1
|
Ghorbani Z, Shoaibinobarian N, Zamani E, Salari A, Mahdavi-Roshan M, Porteghali P, Ahmadnia Z. Supplementing the standard diet with brown rice bran powder might effectively improve the metabolic syndrome characteristics and antioxidant status: an open label randomized controlled trial. Food Funct 2025; 16:750-762. [PMID: 39775811 DOI: 10.1039/d4fo03642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Purpose: This study explores the impact of brown rice bran powder (BRBP), known for its beneficial components, such as dietary fiber and γ-oryzanol, on individuals suffering from metabolic syndrome (MetS). Subjects/Methods: In this eight-week open-label controlled trial, fifty participants with MetS were randomly assigned to either a control group, which received a standard diet (SDiet), or an intervention group, which incorporated 15 grams of BRBP daily into their diet. Demographic, anthropometric and clinical data were collected, and blood samples were taken to assess metabolic factors and antioxidant enzyme activities. Additionally, the participants completed the gastrointestinal symptom rating scale questionnaire. Results: Analysis of covariance controlled for the baseline levels and medication consumptions revealed that postthis trial, compared to the controls, patients who received BRBP showed significant reductions in BMI (P-value = 0.001; effect size (ES): -1.13), waist circumference (P-value < 0.001; ES: -1.28), total-cholesterol (P-value = 0.028; ES: -0.74), LDL-cholesterol (P-value = 0.002; ES: -0.86), blood sugar (P-value = 0.013; ES: -0.82), as well as triglyceride glucose (TyG)-BMI index (as a marker of insulin resistance) (P-value < 0.001; ES: -1.35). Further, BRBP resulted in significant improvements in antioxidant enzyme activities, including glutathione peroxidase (P-value = 0.010; ES: 0.86), superoxide dismutase serum activities (P-value = 0.021; ES: 0.78), and constipation rate (P-value = 0.018; ES: -0.85) compared to SDiet alone. However, no significant changes were found regarding levels of triglyceride, HDL-cholesterol, glutathione, catalase and blood pressure after the trial. Conclusion: The findings of this trial support the weight-reducing, hypocholestrolemic, anti-hyperglycemic, and antioxidative effects of adding BRBP to SDiet that is prescribed for MetS patients.
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nargeskhatoon Shoaibinobarian
- Department of Nutrition, School of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parham Porteghali
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Ahmadnia
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Khalil Y, Footitt E, Vootukuri R, Wempe MF, Coughlin CR, Batzios S, Wilson MP, Kožich V, Clayton PT, Mills PB. Assessment of urinary 6-oxo-pipecolic acid as a biomarker for ALDH7A1 deficiency. J Inherit Metab Dis 2025; 48:e12783. [PMID: 39038845 PMCID: PMC11670438 DOI: 10.1002/jimd.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
ALDH7A1 deficiency is an epileptic encephalopathy whose seizures respond to treatment with supraphysiological doses of pyridoxine. It arises as a result of damaging variants in ALDH7A1, a gene in the lysine catabolism pathway. α-Aminoadipic semialdehyde (α-AASA) and Δ1-piperideine-6-carboxylate (P6C), which accumulate because of the block in the lysine pathway, are diagnostic biomarkers for this disorder. Recently, it has been reported that 6-oxo-pipecolic acid (6-oxo-PIP) also accumulates in the urine, CSF and plasma of ALDH7A1-deficient individuals and that, given its improved stability, it may be a more suitable biomarker for this disorder. This study measured 6-oxo-PIP in urine from a cohort of 30 patients where α-AASA was elevated and showed that it was above the normal range in all those above 6 months of age. However, 6-oxo-PIP levels were within the normal range in 33% of the patients below 6 months of age. Levels increased with age and correlated with a decrease in α-AASA levels. Longitudinal analysis of urine samples from ALDH7A1-deficient patients who were on a lysine restricted diet whilst receiving supraphysiological doses of pyridoxine showed that levels of 6-oxo-PIP remained elevated whilst α-AASA decreased. Similar to α-AASA, we found that elevated urinary excretion of 6-oxo-PIP can also occur in individuals with molybdenum cofactor deficiency. This study demonstrates that urinary 6-oxo-PIP may not be a suitable biomarker for ALDH7A1 deficiency in neonates. However, further studies are needed to understand the biochemistry leading to its accumulation and its potential long-term side effects.
Collapse
Affiliation(s)
- Youssef Khalil
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUK
| | - Emma Footitt
- Department of Metabolic PaediatricsGreat Ormond Street HospitalLondonUK
| | - Reddy Vootukuri
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUK
| | - Michael F. Wempe
- School of Pharmacy, Department of Pharmaceutical SciencesUniversity of ColoradoAuroraColoradoUSA
| | - Curtis R. Coughlin
- Department of Pediatrics, Section of Clinical Genetics and MetabolismUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Spyros Batzios
- Department of Metabolic PaediatricsGreat Ormond Street HospitalLondonUK
| | - Matthew P. Wilson
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUK
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Peter T. Clayton
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUK
| | - Philippa B. Mills
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
3
|
Pfluger BA, Giunta A, Calvimontes DM, Lamb MM, Delgado-Zapata R, Ramakrishnan U, Ryan EP. Pilot Study of Heat-Stabilized Rice Bran Acceptability in Households of Rural Southwest Guatemala and Estimates of Fiber, Protein, and Micro-Nutrient Intakes among Mothers and Children. Nutrients 2024; 16:460. [PMID: 38337744 PMCID: PMC10856929 DOI: 10.3390/nu16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nutrient-dense, acceptable foods are needed in low-resource settings. Rice bran, a global staple byproduct of white rice processing, is rich in amino acids, fibers, and vitamins, when compared to other cereal brans. This pilot study examines the nutritional contribution of rice bran to the daily diets of mother-child pairs in rural southwest Guatemala. Thirty households were screened. Mothers (≥18 years) and children (6 to 24 months) completed 24 h dietary recalls at baseline and after 12 weeks (endline) for diet intake and diversity analyses. During biweekly visits for 12 weeks, households with <5 members received 14 packets containing 60 g of heat-stabilized rice bran, and those with ≥5 members received 28 packets. The macro- and micro-nutrient contributions of rice bran and whole, cooked black beans were included in dietary simulation models with average intakes established between the recalls and for comparison with dietary reference intakes (DRIs). A baseline child food frequency questionnaire was administered. The 27 mothers and 23 children with complete recalls were included in analyses. Daily maternal consumption of 10 g/d of rice bran plus 100 g/d of black beans resulted in all achieving at least 50% of the fiber, protein, magnesium, niacin, potassium, and thiamin DRIs. Daily child consumption of 3 g/d of rice bran plus 10 g/d of black beans resulted in all achieving at least 50% of the magnesium, niacin, phosphorous, and thiamine DRIs. For 15/17 food categories, male children had a higher intake frequency, notably for animal-source foods and coffee. Dietary rice bran coupled with black beans could improve nutritional adequacy, especially for fiber and key micro-nutrients, with broader implications for addressing maternal and child malnutrition in low-resource settings.
Collapse
Affiliation(s)
- Brigitte A. Pfluger
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
| | - Alexis Giunta
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Diva M. Calvimontes
- Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque 09020, Quetzaltenango, Guatemala;
- Departament of Pediatrics, Center for Global Health, University of Colorado, Aurora, CO 80045, USA
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
| | - Molly M. Lamb
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Roberto Delgado-Zapata
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Community & Behavioral Health, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Tipton M, Baxter BA, Pfluger BA, Sayre-Chavez B, Muñoz-Amatriaín M, Broeckling CD, Shani I, Steiner-Asiedu M, Manary M, Ryan EP. Urine and Dried Blood Spots From Children and Pregnant Women Reveal Phytochemicals, Amino Acids, and Carnitine Metabolites as Cowpea Consumption Biomarkers. Mol Nutr Food Res 2024; 68:e2300222. [PMID: 38233141 DOI: 10.1002/mnfr.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/23/2023] [Indexed: 01/19/2024]
Abstract
SCOPE Legumes consumption has been proven to promote health across the lifespan; cowpeas have demonstrated efficacy in combating childhood malnutrition and growth faltering, with an estimated malnutrition prevalence of 35.6% of children in Ghana. This cowpea feeding study aimed to identify a suite of metabolic consumption biomarkers in children and adults. METHODS AND RESULTS Urine and dried blood spots (DBS) from 24 children (9-21 months) and 21 pregnant women (>18 years) in Northern Ghana are collected before and after dose-escalated consumption of four cowpea varieties for 15 days. Untargeted metabolomics identified significant increases in amino acids, phytochemicals, and lipids. The carnitine metabolism pathway is represented by 137 urine and 43 DBS metabolites, with significant changes to tiglylcarnitine and acetylcarnitine. Additional noteworthy candidate biomarkers are mansouramycin C, N-acetylalliin, proline betaine, N2, N5-diacetylornithine, S-methylcysteine, S-methylcysteine sulfoxide, and cis-urocanate. S-methylcysteine and S-methylcysteine sulfoxide are targeted and quantified in urine. CONCLUSION This feeding study for cowpea biomarkers supports the utility of a suite of key metabolites classified as amino acids, lipids, and phytochemicals for dietary legume and cowpea-specific food exposures of global health importance.
Collapse
Affiliation(s)
- Madison Tipton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brigitte A Pfluger
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Brooke Sayre-Chavez
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
| | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
- Departamento de Biología Molecular - Área de Genética, Universidad de León, León, 24071, Spain
| | - Corey D Broeckling
- Analytical Resources Core: Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Issah Shani
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Matilda Steiner-Asiedu
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Mark Manary
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
5
|
Hill CR, Haoci Liu A, McCahon L, Zhong L, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Blekkenhorst LC. S-methyl cysteine sulfoxide and its potential role in human health: a scoping review. Crit Rev Food Sci Nutr 2023; 65:87-100. [PMID: 37819533 DOI: 10.1080/10408398.2023.2267133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Higher intakes of cruciferous and allium vegetables are associated with a lower risk of cardiometabolic-related outcomes in observational studies. Whilst acknowledging the many healthy compounds within these vegetables, animal studies indicate that some of these beneficial effects may be partially mediated by S-methyl cysteine sulfoxide (SMCSO), a sulfur-rich, non-protein, amino acid found almost exclusively within cruciferous and alliums. This scoping review explores evidence for SMCSO, its potential roles in human health and possible mechanistic action. After systematically searching several databases (EMBASE, MEDLINE, SCOPUS, CINAHL Plus Full Text, Agricultural Science), we identified 21 original research articles meeting our inclusion criteria. These were limited primarily to animal and in vitro models, with 14/21 (67%) indicating favorable anti-hyperglycemic, anti-hypercholesterolemic, and antioxidant properties. Potential mechanisms included increased bile acid and sterol excretion, altered glucose- and cholesterol-related enzymes, and improved hepatic and pancreatic β-cell function. Raising antioxidant defenses may help mitigate the oxidative damage observed in these pathologies. Anticancer and antibacterial effects were also explored, along with one steroidogenic study. SMCSO is frequently overlooked as a potential mediator to the benefits of sulfur-rich vegetables. More research into the health benefits of SMCSO, especially for cardiometabolic and inflammatory-based pathology, is warranted. Human studies are especially needed.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Alex Haoci Liu
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lyn McCahon
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Vieira NM, Peghinelli VV, Monte MG, Costa NA, Pereira AG, Seki MM, Azevedo PS, Polegato BF, de Paiva SAR, Zornoff LAM, Minicucci MF. Beans comsumption can contribute to the prevention of cardiovascular disease. Clin Nutr ESPEN 2023; 54:73-80. [PMID: 36963901 DOI: 10.1016/j.clnesp.2023.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVD) are the major cause of global mortality, accounting for 31% of deaths worldwide. Healthy eating habits based on the consumption of bioactive molecules present in plant-based diets can contribute to the prevention of CVD. In this context, the consumption of common beans (Phaseolus vulgaris L.) is relevant. There are several species of beans, all of which provide proteins, carbohydrates, dietary fiber, vitamins, minerals, and phenolic compounds. More recently, the complexity of phytochemical components has expanded, including the role of antinutritional factors in nutrient bioavailability and immune responses. Experimental and clinical studies have shown that the consumption of beans results in less food consumption, control of body weight, and improvement of metabolic biochemical parameters. Thus, the consumption of beans is associated with a decrease in CVD risk factors. To date, there have been no interventional studies assessing CVD outcomes, such as hospitalization, infarction, and mortality, in the context of bean consumption. Furthermore, studies on the effect of bean consumption on metabolomics and intestinal microbiota are lacking. The purpose of this review is to explore the nutritional properties of beans and discuss the main effects of the consumption of beans on cardiovascular health. In conclusion, eating habits based on the consumption of bioactive molecules present in beans can contribute to the prevention of cardiovascular disease. Furthermore, there is a large gap in the literature regarding the consumption of beans associated with clinical outcomes, such as hospitalization and mortality.
Collapse
Affiliation(s)
- Nayane Maria Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | - Marina Gaiato Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Nara Aline Costa
- Faculty of Nutrition, UFG - Univ Federal de Goiás, Goiânia, Brazil.
| | - Amanda Gomes Pereira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Marcos Mitsuo Seki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Paula Schmidt Azevedo
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | | | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| |
Collapse
|
7
|
Barros Santos MC, Barouh N, Lullien-Pellerin V, Micard V, Villeneuve P, Zhou B, Oger C, Vigor C, Durand T, Ferreira MSL, Bourlieu-Lacanal C, Ryan EP. Rice Bran Lipidome Identifies Novel Phospholipids, Glycolipids, and Oxylipins with Roles in Lipid Metabolism of Hypercholesterolemic Children. Mol Nutr Food Res 2023; 67:e2200111. [PMID: 36461912 DOI: 10.1002/mnfr.202200111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/25/2022] [Indexed: 12/07/2022]
Abstract
SCOPE The purpose of the study is to characterize the chemical diversity in rice bran (RB) lipidome and determines whether daily RB consumption for 4 weeks may modulate plasma lipid profiles in children. METHODS AND RESULTS Untargeted and targeted lipidomics via ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) are applied to identify bioactive RB lipids from a collection of 17 rice varieties. To determine the impact of RB (Calrose-USA variety) supplementation on plasma lipid profile, a secondary analysis of plasma lipidome is conducted on data recorded in a clinical study (NCT01911390, n = 18 moderately hypercholesterolemic children) before and after 4 weeks of dietary intervention with a control or RB supplemented (15 g day-1 ) snack. Untargeted lipidomic reveals 118 lipids as the core of lipidome across all varieties among which phospholipids are abundant and oxylipins present. Phytoprostanes and phytofurans are quantified and characterized. Lipidome analysis of the children plasma following RB consumption reveals the presence of polar lipids and oxylipins alongside putative modulations in endocannabinoids associated with RB consumption. CONCLUSION The investigation of novel polar lipids, oxylipins, phytoprostanes, and phytofurans in RB extracts provides support for new health-promoting properties interesting for people at risk for cardiometabolic disease.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- UMR IATE, UM/INRAE/Institut Agro, Montpellier, F-34060, France
| | - Nathalie Barouh
- CIRAD, UMR Qualisud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | | | - Valérie Micard
- UMR IATE, UM/INRAE/Institut Agro, Montpellier, F-34060, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Camille Oger
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Claire Vigor
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
8
|
Baxter BA, Li KJ, Zarei I, Yao L, Rao S, Ryan EP. Nontargeted and Targeted Metabolomics Identifies Dietary Exposure Biomarkers for Navy Bean and Rice Bran Consumption in Children and Adults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14531-14543. [PMID: 36318603 DOI: 10.1021/acs.jafc.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary exposure biomarkers are needed for advancing knowledge on healthy foods. This study examined biomarkers for navy beans and rice bran in children and adults. Plasma, urine, stool, and study foods from dietary intervention studies were analyzed by metabolomics. A total of 38 children and 49 adults were assessed after consuming navy beans and/or rice bran for 2-, 4-, 6-, or 12 weeks. From the 138-175 metabolites modulated by diet, 11 were targeted for quantification. Trigonelline and pipecolate concentrations increased in children and adult plasma after 4 weeks compared to baseline. Increased xanthurenate (46%) was observed in children plasma after rice bran intake for 4 weeks. Study foods with navy beans had higher S-methylcysteine compared to control and supported the increased urine S-methylcysteine sulfoxide. Nontargeted metabolomics was moderately effective to identify target molecules as candidate biomarkers. Study limitations include interindividual metabolite variations before diet intervention. Validation is warranted using cross-over designs and larger sample sizes.
Collapse
Affiliation(s)
- Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine J Li
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Linxing Yao
- Analytical Resources Core─Bioanalysis and Omics, Fort Collins, Colorado 80523 United States
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Rafiq T, Azab SM, Teo KK, Thabane L, Anand SS, Morrison KM, de Souza RJ, Britz-McKibbin P. Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review. Adv Nutr 2021; 12:2333-2357. [PMID: 34015815 PMCID: PMC8634495 DOI: 10.1093/advances/nmab054] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in metabolomics allow for more objective assessment of contemporary food exposures, which have been proposed as an alternative or complement to self-reporting of food intake. However, the quality of evidence supporting the utility of dietary biomarkers as valid measures of habitual intake of foods or complex dietary patterns in diverse populations has not been systematically evaluated. We reviewed nutritional metabolomics studies reporting metabolites associated with specific foods or food groups; evaluated the interstudy repeatability of dietary biomarker candidates; and reported study design, metabolomic approach, analytical technique(s), and type of biofluid analyzed. A comprehensive literature search of 5 databases (PubMed, EMBASE, Web of Science, BIOSIS, and CINAHL) was conducted from inception through December 2020. This review included 244 studies, 169 (69%) of which were interventional studies (9 of these were replicated in free-living participants) and 151 (62%) of which measured the metabolomic profile of serum and/or plasma. Food-based metabolites identified in ≥1 study and/or biofluid were associated with 11 food-specific categories or dietary patterns: 1) fruits; 2) vegetables; 3) high-fiber foods (grain-rich); 4) meats; 5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10) sweet and sugary foods; and 11) complex dietary patterns and other foods. We conclude that 69 metabolites represent good candidate biomarkers of food intake. Quantitative measurement of these metabolites will advance our understanding of the relation between diet and chronic disease risk and support evidence-based dietary guidelines for global health.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Sandi M Azab
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Koon K Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Russell J de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | | |
Collapse
|
10
|
Fortified Fermented Rice-Acid Can Regulate the Gut Microbiota in Mice and Improve the Antioxidant Capacity. Nutrients 2021; 13:nu13124219. [PMID: 34959769 PMCID: PMC8704394 DOI: 10.3390/nu13124219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to explore the effects of fortified fermented rice-acid on the antioxidant capacity of mouse serum and the gut microbiota. Hair characteristics, body mass index, intestinal villus height, intestinal crypt depth, serum antioxidant capacity, and gut microbiota of mice were first measured and the correlation between the antioxidant capacity of mouse serum and the gut microbiota was then explored. The mice in the lactic acid bacteria group (L-group), the mixed bacteria group (LY-group), and the rice soup group (R-group) kept their weight well and had better digestion. The mice in the L-group had the better hair quality (dense), but the hair quality in the R-group and the yeast group (Y-group) was relatively poor (sparse). In addition, the inoculation of Lactobacillus paracasei H4-11 (L. paracasei H4-11) and Kluyveromyces marxianus L1-1 (K. marxianus L1-1) increased the villus height/crypt depth of the mice (3.043 ± 0.406) compared to the non-inoculation group (R-group) (2.258 ± 0.248). The inoculation of L. paracasei H4-11 and K. marxianus L1-1 in fermented rice-acid enhanced the blood antioxidant capacity of mouse serum (glutathione 29.503 ± 6.604 umol/L, malonaldehyde 0.687 ± 0.125 mmol/L, catalase 15.644 ± 4.618 U/mL, superoxide dismutase 2.292 ± 0.201 U/mL). In the gut microbiota of L-group and LY-group, beneficial microorganisms (Lactobacillus and Blautia) increased, but harmful microorganisms (Candidatus Arthromitus and Erysipelotrichales) decreased. L. paracasei H4-11 and K. marxianus L1-1 might have a certain synergistic effect on the improvement in antibacterial function since they reduced harmful microorganisms in the gut microbiota of mice. The study provides the basis for the development of fortified fermented rice-acid products for regulating the gut microbiota and improving the antioxidant capacity.
Collapse
|
11
|
Zambrana LE, Weber AM, Borresen EC, Zarei I, Perez J, Perez C, Rodríguez I, Becker-Dreps S, Yuan L, Vilchez S, Ryan EP. Daily Rice Bran Consumption for 6 Months Influences Serum Glucagon-Like Peptide 2 and Metabolite Profiles without Differences in Trace Elements and Heavy Metals in Weaning Nicaraguan Infants at 12 Months of Age. Curr Dev Nutr 2021; 5:nzab101. [PMID: 34514286 PMCID: PMC8421236 DOI: 10.1093/cdn/nzab101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is associated with chronic gut inflammation affecting nutrient absorption and development of children, primarily in low- and middle-income countries. Several studies have shown that rice bran (RB) supplementation provides nutrients and modulates gut inflammation, which may reduce risk for undernutrition. OBJECTIVE The aim was to evaluate the effect of daily RB dietary supplementation for 6 mo on serum biomarkers in weaning infants and associated changes in serum and stool metabolites. METHODS A 6-mo randomized-controlled dietary intervention was conducted in a cohort of weaning 6-mo-old infants in León, Nicaragua. Anthropometric indices were obtained at 6, 8, and 12 mo. Serum and stool ionomics and metabolomics were completed at the end of the 6-mo intervention using inductively coupled plasma MS and ultra-high performance LC-tandem MS. The ɑ1-acid glycoprotein, C-reactive protein, and glucagon-like peptide 2 (GLP-2) serum EED biomarkers were measured by ELISA. RESULTS Twenty-four infants in the control group and 23 in the RB group successfully completed the 6-mo dietary intervention with 90% dietary compliance. RB participants had higher concentrations of GLP-2 as compared with control participants at 12 mo [median (IQR): 743.53 (380.54) pg/mL vs. 592.50 (223.59) pg/mL; P = 0.04]. Metabolite profiles showed significant fold differences of 39 serum metabolites and 44 stool metabolites from infants consuming RB compared with control, and with significant metabolic pathway enrichment scores of 4.7 for the tryptophan metabolic pathway, 5.7 for polyamine metabolism, and 5.7 for the fatty acid/acylcholine metabolic pathway in the RB group. No differences were detected in serum and stool trace elements or heavy metals following daily RB intake for 6 mo. CONCLUSIONS RB consumption influences a suite of metabolites associated with growth promotion and development, while also supporting nutrient absorption as measured by changes in serum GLP-2 in Nicaraguan infants. This clinical trial was registered at https://clinicaltrials.gov as NCT02615886.
Collapse
Affiliation(s)
- Luis E Zambrana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Annika M Weber
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Johann Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Claudia Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Iker Rodríguez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Biotic Products Development Center, National Polytechnic Institute, Morelos, Mexico
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021; 13:nu13030757. [PMID: 33652785 PMCID: PMC7996849 DOI: 10.3390/nu13030757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HF→HFB) or LF (11% fat as kcal; HF→LF) (n = 12/group). HF→HFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HF→LF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HF→HFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HF→HFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.
Collapse
|
13
|
Santos MCB, Barouh N, Durand E, Baréa B, Robert M, Micard V, Lullien-Pellerin V, Villeneuve P, Cameron LC, Ryan EP, Ferreira MSL, Bourlieu-Lacanal C. Metabolomics of Pigmented Rice Coproducts Applying Conventional or Deep Eutectic Extraction Solvents Reveal a Potential Antioxidant Source for Human Nutrition. Metabolites 2021; 11:metabo11020110. [PMID: 33671946 PMCID: PMC7919034 DOI: 10.3390/metabo11020110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Rice bran (RB) corresponds to the outer layers of whole grain rice and contains several phenolic compounds (PCs) that make it an interesting functional food ingredient. PC richness is enhanced in pigmented RB varieties and requires effective ways of extraction of these compounds. Therefore, we investigated conventional and deep eutectic solvents (DES) extraction methods to recover a wide array of PCs from red and black RB. The RB were extracted with ethanol/water (60:40, v/v) and two DES (choline chloride/1.2-propanediol/water, 1:1:1 and choline chloride/lactic acid, 1:10, mole ratios), based on Generally Recognized as Safe (GRAS) components. Besides the quantification of the most typical phenolic acids of cereals, nontargeted metabolomic approaches were applied to PCs profiling in the extracts. Globally, metabolomics revealed 89 PCs belonging to flavonoids (52%), phenolic acids (33%), other polyphenols (8%), lignans (6%) and stilbenes (1%) classes. All extracts, whatever the solvents, were highly concentrated in the main phenolic acids found in cereals (37–66 mg/100 g in black RB extracts vs. 6–20 mg/100 g in red RB extracts). However, the PC profile was highly dependent on the extraction solvent and specific PCs were extracted using the acidic DES. The PC-enriched DES extracts demonstrated interesting DPPH scavenging activity, which makes them candidates for novel antioxidant formulations.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Nathalie Barouh
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Erwann Durand
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Bruno Baréa
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Mélina Robert
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Valérie Micard
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | | | - Pierre Villeneuve
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Luiz Claudio Cameron
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mariana Simões Larraz Ferreira
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| | - Claire Bourlieu-Lacanal
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| |
Collapse
|
14
|
Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, Li HB. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6627355. [PMID: 33574978 PMCID: PMC7864729 DOI: 10.1155/2021/6627355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) have gained increasing attention because of their high prevalence and mortality worldwide. Epidemiological studies revealed that intake of fruits, vegetables, nuts, and cereals could reduce the risk of CVDs, and their antioxidants are considered as the main contributors. Moreover, experimental studies showed that some antioxidant natural products and their bioactive compounds exerted beneficial effects on the cardiovascular system, such as polyphenols, polysaccharides, anthocyanins, epigallocatechin gallate, quercetin, rutin, and puerarin. The mechanisms of action mainly included reducing blood pressure, improving lipid profile, ameliorating oxidative stress, mitigating inflammation, and regulating gut microbiota. Furthermore, clinical trials confirmed the cardiovascular-protective effect of some antioxidant natural products, such as soursop, beetroot, garlic, almond, and green tea. In this review, we summarized the effects of some antioxidant natural products and their bioactive compounds on CVDs based on the epidemiological, experimental, and clinical studies, with special attention paid to the relevant mechanisms and clinical trials.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Xu J, Liu G, Hegde SM, Palta P, Boerwinkle E, Gabriel KP, Yu B. Physical Activity-Related Metabolites Are Associated with Mortality: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Metabolites 2021; 11:metabo11010059. [PMID: 33477977 PMCID: PMC7835806 DOI: 10.3390/metabo11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Habitual physical activity can diminish the risk of premature death. Identifying a pattern of metabolites related to physical activity may advance our understanding of disease etiology. We quantified 245 serum metabolites in 3802 participants from the Atherosclerosis Risk in Communities (ARIC) study using chromatography-mass spectrometry. We regressed self-reported moderate-to-vigorous intensity leisure-time physical activity (LTPA) against each metabolite, adjusting for traditional risk factors. A standardized metabolite risk score (MRS) was constructed to examine its association with all-cause mortality using the Cox proportional hazard model. We identified 10 metabolites associated with LTPA (p < 2.04 × 10-4) and established that an increase of one unit of the metabolic equivalent of task-hours per week (MET·hr·wk-1) in LTPA was associated with a 0.012 SD increase in MRS. During a median of 27.5 years of follow-up, we observed 1928 deaths. One SD increase of MRS was associated with a 10% lower risk of death (HR = 0.90, 95% CI: 0.85-0.95). The highest vs. the lowest MRS quintile rank was associated with a 22% reduced risk of death (HR = 0.78, 95% CI: 0.62-0.94). The effects were consistent across race and sex groups. In summary, we identified a set of metabolites associated with LTPA and an MRS associated with a lower risk of death. Our study provides novel insights into the potential mechanisms underlying the health impacts of physical activity.
Collapse
Affiliation(s)
- Jun Xu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Sheila M. Hegde
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Human Genome Sequencing Center, Balor College of Medicine, Houston, TX 77030, USA
| | - Kelley P. Gabriel
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Correspondence:
| |
Collapse
|
16
|
Mocking RJT, Naviaux JC, Li K, Wang L, Monk JM, Bright AT, Figueroa CA, Schene AH, Ruhé HG, Assies J, Naviaux RK. Metabolic features of recurrent major depressive disorder in remission, and the risk of future recurrence. Transl Psychiatry 2021; 11:37. [PMID: 33431800 PMCID: PMC7801396 DOI: 10.1038/s41398-020-01182-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Recurrent major depressive disorder (rMDD) is a relapsing-remitting disease with high morbidity and a 5-year risk of recurrence of up to 80%. This was a prospective pilot study to examine the potential diagnostic and prognostic value of targeted plasma metabolomics in the care of patients with rMDD in remission. We used an established LC-MS/MS platform to measure 399 metabolites in 68 subjects with rMDD (n = 45 females and 23 males) in antidepressant-free remission and 59 age- and sex-matched controls (n = 40 females and 19 males). Patients were then followed prospectively for 2.5 years. Metabolomics explained up to 43% of the phenotypic variance. The strongest biomarkers were gender specific. 80% of the metabolic predictors of recurrence in both males and females belonged to 6 pathways: (1) phospholipids, (2) sphingomyelins, (3) glycosphingolipids, (4) eicosanoids, (5) microbiome, and (6) purines. These changes traced to altered mitochondrial regulation of cellular redox, signaling, energy, and lipid metabolism. Metabolomics identified a chemical endophenotype that could be used to stratify rrMDD patients at greatest risk for recurrence with an accuracy over 0.90 (95%CI = 0.69-1.0). Power calculations suggest that a validation study of at least 198 females and 198 males (99 cases and 99 controls each) will be needed to confirm these results. Although a small study, these results are the first to show the potential utility of metabolomics in assisting with the important clinical challenge of prospectively identifying the patients at greatest risk of recurrence of a depressive episode and those who are at lower risk.
Collapse
Affiliation(s)
- Roel J T Mocking
- Department of Psychiatry, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands.
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Department of Neurosciences, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
| | - A Taylor Bright
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA
- Colt Neck Labs, 838 E High St 202., Lexington, KY, 40503, USA
| | - Caroline A Figueroa
- Department of Psychiatry, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
- School of Social Welfare, University of California, Berkeley, CA, 94720, USA
| | - Aart H Schene
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Johanna Assies
- Department of Psychiatry, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands.
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA.
- Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA.
- Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA.
- Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA, 92103-8467, USA.
| |
Collapse
|
17
|
Abstract
Rice, a staple food for more than half of the world's population, is grown in >100 countries with 90% of the total global production from Asia. Although there are more than 110,000 cultivated varieties of rice that vary in quality and nutritional content, after post-harvest processing, rice can be categorized as either white or brown. Regional and cultural preferences as well as need for stability during storage and transport are the final determinants of market availability and final consumption. In addition to calories, rice is a good source of magnesium, phosphorus, manganese, selenium, iron, folic acid, thiamin and niacin; but it is low in fiber and fat. Although brown rice is promoted as being "healthier" because of bioactive compounds, including minerals and vitamins not present in white rice after polishing, white rice is more widely consumed than brown. This is for several reasons, including cooking ease, palatability, and shelf life. Polished rice has a higher glycemic load and may impact glucose homeostasis but when combined with other foods, it can be considered part of a "healthy" plate. With the projected increase in the global population, rice will remain a staple. However, it will be important to encourage intake of the whole grain (brown rice) and to identify ways to harness the phytonutrients that are lost during milling. Furthermore, as the world faces environmental challenges, changing demographics and consumer demands, farmers, healthcare providers, food manufacturers and nutritionists must work collaboratively to assure adequate supply, nutritional integrity and sustainability of rice production systems globally.
Collapse
|
18
|
Jeepipalli SPK, Du B, Sabitaliyevich UY, Xu B. New insights into potential nutritional effects of dietary saponins in protecting against the development of obesity. Food Chem 2020; 318:126474. [PMID: 32151922 DOI: 10.1016/j.foodchem.2020.126474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/10/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022]
Abstract
Excessive energy intake, poor physical exercise and genetics/epigenetics are instrumental for the development of obesity. Because of rapidly emerging evidences related to off-target effects and toxicity of anti-obesity drugs, there is a need to search for more effective and targeted drugs for treatment of obesity. Substantial studies have found the nutritional effects of dietary saponins (bio-detergents) in terms of decreasing the synthesis of lipids, suppressing adipogenesis, inhibiting intestinal absorption of lipids, and promoting fecal excretion of bile acids and triglycerides. Dietary saponin have been approved as potent pancreatic lipase inhibitors, disaccharidase enzyme inhibitors, antagonistic to in vitro lipogenesis and in vivo appetite suppressants, antioxidants, immune-regulators, prevent fatty liver formation, protects epithelial vasculature and regulate body weight. Many dietary saponins, such as sibutramine, morgoside, sessiloside, soysaponin B, and diosgenin, have treatment potential against the development of obesity. Excellent scientific achievements have been developed for a better understanding the mechanism of saponins in preventing obesity.
Collapse
Affiliation(s)
- Syam P K Jeepipalli
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Bin Du
- Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066600, China
| | | | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
19
|
Germain A, Barupal DK, Levine SM, Hanson MR. Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. Metabolites 2020; 10:E34. [PMID: 31947545 PMCID: PMC7023305 DOI: 10.3390/metabo10010034] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
The latest worldwide prevalence rate projects that over 65 million patients suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), an illness with known effects on the functioning of the immune and nervous systems. We performed an extensive metabolomics analysis on the plasma of 52 female subjects, equally sampled between controls and ME/CFS patients, which delivered data for about 1750 blood compounds spanning 20 super-pathways, subdivided into 113 sub-pathways. Statistical analysis combined with pathway enrichment analysis points to a few disrupted metabolic pathways containing many unexplored compounds. The most intriguing finding concerns acyl cholines, belonging to the fatty acid metabolism sub-pathway of lipids, for which all compounds are consistently reduced in two distinct ME/CFS patient cohorts. We compiled the extremely limited knowledge about these compounds and regard them as promising in the quest to explain many of the ME/CFS symptoms. Another class of lipids with far-reaching activity on virtually all organ systems are steroids; androgenic, progestin, and corticosteroids are broadly reduced in our patient cohort. We also report on lower dipeptides and elevated sphingolipids abundance in patients compared to controls. Disturbances in the metabolism of many of these molecules can be linked to the profound organ system symptoms endured by ME/CFS patients.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Dinesh K. Barupal
- UC Davis Genome Center—Metabolomics, University of California, Davis, CA 95616, USA;
| | - Susan M. Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
20
|
Rice Bran Derived Bioactive Compounds Modulate Risk Factors of Cardiovascular Disease and Type 2 Diabetes Mellitus: An Updated Review. Nutrients 2019; 11:nu11112736. [PMID: 31718066 PMCID: PMC6893409 DOI: 10.3390/nu11112736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress. This review aims to describe the mechanistic pathways behind CVD and T2DM development and the therapeutic potential of polyphenols derived from RB against these chronic diseases.
Collapse
|
21
|
Landberg R, Hanhineva K, Tuohy K, Garcia-Aloy M, Biskup I, Llorach R, Yin X, Brennan L, Kolehmainen M. Biomarkers of cereal food intake. GENES AND NUTRITION 2019; 14:28. [PMID: 31632507 PMCID: PMC6790055 DOI: 10.1186/s12263-019-0651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
Background/objectives Cereal foods are major contributors to the daily energy, protein, and dietary fiber intake all over the world. The role of cereals in human health is dependent on whether they are consumed as refined or whole grain and on cereal species. To unravel the underlying mechanisms of health effects attributed to specific cereal foods and to provide more precise dietary advice, there is a need for improved dietary assessment of whole-grain intake. Dietary biomarkers of specific cereals, different fractions or cereal-containing foods could offer such a possibility. The aim of this review was to summarize the current status on biomarkers of different cereals, fractions, and specific cereal foods. Subjects and methods A literature review was conducted and putative biomarkers of different cereals and pseudo-cereals (wheat, oats, rye, barley, rice, and quinoa) as well as for different grain fractions (whole grain, refined grain, bran) and foods were summarized and discussed. Results Several putative biomarkers have been suggested for different cereals, due to their unique presence in these grains. Among the biomarkers, odd-numbered alkylresorcinols are the most well-studied and -evaluated biomarkers and reflect whole-grain wheat and rye intake. Even-numbered alkylresorcinols have been suggested to reflect quinoa intake. Recent studies have also highlighted the potential of avenanthramides and avenacosides as specific biomarkers of oat intake, and a set of biomarkers have been suggested to reflect rice bran intake. However, there are yet no specific biomarkers of refined grains. Most biomarker candidates remain to be evaluated in controlled interventions and free-living populations before applied as biomarkers of intake in food and health studies. Conclusion Several putative biomarkers of different cereals have been suggested and should be validated in human studies using recently developed food intake biomarker validation criteria.
Collapse
Affiliation(s)
- Rikard Landberg
- 1Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- 2Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kieran Tuohy
- 3Nutrition and Nutrigenomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38010 Trento, Italy
| | - Mar Garcia-Aloy
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Izabela Biskup
- 1Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rafael Llorach
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Institute of Food and Health, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, Belfield, Dublin 4, Ireland
| | - Marjukka Kolehmainen
- 2Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
22
|
Zambrana LE, McKeen S, Ibrahim H, Zarei I, Borresen EC, Doumbia L, Boré A, Cissoko A, Douyon S, Koné K, Perez J, Perez C, Hess A, Abdo Z, Sangaré L, Maiga A, Becker-Dreps S, Yuan L, Koita O, Vilchez S, Ryan EP. Rice bran supplementation modulates growth, microbiota and metabolome in weaning infants: a clinical trial in Nicaragua and Mali. Sci Rep 2019; 9:13919. [PMID: 31558739 PMCID: PMC6763478 DOI: 10.1038/s41598-019-50344-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Rice bran supplementation provides nutrients, prebiotics and phytochemicals that enhance gut immunity, reduce enteric pathogens and diarrhea, and warrants attention for improvement of environmental enteric dysfunction (EED) in children. EED is a subclinical condition associated with stunting due to impaired nutrient absorption. This study investigated the effects of rice bran supplementation on weight for age and length for age z-scores (WAZ, LAZ), EED stool biomarkers, as well as microbiota and metabolome signatures in weaning infants from 6 to 12 months old that reside in Nicaragua and Mali. Healthy infants were randomized to a control (no intervention) or a rice bran group that received daily supplementation with increasing doses at each month (1–5 g/day). Stool microbiota were characterized using 16S rDNA amplicon sequencing. Stool metabolomes were analyzed using ultra-high-performance liquid-chromatography tandem mass-spectrometry. Statistical comparisons were completed at 6, 8, and 12 months of age. Daily consumption of rice bran was safe and feasible to support changes in LAZ from 6–8 and 8–12 months of age in Nicaragua and Mali infants when compared to control. WAZ was significantly improved only for Mali infants at 8 and 12 months. Mali and Nicaraguan infants showed major differences in the overall gut microbiota and metabolome composition and structure at baseline, and thus each country cohort demonstrated distinct microbial and metabolite profile responses to rice bran supplementation when compared to control. Rice bran is a practical dietary intervention strategy that merits development in rice-growing regions that have a high prevalence of growth stunting due to malnutrition and diarrheal diseases. Rice is grown as a staple food, and the bran is used as animal feed or wasted in many low- and middle-income countries where EED and stunting is prevalent.
Collapse
Affiliation(s)
- Luis E Zambrana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Starin McKeen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lassina Doumbia
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Abdoulaye Boré
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Alima Cissoko
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Seydou Douyon
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Karim Koné
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Johann Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Claudia Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ann Hess
- Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Lansana Sangaré
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Ababacar Maiga
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7595, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
23
|
Zarei I, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Modulation of plasma and urine metabolome in colorectal cancer survivors consuming rice bran. ACTA ACUST UNITED AC 2019; 6. [PMID: 31396400 DOI: 10.15761/ifnm.1000252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rice bran has bioactive phytochemicals with cancer protective actions that involve metabolism by the host and the gut microbiome. Globally, colorectal cancer (CRC) is the third leading cause of cancer-related death and the increased incidence is largely attributed to poor dietary patterns, including low daily fiber intake. A dietary intervention trial was performed to investigate the impact of rice bran consumption on the plasma and urine metabolome of CRC survivors. Nineteen CRC survivors participated in a randomized-controlled trial that included consumption of heat-stabilized rice bran (30 g/day) or a control diet without rice bran for 4 weeks. A fasting plasma and first void of the morning urine sample were analyzed by non-targeted metabolomics using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After 4 weeks of either rice bran or control diets, 12 plasma and 16 urine metabolites were significantly different between the groups (p≤0.05). Rice bran intake increased relative abundance of plasma mannose (1.373-fold) and beta-citrylglutamate (BCG) (1.593-fold), as well as increased urine N-formylphenylalanine (2.191-fold) and dehydroisoandrosterone sulfate (DHEA-S) (4.488-fold). Diet affected metabolites, such as benzoate, mannose, eicosapentaenoate (20:5n3) (EPA), and N-formylphenylalanine have been previously reported for cancer protection and were identified from the rice bran food metabolome. Nutritional metabolome changes following increased consumption of whole grains such as rice bran warrants continued investigation for colon cancer control and prevention attributes as dietary biomarkers for positive effects are needed to reduce high risk for colorectal cancer recurrence.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Renee C Oppel
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Regina J Brown
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
24
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|
25
|
Li KJ, Jenkins N, Luckasen G, Rao S, Ryan EP. Plasma metabolomics of children with aberrant serum lipids and inadequate micronutrient intake. PLoS One 2018; 13:e0205899. [PMID: 30379930 PMCID: PMC6209210 DOI: 10.1371/journal.pone.0205899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
Blood lipids have served as key biomarkers for cardiovascular disease (CVD) risk, yet emerging evidence indicates metabolite profiling might reveal a larger repertoire of small molecules that reflect altered metabolism, and which may be associated with early disease risk. Inadequate micronutrient status may also drive or exacerbate CVD risk factors that emerge during childhood. This study aimed to understand relationships between serum lipid levels, the plasma metabolome, and micronutrient status in 38 children (10 ± 0.8 years) at risk for CVD. Serum lipid levels were measured via autoanalyzer and average daily micronutrient intakes were calculated from 3-day food logs. Plasma metabolites were extracted using 80% methanol and analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry. Spearman's rank-order coefficients (rs) were computed for correlations between the following serum lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides (TG)], 805 plasma metabolites, and 17 essential micronutrients. Serum lipid levels in the children ranged from 128-255 mg/dL for total cholesterol, 67-198 mg/dL for LDL, 31-58 mg/dL for HDL, and 46-197 mg/dL for TG. The majority of children (71 to 100%) had levels lower than the Recommended Daily Allowance for vitamin E, calcium, magnesium, folate, vitamin D, and potassium. For sodium, 76% of children had levels above the Upper Limit of intake. Approximately 30% of the plasma metabolome (235 metabolites) were significantly correlated with serum lipids. As expected, plasma cholesterol was positively correlated with serum total cholesterol (rs = 0.6654; p<0.0001). Additionally, 27 plasma metabolites were strongly correlated with serum TG (rs ≥0.60; p≤0.0001), including alanine and diacylglycerols, which have previously been associated with cardiometabolic and atherosclerotic risk in adults and experimental animals. Plasma metabolite profiling alongside known modifiable risk factors for children merit continued investigation in epidemiological studies to assist with early CVD detection, mitigation, and prevention via lifestyle-based interventions.
Collapse
Affiliation(s)
- Katherine J. Li
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - NaNet Jenkins
- University of Colorado Health Research–Northern Region, Medical Center of the Rockies, Loveland, Colorado, United States of America
| | - Gary Luckasen
- University of Colorado Health Research–Northern Region, Medical Center of the Rockies, Loveland, Colorado, United States of America
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene⁻Bran Metabolite Relationships. Metabolites 2018; 8:metabo8040063. [PMID: 30304872 PMCID: PMC6315861 DOI: 10.3390/metabo8040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
Rice (Oryza sativa L.) processing yields ~60 million metric tons of bran annually. Rice genes producing bran metabolites of nutritional and human health importance were assessed across 17 diverse cultivars from seven countries using non-targeted metabolomics, and resulted in 378–430 metabolites. Gambiaka cultivar had the highest number and Njavara had the lowest number of metabolites. The 71 rice bran compounds of significant variation by cultivar included 21 amino acids, seven carbohydrates, two metabolites from cofactors and vitamins, 33 lipids, six nucleotides, and two secondary metabolites. Tryptophan, α-ketoglutarate, γ-tocopherol/β-tocopherol, and γ-tocotrienol are examples of bran metabolites with extensive cultivar variation and genetic information. Thirty-four rice bran components that varied between cultivars linked to 535 putative biosynthetic genes using to the OryzaCyc 4.0, Plant Metabolic Network database. Rice genes responsible for bran composition with animal and human health importance is available for rice breeding programs to utilize in crop improvement.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Emily Luna
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León 21000, Nicaragua.
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805 Bamako, Mali.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|