1
|
Pang S, Ding S, Peng C, Chen Y. Temporal context modulates cross-modality time discrimination: Electrophysiological evidence for supramodal temporal representation. Cortex 2024; 179:143-156. [PMID: 39173580 DOI: 10.1016/j.cortex.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Although the peripheral nervous system lacks a dedicated receptor, the brain processes temporal information through different sensory channels. A critical question is whether temporal information from different sensory modalities at different times forms modality-specific representations or is integrated into a common representation in a supramodal manner. Behavioral studies on temporal memory mixing and the central tendency effect have provided evidence for supramodal temporal representations. We aimed to provide electrophysiological evidence for this proposal by employing a cross-modality time discrimination task combined with electroencephalogram (EEG) recordings. The task maintained a fixed auditory standard duration, whereas the visual comparison duration was randomly selected from the short and long ranges, creating two different audio-visual temporal contexts. The behavioral results showed that the point of subjective equality (PSE) in the short context was significantly lower than that in the long context. The EEG results revealed that the amplitude of the contingent negative variation (CNV) in the short context was significantly higher (more negative) than in the long context in the early stage, while it was lower (more positive) in the later stage. These results suggest that the audiovisual temporal context is integrated with the auditory standard duration to generate a subjective time criterion. Compared with the long context, the subjective time criterion in the short context was shorter, resulting in earlier decision-making and a preceding decrease in CNV. Our study provides electrophysiological evidence that temporal information from different modalities inputted into the brain at different times can form a supramodal temporal representation.
Collapse
Affiliation(s)
- Shufang Pang
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Shaofan Ding
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chunhua Peng
- Chongqing Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Youguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Guo L, Bao M, Chen Z, Chen L. Contingent magnetic variation and beta-band oscillations in sensorimotor temporal decision-making. Brain Res Bull 2024; 215:111021. [PMID: 38942396 DOI: 10.1016/j.brainresbull.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
The ability to accurately encode the temporal information of sensory events and hence to make prompt action is fundamental to humans' prompt behavioral decision-making. Here we examined the ability of ensemble coding (averaging multiple inter-intervals in a sound sequence) and subsequent immediate reproduction of target duration at half, equal, or double that of the perceived mean interval in a sensorimotor loop. With magnetoencephalography (MEG), we found that the contingent magnetic variation (CMV) in the central scalp varied as a function of the averaging tasks, with a faster rate for buildup amplitudes and shorter peak latencies in the "half" condition as compared to the "double" condition. ERD (event-related desynchronization) -to-ERS (event-related synchronization) latency was shorter in the "half" condition. A robust beta band (15-23 Hz) power suppression and recovery between the final tone and the action of key pressing was found for time reproduction. The beta modulation depth (i.e., the ERD-to-ERS power difference) was larger in motor areas than in primary auditory areas. Moreover, results of phase slope index (PSI) indicated that beta oscillations in the left supplementary motor area (SMA) led those in the right superior temporal gyrus (STG), showing SMA to STG directionality for the processing of sequential (temporal) auditory interval information. Our findings provide the first evidence to show that CMV and beta oscillations predict the coupling between perception and action in time averaging.
Collapse
Affiliation(s)
- Lu Guo
- The Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Acoustics,Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Bao
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China.
| | - Zhifei Chen
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing 100871, China; State Key Laboratory of General Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Khoshnoud S, Leitritz D, Çinar Bozdağ M, Alvarez Igarzábal F, Noreika V, Wittmann M. When the Heart Meets the Mind: Exploring the Brain-Heart Interaction during Time Perception. J Neurosci 2024; 44:e2039232024. [PMID: 39048314 PMCID: PMC11340283 DOI: 10.1523/jneurosci.2039-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent studies suggest that time estimation relies on bodily rhythms and interoceptive signals. We provide the first direct electrophysiological evidence suggesting an association between the brain's processing of heartbeat and duration judgment. We examined heartbeat-evoked potential (HEP) and contingent negative variation (CNV) during an auditory duration-reproduction task and a control reaction-time task spanning 4, 8, and 12 s intervals, in both male and female participants. Interoceptive awareness was assessed with the Self-Awareness Questionnaire (SAQ) and interoceptive accuracy through the heartbeat-counting task (HCT). Results revealed that SAQ scores, but not the HCT, correlated with mean reproduced durations with higher SAQ scores associating with longer and more accurate duration reproductions. Notably, the HEP amplitude changes during the encoding phase of the timing task, particularly within 130-270 ms (HEP1) and 470-520 ms (HEP2) after the R-peak, demonstrated interval-specific modulations that did not emerge in the control task. A significant ramp-like increase in HEP2 amplitudes occurred during the duration-encoding phase of the timing but not during the control task. This increase within the reproduction phase of the timing task correlated significantly with the reproduced durations for the 8 s and the 4 s intervals. The larger the increase in HEP2, the greater the under-reproduction of the estimated duration. CNV components during the encoding phase of the timing task were more negative than those in the reaction-time task, suggesting greater executive resources orientation toward time. We conclude that interoceptive awareness (SAQ) and cortical responses to heartbeats (HEP) predict duration reproductions, emphasizing the embodied nature of time.
Collapse
Affiliation(s)
- Shiva Khoshnoud
- Institute for Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - David Leitritz
- Institute for Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
- Department of Psychological Methods, University of Amsterdam, 1018 WT Amsterdam, Netherlands
| | - Meltem Çinar Bozdağ
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye
| | | | - Valdas Noreika
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
| |
Collapse
|
4
|
Hosseini Houripasand M, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA. Time distortions induced by high-arousing emotional compared to low-arousing neutral faces: an event-related potential study. PSYCHOLOGICAL RESEARCH 2023; 87:1836-1847. [PMID: 36607427 DOI: 10.1007/s00426-022-01789-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Emotions influence our perception of time. Arousal and valence are considered different dimensions of emotions that might interactively affect the perception of time. In the present study, we aimed to investigate the possible time distortions induced by emotional (happy/angry) high-arousing faces compared to neutral, low-arousing faces. Previous works suggested that emotional stimuli enhance the amplitudes of several posterior components, such as Early Posterior Negativity (EPN) and Late Positive Potential (LPP). These components reflect several stages of emotional processing. To this end, we conducted an event-related potential (ERP) study with a temporal bisection task. We hypothesized that the partial dissociation of these ERP components would shed more light on the possible relations of valence and arousal on emotional facial regulation and their consequential effects on behavioral timing. The behavioral results demonstrated a significant effect for emotional stimuli, as happy faces were overestimated relative to angry faces. Our results also indicated higher temporal sensitivity for angry faces. The analyzed components (EPN and LLP) provided further insights into the qualitative differences between stimuli. Finally, the results were interpreted considering the internal clock model and two-stage processing of emotional stimuli.
Collapse
Affiliation(s)
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, 144961-4535, Iran.
| |
Collapse
|
5
|
Baykan C, Zhu X, Zinchenko A, Müller HJ, Shi Z. Electrophysiological signatures of temporal context in the bisection task. Exp Brain Res 2023; 241:2081-2096. [PMID: 37460622 PMCID: PMC10386970 DOI: 10.1007/s00221-023-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Despite having relatively accurate timing, subjective time can be influenced by various contexts, such as stimulus spacing and sample frequency. Several electroencephalographic (EEG) components have been associated with timing, including the contingent negative variation (CNV), offset P2, and late positive component of timing (LPCt). However, the specific role of these components in the contextual modulation of perceived time remains unclear. In this study, we conducted two temporal bisection experiments to investigate this issue. Participants had to judge whether a test duration was close to a short or long standard. Unbeknownst to them, we manipulated the stimulus spacing (Experiment 1) and sample frequency (Experiment 2) to create short and long contexts while maintaining consistent test ranges and standards across different sessions. The results revealed that the bisection threshold shifted towards the ensemble mean, and both CNV and LPCt were sensitive to context modulation. In the short context, the CNV exhibited an increased climbing rate compared to the long context, whereas the LPCt displayed reduced amplitude and latency. These findings suggest that the CNV represents an expectancy wave preceding a temporal decision process, while the LPCt reflects the decision-making process itself, with both components influenced by the temporal context.
Collapse
Affiliation(s)
- Cemre Baykan
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Xiuna Zhu
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| | - Artyom Zinchenko
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| | - Hermann J Müller
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| |
Collapse
|
6
|
Johari K, Lai VT, Riccardi N, Desai RH. Temporal features of concepts are grounded in time perception neural networks: An EEG study. BRAIN AND LANGUAGE 2023; 237:105220. [PMID: 36587493 PMCID: PMC10100101 DOI: 10.1016/j.bandl.2022.105220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Experimental evidence suggests that modality-specific concept features such as action, motion, and sound partially rely on corresponding action/perception neural networks in the human brain.Little is known, however, about time-related features of concepts. We examined whether temporal features of concepts recruit networks that subserve time perception in the brain in an EEG study using event and object nouns. Results showed significantly larger ERPs for event duration vs object size judgments over right parietal electrodes, a region associated with temporal processing. Additionally, alpha/beta (10-15 Hz) neural oscillation showed a stronger desynchronization for event duration compared to object size in the right parietal electrodes. This difference was not seen in control tasks comparing event vs object valence, suggesting that it is not likely to reflect a general difference between event and object nouns. These results indicate that temporal features of words may be subserved by time perception circuits in the human brain.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Vicky T Lai
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
7
|
Subjective time is predicted by local and early visual processing. Neuroimage 2022; 264:119707. [PMID: 36341952 DOI: 10.1016/j.neuroimage.2022.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Time is as pervasive as it is elusive to study, and how the brain keeps track of millisecond time is still unclear. Here we addressed the mechanisms underlying duration perception by looking for a neural signature of subjective time distortion induced by motion adaptation. We recorded electroencephalographic signals in human participants while they were asked to discriminate the duration of visual stimuli after different types of translational motion adaptation. Our results show that perceived duration can be predicted by the amplitude of the N200 event-related potential evoked by the adapted stimulus. Moreover, we show that the distortion of subjective time can be predicted by the activity in the Beta band frequency spectrum, at the offset of the adaptor and during the presentation of the subsequent adapted stimulus. Both effects were observed from posterior electrodes contralateral to the adapted stimulus. Overall, our findings suggest that local and low-level perceptual processes are involved in generating a subjective sense of time.
Collapse
|
8
|
Gladhill KA, Mioni G, Wiener M. Dissociable effects of emotional stimuli on electrophysiological indices of time and decision-making. PLoS One 2022; 17:e0276200. [PMCID: PMC9671475 DOI: 10.1371/journal.pone.0276200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022] Open
Abstract
Previous research has demonstrated that emotional faces affect time perception, however, the underlying mechanisms are not fully understood. Earlier attempts focus on effects at the different stages of the pacemaker-accumulator model (clock, memory, and/or decision-making) including, an increase in pacemaker rate or accumulation rate via arousal or attention, respectively, or by biasing decision-making. A visual temporal bisection task with sub-second intervals was conducted in two groups to further investigate these effects; one group was strictly behavioral whereas the second included a 64-channel electroencephalogram (EEG). To separate the influence of face and timing responses, participants timed a visual stimulus, temporally flanked (before and after) by two faces, either negative or neutral, creating three trial-types: Neg→Neut, Neut→Neg, or Neut→Neut. We found a leftward shift in bisection point (BP) in Neg→Neut relative to Neut→Neut suggests an overestimation of the temporal stimulus when preceded by a negative face. Neurally, we found the face-responsive N170 was larger for negative faces and the N1 and contingent negative variation (CNV) were larger when the temporal stimulus was preceded by a negative face. Additionally, there was an interaction effect between condition and response for the late positive component of timing (LPCt) and a significant difference between response (short/long) in the neutral condition. We concluded that a preceding negative face affects the clock stage leading to more pulses being accumulated, either through attention or arousal, as indexed by a larger N1, CNV, and N170; whereas viewing a negative face after impacted decision-making mechanisms, as evidenced by the LPCt.
Collapse
Affiliation(s)
- Keri Anne Gladhill
- Psychology Department, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| | - Giovanna Mioni
- Department of General Psychology, University of Padova, Padova, Italy
| | - Martin Wiener
- Psychology Department, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
9
|
Foerster FR, Chidharom M, Bonnefond A, Giersch A. Neurocognitive analyses reveal that video game players exhibit enhanced implicit temporal processing. Commun Biol 2022; 5:1082. [PMID: 36221032 PMCID: PMC9553938 DOI: 10.1038/s42003-022-04033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Winning in action video games requires to predict timed events in order to react fast enough. In these games, repeated waiting for enemies may help to develop implicit (incidental) preparation mechanisms. We compared action video game players and non-video game players in a reaction time task involving both implicit time preparations and explicit (conscious) temporal attention cues. Participants were immersed in virtual reality and instructed to respond to a visual target appearing at variable delays after a warning signal. In half of the trials, an explicit cue indicated when the target would occur after the warning signal. Behavioral, oculomotor and EEG data consistently indicate that, compared with non-video game players, video game players better prepare in time using implicit mechanisms. This sheds light on the neglected role of implicit timing and related electrophysiological mechanisms in gaming research. The results further suggest that game-based interventions may help remediate implicit timing disorders found in psychiatric populations.
Collapse
Affiliation(s)
- Francois R Foerster
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Matthieu Chidharom
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- Department of Psychology, Lehigh University, Bethlehem, PA, USA
| | - Anne Bonnefond
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Giersch
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Woo JH, Azab H, Jahn A, Hayden B, Brown JW. The PRO model accounts for the anterior cingulate cortex role in risky decision-making and monitoring. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:952-968. [PMID: 35332510 PMCID: PMC11059203 DOI: 10.3758/s13415-022-00992-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/08/2022]
Abstract
The anterior cingulate cortex (ACC) has been implicated in a number of functions, including performance monitoring and decision-making involving effort. The prediction of responses and outcomes (PRO) model has provided a unified account of much human and monkey ACC data involving anatomy, neurophysiology, EEG, fMRI, and behavior. We explored the computational nature of ACC with the PRO model, extending it to account specifically for both human and macaque monkey decision-making under risk, including both behavioral and neural data. We show that the PRO model can account for a number of additional effects related to outcome prediction, decision-making under risk, gambling behavior. In particular, we show that the ACC represents the variance of uncertain outcomes, suggesting a link between ACC function and mean-variance theories of decision making. The PRO model provides a unified account of a large set of data regarding the ACC.
Collapse
Affiliation(s)
- Jae Hyung Woo
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Habiba Azab
- Baylor College of Medicine, Houston, TX, USA
| | - Andrew Jahn
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- fMRI Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
11
|
Zhang D, Shen J, Bi R, Zhang Y, Zhou F, Feng C, Gu R. Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms. Psychol Med 2022; 52:2080-2094. [PMID: 33143780 DOI: 10.1017/s0033291720003967] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Reward dysfunction is a major dimension of depressive symptomatology, but it remains obscure if that dysfunction varies across different reward types. In this study, we focus on the abnormalities in anticipatory/consummatory processing of monetary and social reward associated with depressive symptoms. METHODS Forty participants with depressive symptoms and forty normal controls completed the monetary incentive delay (MID) and social incentive delay (SID) tasks with event-related potential (ERP) recording. RESULTS In the SID but not the MID task, both the behavioral hit rate and the ERP component contingent negative variation (CNV; indicating reward anticipation) were sensitive to the interaction between the grouping factor and reward magnitude; that is, the depressive group showed a lower hit rate and a smaller CNV to large-magnitude (but not small-magnitude) social reward cues compared to the control group. Further, these two indexes were correlated with each other. Meanwhile, the ERP components feedback-related negativity and P3 (indicating reward consumption) were sensitive to the main effect of depression across the MID and SID tasks, though this effect was more prominent in the SID task. CONCLUSIONS Overall, we suggest that depressive symptoms are associated with deficits in both the reward anticipation and reward consumption stages, particularly for social rewards. These findings have a potential to characterize the profile of functional impairment that comprises and maintains depression.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Junshi Shen
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Rong Bi
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yueyao Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Fang Zhou
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Chunliang Feng
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou 510631, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Brak IV, Filimonova E, Zakhariya O, Khasanov R, Stepanyan I. Transcranial Current Stimulation as a Tool of Neuromodulation of Cognitive Functions in Parkinson’s Disease. Front Neurosci 2022; 16:781488. [PMID: 35903808 PMCID: PMC9314857 DOI: 10.3389/fnins.2022.781488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Decrease in cognitive function is one of the most common causes of poor life quality and early disability in patients with Parkinson’s disease (PD). Existing methods of treatment are aimed at both correction of motor and non-motor symptoms. Methods of adjuvant therapy (or complementary therapy) for maintaining cognitive functions in patients with PD are of interest. A promising subject of research in this regard is the method of transcranial electric current stimulation (tES). Here we reviewed the current understanding of the pathogenesis of cognitive impairment in PD and of the effects of transcranial direct current stimulation and transcranial alternating current stimulation on the cognitive function of patients with PD-MCI (Parkinson’s Disease–Mild Cognitive Impairment).
Collapse
Affiliation(s)
- Ivan V. Brak
- Laboratory of Comprehensive Problems of Risk Assessment to Population and Workers’ Health, Federal State Budgetary Scientific Institution “Izmerov Research Institute of Occupational Health”, Moscow, Russia
- “Engiwiki” Scientific and Engineering Projects Laboratory, Department of Information Technologies, Novosibirsk State University, Novosibirsk, Russia
- *Correspondence: Ivan V. Brak,
| | | | - Oleg Zakhariya
- Faculty of Philosophy, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam Khasanov
- Faculty of Philosophy, Lomonosov Moscow State University, Moscow, Russia
- Independent Researcher, Novosibirsk, Russia
| | - Ivan Stepanyan
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Getzmann S, Arnau S, Gajewski PD, Wascher E. When long appears short: Effects of auditory distraction on event-related potential correlates of time perception. Eur J Neurosci 2021; 55:121-137. [PMID: 34859527 DOI: 10.1111/ejn.15553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
Attentional models of time perception assume that the perceived duration of a stimulus depends on the extent to which attentional resources are allocated to its temporal information. Here, we studied the effects of auditory distraction on time perception, using a combined attentional-distraction duration-discrimination paradigm. Participants were confronted with a random sequence of long and short tone stimuli, most of which having a uniform (standard) pitch and only a few a different (deviant) pitch. As observed in previous studies, pitch-deviant tones impaired the discrimination of tone duration and triggered a sequence of event-related potentials (ERPs) reflecting a cycle of deviance detection, involuntary attentional distraction and reorientation (MMN, P3a, RON). Contrasting ERPs of short and long tone durations revealed that long tones elicited a more pronounced fronto-central contingent negative variation (CNV) in the time interval after the expected offset of the short tone as well as a more prominent centro-parietal late positive complex (LPC). Relative to standard-pitch tones, deviant-pitch tones especially impaired the correct discrimination of long tones, which was associated with a reduction of the CNV and LPC. These results are interpreted within the theoretical framework of resource-based models of time perception, in which involuntary distraction due to a deviant event led to a withdrawal of attentional resources from the processing of time information.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Stefan Arnau
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| |
Collapse
|
15
|
The impact of cognitive load on prospective and retrospective time estimates at long durations: An investigation using a visual and memory search paradigm. Mem Cognit 2021; 50:837-851. [PMID: 34655029 DOI: 10.3758/s13421-021-01241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 11/08/2022]
Abstract
As human beings, we are bound by time. It is essential for daily functioning, and yet our ability to keep track of time is influenced by a myriad of factors (Block & Zakay, 1997, Psychonomic Bulletin & Review, 4[2], 184-197). First and foremost, time estimation has been found to depend on whether participants estimate the time prospectively or retrospectively (Hicks et al., 1976, The American Journal of Psychology, 89[4], 719-730). However, there is a paucity of research investigating differences between these two conditions in tasks over two minutes (Tobin et al., 2010, PLOS ONE, 5[2], Article e9271). Moreover, estimates have also been shown to be influenced by cognitive load. We thus investigated participants' ability to keep track of time during a visual and memory search task and manipulated its difficulty and duration. Two hundred and ninety-two participants performed the task for 8 or 58 minutes. Participants in the prospective time judgment condition were forewarned of an impending time estimate, whereas participants in the retrospective condition were not. Cognitive load was manipulated and assessed by altering the task's difficulty. The results revealed a higher overestimation of time in the prospective condition compared with the retrospective condition. However, this was found in the 8-minute task only. Overall, participants significantly overestimated the duration of the 8-minute task and underestimated the 58-minute task. Finally, cognitive load had no effect on participants' time estimates. Thus, the well-known cross-over interaction between cognitive load and estimation paradigm (Block et al., 2010, Acta Psychologica, 134[3], 330-343) did not extend to a longer duration in this experiment.
Collapse
|
16
|
Silkes JP, Anjum J. The role and use of event-related potentials in aphasia: A scoping review. BRAIN AND LANGUAGE 2021; 219:104966. [PMID: 34044294 DOI: 10.1016/j.bandl.2021.104966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Event-related potentials (ERPs) can provide important insights into underlying language processes in both unimpaired and neurologically impaired populations and may be particularly useful in aphasia. This scoping review was conducted to provide a comprehensive summary of how ERPs have been used with people with aphasia (PWA), with the goal of exploring the potential clinical application of ERPs in aphasia assessment and treatment. We identified 117 studies that met inclusionary criteria, reflecting six thematic domains of inquiry that relate to understanding both unimpaired and aphasic language processing and the use of ERPs with PWA. In these studies, a wide variety of ERP components were reported. Inconsistencies in reporting of participant characteristics and study protocols limit our ability to generalize beyond the individual studies and understand implications for clinical applicability. We discuss the potential roles of ERPs in aphasia management and make recommendations for further developing ERPs for clinical utility in PWA.
Collapse
Affiliation(s)
- JoAnn P Silkes
- School of Speech, Language, and Hearing Sciences, San Diego State University, 5500 Campanile Rd, SLHS-1518, San Diego, CA 92182-1518, USA.
| | - Javad Anjum
- Speech-Language Pathology, Saint Gianna School of Health Sciences, University of Mary, 7500 University Dr. Bismarck, ND 58504, USA.
| |
Collapse
|
17
|
Johari K, Behroozmand R. Neural correlates of speech and limb motor timing deficits revealed by aberrant beta band desynchronization in Parkinson's disease. Clin Neurophysiol 2021; 132:2711-2721. [PMID: 34373199 DOI: 10.1016/j.clinph.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We used a classical motor reaction time paradigm to examine the effects of Parkinson's disease (PD) on the mechanisms of speech production and upper limb movement. METHODS Electro-encephalography (EEG) signals were recorded in PD and control groups during speech vowel production and button press tasks in response to temporally predictable and unpredictable visual stimuli. RESULTS Motor reaction times were slower in PD vs. control group independent of stimulus timing and movement modality. This effect was accompanied by stronger desynchronizations of low beta (13-18 Hz) and high beta (18-25 Hz) band neural oscillations in PD vs. control prior to the onset of speech and hand movement. In addition, pre-movement desynchronization of beta band oscillations were correlated with motor reaction time in control subjects with faster responses associated with weaker beta band desynchronizations during the planning phase of movement. However, no such effect was found in the PD group. CONCLUSIONS We suggest that the aberrant pattern of beta band desynchronization is a neural correlate of speech and upper limb motor timing deficits as a result of cortico-striatal pathology in PD. SIGNIFICANCE These findings motivate interventions targeted toward normalizing beta band activities for improving speech and upper limb movement timing in PD.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States; Human Brain Research Lab, Department of Neurosurgery, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States.
| |
Collapse
|
18
|
Sauvé SA, Cho A, Zendel BR. Mapping Tonal Hierarchy in the Brain. Neuroscience 2021; 465:187-202. [PMID: 33774126 DOI: 10.1016/j.neuroscience.2021.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
In Western tonal music, pitches are organized hierarchically based on their perceived fit in a specific tonal context. This hierarchy forms scales that are commonly used in Western tonal music. The hierarchical nature of tonal structure is well established behaviourally; however, the neural underpinnings are largely unknown. In this study, EEG data and goodness-of-fit ratings were collected from 34 participants who listened to an arpeggio followed by a probe tone, where the probe tone could be any chromatic scale degree and the context any of the major keys. Goodness-of-fit ratings corresponded to the classic tonal hierarchy. N1, P2 and the Early Right Anterior Negativity (ERAN) were significantly modulated by scale degree. Furthermore, neural marker amplitudes and latencies were significantly correlated with similar magnitude to both pitch height and goodness-of-fit ratings. This is different from the clearer divide between pitch height correlating with early neural markers (100-200 ms) and tonal hierarchy correlating with late neural markers (200-1000 ms) reported by Sankaran et al. (2020) and Quiroga-Martinez et al. (2019). Finally, individual differences were greater than any main effects detected when pooling participants and brain-behavior correlations vary widely (i.e. r = -0.8 to 0.8).
Collapse
Affiliation(s)
- Sarah A Sauvé
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
| | - Alex Cho
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Benjamin Rich Zendel
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada; Aging Research Centre - Newfoundland and Labrador, Memorial University of Newfoundland, Grenfell Campus, Memorial University, Canada
| |
Collapse
|
19
|
Li B, Jia J, Chen L, Fang F. Electrophysiological correlates of the somatotopically organized tactile duration aftereffect. Brain Res 2021; 1762:147432. [PMID: 33737064 DOI: 10.1016/j.brainres.2021.147432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Adaptation to sensory events of long or short duration leads to a negative aftereffect, in which a new target event (of median duration) following the adaptation will be perceived to be shorter or longer than is actually the case. This illusion has been observed in visual, auditory, and tactile modalities. This study used event-related potentials (ERPs) to examine the tactile duration aftereffect, using the contingent negative variation (CNV) and the late positive component (LPC) as a way to characterize the temporal processes. The tactile duration adaptation was found to induce a significant aftereffect within a somatotopic framework. Moreover, the CNV in the contralateral scalp and the LPC in the fronto-central scalp were both modulated by the tactile duration adaptation. Specifically, adaptation to a short tactile duration increased the CNV and LPC amplitudes, whereas adaptation to a long tactile duration decreased them. This modulation was contingent on the topographic distance between fingers, which was only observed when the adapting and test fingers were consistent or adjacent, but not homologous. In sum, these results reveal a coherent behavioral-electrophysiological link in the somatotopically organized tactile duration aftereffect.
Collapse
Affiliation(s)
- Baolin Li
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| | - Jianrong Jia
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China.
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Richter F, Ibáñez A. Time is body: Multimodal evidence of crosstalk between interoception and time estimation. Biol Psychol 2021; 159:108017. [PMID: 33450326 DOI: 10.1016/j.biopsycho.2021.108017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Theoretical approaches propose a blending between interoception and time estimation. Interoception might constitute a neurophysiological mechanism for encoding duration. However, no study has assessed the convergence between interoception and time estimation using behavioral, neurophysiological, and functional anatomy signatures. We examined the multimodal convergence between interoception and time estimation using a two-fold approach. In study 1, we developed a dual design combining interoception (measuring heartbeat detection - HBD, and heartbeat evoked potential - HEP) with a time estimation paradigm (TEP, estimation of duration of a 120 s interval). In study 2, we performed a conjoint metanalysis (Multi-level Kernel Density Analysis, MKDA) of neuroimaging, including reports of interoception and time estimation. Both studies provide convergent evidence of time estimation's significant involvement in behavioral, electrophysiological (enhanced HEP), and neuroimaging (overlapping cluster in the right insula and operculum) signatures of interoception. Convergent results from both studies offer direct support for a shared mechanism of interoception and time estimation.
Collapse
Affiliation(s)
- Fabian Richter
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina.
| | - Agustín Ibáñez
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Center for Social and Cognitive Neuroscience (CSCN), Latin American Institute of Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile; Universidad Autónoma del Caribe, Colombia; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), US.
| |
Collapse
|
21
|
Breska A, Ivry RB. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. SCIENCE ADVANCES 2020; 6:6/49/eabb1141. [PMID: 33268365 PMCID: PMC7821877 DOI: 10.1126/sciadv.abb1141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Duration Selectivity in Right Parietal Cortex Reflects the Subjective Experience of Time. J Neurosci 2020; 40:7749-7758. [PMID: 32928883 PMCID: PMC7531545 DOI: 10.1523/jneurosci.0078-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
The perception of duration in the subsecond range has been hypothesized to be mediated by the population response of duration-sensitive units, each tuned to a preferred duration. One line of support for this hypothesis comes from neuroimaging studies showing that cortical regions, such as in parietal cortex exhibit duration tuning. It remains unclear whether this representation is based on the physical duration of the sensory input or the subjective duration, a question that is important given that our perception of the passage of time is often not veridical, but rather, biased by various contextual factors. Here we used fMRI to examine the neural correlates of subjective time perception in human participants. To manipulate perceived duration while holding physical duration constant, we used an adaptation method, in which, before judging the duration of a test stimulus, the participants were exposed to a train of adapting stimuli of a fixed duration. Behaviorally, this procedure produced a pronounced negative aftereffect: A short adaptor biased participants to judge stimuli as longer and a long adaptor-biased participants to judge stimuli as shorter. Duration tuning modulation, manifest as an attenuated BOLD response to stimuli similar in duration to the adaptor, was only observed in the right supramarginal gyrus (SMG) of the parietal lobe and middle occipital gyrus, bilaterally. Across individuals, the magnitude of the behavioral aftereffect was positively correlated with the magnitude of duration tuning modulation in SMG. These results indicate that duration-tuned neural populations in right SMG reflect the subjective experience of time.SIGNIFICANCE STATEMENT The subjective sense of time is a fundamental dimension of sensory experience. To investigate the neural basis of subjective time, we conducted an fMRI study, using an adaptation procedure that allowed us to manipulate perceived duration while holding physical duration constant. Regions within the occipital cortex and right parietal lobe showed duration tuning that was modulated when the test stimuli were similar in duration to the adaptor. Moreover, the magnitude of the distortion in perceived duration was correlated with the degree of duration tuning modulation in the parietal region. These results provide strong physiological evidence that the population coding of time in the right parietal cortex reflects our subjective experience of time.
Collapse
|
23
|
Xu M, Meng J, Yu H, Jung TP, Ming D. Dynamic Brain Responses Modulated by Precise Timing Prediction in an Opposing Process. Neurosci Bull 2020; 37:70-80. [PMID: 32548801 DOI: 10.1007/s12264-020-00527-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023] Open
Abstract
The brain function of prediction is fundamental for human beings to shape perceptions efficiently and successively. Through decades of effort, a valuable brain activation map has been obtained for prediction. However, much less is known about how the brain manages the prediction process over time using traditional neuropsychological paradigms. Here, we implemented an innovative paradigm for timing prediction to precisely study the temporal dynamics of neural oscillations. In the experiment recruiting 45 participants, expectation suppression was found for the overall electroencephalographic activity, consistent with previous hemodynamic studies. Notably, we found that N1 was positively associated with predictability while N2 showed a reversed relation to predictability. Furthermore, the matching prediction had a similar profile with no timing prediction, both showing an almost saturated N1 and an absence of N2. The results indicate that the N1 process showed a 'sharpening' effect for predictable inputs, while the N2 process showed a 'dampening' effect. Therefore, these two paradoxical neural effects of prediction, which have provoked wide confusion in accounting for expectation suppression, actually co-exist in the procedure of timing prediction but work in separate time windows. These findings strongly support a recently-proposed opposing process theory.
Collapse
Affiliation(s)
- Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Haiqing Yu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Tzyy-Ping Jung
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.,Swartz Center for Computational Neuroscience, University of California, San Diego, CA, 92093, USA
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China. .,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
24
|
Kononowicz TW, Sander T, Van Rijn H, van Wassenhove V. Precision Timing with α-β Oscillatory Coupling: Stopwatch or Motor Control? J Cogn Neurosci 2020; 32:1624-1636. [PMID: 32378998 DOI: 10.1162/jocn_a_01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Precise timing is crucial for many behaviors ranging from conversational speech to athletic performance. The precision of motor timing has been suggested to result from the strength of phase-amplitude coupling (PAC) between the phase of alpha oscillations (α, 8-12 Hz) and the power of beta activity (β, 14-30 Hz), herein referred to as α-β PAC. The amplitude of β oscillations has been proposed to code for temporally relevant information and the locking of β power to the phase of α oscillations to maintain timing precision. Motor timing precision has at least two sources of variability: variability of timekeeping mechanism and variability of motor control. It is ambiguous to which of these two factors α-β PAC should be ascribed: α-β PAC could index precision of stopwatch-like internal timekeeping mechanisms, or α-β PAC could index motor control precision. To disentangle these two hypotheses, we tested how oscillatory coupling at different stages of a time reproduction task related to temporal precision. Human participants encoded and subsequently reproduced a time interval while magnetoencephalography was recorded. The data show a robust α-β PAC during both the encoding and reproduction of a temporal interval, a pattern that cannot be predicted by motor control accounts. Specifically, we found that timing precision resulted from the trade-off between the strength of α-β PAC during the encoding and during the reproduction of intervals. These results support the hypothesis that α-β PAC codes for the precision of temporal representations in the human brain.
Collapse
Affiliation(s)
- Tadeusz W Kononowicz
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | | | | | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| |
Collapse
|
25
|
An EEG investigation of the mechanisms involved in the perception of time when expecting emotional stimuli. Biol Psychol 2019; 148:107777. [DOI: 10.1016/j.biopsycho.2019.107777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022]
|
26
|
McKinney TL, Euler MJ. Neural anticipatory mechanisms predict faster reaction times and higher fluid intelligence. Psychophysiology 2019; 56:e13426. [PMID: 31241187 DOI: 10.1111/psyp.13426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Higher cognitive ability is reliably linked to better performance on chronometric tasks (i.e., faster reaction times, RT), yet the neural basis of these effects remains unclear. Anticipatory processes represent compelling yet understudied potential mechanisms of these effects, which may facilitate performance through reducing the uncertainty surrounding the temporal onset of stimuli (temporal uncertainty) and/or facilitating motor readiness despite uncertainty about impending target locations (target uncertainty). Specifically, the contingent negative variation (CNV) represents a compelling candidate mechanism of anticipatory motor planning, while the alpha oscillation is thought to be sensitive to temporal contingencies in perceptual systems. The current study undertook a secondary analysis of a large data set (n = 91) containing choice RT, cognitive ability, and EEG measurements to help clarify these issues. Single-trial EEG analysis in conjunction with mixed-effects modeling revealed that higher fluid intelligence corresponded to faster RT on average. When considered together, temporal and target uncertainty moderated the RT-ability relationship, with higher ability being associated with greater resilience to both types of uncertainty. Target uncertainty attenuated the amplitude of the CNV for all participants, but higher ability individuals were more resilient to this effect. Similarly, only higher ability individuals showed increased prestimulus alpha power (at left-lateralized sites) during longer, more easily anticipated interstimulus intervals. Collectively, these findings emphasize top-down anticipatory processes as likely contributors to chronometry-ability correlations.
Collapse
Affiliation(s)
- Ty L McKinney
- Department of Psychology, University of Utah, Salt Lake City, Utah
| | - Matthew J Euler
- Department of Psychology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Evidence for we-representations during joint action planning. Neuropsychologia 2019; 131:73-83. [PMID: 31153967 PMCID: PMC6667733 DOI: 10.1016/j.neuropsychologia.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 11/21/2022]
Abstract
Do people engaged in joint action form action plans that specify joint outcomes at the group level? EEG was recorded from pairs of participants who performed coordinated actions that could result in different postural configurations. To isolate individual and joint action planning processes, a pre-cue specified in advance the individual actions and/or the joint configuration. Participants had 1200 ms to prepare their actions. Then a Go cue specified all action parameters and participants performed a synchronized action as quickly as possible. Action onsets were shorter when the pre-cue specified the joint configuration, regardless of whether individual action was also specified. EEG analyses showed that specifying joint action parameters in advance reduced ambiguity in a structured joint action plan (reflected in the decrease of the amplitude of the P600) and helped with representing action goals and interpersonal coordination patterns in sensorimotor brain areas (reflected in increased alpha/mu suppression and CNV amplitudes). These results provide clear evidence that joint action is driven not only by action plans that specify individual contributions, but also by action plans that specify joint action outcomes at the group level. People form individual and group-level representations during joint action planning. Information about joint configuration benefits task performance. Information about joint configuration reduces ambiguity in joint task representation. Evidence for predictive “we-representations” in the sensorimotor system. “We-representations” may be formed independently of “I” and “You” representations.
Collapse
|
28
|
Pfeuty M, Monfort V, Klein M, Krieg J, Collé S, Colnat-Coulbois S, Brissart H, Maillard L. Role of the supplementary motor area during reproduction of supra-second time intervals: An intracerebral EEG study. Neuroimage 2019; 191:403-420. [DOI: 10.1016/j.neuroimage.2019.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022] Open
|
29
|
Cross K, Fujioka T. Auditory rhyme processing in expert freestyle rap lyricists and novices: An ERP study. Neuropsychologia 2019; 129:223-235. [PMID: 30951740 DOI: 10.1016/j.neuropsychologia.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/02/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022]
Abstract
Music and language processing share and sometimes compete for brain resources. An extreme case of such shared processing occurs in improvised rap music, in which performers, or 'lyricists', combine rhyming, rhythmic, and semantic structures of language with musical rhythm, harmony, and phrasing to create integrally meaningful musical expressions. We used event-related potentials (ERPs) to investigate how auditory rhyme sequence processing differed between expert lyricists and non-lyricists. Participants listened to rhythmically presented pseudo-word triplets each of which terminated in a full-rhyme (e.g., STEEK, PREEK; FLEEK), half-rhyme (e.g., STEEK, PREEK; FREET), or non-rhyme (e.g., STEEK, PREEK; YAME), then judged each sequence in its aesthetic (Do you 'like' the rhyme?) or technical (Is the rhyme 'perfect'?) aspect. Phonological N450 showed rhyming effects between conditions (i.e., non vs. full; half vs. full; non vs. half) similarly across groups in parietal electrodes. However, concurrent activity in frontocentral electrodes showed left-laterality in non-lyricists, but not lyricists. Furthermore, non-lyricists' responses to the three conditions were distinct in morphology and amplitude at left-hemisphere electrodes with no condition difference at right-hemisphere electrodes, while lyricists' responses to half-rhymes they deemed unsatisfactory were similar to full-rhyme at left-hemisphere electrodes, and similar to non-rhyme at right-hemisphere electrodes. The CNV response observed while waiting for the second and third pseudo-word in the sequence was more enhanced to aesthetic rhyme judgments tasks than to technical rhyme judgment tasks in non-lyricists, suggesting their investment of greater effort for aesthetic rhyme judgments. No task effects were observed in lyricists, suggesting that aesthetic and technical rhyme judgments may engage the same processes for experts. Overall, our findings suggest that extensive practice of improvised lyricism may uniquely encourage the neuroplasticity of integrated linguistic and musical feature processing in the brain.
Collapse
Affiliation(s)
- Keith Cross
- Curriculum Studies Department, College of Education, University of Hawai`i at Mānoa, Honolulu, HI, USA.
| | - Takako Fujioka
- Centre for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Bannier D, Wearden J, Le Dantec CC, Rebaï M. Differences in the temporal processing between identification and categorization of durations: A behavioral and ERP study. Behav Brain Res 2019; 356:197-203. [PMID: 30189287 DOI: 10.1016/j.bbr.2018.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022]
Abstract
This study examined how different forms of decision-making modulate time perception. Participants performed temporal bisection and generalization tasks, requiring them to either categorize a stimulus duration as more similar to short or long standards (bisection), or identify whether or not a duration was the same as a previously-presented standard (generalization). They responded faster in the bisection task than in the generalization one for long durations. This behavioral effect was accompanied by modulation of event-related potentials (ERPs). More specifically, between 500 ms and 600 ms after stimulus offset, a late positive component (LPC), appearing in the centro-parietal region, showed lower amplitude in the bisection task than in the generalization one, for long durations, mirroring the behavioral result. Before (200-500 ms) and after (600-800 ms) this window, the amplitude of the LPC was globally larger in the generalization paradigm, independently of the presented duration. Finally, the LPC amplitude was higher for long durations than for shorter ones at the beginning of the component (between 200 and 300 ms after stimulus extinction) and was then higher for short durations than for longer ones (between 300 and 600 ms after offset), indicating that the decision about the former stimuli was made earlier than for the latter ones. Taken together, these results indicate that the categorization of durations engages fewer cognitive resources than their identification.
Collapse
Affiliation(s)
- Dorian Bannier
- Normandie Université, UNIROUEN, CRFDP, 76000 Rouen, France.
| | - John Wearden
- School of Psychology, Keele University, University of Manchester, United Kingdom
| | | | - Mohamed Rebaï
- Normandie Université, UNIROUEN, CRFDP, 76000 Rouen, France
| |
Collapse
|
31
|
Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2018; 188:557-571. [PMID: 30590120 DOI: 10.1016/j.neuroimage.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Joris van der Cruijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Sint Maartenskliniek Research, Nijmegen, the Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
32
|
Glazer JE, Kelley NJ, Pornpattananangkul N, Mittal VA, Nusslock R. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. Int J Psychophysiol 2018; 132:184-202. [DOI: 10.1016/j.ijpsycho.2018.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
33
|
Palva S, Palva JM. Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing. Trends Neurosci 2018; 41:729-743. [DOI: 10.1016/j.tins.2018.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
|
34
|
Boncompte G, Cosmelli D. Neural Correlates of Conscious Motion Perception. Front Hum Neurosci 2018; 12:355. [PMID: 30250429 PMCID: PMC6139308 DOI: 10.3389/fnhum.2018.00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
The nature of the proper neural signature of conscious perception remains a topic of active debate. Theoretical support from integrative theories of consciousness is consistent with such signature being P3b, one of the main candidates in the literature. Recent work has also put forward a mid-latency and more localized component, the Visual Awareness Negativity (VAN), as a proper Neural Correlate of Consciousness (NCC). Early local components like P1 have also been proposed. However, experiments exploring visual NCCs are conducted almost exclusively using static images as the content to be consciously perceived, favoring ventral stream processing, therefore limiting the scope of the NCCs that have been identified. Here we explored the visual NCCs isolating local motion, a dorsally processed feature, as the primary feature being consciously perceived. Physical equality between Seen and Unseen conditions in addition to a minimal contrast difference between target and no-target displays was employed. In agreement with previous literature, we found a P3b with a wide centro-parietal distribution that strongly correlated with the detection of the stimuli. P3b magnitude was larger for Seen vs. Unseen conditions, a result that was consistently observed at the single subject level. In contrast, we were unable to detect VAN in our data, regardless of whether the subject perceived or not the stimuli. In the 200-300 ms time window we found a N2pc component, consistent with the high attentional demands of our task. Early components like P1 were not observed in our data, in agreement with their proposed role in the processing of visual features, but not as proper NCCs. Our results extend the role of P3b as a content independent NCC to conscious visual motion perception.
Collapse
Affiliation(s)
- Gonzalo Boncompte
- Laboratorio de Psicofisiología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Cosmelli
- Laboratorio de Psicofisiología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Kunimatsu J, Suzuki TW, Ohmae S, Tanaka M. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. eLife 2018; 7:35676. [PMID: 29963985 PMCID: PMC6050043 DOI: 10.7554/elife.35676] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
The ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period. Conversely, neuronal correlates of trial-by-trial variation of self-timing emerged earlier in the cerebellum than the striatum. Local inactivation of respective recording sites confirmed the difference in their relative contributions to supra- and sub-second intervals. These results suggest that the basal ganglia may measure elapsed time relative to the intended interval, while the cerebellum might be responsible for the fine adjustment of self-timing.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tomoki W Suzuki
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shogo Ohmae
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
36
|
Performance-informed EEG analysis reveals mixed evidence for EEG signatures unique to the processing of time. PSYCHOLOGICAL RESEARCH 2018; 84:352-369. [PMID: 29926169 PMCID: PMC7039843 DOI: 10.1007/s00426-018-1039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Certain EEG components (e.g., the contingent negative variation, CNV, or beta oscillations) have been linked to the perception of temporal magnitudes specifically. However, it is as of yet unclear whether these EEG components are really unique to time perception or reflect the perception of magnitudes in general. In the current study we recorded EEG while participants had to make judgments about duration (time condition) or numerosity (number condition) in a comparison task. This design allowed us to directly compare EEG signals between the processing of time and number. Stimuli consisted of a series of blue dots appearing and disappearing dynamically on a black screen. Each stimulus was characterized by its duration and the total number of dots that it consisted of. Because it is known that tasks like these elicit perceptual interference effects that we used a maximum-likelihood estimation (MLE) procedure to determine, for each participant and dimension separately, to what extent time and numerosity information were taken into account when making a judgement in an extensive post hoc analysis. This approach enabled us to capture individual differences in behavioral performance and, based on the MLE estimates, to select a subset of participants who suppressed task-irrelevant information. Even for this subset of participants, who showed no or only small interference effects and thus were thought to truly process temporal information in the time condition and numerosity information in the number condition, we found CNV patterns in the time-domain EEG signals for both tasks that was more pronounced in the time-task. We found no substantial evidence for differences between the processing of temporal and numerical information in the time–frequency domain.
Collapse
|
37
|
Wiener M, Parikh A, Krakow A, Coslett HB. An Intrinsic Role of Beta Oscillations in Memory for Time Estimation. Sci Rep 2018; 8:7992. [PMID: 29789611 PMCID: PMC5964239 DOI: 10.1038/s41598-018-26385-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The neural mechanisms underlying time perception are of vital importance to a comprehensive understanding of behavior and cognition. Recent work has suggested a supramodal role for beta oscillations in measuring temporal intervals. However, the precise function of beta oscillations and whether their manipulation alters timing has yet to be determined. To accomplish this, we first re-analyzed two, separate EEG datasets and demonstrate that beta oscillations are associated with the retention and comparison of a memory standard for duration. We next conducted a study of 20 human participants using transcranial alternating current stimulation (tACS), over frontocentral cortex, at alpha and beta frequencies, during a visual temporal bisection task, finding that beta stimulation exclusively shifts the perception of time such that stimuli are reported as longer in duration. Finally, we decomposed trialwise choice data with a drift diffusion model of timing, revealing that the shift in timing is caused by a change in the starting point of accumulation, rather than the drift rate or threshold. Our results provide evidence for the intrinsic involvement of beta oscillations in the perception of time, and point to a specific role for beta oscillations in the encoding and retention of memory for temporal intervals.
Collapse
|
38
|
Gu BM, Kukreja K, Meck WH. Oscillation patterns of local field potentials in the dorsal striatum and sensorimotor cortex during the encoding, maintenance, and decision stages for the ordinal comparison of sub- and supra-second signal durations. Neurobiol Learn Mem 2018; 153:79-91. [PMID: 29778763 DOI: 10.1016/j.nlm.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 11/27/2022]
Abstract
Ordinal comparison of successively presented signal durations requires (a) the encoding of the first signal duration (standard), (b) maintenance of temporal information specific to the standard duration in memory, and (c) timing of the second signal duration (comparison) during which a comparison is made of the first and second durations. Rats were first trained to make ordinal comparisons of signal durations within three time ranges using 0.5, 1.0, and 3.0-s standard durations. Local field potentials were then recorded from the dorsal striatum and sensorimotor cortex in order to investigate the pattern of neural oscillations during each phase of the ordinal-comparison process. Increased power in delta and theta frequency ranges was observed during both the encoding and comparison stages. Active maintenance of a selected response, "shorter" or "longer" (counter-balanced across left and right levers), was represented by an increase of theta and delta oscillations in the contralateral striatum and cortex. Taken together, these data suggest that neural oscillations in the delta-theta range play an important role in the encoding, maintenance, and comparison of signal durations.
Collapse
Affiliation(s)
- Bon-Mi Gu
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Keshav Kukreja
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
39
|
Bernosky-Smith KA, Qiu YY, Feja M, Lee YB, Loughlin B, Li JX, Bass CE. Ventral tegmental area D2 receptor knockdown enhances choice impulsivity in a delay-discounting task in rats. Behav Brain Res 2018; 341:129-134. [PMID: 29287910 PMCID: PMC5901913 DOI: 10.1016/j.bbr.2017.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
Abstract
Impulsivity associated with abnormal dopamine (DA) function has been observed in several disorders, including addiction. Choice impulsivity is the preference for small, immediate rewards over larger rewards after a delay, caused by excessive discounting of future rewards. Addicts have abnormally high discount rates and prefer the smaller rewards sooner. While impulsivity has been inversely correlated with DA D2 receptor (D2R) availability in the midbrain and striatum, it is difficult to mechanistically link the two, due to the diverse neuroanatomical localization of D2Rs, which are found throughout the brain, in many types of neurons and neuronal subcompartments. To determine if ventral tegmental area (VTA) D2R hypofunction is linked to impulsivity, we knocked down D2 receptors from the VTA, using an adeno-associated viral (AAV) vector that delivers short hairpin RNAs (shRNA) targeted against the D2R. The D2R knockdown is restricted to neurons whose cell bodies reside in the VTA, leaving postsynaptic D2Rs intact in the striatum, prefrontal cortex, and other mesocorticolimbic structures. Rats were trained in a delay-discounting task to assess impulsive choice until a stable discounting curve was obtained, and then received bilateral VTA infusions of the D2R shRNA or a scrambled control virus. Over the next six weeks, the discounting curve of the VTA D2R knockdown rats shifted to the left, indicating a preference for the smaller, immediate reward, whereas the curve for control rats remained stable and unchanged. Together these results demonstrate that a decrease in VTA D2Rs enhances choice impulsivity.
Collapse
Affiliation(s)
- Kimberly A Bernosky-Smith
- D'Youville College, Department of Biology and Mathematics, 320 Porter Avenue, Buffalo, NY 14201, USA
| | - Yan-Yan Qiu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | - Malte Feja
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | - Yun Beom Lee
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | - Brian Loughlin
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, University at Buffalo, SUNY, 102 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA.
| |
Collapse
|
40
|
Mento G, Astle DE, Scerif G. Cross-frequency Phase–Amplitude Coupling as a Mechanism for Temporal Orienting of Attention in Childhood. J Cogn Neurosci 2018; 30:594-602. [DOI: 10.1162/jocn_a_01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Temporal orienting of attention operates by biasing the allocation of cognitive and motor resources in specific moments in time, resulting in the improved processing of information from expected compared with unexpected targets. Recent findings have shown that temporal orienting operates relatively early across development, suggesting that this attentional mechanism plays a core role for human cognition. However, the exact neurophysiological mechanisms allowing children to attune their attention over time are not well understood. In this study, we presented 8- to 12-year-old children with a temporal cueing task designed to test (1) whether anticipatory oscillatory dynamics predict children's behavioral performance on a trial-by-trial basis and (2) whether anticipatory oscillatory neural activity may be supported by cross-frequency phase–amplitude coupling as previously shown in adults. Crucially, we found that, similar to what has been reported in adults, children's ongoing beta rhythm was strongly coupled with their theta rhythm and that the strength of this coupling distinguished validly cued temporal intervals, relative to neutral cued trials. In addition, in long trials, there was an inverse correlation between oscillatory beta power and children's trial-by-trial reaction, consistent with oscillatory beta power reflecting better response preparation. These findings provide the first experimental evidence that temporal attention in children operates by exploiting oscillatory mechanism.
Collapse
|
41
|
Benau EM, DeLoretta LC, Moelter ST. The time is "right:" Electrophysiology reveals right parietal electrode dominance in time perception. Brain Cogn 2018; 123:92-102. [PMID: 29550507 DOI: 10.1016/j.bandc.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/19/2022]
Abstract
In the present study, healthy undergraduates were asked to identify if a visual stimulus appeared on screen for the same duration as a memorized target (2 s) while event-related potentials (ERP) were recorded. Trials consisted of very short (1.25 s), short (1.6 s), target (2 s), long (2.5 s) or very long (3.125 s) durations, and a yes or no response was required on each trial. We examined behavioral response as signal detection (d') and response bias via a Generalized Accuracy Coefficient (GAC). We examined the mean amplitude as well as the change in amplitude of the initial Contingent Negative Variation (iCNV) and overall CNV (oCNV) and P350 (a P300-like component that follows stimulus extinction) potentials in paired, lateralized posterior electrodes. Results showed a bias to identifying shorter trials as the target more than longer trials via negative GAC scores. The slope and amplitudes of the iCNV and oCNV were consistently greater in right parietal electrodes. Also in right parietal electrodes, the iCNV correlated to d' scores while greater P350 amplitudes in the short condition correlated with more negative GAC scores. The results indicate dominance in the right hemisphere in temporal processing for durations exceeding 1 s. The P350 should also be studied further.
Collapse
Affiliation(s)
- Erik M Benau
- Department of Behavioral and Social Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Laura C DeLoretta
- Department of Behavioral and Social Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Stephen T Moelter
- Department of Behavioral and Social Sciences, University of the Sciences, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Bluschke A, Schuster J, Roessner V, Beste C. Neurophysiological mechanisms of interval timing dissociate inattentive and combined ADHD subtypes. Sci Rep 2018; 8:2033. [PMID: 29391481 PMCID: PMC5794858 DOI: 10.1038/s41598-018-20484-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/19/2018] [Indexed: 01/26/2023] Open
Abstract
It is far from conclusive what distinguishes the inattentive (ADD) and the combined (ADHD-C) subtype of ADHD on the neuronal level. Theoretical considerations suggest that especially interval timing processes may dissociate these subtypes from each other. Combining high-density EEG recordings with source localization analyses, we examine whether there are ADHD-subtype specific modulations of neurophysiological processes subserving interval timing in matched groups of ADD (n = 16), ADHD-C (n = 16) and controls (n = 16). Patients with ADD and ADHD-C show deficits in interval timing, which was correlated with the degree of inattention in ADD patients. Compared to healthy controls, patients with ADHD-C display a somewhat weaker, yet consistent response preparation process (contingent negative variation, CNV). In patients with ADD, the early CNV is interrupted, indicating an oscillatory disruption of the interval timing process. This is associated with activations in the supplemental motor areas and the middle frontal gyrus. Patients with ADD display adequate feedback learning mechanisms (feedback-related negativity, FRN), which is not the case in patients with ADHD-C. The results suggest that altered pacemaker-accumulation processes in medial frontal structures distinguish the ADD from the ADHD-C subtype. Particularly in patients with ADD phasic interruptions of preparatory neurophysiological processes are evident, making this a possible diagnostic feature.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.
| | - Jacqueline Schuster
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
43
|
Khoshnoud S, Shamsi M, Nazari MA, Makeig S. Different cortical source activation patterns in children with attention deficit hyperactivity disorder during a time reproduction task. J Clin Exp Neuropsychol 2017; 40:633-649. [PMID: 29258410 DOI: 10.1080/13803395.2017.1406897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several neurocognitive studies have indicated that children with attention-deficit/hyperactivity disorder (ADHD) exhibit cognitive deficits in perceptual timing functions; however, only a few electroencephalographic studies have investigated their time reproduction abilities. In the present research, 15 children with ADHD were studied along with 19 age-matched control subjects (aged 7-11 years) as they attempted to reproduce shorter (1000 ms) and longer (2200 ms) time intervals. Trial-mean event-related potential (ERP) and event-related spectral perturbation measures were used to compare the electroencephalography (EEG) source-level activity patterns of the ADHD and control subjects during the time-encoding and reproduction phases. For both short and long intervals, the performance of subjects with ADHD was significantly less accurate and more variable than that of the age-matched controls. During the encoding phase, the ADHD and control ERPs differed significantly for the midfrontal source cluster. The midfrontal P300 amplitude evoked by the onset of the encoding phase was significantly higher for the ADHD group. Similarly, the amplitude of contingent negative variation for the ADHD group was lower for the midfrontal independent component (IC) cluster during long-interval encoding. Theta event-related synchronization in the right occipital cluster also differed between groups during both the encoding and reproduction phases. Moreover, children with ADHD failed to show a frontal selection positivity component in the reproduction phase. Significant differences were found in the mean alpha power for the prefrontal source cluster during the time reproduction phase. These results suggest electrophysiological evidence for time perception deficiencies, selective visual processing disturbances, and working memory impairment in children with ADHD.
Collapse
Affiliation(s)
- Shiva Khoshnoud
- a Faculty of Biomedical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Mousa Shamsi
- a Faculty of Biomedical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Mohammad Ali Nazari
- b Cognitive Neuroscience Laboratory, Department of Psychology , University of Tabriz , Tabriz , Iran
| | - Scott Makeig
- c Swartz Center for Computational Neuroscience , Institute for Neural Computation, University of California, San Diego (UCSD) , La Jolla , CA , USA
| |
Collapse
|
44
|
Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S. The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 2017; 128:262-282. [PMID: 28950734 DOI: 10.1080/00207454.2017.1385614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.
Collapse
Affiliation(s)
- Victor Marinho
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Thomaz Oliveira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Kaline Rocha
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Jéssica Ribeiro
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Francisco Magalhães
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Thalys Bento
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Giovanny R Pinto
- b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Bruna Velasques
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Pedro Ribeiro
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Luiza Di Giorgio
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Marco Orsini
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,d Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center (UNISUAM) , Rio de Janeiro , Brazil
| | - Daya S Gupta
- e Department of Biology , Camden County College , Blackwood , NJ , USA
| | - Juliana Bittencourt
- f Biomedical Engineering Program (COPPE), Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Victor Hugo Bastos
- g Brain Mapping and Functionality Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Silmar Teixeira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| |
Collapse
|
45
|
Kaya U, Yildirim FZ, Kafaligonul H. The involvement of centralized and distributed processes in sub-second time interval adaptation: an ERP investigation of apparent motion. Eur J Neurosci 2017; 46:2325-2338. [DOI: 10.1111/ejn.13691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Utku Kaya
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Ankara Turkey
- Informatics Institute; Middle East Technical University; Ankara Turkey
| | - Fazilet Zeynep Yildirim
- Interdisciplinary Neuroscience Program; Bilkent University; Ankara Turkey
- Institute of Psychology; University of Bern; Bern Switzerland
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Ankara Turkey
- Interdisciplinary Neuroscience Program; Bilkent University; Ankara Turkey
| |
Collapse
|
46
|
Christoffersen GRJ, Laugesen JL, Møller P, Bredie WLP, Schachtman TR, Liljendahl C, Viemose I. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials. Front Hum Neurosci 2017; 11:467. [PMID: 28983243 PMCID: PMC5613789 DOI: 10.3389/fnhum.2017.00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject's evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions-from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.
Collapse
Affiliation(s)
- Gert R. J. Christoffersen
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
- Department of Biology, University of Southern DenmarkOdense, Denmark
| | - Jakob L. Laugesen
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| | - Per Møller
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| | | | - Todd R. Schachtman
- Department of Psychological Sciences, University of MissouriColumbia, MO, United States
| | | | - Ida Viemose
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
47
|
Cruz G, Burgos P, Kilborn K, Evans JJ. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis. PLoS One 2017; 12:e0184037. [PMID: 28863146 PMCID: PMC5581172 DOI: 10.1371/journal.pone.0184037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022] Open
Abstract
Objective Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. Method 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Results Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. Conclusion The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks.
Collapse
Affiliation(s)
- Gabriela Cruz
- School of Psychology, University of Glasgow, Glasgow, Scotland
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
- Escuela de Terapia Ocupacional, Universidad de Chile, Santiago, Chile
- * E-mail:
| | - Pablo Burgos
- Departamento de Kinesiología, Universidad de Chile, Santiago, Chile
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland
| | - Jonathan J. Evans
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
48
|
When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm. J Neurosci 2017; 36:7154-66. [PMID: 27383591 DOI: 10.1523/jneurosci.4619-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. SIGNIFICANCE STATEMENT Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat compared with off-beat targets. We show that this behavioral benefit is reversed when targets are more frequent at off-beat compared with on-beat times, and that preparatory neural activity, previously thought to be driven by the rhythm to on-beat times, is adjusted toward off-beat times. Furthermore, the effect of this relevance-based shifting on target-evoked brain activity was dissociable from the automatic effect of rhythms. Thus, rhythms can act as cues for flexible resource allocation according to the goal relevance of each time point, instead of being obligatory resource attractors.
Collapse
|
49
|
Bueno FD, Morita VC, de Camargo RY, Reyes MB, Caetano MS, Cravo AM. Dynamic representation of time in brain states. Sci Rep 2017; 7:46053. [PMID: 28393850 PMCID: PMC5385543 DOI: 10.1038/srep46053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Abstract
The ability to process time on the scale of milliseconds and seconds is essential for behaviour. A growing number of studies have started to focus on brain dynamics as a mechanism for temporal encoding. Although there is growing evidence in favour of this view from computational and in vitro studies, there is still a lack of results from experiments in humans. We show that high-dimensional brain states revealed by multivariate pattern analysis of human EEG are correlated to temporal judgements. First, we show that, as participants estimate temporal intervals, the spatiotemporal dynamics of their brain activity are consistent across trials. Second, we present evidence that these dynamics exhibit properties of temporal perception, such as scale invariance. Lastly, we show that it is possible to predict temporal judgements based on brain states. These results show how scalp recordings can reveal the spatiotemporal dynamics of human brain activity related to temporal processing.
Collapse
Affiliation(s)
- Fernanda Dantas Bueno
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| | - Vanessa C Morita
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| | - Raphael Y de Camargo
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| | - Marcelo B Reyes
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| | - Marcelo S Caetano
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| | - André M Cravo
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, Santo André - SP - 09210-170, Brasil
| |
Collapse
|
50
|
Shen G, Saby JN, Drew AR, Marshall PJ. Exploring potential social influences on brain potentials during anticipation of tactile stimulation. Brain Res 2017; 1659:8-18. [DOI: 10.1016/j.brainres.2017.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/29/2022]
|