1
|
Onuma S, Kawai M. Circadian Regulatory Networks of Glucose Homeostasis and Its Disruption as a Potential Cause of Undernutrition. Endocrinology 2024; 165:bqae126. [PMID: 39276035 DOI: 10.1210/endocr/bqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either overnutrition or undernutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to undernutrition due to impaired efficient utilization of nutrients.
Collapse
Affiliation(s)
- Shinsuke Onuma
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Molecular Genetics and Endocrinology, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
| |
Collapse
|
2
|
Luo H, Cheng J, Zhang Z, Zhang Y, Wang X, Hu R, Li J, Guo Y, Luo Q. Seasonal patterns in Chinese population: Validating the seasonal pattern assessment questionnaire and exploring associations with psychiatric diagnoses and biological rhythms. Chronobiol Int 2024; 41:609-620. [PMID: 38644696 DOI: 10.1080/07420528.2024.2337875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Seasonal patterns (SP) exert a notable influence on the course and prognosis of patients with affective disorders, serving as a specifier in diagnosis. However, there is limited exploration of seasonality among psychotic patients, and the distinctions in seasonality among psychiatric patients remain unclear. In this study, we enrolled 198 psychiatric patients with anxiety and depressive disorders (A&D), bipolar disorder (BD), and schizophrenia (SZ), as well as healthy college students. Online questionnaires, including the Seasonal Pattern Assessment Questionnaire (SPAQ) for seasonality, the Morningness and Eveningness Questionnaire-5 (MEQ-5) for chronotypes, and the Pittsburgh Sleep Quality Index (PSQI), were administered. The validity and reliability of the Chinese version of the SPAQ were thoroughly analyzed, revealing a Cronbach's alpha of 0.896 with a two-factor structure. Results indicated that higher seasonality was correlated with poorer sleep quality and a more delayed chronotype (p < 0.05). Significant monthly variations were particularly evident in BD, specifically in mood, appetite, weight, social activities, and sleep dimensions (p < 0.001). In summary, the Chinese version of SPAQ is validated, demonstrating moderate correlations between seasonality, chronotype, and sleep quality. BD patients exhibited the strongest seasonality, while mood disorder patients displayed more delayed chronotypes than SZ.
Collapse
Affiliation(s)
- Huirong Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Cheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, Nanchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinlin Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Children and Adolescents, Chongqing Mental Health Center, Chongqing, China
| | - Xueqian Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- School of Psychology, Army Military Medical University, Chongqing, China
| | - Renqin Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanwei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Putilov AA, Budkevich EV, Budkevich RO. A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue. Clocks Sleep 2023; 5:384-398. [PMID: 37489438 PMCID: PMC10366820 DOI: 10.3390/clockssleep5030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORα, REV-ERBα, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.
Collapse
Affiliation(s)
- Arcady A Putilov
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117865 Moscow, Russia
| | - Elena V Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| | - Roman O Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| |
Collapse
|
4
|
Du J, Zhang F, Chen M, Xiao Y, Zhang L, Dong L, Dong D, Wu B. Jujuboside A ameliorates cognitive deficiency in delirium through promoting hippocampal E4BP4 in mice. J Pharm Pharmacol 2023:rgad057. [PMID: 37330271 DOI: 10.1093/jpp/rgad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Delirium (acute brain syndrome) is a common and serious neuropsychiatric disorder characterized by an acute decline in cognitive function. However, there is no effective treatment clinically. Here we investigated the potential effect of jujuboside A (JuA, a natural triterpenoid saponin) on cognitive impairment in delirium. METHODS Delirium models of mice were established by injecting lipopolysaccharide (LPS) plus midazolam and implementing a jet lag protocol. Novel object recognition test and Y maze test were used to evaluate the effects of JuA on delirium-associated cognitive impairment. The mRNA and protein levels of relevant clock factors and inflammatory factors were measured by qPCR and Western blotting. Hippocampal Iba1+ intensity was determined by immunofluorescence staining. KEY FINDINGS JuA ameliorated delirium (particularly delirium-associated cognitive impairment) in mice, which was proved by the behavioural tests, including a preference for new objects, an increase of spontaneous alternation and improvement of locomotor activity. Furthermore, JuA inhibited the expression of ERK1/2, p-p65, TNFα and IL-1β in hippocampus, and repressed microglial activation in delirious mice. This was attributed to the increased expression of E4BP4 (a negative regulator of ERK1/2 cascade and microglial activation). Moreover, loss of E4bp4 in mice abrogated the effects of JuA on delirium as well as on ERK1/2 cascade and microglial activation in the hippocampus of delirious mice. Additionally, JuA treatment increased the expression of E4BP4 and decreased the expression of p-p65, TNFα and IL-1β in LPS-stimulated BV2 cells, supporting a protective effect of JuA on delirium. CONCLUSIONS JuA protects against delirium-associated cognitive impairment through promoting hippocampal E4BP4 in mice. Our findings are of great significance to the drug development of JuA against delirium and related disorders.
Collapse
Affiliation(s)
- Jianhao Du
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Linlin Dong
- HeBei Geo-environment Monitoring Institute, Shijiazhuang, HeBei, China
| | - Dong Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Miro C, Docimo A, Barrea L, Verde L, Cernea S, Sojat AS, Marina LV, Docimo G, Colao A, Dentice M, Muscogiuri G. "Time" for obesity-related cancer: The role of the circadian rhythm in cancer pathogenesis and treatment. Semin Cancer Biol 2023; 91:99-109. [PMID: 36893964 DOI: 10.1016/j.semcancer.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The circadian rhythm is regulated by an intrinsic time-tracking system, composed both of a central and a peripheral clock, which influences the cycles of activities and sleep of an individual over 24 h. At the molecular level, the circadian rhythm begins when two basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins, BMAL-1 and CLOCK, interact with each other to produce BMAL-1/CLOCK heterodimers in the cytoplasm. The BMAL-1/CLOCK target genes encode for the repressor components of the clock, cryptochrome (Cry1 and Cry2) and the Period proteins (Per1, Per2 and Per3). It has been recently demonstrated that the disruption of circadian rhythm is associated with an increased risk of developing obesity and obesity-related diseases. In addition, it has been demonstrated that the disruption of the circadian rhythm plays a key role in tumorigenesis. Further, an association between the circadian rhythm disruptions and an increased incidence and progression of several types of cancer (e.g., breast, prostate, colorectal and thyroid cancer) has been found. As the perturbation of circadian rhythm has adverse metabolic consequences (e.g., obesity) and at the same time tumor promoter functions, this manuscript has the aim to report how the aberrant circadian rhythms affect the development and prognosis of different types of obesity-related cancers (breast, prostate, colon rectal and thyroid cancer) focusing on both human studies and on molecular aspects.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Annamaria Docimo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Federico II, 80131 Naples, Italy
| | - Simona Cernea
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures/Internal Medicine I, Târgu Mureş, Romania; Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Antoan Stefan Sojat
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Ljiljana V Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Giovanni Docimo
- Department of Medical and Advanced Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
7
|
Chen M, Xiao Y, Zhang F, Du J, Zhang L, Li Y, Lu D, Wang Z, Wu B. Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice. Biochem Pharmacol 2022; 205:115286. [PMID: 36216079 DOI: 10.1016/j.bcp.2022.115286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022]
Abstract
Delirium is a common and serious neuropsychiatric syndrome characterized with acute cognitive and attentional deficits, however, the effective therapies are lacking. Here, using mouse models of delirium, we investigated the effects of tangeretin (TAN, a natural flavonoid) on cognitive impairment by assessing object preference with novel object recognition (NOR) test and spontaneous alternation with Y maze test. We found that TAN, as a RORα/γ agonist, prevented cognitive decline in delirious mice as evidenced by a normal novel object preference and increased spontaneous alternation. This was accompanied by decreased expression of ERK1/2, TNFα and IL-1β as well as diminished microglial activation in delirious mice. The protective effect of TAN on delirium was mainly attributed to increased hippocampal E4BP4 expression (a known target of RORs and a regulator of cognition in delirium through modulating the ERK1/2 cascade and microglial activation) via activation of RORα/γ. In addition, TAN treatment modulated the expression of RORα/γ target genes (such as E4bp4 and Bmal1) and inhibited the expression of TNFα and IL-1β in lipopolysaccharide (LPS)-stimulated cells, supporting a beneficial effect of TAN on delirium. In conclusion, TAN is identified as a RORα/γ agonist which promotes E4BP4 expression to prevent cognitive decline in delirious mice. Our findings may have implications for drug development of TAN for prevention and treatment of various diseases associated with cognitive deficiency.
Collapse
Affiliation(s)
- Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Du
- School of Medicine, Jinan University, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
He X, Yu M, Zhao J, Wang A, Yin J, Wang H, Qiu J, He X, Wu X. Chrono-moxibustion adjusts circadian rhythm of CLOCK and BMAL1 in adjuvant-induced arthritic rats. Am J Transl Res 2022; 14:4880-4897. [PMID: 35958509 PMCID: PMC9360894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The clinical symptoms of rheumatoid arthritis (RA) have significant circadian rhythms, with morning stiffness and joint pain. Moxibustion is effective in the treatment of RA, while the underlying therapeutic mechanisms remain limited. Thus, we explored whether moxibustion could adjust the circadian rhythm of RA by modulating the core clock genes CLOCK and BMAL1 at the molecular level. METHODS 144 Sprague Dawley rats were randomly divided into four groups: control group (group A), model group (group B), 7-9 am moxibustion treatment group (group C), and 5-7 pm moxibustion treatment group (group D). Each group was divided into 6 time points (0 am, 4 am, 8 am, 12 N, 6 pm, and 8 pm) with an equal number of rats at each time point. Except for group A, all rats were injected with Freund's Complete Adjuvant (FCA) 0.15 ml on the right foot pad to establish the RA model. The rats of the two moxibustion treatment groups were respectively subjected to moxibustion at 7-9 am and 5-7 pm. After 3 weeks of treatment, the tissues were collected at 6 time points during the next 24 hours. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to test the mRNA expression of CLOCK and BMAL1 in the hypothalamus and synovial tissues. CLOCK and BMAL1 protein expression in synovial tissues were detected with western blot. RESULTS Compared to group A, group B showed significantly down-regulated expression levels of CLOCK and BMLA1 at synovial tissue (P < 0.05), while no statistically significant difference was found in the hypothalamus (P > 0.05). The expression levels of CLOCK and BMLA1 were up-regulated in the moxibustion treatment groups in different tissues, especially in synovial tissue (P < 0.05) compared to group B. Nevertheless, no difference was observed between groups C and D (P > 0.05). CONCLUSIONS Moxibustion could treat RA by modulating clock core genes CLOCK and BMAL1 to regulate the circadian rhythm. However, there was no significant difference between the 7-9 am moxibustion treatment group and the 5-7 pm moxibustion treatment group. This study provides a basis for research on moxibustion in the treatment of RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Luzhou T.C.M. HospitalLuzhou 646000, Sichuan, China
| | - Jiasong Zhao
- Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610072, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| |
Collapse
|
9
|
Spinelli E, Werner Junior J. Human adaptative behavior to Antarctic conditions: A review of physiological aspects. WIREs Mech Dis 2022; 14:e1556. [PMID: 35419979 DOI: 10.1002/wsbm.1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The Antarctic environment induces adaptive metabolic and neuroendocrine changes associated with survival, as well as increased risks to physical and mental health. Circadian disruption has been observed in Antarctic expeditioners. The main consequences appear in quality of sleep, which can affect physical and cognitive performance. Physiological adaptation to cold is mediated by the norepinephrine and thyroid hormones (T3 and 3,5-T2 metabolite). The observed changes in the hypothalamic-pituitary-thyroid (HPT) axis of expeditioners varied according to temperature, photoperiod, time spent in the cold environment and stress level. The decrease in T3 levels has frequently been associated with mood swings. Psychological and physical stressors cause disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, with consequent maintenance of high cortisol levels, leading to memory impairment, immunosuppression, and cardiometabolic and reproductive disorders. Preventive measures, such as provision of adequate food, well-established eating times, physical activity and even the use of phototherapy, can all help maintain the circadian rhythm. In addition, the use of high-tech clothing and room temperature control in research stations provide greater protection against the effects of intense cold. However, psychological stress requires a more individualized approach based on the crew's sociocultural characteristics, but it can be mitigated by mental healthcare and training in coping strategies. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Eliani Spinelli
- School of Pharmacy, Fluminense Federal University, Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
11
|
Stern J, Solomon A, Dantanarayana A, Pascoe R, Reynaldi A, Davenport MP, Milush J, Deeks SG, Hartogensis W, Hecht FM, Cockerham L, Roche M, Lewin SR. Cell-associated HIV RNA has a Circadian Cycle in Males Living with HIV on Antiretroviral Therapy. J Infect Dis 2021; 225:1721-1730. [PMID: 34655216 DOI: 10.1093/infdis/jiab533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian transcription factors that regulate cell-autonomous circadian clocks can also increase HIV transcription in vitro. We aimed to determine if circadian variation in HIV transcription exists in people living with HIV (PLHIV) on antiretroviral therapy (ART). METHODS We performed a prospective observational study of male PLHIV on ART, sampling blood every four hours for 24 hours. Using qPCR, we quantified expression of circadian associated genes, HIV DNA and cell-associated unspliced (CA-US) RNA in peripheral blood CD4+ T-cells. Plasma sex hormones were quantified alongside plasma and salivary cortisol. The primary outcome was to identify temporal variations in CA-US HIV RNA using a linear mixed effect regression framework and maximum likelihood estimation. RESULTS Salivary and plasma cortisol, and circadian genes including Clock, Bmal1, and Per3 varied with a circadian rhythm. CA-US HIV RNA and the ratio of CA-US HIV RNA-to-DNA in CD4+ T-cells also demonstrated circadian variations, with no variation in HIV DNA. Circulating oestradiol was highly predictive of CA-US HIV RNA variation in vivo. CONCLUSION CA-US HIV RNA in PLHIV on ART varies temporally with a circadian rhythm. These findings have implications for the design of clinical trials and biomarkers to assess HIV cure interventions.
Collapse
Affiliation(s)
- Jared Stern
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha Solomon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Rachel Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Arnold Reynaldi
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Miles P Davenport
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Wendy Hartogensis
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Frederick M Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Leslie Cockerham
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, USA
| | - Michael Roche
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
12
|
From circadian clock mechanism to sleep disorders and jet lag: Insights from a computational approach. Biochem Pharmacol 2021; 191:114482. [DOI: 10.1016/j.bcp.2021.114482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
|
13
|
Jeong YU, Jin HE, Lim HY, Choi G, Joo H, Kang B, Lee GH, Liu KH, Maeng HJ, Chung S, Son GH, Jung JW. Development of Non-Ethoxypropanoic Acid Type Cryptochrome Inhibitors with Circadian Molecular Clock-Enhancing Activity by Bioisosteric Replacement. Pharmaceuticals (Basel) 2021; 14:ph14060496. [PMID: 34073760 PMCID: PMC8225008 DOI: 10.3390/ph14060496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Circadian dysfunction is closely associated with an increased risk of various diseases. Considering that molecular clock machinery serves as an intrinsic time-keeping system underlying the circadian rhythm of biological processes, the modulation of the molecular clock machinery is an attractive therapeutic target with novel mechanisms of action. Based on the previous structure–activity relationship study of small molecule cryptochrome (CRY) inhibitors possessing an ethoxypropanoic acid moiety, non-ethoxypropanoic acid-type inhibitors have been developed by bioisosteric replacement. They were evaluated as potent and effective enhancers of E-box-mediated transcription, and, in particular, ester 5d and its hydrolysis product 2d exhibited desirable metabolic and pharmacokinetic profiles as promising drug candidates. Compound 2d directly bound to both CRY1 and 2 in surface plasmon resonance analyses, suggesting that the molecular target is CRY. Effects of compound 5d and 2d on suppressive action of CRY1 on CLOCK:BMAL1-activated E-box-LUC reporter activity revealed that both compounds inhibited the negative feedback actions of CRY on CLOCK:BMAL1. Most importantly, compounds 5d and 2d exhibited significant effects on molecular circadian rhythmicity to be considered circadian clock-enhancers, distinct from the previously developed CRY inhibitors possessing an ethoxypropanoic acid moiety.
Collapse
Affiliation(s)
- Yong Uk Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
- Vessel-Organ Interaction Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea;
| | - Hye Young Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Goyeong Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
| | - Hansol Joo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
- Vessel-Organ Interaction Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Bohun Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
- Vessel-Organ Interaction Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Ga-Hyun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
| | - Kwang-Hyeon Liu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea;
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Correspondence: (G.H.S.); (J.-W.J.); Tel.: +82-2-2286-1147 (G.H.S.); +82-53-950-8578 (J.-W.J.)
| | - Jong-Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.U.J.); (G.C.); (H.J.); (B.K.); (G.-H.L.); (K.-H.L.)
- Vessel-Organ Interaction Research Center, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (G.H.S.); (J.-W.J.); Tel.: +82-2-2286-1147 (G.H.S.); +82-53-950-8578 (J.-W.J.)
| |
Collapse
|
14
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Q P, KC W, CL E. Common genetic substrates of alcohol and substance use disorder severity revealed by pleiotropy detection against GWAS catalog in two populations. Addict Biol 2021; 26:e12877. [PMID: 32027075 PMCID: PMC7415504 DOI: 10.1111/adb.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 01/11/2020] [Indexed: 12/01/2022]
Abstract
Alcohol and other substance use disorders (AUD and SUD) are complex diseases that are postulated to have a polygenic inheritance and are often comorbid with other disorders. The comorbidities may arise partially through genetic pleiotropy. Identification of specific gene variants accounting for large parts of the variance in these disorders has yet to be accomplished. We describe a flexible strategy that takes a variant-trait association database and determines if a subset of disease/straits are potentially pleiotropic with the disorder under study. We demonstrate its usage in a study of use disorders in two independent cohorts: alcohol, stimulants, cannabis (CUD), and multi-substance use disorders (MSUD) in American Indians (AI) and AUD and CUD in Mexican Americans (MA). Using a machine learning method with variants in GWAS catalog, we identified 229 to 246 pleiotropic variants for AI and 153 to 160 for MA for each SUD. Inflammation was the most enriched for MSUD and AUD in AIs. Neurological disorder was the most significantly enriched for CUD in both cohorts, and for AUD and stimulants in AIs. Of the select pleiotropic genes shared among substances-cohorts, multiple biological pathways implicated in SUD and other psychiatric disorders were enriched, including neurotrophic factors, immune responses, extracellular matrix, and circadian regulation. Shared pleiotropic genes were significantly up-regulated in brain regions playing important roles in SUD, down-regulated in esophagus mucosa, and differentially regulated in adrenal gland. This study fills a gap for pleiotropy detection in understudied admixed populations and identifies pleiotropic variants that may be potential targets of interest for SUD.
Collapse
Affiliation(s)
- Peng Q
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Wilhelmsen KC
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Ehlers CL
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
16
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
17
|
Bhatwadekar AD, Rameswara V. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Expert Opin Investig Drugs 2020; 29:1431-1442. [PMID: 33107770 DOI: 10.1080/13543784.2020.1842872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Circadian rhythm is a natural endogenous process occurring roughly every 24 hours. Circadian rhythm dysfunction is involved in diabetic retinopathy (DR) pathogenesis. Interestingly, there are investigational drugs that exhibit potential in the treatment of DR by targeting circadian rhythm dysfunction. AREAS COVERED We performed a literature search in June 2020 using PubMed's Medical Subject Heading (MeSH) terms 'circadian clock,' 'circadian rhythms,' and 'diabetic retinopathy.' This article offers an overview of the physiology of the biological clock and clock regulatory genes and presents an examination of the retinal clock. It discusses the pathogenic mechanisms of DR and emphasizes how circadian rhythm dysfunction at structural, physiological, metabolic and cellular levels, plays a critical role in the development of DR. The latter part of the paper sheds light on those investigational drugs (such as melatonin, tasimelteon and metformin) which exhibit potential in the treatment of DR by the targeting of circadian rhythm dysfunction. EXPERT OPINION An enhanced understanding of circadian rhythm and its role in DR could offer therapeutic potential by targeting of circadian rhythm dysfunction.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute , Indianapolis, IN, USA
| | - Varun Rameswara
- Indiana University School of Medicine. Indiana University , Indianapolis, IN, USA
| |
Collapse
|
18
|
Lipocalin-type prostaglandin D synthase regulates light-induced phase advance of the central circadian rhythm in mice. Commun Biol 2020; 3:557. [PMID: 33033338 PMCID: PMC7544906 DOI: 10.1038/s42003-020-01281-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling. Kawaguchi et al. show that mice deficient in lipocalin-type prostaglandin (PG) D synthase (L-PGDS) exhibit impaired light-induced phase advance, but normal phase delay and nonvisual light responses. This study suggests the role of L-PGDS for the light-induced phase advance possibly via a chemoattractant receptor DP2/CRTH2.
Collapse
|
19
|
O'Connell EJ, Martinez CA, Liang YG, Cistulli PA, Cook KM. Out of breath, out of time: interactions between HIF and circadian rhythms. Am J Physiol Cell Physiol 2020; 319:C533-C540. [PMID: 32726159 DOI: 10.1152/ajpcell.00305.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans have internal circadian clocks that ensure that important physiological functions occur at specific times of the day. These molecular clocks are regulated at the genomic level and exist in most cells of the body. Multiple circadian resetting cues have been identified, including light, temperature, and food. Recently, oxygen has been identified as a resetting cue, and emerging science indicates that this occurs through interactions at the cellular level between the circadian transcription-translation feedback loop and the hypoxia-inducible pathway (hypoxia-inducible factor; subject of the 2019 Nobel Prize in Physiology or Medicine). This review will cover recently identified relationships between HIF and proteins of the circadian clock. Interactions between the circadian clock and hypoxia could have wide-reaching implications for human diseases, and understanding the molecular mechanisms regulating these overlapping pathways may open up new strategies for drug discovery.
Collapse
Affiliation(s)
- Emma J O'Connell
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Chloe-Anne Martinez
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Yichuan G Liang
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Peter A Cistulli
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Kristina M Cook
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| |
Collapse
|
20
|
Ndikung J, Storm D, Violet N, Kramer A, Schönfelder G, Ertych N, Oelgeschläger M. Restoring circadian synchrony in vitro facilitates physiological responses to environmental chemicals. ENVIRONMENT INTERNATIONAL 2020; 134:105265. [PMID: 31734582 DOI: 10.1016/j.envint.2019.105265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The growing requirement of hazard and risk assessment of environmental chemicals and the efforts to minimize animal testing, increases the demand for innovative and predictive in vitro test systems in toxicology, reflecting the physiological conditions of human nature. Here, an elemental factor regulating a variety of physiological processes is the day-night rhythm. This circadian rhythm, describing a biological oscillation with a 24-h period is hardly acknowledged in toxicology and test method development. Whilst, in animals or humans the entire organism exhibits a rigorous cellular circadian synchrony, in conventional in vitro systems each cell follows its own rhythm, due to the absence of appropriate synchronizing signals. OBJECTIVE Here we investigated whether circadian synchronization of human cells in an in vitro system improves the cellular response and, thus, increases the sensitivity of the test system. Since the circadian regulation of metabolism is particularly well understood, and dioxin and dioxin-like compounds are of major concern for environmental health we focused on the ubiquitous drug metabolizing detoxification system mediated by the aryl hydrocarbon receptor (AHR). METHODS To this end, we applied various prototypical AHR activators onto different human cell lines under non-synchronized or circadian synchronized conditions and determined the dose response on representative endogenous target genes. RESULTS Remarkably, the cellular response dynamic upon chemical treatment was substantially enhanced in circadian synchronized cells and followed a rhythmic expression pattern. This broader dynamic range was associated with a strikingly higher induction of AHR target genes and the corresponding enzymatic activity, thereby rather mimicking the in vivo situation. CONCLUSION Our findings indicate that a synchronized circadian rhythm in a cell culture based test system can improve the physiological relevance of an appropriate in vitro method by reflecting the biological in vivo situation more closely. Accordingly, it is a promising tool to facilitate the wide acceptance of in vitro methods in the field of regulatory toxicology and to further optimize the toxicological assessment of environmental chemicals.
Collapse
Affiliation(s)
- Johanna Ndikung
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Dorothe Storm
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Norman Violet
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany; Department of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Germany
| | - Norman Ertych
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
21
|
Nohara K, Nemkov T, D'Alessandro A, Yoo SH, Chen Z. Coordinate Regulation of Cholesterol and Bile Acid Metabolism by the Clock Modifier Nobiletin in Metabolically Challenged Old Mice. Int J Mol Sci 2019; 20:ijms20174281. [PMID: 31480535 PMCID: PMC6747250 DOI: 10.3390/ijms20174281] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Cholesterol and bile acid (BA) homeostasis plays a central role in systemic metabolism. Accumulating evidence suggests a key regulatory function of the circadian clock, our biological timer, in lipid metabolism, particularly cholesterol and bile acid flux. Previously, we showed that Nobiletin (NOB), a natural compound targeting the ROR (Retinoic acid receptor-related orphan receptor) nuclear receptors in the circadian oscillator, strongly protects lipid homeostasis, including normal serum cholesterol levels in high-fat (HF) fed mice at both young and old ages. In this study, we further examined the role of NOB in cholesterol metabolism in HF-fed aged mice, and found that NOB lowered the serum LDL/VLDL cholesterol levels and consequently the LDL/HDL ratio. BA levels in the serum were markedly reduced in the HF.NOB group, and examination of additional hepatic markers further indicate a protective role of NOB in the liver. At the molecular level, whereas HF feeding downregulated hepatic expression of several ROR target genes involved in bile acid synthesis, NOB treatment (HF.NOB) was able to rescue it. In accordance, fecal BA excretion was enhanced by NOB, and microbial 16S sequencing revealed alteration of several taxa known to be involved in secondary BA production in the gut. Together, these results demonstrate concerted effects of the clock-modulating compound NOB in cholesterol and BA metabolism, suggesting pharmacological manipulation of the clock as a novel therapeutic strategy against metabolic disorders and age-related decline.
Collapse
Affiliation(s)
- Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
22
|
Choi Y, Raymer BK. Sleep modulating agents. Bioorg Med Chem Lett 2019; 29:2025-2033. [PMID: 31307886 DOI: 10.1016/j.bmcl.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022]
Abstract
Sleep and wake are two fundamental states of human existence. Conditions such as insomnia and hypersomnia can have profound negative effects on human health. Many pharmacological interventions impacting sleep and wake are available or are under development. This brief digest surveys early approaches to sleep modulation and highlights recent developments in sleep modulating agents.
Collapse
Affiliation(s)
- Younggi Choi
- Discovery Chemistry, Alkermes, 852 Winter Street, Waltham, MA, United States
| | - Brian K Raymer
- Discovery Research, Alkermes, 852 Winter Street, Waltham, MA, United States.
| |
Collapse
|
23
|
SR9009 has REV-ERB-independent effects on cell proliferation and metabolism. Proc Natl Acad Sci U S A 2019; 116:12147-12152. [PMID: 31127047 DOI: 10.1073/pnas.1904226116] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nuclear receptors REV-ERBα and -β link circadian rhythms and metabolism. Like other nuclear receptors, REV-ERB activity can be regulated by ligands, including naturally occurring heme. A putative ligand, SR9009, has been reported to elicit a range of beneficial effects in healthy as well as diseased animal models and cell systems. However, the direct involvement of REV-ERBs in these effects of SR9009 has not been thoroughly assessed, as experiments were not performed in the complete absence of both proteins. Here, we report the generation of a mouse model for conditional genetic deletion of REV-ERBα and -β. We show that SR9009 can decrease cell viability, rewire cellular metabolism, and alter gene transcription in hepatocytes and embryonic stem cells lacking both REV-ERBα and -β. Thus, the effects of SR9009 cannot be used solely as surrogate for REV-ERB activity.
Collapse
|