, Qi S. The progress in C9orf72 research: ALS/FTD pathogenesis, functions and structure. Small GTPases 2022; 13:56-76. [PMID: 33663328 PMCID: PMC9707547 DOI: 10.1080/21541248.2021.1892443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hexanucleotide repeat (GGGGCC) expansion in C9orf72 is accounted for a large proportion of the genetic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The hypotheses of how the massive G4C2 repeats in C9orf72 destroy the neurons and lead to ALS/FTD are raised and improving. As a multirole player, C9orf72 exerts critical roles in many cellular processes, including autophagy, membrane trafficking, immune response, and so on. Notably, the partners of C9orf72, through which C9orf72 participates in the cell activities, have been identified. Notably, the structures of the C9orf72-SMCR8-WDR41 complex shed light on its activity as GTPase activating proteins (GAP). In this manuscript, we reviewed the latest research progress in the C9orf72-mediated ALS/FTD, the physiological functions of C9orf72, and the putative function models of C9orf72/C9orf72-containing complex.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tizhong Zhang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China,CONTACT Shiqian Qi Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
These authors contributed equally to this work.
| |
Collapse
|
12
|
Rosow L, Lomen-Hoerth C. Treatment and Management of Adult Motor Neuron Diseases. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
14
|
Trudler D, Ghatak S, Lipton SA. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:8196. [PMID: 34360966 PMCID: PMC8347370 DOI: 10.3390/ijms22158196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
16
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
17
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
18
|
Melnick M, Gonzales P, LaRocca TJ, Song Y, Wuu J, Benatar M, Oskarsson B, Petrucelli L, Dowell RD, Link CD, Prudencio M. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3-GENES GENOMES GENETICS 2021; 11:6259144. [PMID: 33914880 PMCID: PMC8661426 DOI: 10.1093/g3journal/jkab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using synthetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequences. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq datasets currently being generated.
Collapse
Affiliation(s)
- Marko Melnick
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| |
Collapse
|
19
|
The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (lncRNAs) in Neuroinflammation. Mol Neurobiol 2021; 58:2916-2939. [PMID: 33555549 DOI: 10.1007/s12035-020-02268-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
LncRNAs have emerged as important regulatory molecules in biological processes. They serve as regulators of gene expression pathways through interactions with proteins, RNA, and DNA. LncRNA expression is altered in several diseases of the central nervous system (CNS), such as neurodegenerative disorders, stroke, trauma, and infection. More recently, it has become clear that lncRNAs contribute to regulating both pro-inflammatory and anti-inflammatory pathways in the CNS. In this review, we discuss the molecular pathways involved in the expression of lncRNAs, their role and mechanism of action during gene regulation, cellular functions, and use of lncRNAs as therapeutic targets during neuroinflammation in CNS disorders.
Collapse
|
20
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
21
|
Huang F, Zhu Y, Hsiao-Nakamoto J, Tang X, Dugas JC, Moscovitch-Lopatin M, Glass JD, Brown RH, Ladha SS, Lacomis D, Harris JM, Scearce-Levie K, Ho C, Bowser R, Berry JD. Longitudinal biomarkers in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1103-1116. [PMID: 32515902 PMCID: PMC7359115 DOI: 10.1002/acn3.51078] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from ≥2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials.
Collapse
Affiliation(s)
- Fen Huang
- Denali Therapeutics, South San Francisco, California, USA
| | - Yuda Zhu
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Xinyan Tang
- Denali Therapeutics, South San Francisco, California, USA
| | - Jason C Dugas
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Jonathan D Glass
- Department of Neurology and Pathology, Emory University, Atlanta, Georgia, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shafeeq S Ladha
- Departments of Neurology and Neurobiology, Gregory W. Fulton ALS Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - David Lacomis
- Live Like Lou Center for ALS Research, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Carole Ho
- Denali Therapeutics, South San Francisco, California, USA
| | - Robert Bowser
- Departments of Neurology and Neurobiology, Gregory W. Fulton ALS Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Iron Horse Diagnostics, Inc., Scottsdale, Arizona, USA
| | - James D Berry
- Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|