1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
2
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Lin L, Chen Y, Dai Y, Yan Z, Zou M, Zhou Q, Qian L, Cui W, Liu M, Zhang H, Yang Z, Su S. Quantification of myelination in children with attention-deficit/hyperactivity disorder: a comparative assessment with synthetic MRI and DTI. Eur Child Adolesc Psychiatry 2024; 33:1935-1944. [PMID: 37712949 DOI: 10.1007/s00787-023-02297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Evaluation of myelin content is crucial for attention-deficit/hyperactivity disorder (ADHD). To estimate myelin content in ADHD based on synthetic MRI-based method and compare it with established diffusion tensor imaging (DTI) method. Fifth-nine ADHD and fifty typically developing (TD) children were recruited. Global and regional myelin content (myelin volume fraction [MVF] and myelin volume [MYV]) were assessed using SyMRI and compared with DTI metrics (fractional anisotropy and mean/radial/axial diffusivity). The relationship between significant MRI parameters and clinical variables were assessed in ADHD. No between-group differences of whole-brain myelin content were found. Compared to TDs, ADHD showed higher mean MVF in bilateral internal capsule, external capsule, corona radiata, and corpus callosum, as well as in left tapetum, left superior fronto-occipital fascicular, and right cingulum (all PFDR-corrected < 0.05). Increased MYV were found in similar regions. Abnormalities of DTI metrics were mainly in bilateral corticospinal tract. Besides, MVF in right retro lenticular part of internal capsule was negatively correlated with cancellation test scores (r = - 0.41, P = 0.002), and MYV in right posterior limb of internal capsule (r = 0.377, P = 0.040) and left superior corona radiata (r = 0.375, P = 0.041) were positively correlated with cancellation test scores in ADHD. Increased myelin content underscored the important pathway of frontostriatal tract, posterior thalamic radiation, and corpus callosum underlying ADHD, which reinforced the insights into myelin quantification and its potential role in pathophysiological mechanism and disease diagnosis. Prospectively registered trials number: ChiCTR2100048109; date: 2021-07.
Collapse
Affiliation(s)
- Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengsha Zou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Fleischer P, Abbasi A, Gulati T. Modulation of neural spiking in motor cortex-cerebellar networks during sleep spindles. eNeuro 2024; 11:ENEURO.0150-23.2024. [PMID: 38641414 DOI: 10.1523/eneuro.0150-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several regions in the brain with two important areas being the motor cortex (M1) and the cerebellum. However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded activity from the M1 and cerebellar cortex in 8 rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and cerebellum spindles and this spiking occurred at a preferred phase of the spindle. On average, M1 and cerebellum neurons showed most spiking at the M1 or cerebellum spindle peaks. These neurons also developed a preferential phase-locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase-locking wasn't significant for cerebellar neurons when compared to cerebellum spindles. Additionally, we found the percentage of task-modulated cells in the M1 and cerebellum that fired with non-uniform spike-phase distribution during M1/ cerebellum spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle-band LFP coherence (for M1 and cerebellum LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and cerebellum recruit neurons that participate in the awake task to support motor memory consolidation.Significance Statement Neural processing during sleep spindles is linked to memory consolidation. However, little is known about sleep activity in the cerebellum and whether cerebellum spindles can affect spiking activity in local or distant areas. We report the effect of sleep spindles on neuron activity in the M1 and cerebellum-specifically their firing rate and phase-locking to spindle oscillations. Our results indicate that awake practice neuronal activity is tempered during local M1 and cerebellum spindles, and during cross-region spindles, which may support motor skill learning. We describe spiking dynamics in motor networks spindle oscillations that may aid in the learning of skills. Our results support the sleep reactivation hypothesis and suggest that awake M1 activity may be reactivated during cerebellum spindles.
Collapse
Affiliation(s)
- Pierson Fleischer
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Medicine, David Geffen School of Medicine; and Department of Bioengineering, Henry Samueli School of Engineering, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095
| |
Collapse
|
5
|
Saito H, Furukawa Y, Sasaki T, Kitajima S, Kanno J, Tanemura K. Behavioral effects of adult male mice induced by low-level acetamiprid, imidacloprid, and nicotine exposure in early-life. Front Neurosci 2023; 17:1239808. [PMID: 37662107 PMCID: PMC10469492 DOI: 10.3389/fnins.2023.1239808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Acetamiprid (ACE) and imidacloprid (IMI), the neonicotinoid chemicals, are widely used as pesticides because of their rapid insecticidal activity. Although these neonicotinoids exert very low toxicity in mammals, the effects of early, low-level, chronic exposure on the adult central nervous system are largely unclear. This study investigated the effects of low-level, chronic neonicotinoids exposure in early life on the brain functions of adult mice, using environmentally relevant concentrations. Methods We exposed mice to an acceptable daily intake level of neonicotinoids in drinking water during the prenatal and postnatal periods. Additionally, we also exposed mice to nicotine (NIC) as a positive control. We then examined the effects on the central nervous system in adult male offspring. Results In the IMI and NIC exposure groups, we detected behavior that displayed impairment in learning and memory. Furthermore, immunohistochemical analysis revealed a decrease in SOX2 (as a neural stem cell marker) and GFAP (as an astrocyte marker) positive cells of the hippocampal dentate gyrus in the IMI and NIC exposure groups compared to the control group. Discussion These results suggest that exposure to neonicotinoids at low levels in early life affects neural circuit base formation and post-maturation behavior. Therefore, in the central nervous system of male mice, the effects of low-level, chronic neonicotinoids exposure during the perinatal period were different from the expected effects of neonicotinoids exposure in mature animals.
Collapse
Affiliation(s)
- Hirokatsu Saito
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Yusuke Furukawa
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Satoshi Kitajima
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
7
|
Identification of the Shared Gene Signatures between Autism Spectrum Disorder and Epilepsy via Bioinformatic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9883537. [PMID: 36601364 PMCID: PMC9806688 DOI: 10.1155/2022/9883537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Purpose To identify gene signatures that are shared by autism spectrum disorder (ASD) and epilepsy (EP) and explore the potential molecular mechanism of the two diseases using WGCNA analysis. Additionally, to verify the effects of the shared molecular mechanism on ADHD, which is another neurological comorbidity. Methods We screened the crosstalk genes between ASD and EP based on WGCNA and differential expression analysis from GEO and DisGeNET database and analyzed the function of the genes' enrichment by GO and KEGG analyses. Then, with combination of multiple datasets and multiple bioinformatic analysis methods, the shared gene signatures were identified. Moreover, we explored whether the shared gene signature had influence on the other neurological disorder like ADHD by analyzing the difference of the relative genes' expression based on bioinformatic analysis and molecular experiment. Results By comprehensive bioinformatic analysis for multiple datasets, we found that abnormal immune response and abnormal lipid metabolic pathway played important roles in coincidence of ASD and EP. Base on the results of WGCNA, we got the hub genes in ASD and EP. In attention deficit and hyperactivity disorder (ADHD) animal model, we also found a significant difference of gene expression related to sulfatide metabolism, indicating that the abnormal sphingolipid metabolism was common in multiple neurological disorders. Conclusion This study reveals shared gene signatures between ASD and EP and identifies abnormal sphingolipid metabolism as an important participant in the development of ASD, EP, and ADHD.
Collapse
|
8
|
Wu K, Shepard RD, Castellano D, Han W, Tian Q, Dong L, Lu W. Shisa7 phosphorylation regulates GABAergic transmission and neurodevelopmental behaviors. Neuropsychopharmacology 2022; 47:2160-2170. [PMID: 35534528 PMCID: PMC9556544 DOI: 10.1038/s41386-022-01334-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
GABA-A receptors (GABAARs) are crucial for development and function of the brain. Altered GABAergic transmission is hypothesized to be involved in neurodevelopmental disorders. Recently, we identified Shisa7 as a GABAAR auxiliary subunit that modulates GABAAR trafficking and GABAergic transmission. However, the underlying molecular mechanisms remain elusive. Here we generated a knock-in (KI) mouse line that is phospho-deficient at a phosphorylation site in Shisa7 (S405) and combined with electrophysiology, imaging and behavioral assays to illustrate the role of this site in GABAergic transmission and plasticity as well as behaviors. We found that expression of phospho-deficient mutants diminished α2-GABAAR trafficking in heterologous cells. Additionally, α1/α2/α5-GABAAR surface expression and GABAergic inhibition were decreased in hippocampal neurons in KI mice. Moreover, chemically induced inhibitory long-term potentiation was abolished in KI mice. Lastly, KI mice exhibited hyperactivity, increased grooming and impaired sleep homeostasis. Collectively, our study reveals a phosphorylation site critical for Shisa7-dependent GABAARs trafficking which contributes to behavioral endophenotypes displayed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
10
|
Ka M, Kim HG, Kim WY. WDR5-HOTTIP Histone Modifying Complex Regulates Neural Migration and Dendrite Polarity of Pyramidal Neurons via Reelin Signaling. Mol Neurobiol 2022; 59:5104-5120. [PMID: 35672601 PMCID: PMC9378496 DOI: 10.1007/s12035-022-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
WD-repeat domain 5 (WDR5), a core component of histone methyltransferase complexes, is associated with Kabuki syndrome and Kleefstra syndrome that feature intellectual disability and neurodevelopmental delay. Despite its critical status in gene regulation and neurological disorders, the role of WDR5 in neural development is unknown. Here we show that WDR5 is required for normal neuronal placement and dendrite polarization in the developing cerebral cortex. WDR5 knockdown led to defects in both entry into the bipolar transition of pyramidal neurons within the intermediate zone and radial migration into cortical layers. Moreover, WDR5 deficiency disrupted apical and basal polarity of cortical dendrites. Aberrant dendritic spines and synapses accompanied the dendrite polarity phenotype. WDR5 deficiency reduced expression of reelin signaling receptors, ApoER and VdldR, which were associated with abnormal H3K4 methylation and H4 acetylation on their promoter regions. Finally, an lncRNA, HOTTIP, was found to be a partner of WDR5 to regulate dendritic polarity and reelin signaling via histone modification. Our results demonstrate a novel role for WDR5 in neuronal development and provide mechanistic insights into the neuropathology associated with histone methyltransferase dysfunction.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamid Bin Khalifa University, Doha, Qatar
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
11
|
Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. Int J Mol Sci 2022; 23:ijms23147965. [PMID: 35887307 PMCID: PMC9318753 DOI: 10.3390/ijms23147965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
Collapse
|
12
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
13
|
Li S, Wang XJ. Hierarchical timescales in the neocortex: Mathematical mechanism and biological insights. Proc Natl Acad Sci U S A 2022; 119:e2110274119. [PMID: 35110401 PMCID: PMC8832993 DOI: 10.1073/pnas.2110274119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the neocortex is the progressive increase of the spatial receptive fields along the cortical hierarchy. Recently, theoretical and experimental findings have shown that the temporal response windows also gradually enlarge, so that early sensory neural circuits operate on short timescales whereas higher-association areas are capable of integrating information over a long period of time. While an increased receptive field is accounted for by spatial summation of inputs from neurons in an upstream area, the emergence of timescale hierarchy cannot be readily explained, especially given the dense interareal cortical connectivity known in the modern connectome. To uncover the required neurobiological properties, we carried out a rigorous analysis of an anatomically based large-scale cortex model of macaque monkeys. Using a perturbation method, we show that the segregation of disparate timescales is defined in terms of the localization of eigenvectors of the connectivity matrix, which depends on three circuit properties: 1) a macroscopic gradient of synaptic excitation, 2) distinct electrophysiological properties between excitatory and inhibitory neuronal populations, and 3) a detailed balance between long-range excitatory inputs and local inhibitory inputs for each area-to-area pathway. Our work thus provides a quantitative understanding of the mechanism underlying the emergence of timescale hierarchy in large-scale primate cortical networks.
Collapse
Affiliation(s)
- Songting Li
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
14
|
Sensory Processing Phenotypes in Phelan-McDermid Syndrome and SYNGAP1-Related Intellectual Disability. Brain Sci 2022; 12:brainsci12020137. [PMID: 35203901 PMCID: PMC8869824 DOI: 10.3390/brainsci12020137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Sensory processing differences are an established feature of both syndromic and non-syndromic Autism Spectrum Disorders (ASDs). Significant work has been carried out to characterize and classify specific sensory profiles in non-syndromic autism. However, it is not known if syndromic autism disorders, such as Phelan-McDermid Syndrome (PMD) or SYNGAP1-related Intellectual Disability (SYNGAP1-ID), have unique sensory phenotypes. Understanding the sensory features of these disorders is important for providing appropriate care and for understanding their underlying mechanisms. Our objective in this work was to determine the sensory processing abnormalities present in two syndromic ASDs: Phelan-McDermid Syndrome and SYNGAP1-related Intellectual Disability. Using a standardized instrument, the Short Sensory Profile-2, we characterized sensory features in 41 patients with PMD and 24 patients with SYNGAP1-ID, and sub-scores were then calculated for seeking, avoiding, sensitivity and registration, as well as overall sensory and behavior scores. We found both patient groups exhibited atypical sensory features, including high scores in the areas of avoiding and seeking. Thus, we discovered significant sensory processing abnormalities are common in these syndromic ASDs. Measurements of sensory processing could serve as useful clinical endpoints for trials of novel therapeutics for these populations.
Collapse
|
15
|
Suthakaran N, Wiggins J, Giles A, Opperman KJ, Grill B, Dawson-Scully K. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS One 2021; 16:e0260072. [PMID: 34797853 PMCID: PMC8604358 DOI: 10.1371/journal.pone.0260072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neurodevelopmental disorders such as epilepsy and autism have been linked to an imbalance of excitation and inhibition (E/I) in the central nervous system. The simplicity and tractability of C. elegans allows our electroconvulsive seizure (ES) assay to be used as a behavioral readout of the locomotor circuit and neuronal function. C. elegans possess conserved nervous system features such as gamma-aminobutyric acid (GABA) and GABA receptors in inhibitory neurotransmission, and acetylcholine (Ach) and acetylcholine receptors in excitatory neurotransmission. Our previously published data has shown that decreasing inhibition in the motor circuit, via GABAergic manipulation, will extend the time of locomotor recovery following electroshock. Similarly, mutations in a HECT E3 ubiquitin ligase called EEL-1 leads to impaired GABAergic transmission, E/I imbalance and altered sensitivity to electroshock. Mutations in the human ortholog of EEL-1, called HUWE1, are associated with both syndromic and non-syndromic intellectual disability. Both EEL-1 and its previously established binding protein, OGT-1, are expressed in GABAergic motor neurons, localize to GABAergic presynaptic terminals, and function in parallel to regulate GABA neuron function. In this study, we tested behavioral responses to electroshock in wildtype, ogt-1, eel-1 and ogt-1; eel-1 double mutants. Both ogt-1 and eel-1 null mutants have decreased inhibitory GABAergic neuron function and increased electroshock sensitivity. Consistent with EEL-1 and OGT-1 functioning in parallel pathways, ogt-1; eel-1 double mutants showed enhanced electroshock susceptibility. Expression of OGT-1 in the C. elegans nervous system rescued enhanced electroshock defects in ogt-1; eel-1 double mutants. Application of a GABA agonist, Baclofen, decreased electroshock susceptibility in all animals. Our C. elegans electroconvulsive seizure assay was the first to model a human X-linked Intellectual Disability (XLID) associated with epilepsy and suggests a potential novel role for the OGT-1/EEL-1 complex in seizure susceptibility.
Collapse
Affiliation(s)
- Nirthieca Suthakaran
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jonathan Wiggins
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Andrew Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
17
|
Autism-associated mutations in K V7 channels induce gating pore current. Proc Natl Acad Sci U S A 2021; 118:2112666118. [PMID: 34728568 PMCID: PMC8609342 DOI: 10.1073/pnas.2112666118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.
Collapse
|
18
|
Lu P, Wang F, Zhou S, Huang X, Sun H, Zhang YW, Yao Y, Zheng H. A Novel CNTNAP2 Mutation Results in Abnormal Neuronal E/I Balance. Front Neurol 2021; 12:712773. [PMID: 34737720 PMCID: PMC8562072 DOI: 10.3389/fneur.2021.712773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
CNTNAP2 (coding for protein Caspr2), a member of the neurexin family, plays an important role in the balance of excitatory and inhibitory post-synaptic currents (E/I balance). Here, we describe a novel pathogenic missense mutation in an infant with spontaneous recurrent seizures (SRSs) and intellectual disability. Genetic testing revealed a missense mutation, c.2329 C>G (p. R777G), in the CNTNAP2 gene. To explore the effect of this novel mutation, primary cultured neurons were transfected with wild type homo CNTNAP2 or R777G mutation and the morphology and function of neurons were evaluated. When compared with the vehicle control group or wild type group, the neurites and the membrane currents, including spontaneous excitatory post-synaptic currents (sEPSCs) and inhibitory post-synaptic currents (sIPSCs), in CNTNAP2 R777G mutation group were all decreased or weakened. Moreover, the action potentials (APs) were also impaired in CNTNAP2 R777G group. Therefore, CNTNAP2 R777G may lead to the imbalance of excitatory and inhibitory post-synaptic currents in neural network contributing to SRSs.
Collapse
Affiliation(s)
- Ping Lu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Jiangsu Province Hospital of Integrated Chinese and Western Medicine, Nanjing, China
| | - Fengpeng Wang
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Shuixiu Zhou
- Department of Neurology, Xiamen University Hospital, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| |
Collapse
|
19
|
Berto S, Liu Y, Konopka G. Genomics at cellular resolution: insights into cognitive disorders and their evolution. Hum Mol Genet 2021; 29:R1-R9. [PMID: 32566943 DOI: 10.1093/hmg/ddaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
High-throughput genomic sequencing approaches have held the promise of understanding and ultimately leading to treatments for cognitive disorders such as autism spectrum disorders, schizophrenia and Alzheimer's disease. Although significant progress has been made into identifying genetic variants associated with these diseases, these studies have also uncovered that these disorders are mostly genetically complex and thus challenging to model in non-human systems. Improvements in such models might benefit from understanding the evolution of the human genome and how such modifications have affected brain development and function. The intersection of genome-wide variant information with cell-type-specific expression and epigenetic information will further assist in resolving the contribution of particular cell types in evolution or disease. For example, the role of non-neuronal cells in brain evolution and cognitive disorders has gone mostly underappreciated until the recent availability of single-cell transcriptomic approaches. In this review, we discuss recent studies that carry out cell-type-specific assessments of gene expression in brain tissue across primates and between healthy and disease populations. The emerging results from these studies are beginning to elucidate how specific cell types in the evolved human brain are contributing to cognitive disorders.
Collapse
|
20
|
Wang HG, Bavley CC, Li A, Jones RM, Hackett J, Bayleyen Y, Lee FS, Rajadhyaksha AM, Pitt GS. Scn2a severe hypomorphic mutation decreases excitatory synaptic input and causes autism-associated behaviors. JCI Insight 2021; 6:150698. [PMID: 34156984 PMCID: PMC8410058 DOI: 10.1172/jci.insight.150698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
SCN2A, encoding the neuronal voltage-gated Na+ channel NaV1.2, is one of the most commonly affected loci linked to autism spectrum disorders (ASDs). Most ASD-associated mutations in SCN2A are loss-of-function mutations, but studies examining how such mutations affect neuronal function and whether Scn2a mutant mice display ASD endophenotypes have been inconsistent. We generated a protein truncation variant Scn2a mouse model (Scn2aΔ1898/+) by CRISPR that eliminates the NaV1.2 channel's distal intracellular C-terminal domain, and we analyzed the molecular and cellular consequences of this variant in a heterologous expression system, in neuronal culture, in brain slices, and in vivo. We also analyzed multiple behaviors in WT and Scn2aΔ1898/+ mice and correlated behaviors with clinical data obtained in human subjects with SCN2A variants. Expression of the NaV1.2 mutant in a heterologous expression system revealed decreased NaV1.2 channel function, and cultured pyramidal neurons isolated from Scn2aΔ1898/+ forebrain showed correspondingly reduced voltage-gated Na+ channel currents without compensation from other CNS voltage-gated Na+ channels. Na+ currents in inhibitory neurons were unaffected. Consistent with loss of voltage-gated Na+ channel currents, Scn2aΔ1898/+ pyramidal neurons displayed reduced excitability in forebrain neuronal culture and reduced excitatory synaptic input onto the pyramidal neurons in brain slices. Scn2aΔ1898/+ mice displayed several behavioral abnormalities, including abnormal social interactions that reflect behavior observed in humans with ASD and with harboring loss-of-function SCN2A variants. This model and its cellular electrophysiological characterizations provide a framework for tracing how a SCN2A loss-of-function variant leads to cellular defects that result in ASD-associated behaviors.
Collapse
Affiliation(s)
| | - Charlotte C. Bavley
- Feil Family Brain and Mind Research Institute, and
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Anfei Li
- Feil Family Brain and Mind Research Institute, and
| | - Rebecca M. Jones
- Weill Cornell Medicine, Center for Autism and the Developing Brain, White Plains, New York, USA
- Weill Cornell Autism Research Program and
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Hackett
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | | | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, and
- Weill Cornell Autism Research Program and
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Anjali M. Rajadhyaksha
- Feil Family Brain and Mind Research Institute, and
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Autism Research Program and
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute
- Weill Cornell Autism Research Program and
| |
Collapse
|
21
|
Biological implications of genetic variations in autism spectrum disorders from genomics studies. Biosci Rep 2021; 41:229227. [PMID: 34240107 PMCID: PMC8298259 DOI: 10.1042/bsr20210593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.
Collapse
|
22
|
Payán-Gómez C, Ramirez-Cheyne J, Saldarriaga W. Variable Expressivity in Fragile X Syndrome: Towards the Identification of Molecular Characteristics That Modify the Phenotype. Appl Clin Genet 2021; 14:305-312. [PMID: 34262328 PMCID: PMC8273740 DOI: 10.2147/tacg.s265835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Fragile X syndrome (FXS), is an X-linked inherited genetic disease. FXS is the leading cause of inherited intellectual disability and autism in the world. Those affected are characterized by intellectual disability, language deficit, typical facies, and macroorchidism. Alterations in the FMR1 gene have been associated with FXS. The majority of people with this condition have an allele with an expansion of more than 200 repeats in a tract of CGGs within the 5' untranslated region, and this expansion is associated with a hypermethylated state of the gene promoter. FXS has incomplete penetrance and variable expressivity. Intellectual disability is present in 100% of males and 60% of females. Autism spectrum disorder symptoms appear in 50% to 60% of males and 20% of females. Other characteristics such as behavioral and physical alterations have significant variations in presentation frequency. The molecular causes of the variable phenotype in FXS patients are becoming clear: these causes are related to the FMR1 gene itself and to secondary, modifying gene effects. In FXS patients, size and methylation mosaicisms are common. Secondary to mosaicism, there is a variation in the quantity of FMR1 mRNA and the protein coded by the gene Fragile Mental Retardation Protein (FMRP). Potential modifier genes have also been proposed, with conflicting results. Characterizing patients according to CGG expansion, methylation status, concentration of mRNA and FMRP, and genotypification for possible modifier genes in a clinical setting offers an opportunity to identify predictors for treatment response evaluation. When intervention strategies become available to modulate the course of the disease they could be crucial for selecting patients and identifying the best therapeutic intervention. The purpose of this review is to present the information available about the molecular causes of the variability of the expression incomplete penetrance and variable expressivity in FXS and their potential clinical applications.
Collapse
Affiliation(s)
- César Payán-Gómez
- Deparment of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Julian Ramirez-Cheyne
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| | - Wilmar Saldarriaga
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| |
Collapse
|
23
|
Jishi A, Qi X, Miranda HC. Implications of mRNA translation dysregulation for neurological disorders. Semin Cell Dev Biol 2021; 114:11-19. [PMID: 34024497 PMCID: PMC8144541 DOI: 10.1016/j.semcdb.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
The translation of information encoded in the DNA into functional proteins is one of the tenets of cellular biology. Cell survival and function depend on the tightly controlled processes of transcription and translation. Growing evidence suggests that dysregulation in mRNA translation plays an important role in the pathogenesis of several neurodevelopmental diseases, such as autism spectrum disorder (ASD) and fragile X syndrome (FXS) as well as neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review, we provide an overview of mRNA translation and its modes of regulation that have been implicated in neurological disease.
Collapse
Affiliation(s)
- Aya Jishi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Papariello A, Taylor D, Soderstrom K, Litwa K. CB 1 antagonism increases excitatory synaptogenesis in a cortical spheroid model of fetal brain development. Sci Rep 2021; 11:9356. [PMID: 33931678 PMCID: PMC8087674 DOI: 10.1038/s41598-021-88750-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a complex role in the development of neural circuitry during fetal brain development. The cannabinoid receptor type 1 (CB1) controls synaptic strength at both excitatory and inhibitory synapses and thus contributes to the balance of excitatory and inhibitory signaling. Imbalances in the ratio of excitatory to inhibitory synapses have been implicated in various neuropsychiatric disorders associated with dysregulated central nervous system development including autism spectrum disorder, epilepsy, and schizophrenia. The role of CB1 in human brain development has been difficult to study but advances in induced pluripotent stem cell technology have allowed us to model the fetal brain environment. Cortical spheroids resemble the cortex of the dorsal telencephalon during mid-fetal gestation and possess functional synapses, spontaneous activity, an astrocyte population, and pseudo-laminar organization. We first characterized the ECS using STORM microscopy and observed synaptic localization of components similar to that which is observed in the fetal brain. Next, using the CB1-selective antagonist SR141716A, we observed an increase in excitatory, and to a lesser extent, inhibitory synaptogenesis as measured by confocal image analysis. Further, CB1 antagonism increased the variability of spontaneous activity within developing neural networks, as measured by microelectrode array. Overall, we have established that cortical spheroids express ECS components and are thus a useful model for exploring endocannabinoid mediation of childhood neuropsychiatric disease.
Collapse
Affiliation(s)
- Alexis Papariello
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - David Taylor
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
25
|
Kim HY, Suh PG, Kim JI. The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. Int J Mol Sci 2021; 22:ijms22063149. [PMID: 33808762 PMCID: PMC8003358 DOI: 10.3390/ijms22063149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Correspondence: ; Tel.: +82-52-217-2458
| |
Collapse
|
26
|
Moffat JJ, Jung EM, Ka M, Jeon BT, Lee H, Kim WY. Differential roles of ARID1B in excitatory and inhibitory neural progenitors in the developing cortex. Sci Rep 2021; 11:3856. [PMID: 33594090 PMCID: PMC7886865 DOI: 10.1038/s41598-021-82974-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/21/2021] [Indexed: 11/08/2022] Open
Abstract
Genetic evidence indicates that haploinsufficiency of ARID1B causes intellectual disability (ID) and autism spectrum disorder (ASD), but the neural function of ARID1B is largely unknown. Using both conditional and global Arid1b knockout mouse strains, we examined the role of ARID1B in neural progenitors. We detected an overall decrease in the proliferation of cortical and ventral neural progenitors following homozygous deletion of Arid1b, as well as altered cell cycle regulation and increased cell death. Each of these phenotypes was more pronounced in ventral neural progenitors. Furthermore, we observed decreased nuclear localization of β-catenin in Arid1b-deficient neurons. Conditional homozygous deletion of Arid1b in ventral neural progenitors led to pronounced ID- and ASD-like behaviors in mice, whereas the deletion in cortical neural progenitors resulted in minor cognitive deficits. This study suggests an essential role for ARID1B in forebrain neurogenesis and clarifies its more pronounced role in inhibitory neural progenitors. Our findings also provide insights into the pathogenesis of ID and ASD.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94153, USA
| | - Eui-Man Jung
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Minhan Ka
- Research Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Byeong Tak Jeon
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Hyunkyoung Lee
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
27
|
Proteau-Lemieux M, Knoth IS, Agbogba K, Côté V, Barlahan Biag HM, Thurman AJ, Martin CO, Bélanger AM, Rosenfelt C, Tassone F, Abbeduto LJ, Jacquemont S, Hagerman R, Bolduc F, Hessl D, Schneider A, Lippé S. EEG Signal Complexity Is Reduced During Resting-State in Fragile X Syndrome. Front Psychiatry 2021; 12:716707. [PMID: 34858220 PMCID: PMC8632368 DOI: 10.3389/fpsyt.2021.716707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fragile X syndrome (FXS) is a genetic disorder caused by a mutation of the fragile X mental retardation 1 gene (FMR1). FXS is associated with neurophysiological abnormalities, including cortical hyperexcitability. Alterations in electroencephalogram (EEG) resting-state power spectral density (PSD) are well-defined in FXS and were found to be linked to neurodevelopmental delays. Whether non-linear dynamics of the brain signal are also altered remains to be studied. Methods: In this study, resting-state EEG power, including alpha peak frequency (APF) and theta/beta ratio (TBR), as well as signal complexity using multi-scale entropy (MSE) were compared between 26 FXS participants (ages 5-28 years), and 7 neurotypical (NT) controls with a similar age distribution. Subsequently a replication study was carried out, comparing our cohort to 19 FXS participants independently recorded at a different site. Results: PSD results confirmed the increased gamma, decreased alpha power and APF in FXS participants compared to NT controls. No alterations in TBR were found. Importantly, results revealed reduced signal complexity in FXS participants, specifically in higher scales, suggesting that altered signal complexity is sensitive to brain alterations in this population. The replication study mostly confirmed these results and suggested critical points of stagnation in the neurodevelopmental curve of FXS. Conclusion: Signal complexity is a powerful feature that can be added to the electrophysiological biomarkers of brain maturation in FXS.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Côté
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Hazel Maridith Barlahan Biag
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | - Angela John Thurman
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | | | - Anne-Marie Bélanger
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Cory Rosenfelt
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Flora Tassone
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Leonard J Abbeduto
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada.,Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Randi Hagerman
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | - François Bolduc
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - David Hessl
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Andrea Schneider
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,California North State University, College of Psychology, Rancho Cordova, CA, United States
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| |
Collapse
|
28
|
Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol Psychiatry 2021; 26:1505-1519. [PMID: 31388105 PMCID: PMC8159750 DOI: 10.1038/s41380-019-0472-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Genetic studies of autism spectrum disorder (ASD) have revealed multigene variations that converge on synaptic dysfunction. DOCK4, a gene at 7q31.1 that encodes the Rac1 guanine nucleotide exchange factor Dock4, has been identified as a risk gene for ASD and other neuropsychiatric disorders. However, whether and how Dock4 disruption leads to ASD features through a synaptic mechanism remain unexplored. We generated and characterized a line of Dock4 knockout (KO) mice, which intriguingly displayed a series of ASD-like behaviors, including impaired social novelty preference, abnormal isolation-induced pup vocalizations, elevated anxiety, and perturbed object and spatial learning. Mice with conditional deletion of Dock4 in hippocampal CA1 recapitulated social preference deficit in KO mice. Examination in CA1 pyramidal neurons revealed that excitatory synaptic transmission was drastically attenuated in KO mice, accompanied by decreased spine density and synaptic content of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors. Moreover, Dock4 deficiency markedly reduced Rac1 activity in the hippocampus, which resulted in downregulation of global protein synthesis and diminished expression of AMPA and NMDA receptor subunits. Notably, Rac1 replenishment in the hippocampal CA1 of Dock4 KO mice restored excitatory synaptic transmission and corrected impaired social deficits in these mice, and pharmacological activation of NMDA receptors also restored social novelty preference in Dock4 KO mice. Together, our findings uncover a previously unrecognized Dock4-Rac1-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and social behavior.
Collapse
|
29
|
Kreyden VA, Mawi EB, Rush KM, Kowalski JR. UBC-9 Acts in GABA Neurons to Control Neuromuscular Signaling in C. elegans. Neurosci Insights 2020; 15:2633105520962792. [PMID: 33089216 PMCID: PMC7543134 DOI: 10.1177/2633105520962792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Regulation of excitatory to inhibitory signaling balance is essential to nervous system health and is maintained by numerous enzyme systems that modulate the activity, localization, and abundance of synaptic proteins. SUMOylation is a key post-translational regulator of protein function in diverse cells, including neurons. There, its role in regulating synaptic transmission through pre- and postsynaptic effects has been shown primarily at glutamatergic central nervous system synapses, where the sole SUMO-conjugating enzyme Ubc9 is a critical player. However, whether Ubc9 functions globally at other synapses, including inhibitory synapses, has not been explored. Here, we investigated the role of UBC-9 and the SUMOylation pathway in controlling the balance of excitatory cholinergic and inhibitory GABAergic signaling required for muscle contraction in Caenorhabditis elegans. We found inhibition or overexpression of UBC-9 in neurons modestly increased muscle excitation. Similar and even stronger phenotypes were seen with UBC-9 overexpression specifically in GABAergic neurons, but not in cholinergic neurons. These effects correlated with accumulation of synaptic vesicle-associated proteins at GABAergic presynapses, where UBC-9 and the C. elegans SUMO ortholog SMO-1 localized, and with defects in GABA-dependent behaviors. Experiments involving expression of catalytically inactive UBC-9 [UBC-9(C93S)], as well as co-expression of UBC-9 and SMO-1, suggested wild type UBC-9 overexpressed alone may act via substrate sequestration in the absence of sufficient free SUMO, underscoring the importance of tightly regulated SUMO enzyme function. Similar effects on muscle excitation, GABAergic signaling, and synaptic vesicle localization occurred with overexpression of the SUMO activating enzyme subunit AOS-1. Together, these data support a model in which UBC-9 and the SUMOylation system act at presynaptic sites in inhibitory motor neurons to control synaptic signaling balance in C. elegans. Future studies will be important to define UBC-9 targets at this synapse, as well as mechanisms by which UBC-9 and the SUMO pathway are regulated.
Collapse
Affiliation(s)
- Victoria A Kreyden
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Elly B Mawi
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | | |
Collapse
|
30
|
Pati S, Saba K, Salvi SS, Tiwari P, Chaudhari PR, Verma V, Mukhopadhyay S, Kapri D, Suryavanshi S, Clement JP, Patel AB, Vaidya VA. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. eLife 2020; 9:56171. [PMID: 32955432 PMCID: PMC7652419 DOI: 10.7554/elife.56171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2–14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq-signaling-mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity. Stress and adversity in early childhood can have long-lasting effects, predisposing people to mental illness and mood disorders in adult life. The weeks immediately before and after birth are critical for establishing key networks of neurons in the brain. Therefore, any disruption to these neural circuits during this time can be detrimental to emotional development. However, it is still unclear which cellular mechanisms cause these lasting changes in behavior. Studies in animals suggest that these long-term effects could result from abnormalities in a few signaling pathways in the brain. For example, it has been proposed that overstimulating the cells that activate circuits in the forebrain – also known as excitatory neurons – may contribute to the behavioral changes that persist into adulthood. To test this theory, Pati et al. used genetic engineering to modulate a signaling pathway in male mice, which is known to stimulate excitatory neurons in the forebrain. The experiments showed that prolonged activation of excitatory neurons in the first two weeks after birth resulted in anxious and despair-like behaviors as the animals aged. The mice also displayed discrepancies in how they responded to certain external sensory information, which is a hallmark of schizophrenia-like behavior. However, engineering the same changes in adolescent and adult mice had no effect on their mood-related behaviors. This animal study reinforces just how critical the first few weeks of life are for optimal brain development. It provides an insight into a possible mechanism of how disruption during this time could alter emotional behavior. The findings are also relevant to psychiatrists interested in the underlying causes of mental illness after early childhood adversity.
Collapse
Affiliation(s)
- Sthitapranjya Pati
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kamal Saba
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sonali S Salvi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Praachi Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pratik R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sourish Mukhopadhyay
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shital Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Anant B Patel
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
31
|
Ganesan H, Balasubramanian V, Iyer M, Venugopal A, Subramaniam MD, Cho SG, Vellingiri B. mTOR signalling pathway - A root cause for idiopathic autism? BMB Rep 2020. [PMID: 31186084 PMCID: PMC6675248 DOI: 10.5483/bmbrep.2019.52.7.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals. [BMB Reports 2019; 52(7): 424-433].
Collapse
Affiliation(s)
- Harsha Ganesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Venkatesh Balasubramanian
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
32
|
Novell R, Esteba-Castillo S, Rodriguez E. Efficacy and safety of a GABAergic drug (Gamalate® B6): effects on behavior and cognition in young adults with borderline-to-mild intellectual developmental disabilities and ADHD. Drugs Context 2020; 9:212601. [PMID: 32158489 PMCID: PMC7048157 DOI: 10.7573/dic.212601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We evaluated Gamalate® B6 (GB6) in patients with borderline intellectual functioning (BIF) or mild intellectual development disability (IDD). PATIENTS AND METHODS This was a prospective phase IV observational pilot study in 30 patients who underwent neuropsychological evaluation during treatment with GB6 for 12 weeks. RESULTS In comparison with baseline, the responses were positive, with a significant improvement in hyperactivity (51.7%), irritability (35.5%), and logorrhea (50%), and no sedative effect. The Clinical Global Impressions - Severity (CGI-S) score was much improved or very much improved in 73% of cases. Reaction time was better with fewer errors, thus indicating an improvement in attentional processes. A statistically significant result was obtained for the number of movements used to solve the problem and for the total number of correctly solved problems. CONCLUSION In this pilot study, GB6 was effective and well tolerated in cases of ADHD and challenging behavior in young adults with borderline-to-mild BIF/IDD. However, given the small number of patients involved and the uncontrolled nature of the study, these results should be viewed cautiously.
Collapse
Affiliation(s)
- Ramón Novell
- Specialized Service in Mental Health and Intellectual Disability (SEMSDI), Parc Hospitalàri Martí i Julià, Instituto de Asistencia Sanitaria, Girona, Spain
| | - Susanna Esteba-Castillo
- Specialized Service in Mental Health and Intellectual Disability (SEMSDI), Parc Hospitalàri Martí i Julià, Instituto de Asistencia Sanitaria, Girona, Spain
| | - Emili Rodriguez
- Specialized Service in Mental Health and Intellectual Disability (SEMSDI), Parc Hospitalàri Martí i Julià, Instituto de Asistencia Sanitaria, Girona, Spain
| |
Collapse
|
33
|
Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol Dis 2020; 137:104758. [PMID: 31978606 DOI: 10.1016/j.nbd.2020.104758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 02/01/2023] Open
Abstract
Mutations in the X-linked gene IQSEC2 are associated with multiple cases of epilepsy, epileptic encephalopathy, intellectual disability and autism spectrum disorder, the mechanistic understanding and successful treatment of which remain a significant challenge in IQSEC2 and related neurodevelopmental genetic diseases. To investigate disease etiology, we studied behaviors and synaptic function in IQSEC2 deficient mice. Hemizygous Iqsec2 null males exhibit growth deficits, hyperambulation and hyperanxiety phenotypes. Adult hemizygotes experience lethal spontaneous seizures, but paradoxically have a significantly increased threshold to electrically induced limbic seizures and relative resistance to chemically induced seizures. Although there are no gross defects in brain morphology, hemizygotes exhibit stark hippocampal reactive astrogliosis. Electrophysiological recordings of hippocampal neurons reveal increased excitatory drive specifically onto interneurons, and significant alterations in intrinsic electrical properties specific to the interneuron population. As they age, hemizygotes also develop an increased abundance of parvalbumin-positive interneurons in the hippocampus, neurons in which IQSEC2 is expressed in addition to the excitatory neurons. These findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.
Collapse
|
34
|
Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain. Mol Psychiatry 2020; 25:2017-2035. [PMID: 30224722 PMCID: PMC7473840 DOI: 10.1038/s41380-018-0240-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/07/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Principal neurons encode information by varying their firing rate and patterns precisely fine-tuned through GABAergic interneurons. Dysregulation of inhibition can lead to neuropsychiatric disorders, yet little is known about the molecular basis underlying inhibitory control. Here, we find that excessive GABA release from basket cells (BCs) attenuates the firing frequency of Purkinje neurons (PNs) in the cerebellum of Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mice, a model of Fragile X Syndrome (FXS) with abrogated expression of the Fragile X Mental Retardation Protein (FMRP). This over-inhibition originates from increased excitability and Ca2+ transients in the presynaptic terminals, where Kv1.2 potassium channels are downregulated. By paired patch-clamp recordings, we further demonstrate that acutely introducing an N-terminal fragment of FMRP into BCs normalizes GABA release in the Fmr1-KO synapses. Conversely, direct injection of an inhibitory FMRP antibody into BCs, or membrane depolarization of BCs, enhances GABA release in the wild type synapses, leading to abnormal inhibitory transmission comparable to the Fmr1-KO neurons. We discover that the N-terminus of FMRP directly binds to a phosphorylated serine motif on the C-terminus of Kv1.2; and that loss of this interaction in BCs exaggerates GABA release, compromising the firing activity of PNs and thus the output from the cerebellar circuitry. An allosteric Kv1.2 agonist, docosahexaenoic acid, rectifies the dysregulated inhibition in vitro as well as acoustic startle reflex and social interaction in vivo of the Fmr1-KO mice. Our results unravel a novel molecular locus for targeted intervention of FXS and perhaps autism.
Collapse
|
35
|
Lin L, Lyu Q, Kwan PY, Zhao J, Fan R, Chai A, Lai CSW, Chan YS, Shen X, Lai KO. The epilepsy and intellectual disability-associated protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors. PLoS Genet 2020; 16:e1008587. [PMID: 32004315 PMCID: PMC7015432 DOI: 10.1371/journal.pgen.1008587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/12/2020] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lianfeng Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Quanwei Lyu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Junjun Zhao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ruolin Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Anping Chai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuting Shen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plast 2019; 2019:1538137. [PMID: 31565044 PMCID: PMC6745111 DOI: 10.1155/2019/1538137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.
Collapse
|
37
|
Patel AM, Wierda K, Thorrez L, van Putten M, De Smedt J, Ribeiro L, Tricot T, Gajjar M, Duelen R, Van Damme P, De Waele L, Goemans N, Tanganyika-de Winter C, Costamagna D, Aartsma-Rus A, van Duyvenvoorde H, Sampaolesi M, Buyse GM, Verfaillie CM. Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Transl Psychiatry 2019; 9:200. [PMID: 31434868 PMCID: PMC6704264 DOI: 10.1038/s41398-019-0535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines. DMD astrocytes displayed cytoskeletal abnormalities, defects in Ca+2 homeostasis and nitric oxide signaling. In addition, defects in glutamate clearance were identified in DMD PSC-derived astrocytes; these deficits were related to a decreased neurite outgrowth and hyperexcitability of neurons derived from healthy PSC. Read-through molecule restored dystrophin expression in DMD PSC-derived astrocytes harboring a premature stop codon mutation, corrected the defective astrocyte glutamate clearance and prevented associated neurotoxicity. We propose a role for dystrophin deficiency in defective astroglial glutamate homeostasis which initiates defects in neuronal development.
Collapse
Affiliation(s)
- Abdulsamie M. Patel
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Lieven Thorrez
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium
| | - Maaike van Putten
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan De Smedt
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Luis Ribeiro
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Tine Tricot
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Madhavsai Gajjar
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Philip Van Damme
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fLaboratory of Neurobiology, Department of Neuroscience, KU Leuven, Leuven, Belgium ,0000 0004 0626 3338grid.410569.fNeurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium ,0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fVesalius Research Center, Laboratory of Neurobiology, KU Leuven, Leuven, Belgium
| | - Nathalie Goemans
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christa Tanganyika-de Winter
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Domiziana Costamagna
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Annemieke Aartsma-Rus
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermine van Duyvenvoorde
- 0000000089452978grid.10419.3dLaboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurilio Sampaolesi
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine M. Verfaillie
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Bellosta P, Soldano A. Dissecting the Genetics of Autism Spectrum Disorders: A Drosophila Perspective. Front Physiol 2019; 10:987. [PMID: 31481894 PMCID: PMC6709880 DOI: 10.3389/fphys.2019.00987] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex group of multi-factorial developmental disorders that leads to communication and behavioral defects. Genetic alterations have been identified in around 20% of ASD patients and the use of genetic models, such as Drosophila melanogaster, has been of paramount importance in deciphering the significance of these alterations. In fact, many of the ASD associated genes, such as FMR1, Neurexin, Neuroligins and SHANK encode for proteins that have conserved functions in neurons and during synapse development, both in humans and in the fruit fly. Drosophila is a prominent model in neuroscience due to the conserved genetic networks that control neurodevelopmental processes and to the ease of manipulating its genetics. In the present review we will describe recent advances in the field of ASD with a particular focus on the characterization of genes where the use of Drosophila has been fundamental to better understand their function.
Collapse
Affiliation(s)
- Paola Bellosta
- Laboratory of Metabolism of Cell Growth and Neuronal Survival, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy.,Department of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy
| |
Collapse
|
39
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Ohtani-Kaneko R. Crmp4-KO Mice as an Animal Model for Investigating Certain Phenotypes of Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E2485. [PMID: 31137494 PMCID: PMC6566569 DOI: 10.3390/ijms20102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has demonstrated that the collapsin response mediator protein (CRMP) family is involved in the formation of neural networks. A recent whole-exome sequencing study identified a de novo variant (S541Y) of collapsin response mediator protein 4 (CRMP4) in a male patient with autism spectrum disorder (ASD). In addition, Crmp4-knockout (KO) mice show some phenotypes similar to those observed in human patients with ASD. For example, compared with wild-type mice, Crmp4-KO mice exhibit impaired social interaction, abnormal sensory sensitivities, broader distribution of activated (c-Fos expressing) neurons, altered dendritic formation, and aberrant patterns of neural gene expressions, most of which have sex differences. This review summarizes current knowledge regarding the role of CRMP4 during brain development and discusses the possible contribution of CRMP4 deficiencies or abnormalities to the pathogenesis of ASD. Crmp4-KO mice represent an appropriate animal model for investigating the mechanisms underlying some ASD phenotypes, such as impaired social behavior, abnormal sensory sensitivities, and sex-based differences, and other neurodevelopmental disorders associated with sensory processing disorders.
Collapse
Affiliation(s)
- Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura 374-0193, Japan.
| |
Collapse
|
41
|
Landi S, Petrucco L, Sicca F, Ratto GM. Transient Cognitive Impairment in Epilepsy. Front Mol Neurosci 2019; 11:458. [PMID: 30666185 PMCID: PMC6330286 DOI: 10.3389/fnmol.2018.00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Impairments of the dialog between excitation and inhibition (E/I) is commonly associated to neuropsychiatric disorders like autism, bipolar disorders and epilepsy. Moderate levels of hyperexcitability can lead to mild alterations of the EEG and are often associated with cognitive deficits even in the absence of overt seizures. Indeed, various testing paradigms have shown degraded performances in presence of acute or chronic non-ictal epileptiform activity. Evidences from both animal models and the clinics suggest that anomalous activity can cause cognitive deficits by transiently disrupting cortical processing, independently from the underlying etiology of the disease. Here, we will review our understanding of the influence of an abnormal EEG activity on brain computation in the context of the available clinical data and in genetic or pharmacological animal models.
Collapse
Affiliation(s)
- Silvia Landi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Luigi Petrucco
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Federico Sicca
- Department of Developmental Neuroscience, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Gian Michele Ratto
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
42
|
Song ZJ, Yang SJ, Han L, Wang B, Zhu G. Postnatal calpeptin treatment causes hippocampal neurodevelopmental defects in neonatal rats. Neural Regen Res 2019; 14:834-840. [PMID: 30688269 PMCID: PMC6375038 DOI: 10.4103/1673-5374.249231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Our previous studies showed that the early use of calpain inhibitors reduces calpain activity in multiple brain regions, and that postnatal treatment with calpeptin may lead to cerebellar motor dysfunction. However, it remains unclear whether postnatal calpeptin application affects hippocampus-related behaviors. In this study, Sprague-Dawley rats were purchased from the Animal Center of Anhui Medical University of China. For the experiments in the adult stage, rats were intraperitoneally injected with calpeptin, 2 mg/kg, once a day, on postnatal days 7-14. Then on postnatal day 60, the Morris water maze test was used to evaluate spatial learning and memory abilities. The open field test was carried out to assess anxiety-like activities. Phalloidin staining was performed to observe synaptic morphology in the hippocampus. Immunohistochemistry was used to count the number of NeuN-positive cells in the hippocampal CA1 region. DiI was applied to label dendritic spines. Calpeptin administration impaired spatial memory, caused anxiety-like behavior in adulthood, reduced the number and area of apical dendritic spines, and decreased actin polymerization in the hippocampus, but did not affect the number of NeuN-positive cells in the hippocampal CA1 region. For the neonatal experiments, neonatal rats were intraperitoneally injected with calpeptin, 2 mg/kg, on postnatal days 7 and 8. Western blot assay was performed to analyze the protein levels of Akt, Erk, p-Akt, p-Erk1/2, Erk1/2, SCOP, PTEN, mTOR, p-mTOR, CREB and p-CREB in the hippocampus. SCOP expression was increased, and the phosphorylation levels of Akt, mTOR and CREB were reduced in the hippocampus. These findings show that calpeptin administration after birth affects synaptic development in neonatal rats by inhibiting the Akt/mTOR signaling pathway, thereby perturbing hippocampal function. Therefore, calpeptin administration after birth is a risk factor for neurodevelopmental defects.
Collapse
Affiliation(s)
- Zhu-Jin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - San-Juan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
43
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
44
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
45
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
46
|
Millin R, Kolodny T, Flevaris AV, Kale AM, Schallmo MP, Gerdts J, Bernier RA, Murray S. Reduced auditory cortical adaptation in autism spectrum disorder. eLife 2018; 7:36493. [PMID: 30362457 PMCID: PMC6203433 DOI: 10.7554/elife.36493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Adaptation is a fundamental property of cortical neurons and has been suggested to be altered in individuals with autism spectrum disorder (ASD). We used fMRI to measure adaptation induced by repeated audio-visual stimulation in early sensory cortical areas in individuals with ASD and neurotypical (NT) controls. The initial transient responses were equivalent between groups in both visual and auditory cortices and when stimulation occurred with fixed-interval and randomized-interval timing. However, in auditory but not visual cortex, the post-transient sustained response was greater in individuals with ASD than NT controls in the fixed-interval timing condition, reflecting reduced adaptation. Further, individual differences in the sustained response in auditory cortex correlated with ASD symptom severity. These findings are consistent with hypotheses that ASD is associated with increased neural responsiveness but that responsiveness differences only manifest after repeated stimulation, are specific to the temporal pattern of stimulation, and are confined to specific cortical regions.
Collapse
Affiliation(s)
- Rachel Millin
- Department of Psychology, University of Washington, Seattle, United States
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, United States
| | | | - Alexander M Kale
- Department of Psychology, University of Washington, Seattle, United States
| | | | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Scott Murray
- Department of Psychology, University of Washington, Seattle, United States
| |
Collapse
|
47
|
Krasovska V, Doering LC. Regulation of IL-6 Secretion by Astrocytes via TLR4 in the Fragile X Mouse Model. Front Mol Neurosci 2018; 11:272. [PMID: 30123107 PMCID: PMC6085486 DOI: 10.3389/fnmol.2018.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS) is identified by abnormal dendrite morphology and altered synaptic protein expression. Astrocyte secreted factors such as Tenascin C (TNC), may contribute to the synaptic changes, including maturation of the synapse. TNC is a known endogenous ligand of toll-like receptor 4 (TLR4) that has been shown to induce the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6). At the molecular level, elevated IL-6 promotes excitatory synapse formation and increases dendrite spine length. With these molecular changes linked to the phenotype of FXS, we examined the expression and the mechanism of the endogenous TLR4 activator TNC, and its downstream target IL-6 in astrocytes from the Fragile X Mental Retardation 1 (FMR1) knockout (KO) mouse model. Secreted TNC and IL-6 were significantly increased in FMR1 KO astrocytes. Addition of TNC and lipopolysaccharide (LPS) induced IL-6 secretion, whereas the antagonist of TLR4 (LPS-RS) had an opposing effect. Cortical protein expression of TNC and IL-6 were also significantly elevated in the postnatal FMR1 KO mouse. In addition, there was an increase in the number of vesicular glutamate transporter 1 (VGLUT1)/post synaptic density protein 95 (PSD95) positive synaptic puncta of both wild-type (WT) and FMR1 KO neurons when plated with astrocyte conditioned media (ACM) from FMR1 KO astrocytes, compared to those plated with media from wild type astrocytes. By assessing the cellular mechanisms involved, a novel therapeutic option could be made available to target abnormalities of synaptic function seen in FXS.
Collapse
Affiliation(s)
| | - Laurie C. Doering
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
48
|
El-Ansary A, Bacha AB, Bjørklund G, Al-Orf N, Bhat RS, Moubayed N, Abed K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab Brain Dis 2018; 33:1155-1164. [PMID: 29582256 DOI: 10.1007/s11011-018-0212-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that the gut microbiota plays a key role in the central nervous system (CNS), and alterations of the gut microbiota composition due to environmental factors can contribute to neurodevelopmental disorders. Animal modeling may help to identify drugs that can normalize the altered gut microbiota and thereby ameliorate abnormal brain signaling pathways. The purpose of the present study was to investigate the therapeutic potency of probiotics such as Bifidobacteria and Lactobacilli on glutamate excitotoxicity as a neurotoxic effect induced by clindamycin and propionic acid (PPA) in juvenile hamsters. Fifty young golden Syrian hamsters weighing between 60 and 70 g were enrolled in the study. The hamsters were randomly divided into five groups, each with ten hamsters. The hamsters in the control group only received phosphate-buffered saline orally. The PPA-treated group received a neurotoxic dose of 250 mg PPA/kg body weight (BW)/day for three days. The clindamycin-treated group received 30 mg clindamycin/kg BW as a single orogastric dose on the day the experiment started. The two therapeutic groups received the same doses of PPA and clindamycin followed by 0.2 g probiotic/kg BW for three weeks. Biochemical parameters related to glutamate excitotoxicity were investigated in brain homogenates from each group of hamsters. Additionally, the development of pathogenic bacteria was monitored in stool samples from all groups. The microbiology results of the present study revealed descriptive changes in the fecal microbiota and the appearance of Clostridium species in the hamsters treated with clindamycin and PPA. Additionally, the effectiveness of the probiotic in the restoration of the normal gut microbiota was demonstrated. Moreover, clindamycin and PPA were found to induce a significant depletion of Mg2+ and γ-aminobutyric acid (GABA) and a remarkable increase in the Na+/Mg2+ and glutamate/GABA ratios but non-significant changes in the absolute levels of K+, Na+ and glutamate. The bacteria overgrowth induced by PPA and clindamycin in the present study effectively showed signs of neuronal toxicity. The study indicates that probiotics can be used safely to ameliorate glutamate excitotoxicity mostly through increasing depleted GABA and Mg2+ and decreasing the excitatory neurotransmitter, glutamate.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Nora Al-Orf
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadine Moubayed
- Biology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kawther Abed
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Chaussenot R, Amar M, Fossier P, Vaillend C. Dp71-Dystrophin Deficiency Alters Prefrontal Cortex Excitation-Inhibition Balance and Executive Functions. Mol Neurobiol 2018; 56:2670-2684. [PMID: 30051354 DOI: 10.1007/s12035-018-1259-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
In the Duchenne muscular dystrophy (DMD) syndrome, mutations affecting expression of Dp71, the main dystrophin isoform of the multipromoter dmd gene in brain, have been associated with intellectual disability and neuropsychiatric disturbances. Patients' profile suggests alterations in prefrontal cortex-dependent executive processes, but the specific dysfunctions due to Dp71 deficiency are unclear. Dp71 is involved in brain ion homeostasis, and its deficiency is expected to increase neuronal excitability, which might compromise the integrity of neuronal networks undertaking high-order cognitive functions. Here, we used electrophysiological (patch clamp) and behavioral techniques in a transgenic mouse that display a selective loss of Dp71 and no muscular dystrophy, to identify changes in prefrontal cortex excitatory/inhibitory (E/I) balance and putative executive dysfunctions. We found prefrontal cortex E/I balance is shifted toward enhanced excitation in Dp71-null mice. This is associated with a selective alteration of AMPA receptor-mediated glutamatergic transmission and reduced synaptic plasticity, while inhibitory transmission is unaffected. Moreover, Dp71-null mice display deficits in cognitive processes that depend on prefrontal cortex integrity, such as cognitive flexibility and sensitivity of spatial working memory to proactive interference. Our data suggest that impaired cortical E/I balance and executive dysfunctions contribute to the intellectual and behavioral disturbances associated with Dp71 deficiency in DMD, in line with current neurobehavioral models considering these functions as key pathophysiological factors in various neurodevelopmental disorders. These new insights in DMD neurobiology also suggest new directions for therapeutic developments targeting excitatory neurotransmission, as well as for guidance of academic environment in severely affected DMD children.
Collapse
Affiliation(s)
- Rémi Chaussenot
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France
| | - Muriel Amar
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France.,Laboratoire de Toxinologie moléculaire et Biotechnologies, Institut des Sciences du Vivant Frédéric Joliot, CEA de Saclay, 91191, Gif-sur-Yvette, France
| | - Philippe Fossier
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France.
| |
Collapse
|
50
|
Tan T, Wang W, Xu H, Huang Z, Wang YT, Dong Z. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Front Cell Neurosci 2018. [PMID: 29541022 PMCID: PMC5835518 DOI: 10.3389/fncel.2018.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1-9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.
Collapse
Affiliation(s)
- Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Xu
- Wuhan Yiruide Medical Equipment Co., Ltd., Wuhan, China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|