1
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
4
|
Okarmus J, Agergaard JB, Stummann TC, Haukedal H, Ambjørn M, Freude KK, Fog K, Meyer M. USP30 inhibition induces mitophagy and reduces oxidative stress in parkin-deficient human neurons. Cell Death Dis 2024; 15:52. [PMID: 38225227 PMCID: PMC10789816 DOI: 10.1038/s41419-024-06439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Ubiquitination of mitochondrial proteins plays an important role in the cellular regulation of mitophagy. The E3 ubiquitin ligase parkin (encoded by PARK2) and the ubiquitin-specific protease 30 (USP30) have both been reported to regulate the ubiquitination of outer mitochondrial proteins and thereby mitophagy. Loss of E3 ligase activity is thought to be pathogenic in both sporadic and inherited Parkinson's disease (PD), with loss-of-function mutations in PARK2 being the most frequent cause of autosomal recessive PD. The aim of the present study was to evaluate whether mitophagy induced by USP30 inhibition provides a functional rescue in isogenic human induced pluripotent stem cell-derived dopaminergic neurons with and without PARK2 knockout (KO). Our data show that healthy neurons responded to CCCP-induced mitochondrial damage by clearing the impaired mitochondria and that this process was accelerated by USP30 inhibition. Parkin-deficient neurons showed an impaired mitophagic response to the CCCP challenge, although mitochondrial ubiquitination was enhanced. USP30 inhibition promoted mitophagy in PARK2 KO neurons, independently of whether left in basal conditions or treated with CCCP. In PARK2 KO, as in control neurons, USP30 inhibition balanced oxidative stress levels by reducing excessive production of reactive oxygen species. Interestingly, non-dopaminergic neurons were the main driver of the beneficial effects of USP30 inhibition. Our findings demonstrate that USP30 inhibition is a promising approach to boost mitophagy and improve cellular health, also in parkin-deficient cells, and support the potential relevance of USP30 inhibitors as a novel therapeutic approach in diseases with a need to combat neuronal stress mediated by impaired mitochondria.
Collapse
Affiliation(s)
- Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark
| | - Jette Bach Agergaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark
| | - Tina C Stummann
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 7, 1870, Frederiksberg C, Denmark
| | - Malene Ambjørn
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 7, 1870, Frederiksberg C, Denmark
| | - Karina Fog
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense C, Denmark.
- BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.
| |
Collapse
|
5
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Galiakberova AA, Brovkina OI, Kondratyev NV, Artyuhov AS, Momotyuk ED, Kulmukhametova ON, Lagunin AA, Shilov BV, Zadorozhny AD, Zakharov IS, Okorokova LS, Golimbet VE, Dashinimaev EB. Different iPSC-derived neural stem cells shows various spectrums of spontaneous differentiation during long term cultivation. Front Mol Neurosci 2023; 16:1037902. [PMID: 37201156 PMCID: PMC10186475 DOI: 10.3389/fnmol.2023.1037902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging. To address this problem, our study was aimed at investigating the spontaneous differentiation profile in different iPSC-derived human NSCs cultures during long-term cultivation using. Methods Four different IPSC lines were used to generate NSC and spontaneously differentiated neural cultures using DUAL SMAD inhibition. These cells were analyzed at different passages using immunocytochemistry, qPCR, bulk transcriptomes and scRNA-seq. Results We found that various NSC lines generate significantly different spectrums of differentiated neural cells, which can also change significantly during long-term cultivation in vitro. Discussion Our results indicate that both internal (genetic and epigenetic) and external (conditions and duration of cultivation) factors influence the stability of NSCs. These results have important implications for the development of optimal NSCs culturing protocols and highlight the need to further investigate the factors influencing the stability of these cells in vitro.
Collapse
Affiliation(s)
- Adelya Albertovna Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Igorevna Brovkina
- Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - Alexander Sergeevich Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Dmitrievna Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Alexey Aleksandrovich Lagunin
- Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - Igor Sergeevitch Zakharov
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Erdem Bairovich Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- *Correspondence: Erdem Bairovich Dashinimaev,
| |
Collapse
|
7
|
Brockmueller A, Mahmoudi N, Movaeni AK, Mueller AL, Kajbafzadeh AM, Shakibaei M, Zolbin MM. Stem Cells and Natural Agents in the Management of Neurodegenerative Diseases: A New Approach. Neurochem Res 2023; 48:39-53. [PMID: 36112254 DOI: 10.1007/s11064-022-03746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases refer to a group of neurological disorders as a consequence of various destructive illnesses, that predominantly impact neurons in the central nervous system, resulting in impairments in certain brain functions. Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and other neurodegenerative disorders represent a major risk to human health. In order to optimize structural and functional recovery, reconstructive methods integrate many approaches now, to address the complex and multivariate pathophysiology of neurodegenerative disorders. Stem cells, with their unique property of regeneration, offer new possibilities in regenerative and reconstructive medicine. Concurrently, there is an important role for natural products in controlling many health sufferings and they can delay or even prevent the onset of various diseases. In addition, due to their therapeutic properties, they have been used as neuroprotective agents to treat neurodegenerative disorders. After decades of intensive research, scientists made advances in treating these disorders so far, but current therapies are still not capable of preventing the illnesses from progressing. Therefore, in this review, we focused on a new perspective combining stem cells and natural products as an innovative therapy option in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Negin Mahmoudi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Movaeni
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Brocchetti S, Conforti P. Differentiation of hPSCs to Study PRC2 Role in Cell-Fate Specification and Neurodevelopment. Methods Mol Biol 2023; 2655:211-220. [PMID: 37212999 DOI: 10.1007/978-1-0716-3143-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several studies highlighted the importance of the polycomb repressive complex 2 (PRC2) already at the beginning of development. Although the crucial function of PRC2 in regulating lineage commitment and cell-fate specification has been well-established, the in vitro study of the exact mechanisms for which H3K27me3 is indispensable for proper differentiation is still challenging. In this chapter, we report a well-established and reproducible differentiation protocol to generate striatal medium spiny neurons as a tool to explore PRC2 role in brain development.
Collapse
Affiliation(s)
| | - Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan and INGM, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
9
|
Lopez-Toledo G, Silva-Lucero MDC, Herrera-Díaz J, García DE, Arias-Montaño JA, Cardenas-Aguayo MDC. Patient-Derived Fibroblasts With Presenilin-1 Mutations, That Model Aspects of Alzheimer’s Disease Pathology, Constitute a Potential Object for Early Diagnosis. Front Aging Neurosci 2022; 14:921573. [PMID: 35847683 PMCID: PMC9283986 DOI: 10.3389/fnagi.2022.921573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder that can occur in middle or old age, is characterized by memory loss, a continuous decline in thinking, behavioral and social skills that affect the ability of an individual to function independently. It is divided into sporadic and familial subtypes. Early-onset familial AD (FAD) is linked to mutations in genes coding for the amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and presenilin 2 (PS2), which lead to alterations in AβPP processing, generation of the Amyloid-β peptide and hyperphosphorylation of tau protein. Identification of early biomarkers for AD diagnosis represents a challenge, and it has been suggested that molecular changes in neurodegenerative pathways identified in the brain of AD patients can be detected in peripheral non-neural cells derived from familial or sporadic AD patients. In the present study, we determined the protein expression, the proteomic and in silico characterization of skin fibroblasts from FAD patients with PS1 mutations (M146L or A246E) or from healthy individuals. Our results shown that fibroblasts from AD patients had increased expression of the autophagy markers LC3II, LAMP2 and Cathepsin D, a significant increase in total GSK3, phosphorylated ERK1/2 (Thr202/Tyr204) and phosphorylated tau (Thr231, Ser396, and Ser404), but no difference in the phosphorylation of Akt (Ser473) or the α (Ser21) and β (Ser9) GSK3 isoforms, highlighting the relevant role of abnormal protein post-translational modifications in age-related neurodegenerative diseases, such as AD. Both 2-DE gels and mass spectrometry showed significant differences in the expression of the signaling pathways associated with protein folding and the autophagic pathway mediated by chaperones with the expression of HSPA5, HSPE1, HSPD1, HSP90AA1, and HSPE1 and reticular stress in the FAD samples. Furthermore, expression of the heat shock proteins HSP90 and HSP70 was significantly higher in the cells from AD patients as confirmed by Western blot. Taken together our results indicate that fibroblasts from patients with FAD-PS1 present alterations in signaling pathways related to cellular stress, autophagy, lysosomes, and tau phosphorylation. Fibroblasts can therefore be useful in modeling pathways related to neurodegeneration, as well as for the identification of early AD biomarkers.
Collapse
Affiliation(s)
- Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y a la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David-Erasmo García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Maria-del-Carmen Cardenas-Aguayo,
| |
Collapse
|
10
|
Alsaloum M, Waxman SG. iPSCs and DRGs: stepping stones to new pain therapies. Trends Mol Med 2022; 28:110-122. [PMID: 34933815 PMCID: PMC8810720 DOI: 10.1016/j.molmed.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
There is a pressing need for more effective nonaddictive treatment options for pain. Pain signals are transmitted from the periphery into the spinal cord via dorsal root ganglion (DRG) neurons, whose excitability is driven by voltage-gated sodium (NaV) channels. Three NaV channels (NaV1.7, NaV1.8, and NaV1.9), preferentially expressed in DRG neurons, play important roles in pain signaling in humans. Blockade of these channels may provide a novel approach to the treatment of pain, but clinical translation of preclinical results has been challenging, in part due to differences between rodent and human DRG neurons. Human DRG neurons and iPSC-derived sensory neurons (iPSC-SNs) provide new preclinical platforms that may facilitate the development of novel pain therapeutics.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA; Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
11
|
Han F, Liu Y, Huang J, Zhang X, Wei C. Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Front Aging Neurosci 2021; 13:738529. [PMID: 34658841 PMCID: PMC8515543 DOI: 10.3389/fnagi.2021.738529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson's disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabin Han
- Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yanming Liu
- Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Jin Huang
- Laboratory of Basic Medical Research, Medical Centre of PLA Strategic Support Force, Beijing, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
12
|
Morsy A, Carmona AV, Trippier PC. Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses. Molecules 2021; 26:molecules26206235. [PMID: 34684815 PMCID: PMC8538546 DOI: 10.3390/molecules26206235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Angelica V. Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Correspondence:
| |
Collapse
|
13
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
14
|
Bahmad HF, Poppiti R, Alexis J. Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: A review. Diabetes Metab Syndr 2021; 15:487-491. [PMID: 33668000 DOI: 10.1016/j.dsx.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Diabetes mellitus (DM) is a chronic metabolic disease associated with long-term multisystem complications, among which nonhealing diabetic foot ulcers (DFUs) are recognized as major cause of morbidity and mortality. Treating DFUs with surgical procedures such as synthetic or biological skin grafts or skin substitutes has several limitations, where none of the currently available skin substitutes is ideal. METHODS OVID/Medline and PubMed databases were searched using the Medical Subject Heading (MeSH) or Title/Abstract words ("diabetic foot ulcers", "skin substitutes", and "nanofibers"), to identify published research studies on DFUs and nanofibers. RESULTS Electrospinning nanotechnology is being used in the biomedical field to produce polymeric nanofibers impregnated with drugs for wound healing, burns and diabetic ulcers. Those nanofibers also enable seeding of cells into them and culturing them in vitro to synthesize tissue-like structures. Knowing the advantages of generating patient-specific induced pluripotent stem cells (iPSCs) and organoids in three-dimension (3D), including skin organoids, it is worth mingling these technologies to develop tissue-engineered biological skin substitutes. CONCLUSION Nanofiber-skin substitutes hold promise for treatment of patients suffering from DFUs and inspire novel strategies that could be applied to other organ systems as well, introducing a new era of "regenerative and personalized medicine".
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA.
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - John Alexis
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
15
|
Tolomeo AM, Laterza C, Grespan E, Michielin F, Canals I, Kokaia Z, Muraca M, Gagliano O, Elvassore N. NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities. Front Cell Neurosci 2021; 15:602888. [PMID: 33679325 PMCID: PMC7928329 DOI: 10.3389/fncel.2021.602888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% ± 18 PAX6 positive cells) and neurons (38% ± 8 βIIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% ± 1 βIIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications.
Collapse
Affiliation(s)
- Anna Maria Tolomeo
- Department of Industrial Engineering, University of Padua, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padua, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Federica Michielin
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maurizio Muraca
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Women’s and Children’s Health, Faculty of Medicine, University of Padua, Padua, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padua, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padua, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
16
|
Xie J, Yang F, Wang J, Karikomi M, Yin Y, Sun J, Wen T, Nie Q. DNF: A differential network flow method to identify rewiring drivers for gene regulatory networks. Neurocomputing 2020; 410:202-210. [PMID: 34025035 PMCID: PMC8139126 DOI: 10.1016/j.neucom.2020.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Differential network analysis has become an important approach in identifying driver genes in development and disease. However, most studies capture only local features of the underlying gene-regulatory network topology. These approaches are vulnerable to noise and other changes which mask driver-gene activity. Therefore, methods are urgently needed which can separate the impact of true regulatory elements from stochastic changes and downstream effects. We propose the differential network flow (DNF) method to identify key regulators of progression in development or disease. Given the network representation of consecutive biological states, DNF quantifies the essentiality of each node by differences in the distribution of network flow, which are capable of capturing comprehensive topological differences from local to global feature domains. DNF achieves more accurate driver-gene identification than other state-of-the-art methods when applied to four human datasets from The Cancer Genome Atlas and three single-cell RNA-seq datasets of murine neural and hematopoietic differentiation. Furthermore, we predict key regulators of crosstalk between separate networks underlying both neuronal differentiation and the progression of neurodegenerative disease, among which APP is predicted as a driver gene of neural stem cell differentiation. Our method is a new approach for quantifying the essentiality of genes across networks of different biological states.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Fuzhang Yang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mathew Karikomi
- Department of Mathematics, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-3875, USA
| | - Yiting Yin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jiamin Sun
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qing Nie
- Department of Mathematics, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-3875, USA
| |
Collapse
|
17
|
Choi WY, Hwang JH, Lee JY, Cho AN, Lee AJ, Jung I, Cho SW, Kim LK, Kim YJ. Chromatin Interaction Changes during the iPSC-NPC Model to Facilitate the Study of Biologically Significant Genes Involved in Differentiation. Genes (Basel) 2020; 11:E1176. [PMID: 33050006 PMCID: PMC7600115 DOI: 10.3390/genes11101176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Given the difficulties of obtaining diseased cells, differentiation of neurons from patient-specific human induced pluripotent stem cells (iPSCs) with neural progenitor cells (NPCs) as intermediate precursors is of great interest. While cellular and transcriptomic changes during the differentiation process have been tracked, little attention has been given to examining spatial re-organization, which has been revealed to control gene regulation in various cells. To address the regulatory mechanism by 3D chromatin structure during neuronal differentiation, we examined the changes that take place during differentiation process using two cell types that are highly valued in the study of neurodegenerative disease - iPSCs and NPCs. In our study, we used Hi-C, a derivative of chromosome conformation capture that enables unbiased, genome-wide analysis of interaction frequencies in chromatin. We showed that while topologically associated domains remained mostly the same during differentiation, the presence of differential interacting regions in both cell types suggested that spatial organization affects gene regulation of both pluripotency maintenance and neuroectodermal differentiation. Moreover, closer analysis of promoter-promoter pairs suggested that cell fate specification is under the control of cis-regulatory elements. Our results are thus a resourceful addition in benchmarking differentiation protocols and also provide a greater appreciation of NPCs, the common precursors from which required neurons for applications in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, schizophrenia and spinal cord injuries are utilized.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (A.-N.C.); (S.-W.C.)
| | - Andrew J Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea; (A.J.L.); (I.J.)
| | - Inkyung Jung
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea; (A.J.L.); (I.J.)
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (A.-N.C.); (S.-W.C.)
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| |
Collapse
|
18
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
19
|
Poortvliet PC, O'Maley K, Silburn PA, Mellick GD. Perspective: Current Pitfalls in the Search for Future Treatments and Prevention of Parkinson's Disease. Front Neurol 2020; 11:686. [PMID: 32733372 PMCID: PMC7360677 DOI: 10.3389/fneur.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
We are gradually becoming aware that there is more to Parkinson's disease (PD) than meets the eye. Accumulating evidence has unveiled a disease complexity that has not (yet) been incorporated into ongoing efforts aimed at slowing, halting or reversing the course of PD, likely underlying their lack of success. There is a substantial latency between the actual onset of PD pathology and our ability to confirm diagnosis, during which accumulating structural and functional damage might be too advanced for effective modification or protection. Identification at the earliest stages of the disease course in the absence of Parkinsonism is crucial if we are to intervene when it matters most. Prognostic and therapeutic inferences can only be successful if we are able to accurately predict who is at risk for developing PD and if we can differentiate amongst the considerable clinicopathologic diversity. Biomarkers can greatly improve our identification and differentiation abilities if we are able to disentangle cause and effect.
Collapse
Affiliation(s)
- Peter C Poortvliet
- School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Karen O'Maley
- School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, QLD, Australia
| | - Peter A Silburn
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - George D Mellick
- School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Madureira M, Connor-Robson N, Wade-Martins R. "LRRK2: Autophagy and Lysosomal Activity". Front Neurosci 2020; 14:498. [PMID: 32523507 PMCID: PMC7262160 DOI: 10.3389/fnins.2020.00498] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
It has been 15 years since the Leucine-rich repeat kinase 2 (LRRK2) gene was identified as the most common genetic cause for Parkinson's disease (PD). The two most common mutations are the LRRK2-G2019S, located in the kinase domain, and the LRRK2-R1441C, located in the ROC-COR domain. While the LRRK2-G2019S mutation is associated with increased kinase activity, the LRRK2-R1441C exhibits a decreased GTPase activity and altered kinase activity. Multiple lines of evidence have linked the LRRK2 protein with a role in the autophagy pathway and with lysosomal activity in neurons. Neurons rely heavily on autophagy to recycle proteins and process cellular waste due to their post-mitotic state. Additionally, lysosomal activity decreases with age which can potentiate the accumulation of α-synuclein, the pathological hallmark of PD, and subsequently lead to the build-up of Lewy bodies (LBs) observed in this disorder. This review provides an up to date summary of the LRRK2 field to understand its physiological role in the autophagy pathway in neurons and related cells. Careful assessment of how LRRK2 participates in the regulation of phagophore and autophagosome formation, autophagosome and lysosome fusion, lysosomal maturation, maintenance of lysosomal pH and calcium levels, and lysosomal protein degradation are addressed. The autophagy pathway is a complex cellular process and due to the variety of LRRK2 models studied in the field, associated phenotypes have been reported to be seemingly conflicting. This review provides an in-depth discussion of different models to assess the normal and disease-associated role of the LRRK2 protein on autophagic function. Given the importance of the autophagy pathway in Parkinson's pathogenesis it is particularly relevant to focus on the role of LRRK2 to discover novel therapeutic approaches that restore lysosomal protein degradation homeostasis.
Collapse
Affiliation(s)
- Marta Madureira
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Zhang Y, Zhao Y, Song X, Luo H, Sun J, Han C, Gu X, Li J, Cai G, Zhu Y, Liu Z, Wei L, Wei ZZ. Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments. Front Psychiatry 2020; 11:80. [PMID: 32425815 PMCID: PMC7205035 DOI: 10.3389/fpsyt.2020.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Severe mental illnesses (SMI) such as schizophrenia and bipolar disorder affect 2-4% of the world population. Current medications and diagnostic methods for mental illnesses are not satisfying. In animal studies, stem cell therapy is promising for some neuropsychiatric disorders and cognitive/social deficits, not only treating during development (targeting modulation and balancing) but also following neurodegeneration (cell replacement and regenerating support). We believe that novel interventions such as modulation of particular cell populations to develop cell-based treatment can improve cognitive and social functions in SMI. With pathological synaptic/myelin damage, oligodendrocytes seem to play a role. In this review, we have summarized oligodendrogenesis mechanisms and some related calcium signals in neural cells and stem/progenitor cells. The related benefits from endogenous stem/progenitor cells within the brain and exogenous stem cells, including multipotent mesenchymal-derived stromal cells (MSC), fetal neural stem cells (NSC), pluripotent stem cells (PSC), and differentiated progenitors, are discussed. These also include stimulating mechanisms of oligodendrocyte proliferation, maturation, and myelination, responsive to the regenerative effects by both endogenous stem cells and transplanted cells. Among the mechanisms, calcium signaling regulates the neuronal/glial progenitor cell (NPC/GPC)/oligodendrocyte precursor cell (OPC) proliferation, migration, and differentiation, dendrite development, and synaptic plasticity, which are involved in many neuropsychiatric diseases in human. On the basis of numerous protein annotation and protein-protein interaction databases, a total of 119 calcium-dependent/activated proteins that are related to neuropsychiatry in human are summarized in this investigation. One of the advanced methods, the calcium/cation-channel-optogenetics-based stimulation of stem cells and transplanted cells, can take advantage of calcium signaling regulations. Intranasal-to-brain delivery of drugs and stem cells or local delivery with the guidance of brain imaging techniques may provide a unique new approach for treating psychiatric disorders. It is also expected that preconditioning stem cell therapy following precise brain imaging as pathological confirmation has high potential if translated to cell clinic use. Generally, modulable cell transplantation followed by stimulations should provide paracrine protection, synaptic modulation, and myelin repair for the brain in SMI.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingying Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Hua Luo
- Emory Critical Care Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chunyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jun Li
- Department of Biological Psychiatry, Peking University Sixth Hospital, Beijing, China
- Department of Biological Psychiatry, Peking University Institute of Mental Health, Beijing, China
- Department of Biological Psychiatry, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Department of Biological Psychiatry, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Guilan Cai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhandong Liu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Murtaza N, Uy J, Singh KK. Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Mol Autism 2020; 11:27. [PMID: 32317014 PMCID: PMC7171839 DOI: 10.1186/s13229-020-00334-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Proteomics is the large-scale study of the total protein content and their overall function within a cell through multiple facets of research. Advancements in proteomic methods have moved past the simple quantification of proteins to the identification of post-translational modifications (PTMs) and the ability to probe interactions between these proteins, spatially and temporally. Increased sensitivity and resolution of mass spectrometers and sample preparation protocols have drastically reduced the large amount of cells required and the experimental variability that had previously hindered its use in studying human neurological disorders. Proteomics offers a new perspective to study the altered molecular pathways and networks that are associated with autism spectrum disorders (ASD). The differences between the transcriptome and proteome, combined with the various types of post-translation modifications that regulate protein function and localization, highlight a novel level of research that has not been appropriately investigated. In this review, we will discuss strategies using proteomics to study ASD and other neurological disorders, with a focus on how these approaches can be combined with induced pluripotent stem cell (iPSC) studies. Proteomic analysis of iPSC-derived neurons have already been used to measure changes in the proteome caused by patient mutations, analyze changes in PTMs that resulted in altered biological pathways, and identify potential biomarkers. Further advancements in both proteomic techniques and human iPSC differentiation protocols will continue to push the field towards better understanding ASD disease pathophysiology. Proteomics using iPSC-derived neurons from individuals with ASD offers a window for observing the altered proteome, which is necessary in the future development of therapeutics against specific targets.
Collapse
Affiliation(s)
- Nadeem Murtaza
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Jarryll Uy
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
23
|
Li L, Kim HJ, Roh JH, Kim M, Koh W, Kim Y, Heo H, Chung J, Nakanishi M, Yoon T, Hong CP, Seo SW, Na DL, Song J. Pathological manifestation of the induced pluripotent stem cell-derived cortical neurons from an early-onset Alzheimer's disease patient carrying a presenilin-1 mutation (S170F). Cell Prolif 2020; 53:e12798. [PMID: 32216003 PMCID: PMC7162796 DOI: 10.1111/cpr.12798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Alzheimer's disease (AD) is the most common neurodegenerative disease which is characterized by the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. These abnormal proteins induce disturbance in mitochondrial dynamics and defect in autophagy system. Since presenilin‐1 (PS1) is a core component in γ‐secretase complex, the mutations of PS1 gene cause the interference of γ‐secretase activity and lead to the increased Aβ42 secretion. We aimed to characterize the patient‐specific induced pluripotent stem cell (iPSC) line carrying PS1‐S170F mutation. Furthermore, we tested whether disease‐modifying drug can reduce AD pathology in the AD iPSC‐derived neurons. Materials and methods Mononuclear cells (MNCs) were isolated freshly from the peripheral blood of an autosomal dominant AD (ADAD) patient carrying presenilin‐1 (PS1) mutation (Ser170Phe; PS1‐S170F) and a cognitively normal control. We generated induced pluripotent stem cell (iPSC) lines, which were differentiated into functional cortical neurons. Then, we measured the markers indicative of AD pathogenesis using immunocytochemistry and Western blot. We also investigated the mitochondrial dynamics in the AD iPSC‐derived neurons using Mito‐tracker. Results We observed that both extracellular and intracellular Aβ levels were dramatically increased in the PS1‐S170F iPSC‐derived neurons, compared with the control iPSC‐derived neurons. Furthermore, PS1‐S170F iPSC‐derived neurons showed high expression levels of p‐Tau, which were detected both in the soma and neurites. The mitochondrial velocity in the PS1‐S170F iPSC‐derived neurons was much reduced, compared with that of the control. We also found a significant decrease of fusion‐related protein Mfn1 (membrane proteins mitofusin 1) and an increase of fission‐related protein DRP1 (dynamin‐related protein 1) in the PS1‐S170F iPSC‐derived neurons. We further observed the defects of autophagy‐related clearance in the PS1‐S170F iPSC‐derived neurons. Finally, we demonstrated the levels of Aβ and p‐Tau can be dramatically reduced by the treatment of LY‐2886721, a BACE1 inhibitor. Conclusions Taken together, we have established and characterized the pathological features of an AD patient carrying PS1‐S170F mutation using iPSC technology, which will be the first case on this mutation and this iPSC line will serve as a useful resource for studying AD pathogenesis and drug screening in the future.
Collapse
Affiliation(s)
- Ling Li
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hee Jin Kim
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
| | - Jee Hoon Roh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minchul Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Wonyoung Koh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Younghoon Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hyohoon Heo
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Jaehoon Chung
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
| | | | - Taeyoung Yoon
- Dong-A Socio R&D Center, Dong-A ST, Yongin-si, Korea
| | | | - Sang Won Seo
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Duk L Na
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,iPS Bio, Inc., Seongnam-si, Korea
| |
Collapse
|
24
|
Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, Yang Z, Zheng H, Sun H, Fan Y, Yang J, Shi C, Xu Y. Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells Int 2020; 2020:1061470. [PMID: 32256606 PMCID: PMC7091557 DOI: 10.1155/2020/1061470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The molecular mechanisms of PD at the cellular level involve oxidative stress, mitochondrial dysfunction, autophagy, axonal transport, and neuroinflammation. Induced pluripotent stem cells (iPSCs) with patient-specific genetic background are capable of directed differentiation into dopaminergic neurons. Cell models based on iPSCs are powerful tools for studying the molecular mechanisms of PD. The iPSCs used for PD studies were mainly from patients carrying mutations in synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2), cytoplasmic protein sorting 35 (VPS35), and variants in glucosidase beta acid (GBA). In this review, we summarized the advances in molecular mechanisms of Parkinson's disease using iPSC models.
Collapse
Affiliation(s)
- Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| |
Collapse
|
25
|
Bordoni M, Karabulut E, Kuzmenko V, Fantini V, Pansarasa O, Cereda C, Gatenholm P. 3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells. Cells 2020; 9:cells9030682. [PMID: 32168750 PMCID: PMC7140699 DOI: 10.3390/cells9030682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
We prepared cellulose nanofibrils-based (CNF), alginate-based and single-walled carbon nanotubes (SWCNT)-based inks for freeform reversible embedding hydrogel (FRESH) 3D bioprinting of conductive scaffolds. The 3D printability of conductive inks was evaluated in terms of their rheological properties. The differentiation of human neuroblastoma cells (SH-SY5Y cell line) was visualized by the confocal microscopy and the scanning electron microscopy techniques. The expression of TUBB3 and Nestin genes was monitored by the RT-qPCR technique. We have demonstrated that the conductive guidelines promote the cell differentiation, regardless of using differentiation factors. It was also shown that the electrical conductivity of the 3D printed scaffolds could be tuned by calcium–induced crosslinking of alginate, and this plays a significant role on neural cell differentiation. Our work provides a protocol for the generation of a realistic in vitro 3D neural model and allows for a better understanding of the pathological mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Matteo Bordoni
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.B.); (O.P.)
| | - Erdem Karabulut
- 3D Bioprinting Center, Chalmers University of Technology, Arvid Wallgrens backe 20, 41346 Göteborg, Sweden; (E.K.); (P.G.)
- Wallenberg Wood Science Center, Arvid Wallgrens backe 20, 41346 Göteborg, Sweden;
| | - Volodymyr Kuzmenko
- Wallenberg Wood Science Center, Arvid Wallgrens backe 20, 41346 Göteborg, Sweden;
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 41258 Göteborg, Sweden
| | - Valentina Fantini
- Department of Brain and Behavioural Sciences, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy;
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, Corso S. Martino 10, 20081 Abbiategrasso, Milan, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.B.); (O.P.)
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.B.); (O.P.)
- Correspondence: ; Tel.: +93-0382-380-396
| | - Paul Gatenholm
- 3D Bioprinting Center, Chalmers University of Technology, Arvid Wallgrens backe 20, 41346 Göteborg, Sweden; (E.K.); (P.G.)
- Wallenberg Wood Science Center, Arvid Wallgrens backe 20, 41346 Göteborg, Sweden;
| |
Collapse
|
26
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
27
|
Abugomaa A, Elbadawy M. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1715794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
28
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
29
|
Balikov DA, Neal EH, Lippmann ES. Organotypic Neurovascular Models: Past Results and Future Directions. Trends Mol Med 2019; 26:273-284. [PMID: 31699496 DOI: 10.1016/j.molmed.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
The high failure rates of clinical trials in neurodegeneration, perhaps most apparent in recent high-profile failures of potential Alzheimer's disease therapies, have partially motivated the development of improved human cell-based models to bridge the gap between well-plate assays and preclinical efficacy studies in mice. Recently, cerebral organoids derived from stem cells have gained significant traction as 3D models of central nervous system (CNS) regions. Although this technology is promising, several limitations still exist; most notably, improper structural organization of neural cells and a lack of functional glia and vasculature. Here, we provide an overview of the cerebral organoid field and speculate how engineering strategies, including biomaterial fabrication and templating, might be used to overcome existing challenges.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J Stem Cells 2019; 11:634-649. [PMID: 31616540 PMCID: PMC6789186 DOI: 10.4252/wjsc.v11.i9.634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. As DA neurons degenerate, PD patients gradually lose their ability of movement. To date no effective therapies are available for the treatment of PD and its pathogenesis remains unknown. Experimental models that appropriately mimic the development of PD are certainly needed for gaining mechanistic insights into PD pathogenesis and identifying new therapeutic targets. Human induced pluripotent stem cells (iPSCs) could provide a promising model for fundamental research and drug screening. In this review, we summarize various iPSCs-based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology, and the promising application of iPSC-based PD models for mechanistic studies and drug testing.
Collapse
Affiliation(s)
- Minjing Ke
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
31
|
Human Embryonic Stem Cell-Derived Neural Lineages as In Vitro Models for Screening the Neuroprotective Properties of Lignosus rhinocerus (Cooke) Ryvarden. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3126376. [PMID: 33204680 PMCID: PMC7658738 DOI: 10.1155/2019/3126376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
Collapse
|
32
|
Behm LVJ, Gerike S, Grauel MK, Uhlig K, Pfisterer F, Baumann W, Bier FF, Duschl C, Kirschbaum M. Micropatterned Thermoresponsive Cell Culture Substrates for Dynamically Controlling Neurite Outgrowth and Neuronal Connectivity in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:2853-2861. [DOI: 10.1021/acsabm.9b00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura V. J. Behm
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - Susanna Gerike
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - M. Katharina Grauel
- Institute of Neurophysiology, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Katja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - Felix Pfisterer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - Werner Baumann
- Chair for Biophysics, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany
| | - Frank F. Bier
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - Claus Duschl
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| | - Michael Kirschbaum
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Potsdam IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany
| |
Collapse
|
33
|
Linsley JW, Tripathi A, Epstein I, Schmunk G, Mount E, Campioni M, Oza V, Barch M, Javaherian A, Nowakowski TJ, Samsi S, Finkbeiner S. Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Commun Biol 2019; 2:155. [PMID: 31069265 PMCID: PMC6494885 DOI: 10.1038/s42003-019-0411-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches for dynamic profiling of single cells rely on dissociated cultures, which lack important biological features existing in tissues. Organotypic slice cultures preserve aspects of structural and synaptic organisation within the brain and are amenable to microscopy, but established techniques are not well adapted for high throughput or longitudinal single cell analysis. Here we developed a custom-built, automated confocal imaging platform, with improved organotypic slice culture and maintenance. The approach enables fully automated image acquisition and four-dimensional tracking of morphological changes within individual cells in organotypic cultures from rodent and human primary tissues for at least 3 weeks. To validate this system, we analysed neurons expressing a disease-associated version of huntingtin (HTT586Q138-EGFP), and observed that they displayed hallmarks of Huntington's disease and died sooner than controls. By facilitating longitudinal single-cell analyses of neuronal physiology, our system bridges scales necessary to attain statistical power to detect developmental and disease phenotypes.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Atmiyata Tripathi
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Irina Epstein
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Galina Schmunk
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Elliot Mount
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Matthew Campioni
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Viral Oza
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Mariya Barch
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Ashkan Javaherian
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Tomasz J Nowakowski
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Siddharth Samsi
- 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, L-4367 Luxembourg
- 9Present Address: MIT Lincoln Laboratory, Lexington, MA 02421 USA
| | - Steven Finkbeiner
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
- 4Neuroscience Graduate Program, University of California, San Francisco, CA 94158 USA
- 5Biomedical Sciences and Neuroscience Graduate Program, University of California, San Francisco, CA 94143 USA
- 6Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA 94158 USA
- 7Department of Neurology, University of California, San Francisco, CA 94158 USA
- 8Department of Physiology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
34
|
Ramotowski C, Qu X, Villa-Diaz LG. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review. Stem Cells Transl Med 2019; 8:681-693. [PMID: 30903654 PMCID: PMC6591555 DOI: 10.1002/sctm.18-0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are cells genetically reprogrammed from somatic cells, which can be differentiated into neurological lineages with the aim to replace or assist damaged neurons in the treatment of spinal cord injuries (SCIs) caused by physical trauma. Here, we review studies addressing the functional use of iPSC‐derived neural cells in SCIs and perform a meta‐analysis to determine if significant motor improvement is restored after treatment with iPSC‐derived neural cells compared with treatments using embryonic stem cell (ESC)‐derived counterpart cells and control treatments. Overall, based on locomotion scales in rodents and monkeys, our meta‐analysis indicates a therapeutic benefit for SCI treatment using neural cells derived from either iPSCs or ESCs, being this of importance due to existing ethical and immunological complications using ESCs. Results from these studies are evidence of the successes and limitations of iPSC‐derived neural cells in the recovery of motor capacity. stem cells translational medicine2019;8:681&693
Collapse
Affiliation(s)
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| |
Collapse
|
35
|
Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: Current status and outlook. Alcohol 2019; 74:83-93. [PMID: 30087005 DOI: 10.1016/j.alcohol.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Kim HJ. Regulation of Neural Stem Cell Fate by Natural Products. Biomol Ther (Seoul) 2019; 27:15-24. [PMID: 30481958 PMCID: PMC6319553 DOI: 10.4062/biomolther.2018.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|
37
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
38
|
De la Vega L, Karmirian K, Willerth SM. Engineering Neural Tissue from Human Pluripotent Stem Cells Using Novel Small Molecule Releasing Microspheres. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laura De la Vega
- Department of Mechanical EngineeringDivision of Medical SciencesUniversity of Victoria 3800 Finnerty Road Victoria BC V8P 5C2 Canada
| | - Karina Karmirian
- Biomedical Sciences InstituteFederal University of Rio de Janeiro Av. Pedro Calmon, 550 Rio de Janeiro RJ 21941‐901 Brazil
| | - Stephanie Michelle Willerth
- Department of Mechanical EngineeringDivision of Medical SciencesUniversity of Victoria 3800 Finnerty Road Victoria BC V8P 5C2 Canada
| |
Collapse
|
39
|
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138:2-15. [PMID: 30144530 DOI: 10.1016/j.phrs.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are best known for their role in ATP generation. However, studies over the past two decades have shown that mitochondria do much more than that. Mitochondria regulate both necrotic and apoptotic cell death pathways, they store and therefore coordinate cellular Ca2+ signaling, they generate and metabolize important building blocks, by-products and signaling molecules, and they also generate and are targets of free radical species that modulate many aspects of cell physiology and pathology. Most estimates suggest that although the brain makes up only 2 percent of body weight, utilizes about 20 percent of the body's total ATP. Thus, mitochondrial dysfunction greatly impacts brain functions and is indeed associated with numerous neurodegenerative diseases. Furthermore, a number of abnormal disease-associated proteins have been shown to interact directly with mitochondria, leading to mitochondrial dysfunction and subsequent neuronal cell death. Here, we discuss the role of mitochondrial dynamics impairment in the pathological processes associated with neurodegeneration and suggest that a therapy targeting mitochondrialdysfunction holds a great promise.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA.
| |
Collapse
|
40
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
41
|
Lopez-Yrigoyen M, Fidanza A, Cassetta L, Axton RA, Taylor AH, Meseguer-Ripolles J, Tsakiridis A, Wilson V, Hay DC, Pollard JW, Forrester LM. A human iPSC line capable of differentiating into functional macrophages expressing ZsGreen: a tool for the study and in vivo tracking of therapeutic cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170219. [PMID: 29786554 PMCID: PMC5974442 DOI: 10.1098/rstb.2017.0219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Martha Lopez-Yrigoyen
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Luca Cassetta
- Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard A Axton
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - A Helen Taylor
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - David C Hay
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jeffrey W Pollard
- Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lesley M Forrester
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
42
|
Little D, Luft C, Mosaku O, Lorvellec M, Yao Z, Paillusson S, Kriston-Vizi J, Gandhi S, Abramov AY, Ketteler R, Devine MJ, Gissen P. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep 2018; 8:9033. [PMID: 29899557 PMCID: PMC5998042 DOI: 10.1038/s41598-018-27058-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Maëlle Lorvellec
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Zhi Yao
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Sébastien Paillusson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Sonia Gandhi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
43
|
Stacey P, Wassermann AM, Kammonen L, Impey E, Wilbrey A, Cawkill D. Plate-Based Phenotypic Screening for Pain Using Human iPSC-Derived Sensory Neurons. SLAS DISCOVERY 2018; 23:585-596. [PMID: 29547351 DOI: 10.1177/2472555218764678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening against a disease-relevant phenotype to identify compounds that change the outcome of biological pathways, rather than just the activity of specific targets, offers an alternative approach to find modulators of disease characteristics. However, in pain research, use of in vitro phenotypic screens has been impeded by the challenge of sourcing relevant neuronal cell types in sufficient quantity and developing functional end-point measurements with a direct disease link. To overcome these hurdles, we have generated human induced pluripotent stem cell (hiPSC)-derived sensory neurons at a robust production scale using the concept of cryopreserved "near-assay-ready" cells to decouple complex cell production from assay development and screening. hiPSC sensory neurons have then been used for development of a 384-well veratridine-evoked calcium flux assay. This functional assay of neuronal excitability was validated for phenotypic relevance to pain and other hyperexcitability disorders through screening a small targeted validation compound subset. A 2700-compound chemogenomics screen was then conducted to profile the range of target-based mechanisms able to inhibit veratridine-evoked excitability. This report presents the assay development, validation, and screening data. We conclude that high-throughput-compatible pain-relevant phenotypic screening with hiPSC sensory neurons is feasible and ready for application for the identification of new targets, pathways, mechanisms of action, and compounds for modulating neuronal excitability.
Collapse
Affiliation(s)
- Peter Stacey
- 1 Pfizer Neusentis, Great Abington, Cambridgeshire, UK
| | | | | | - Emma Impey
- 1 Pfizer Neusentis, Great Abington, Cambridgeshire, UK
| | - Anna Wilbrey
- 1 Pfizer Neusentis, Great Abington, Cambridgeshire, UK
| | | |
Collapse
|
44
|
de Moura TC, Afadlal S, Hazell AS. Potential for stem cell treatment in manganism. Neurochem Int 2018; 112:134-145. [DOI: 10.1016/j.neuint.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
45
|
Gonzalez DM, Gregory J, Brennand KJ. The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening. Front Cell Dev Biol 2017; 5:117. [PMID: 29312938 PMCID: PMC5742170 DOI: 10.3389/fcell.2017.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current applications of human induced pluripotent stem cell (hiPSC) technologies in patient-specific models of neurodegenerative and neuropsychiatric disorders tend to focus on neuronal phenotypes. Here, we review recent efforts toward advancing hiPSCs toward non-neuronal cell types of the central nervous system (CNS) and highlight their potential use for the development of more complex in vitro models of neurodevelopment and disease. We present evidence from previous works in both rodents and humans of the importance of these cell types (oligodendrocytes, microglia, astrocytes) in neurological disease and highlight new hiPSC-based models that have sought to explore these relationships in vitro. Lastly, we summarize efforts toward conducting high-throughput screening experiments with hiPSCs and propose methods by which new screening platforms could be designed to better capture complex relationships between neural cell populations in health and disease.
Collapse
Affiliation(s)
- David M Gonzalez
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Developmental and Stem Cell Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jill Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J Brennand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Jang JY, Hong YJ, Lim J, Choi JS, Choi EH, Kang S, Rhim H. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway. Biomaterials 2017; 156:258-273. [PMID: 29222974 DOI: 10.1016/j.biomaterials.2017.11.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Plasma, formed by ionization of gas molecules or atoms, is the most abundant form of matter and consists of highly reactive physicochemical species. In the physics and chemistry fields, plasma has been extensively studied; however, the exact action mechanisms of plasma on biological systems, including cells and humans, are not well known. Recent evidence suggests that cold atmospheric plasma (CAP), which refers to plasma used in the biomedical field, may regulate diverse cellular processes, including neural differentiation. However, the mechanism by which these physicochemical signals, elicited by reactive oxygen and nitrogen species (RONS), are transmitted to biological system remains elusive. In this study, we elucidated the physicochemical and biological (PCB) connection between the CAP cascade and Trk/Ras/ERK signaling pathway, which resulted in neural differentiation. Excited atomic oxygen in the plasma phase led to the formation of RONS in the PCB network, which then interacted with reactive atoms in the extracellular liquid phase to form nitric oxide (NO). Production of large amounts of superoxide radical (O2-) in the mitochondria of cells exposed to CAP demonstrated that extracellular NO induced the reversible inhibition of mitochondrial complex IV. We also demonstrated that cytosolic hydrogen peroxide, formed by O2- dismutation, act as an intracellular messenger to specifically activate the Trk/Ras/ERK signaling pathway. This study is the first to elucidate the mechanism linking physicochemical signals from the CAP cascade to the intracellular neural differentiation signaling pathway, providing physical, chemical and biological insights into the development of therapeutic techniques to treat neurological diseases.
Collapse
Affiliation(s)
- Ja-Young Jang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Young June Hong
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junsup Lim
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jin Sung Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Sun AX, Tan EK. Towards better cellular replacement therapies in Parkinson disease. J Neurosci Res 2017; 96:219-221. [PMID: 28791710 DOI: 10.1002/jnr.24123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alfred Xuyang Sun
- National Neuroscience Institute, Singapore General Hospital, Duke NUS Medical School, Genome Institute of Singapore, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore General Hospital, Duke NUS Medical School, Genome Institute of Singapore, Singapore
| |
Collapse
|