1
|
Díaz-Sánchez S, Vaz-Rodrigues R, Contreras M, Rafael M, Villar M, González-García A, Artigas-Jerónimo S, Gortázar C, de la Fuente J. Zebrafish gut microbiota composition in response to tick saliva biomolecules correlates with allergic reactions to mammalian meat consumption. Microbiol Res 2024; 285:127786. [PMID: 38820703 DOI: 10.1016/j.micres.2024.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Entrada Campus Anchieta, 4, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands 38200, Spain
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marta Rafael
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Wang Y, Chen X, Wang B, Lu G, Liu J, Wu D, Yan Z. Toxicity comparison of perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (HFPO-DA), and hexafluoropropylene oxide trimer acid (HFPO-TA) in zebrafish gut. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106655. [PMID: 37598522 DOI: 10.1016/j.aquatox.2023.106655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) are considered as alternatives to perfluorooctanoic acid (PFOA). In this study, zebrafish were exposed to different concentrations of PFOA, HFPO-DA, and HFPO-TA (5 μg/L and 500 μg/L), and the toxic effects on oxidative damage, inflammation, and cell apoptosis in the gut were compared. Additionally, changes in gut metabolome profiles and microbial community structure were analyzed. The results revealed that exposures to HFPO-DA and HFPO-TA led to lower levels of oxidative damage compared to PFOA exposure. However, all three treatments had comparable effects on inflammation and apoptosis. The main biological pathways affected by all three exposures were lipid metabolism, nucleotide metabolism, amino acid metabolism, and environmental information processing. The effects on metabolome profiles were much higher for HFPO-DA and HFPO-TA compared to PFOA at a concentration of 5 μg/L. At a concentration of 500 μg/L, HFPO-DA and HFPO-TA showed similar effects to PFOA. This study also examined the Pearson correlations between gut microbiota and the toxic effects mentioned above. The abundance of specific apoptosis-related genera differed among the three target chemicals, suggesting they may act differently in inducing apoptosis. The correlations between HFPO-DA and HFPO-TA were mostly similar, which helps explain the similar effects observed in their respective treatment groups on metabolic profiles. Overall, this study indicates that HFPO-DA and HFPO-TA may not be safe alternatives to PFOA and provides valuable insights into their toxic effects and risk assessment in water environments.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Beibei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
3
|
Bakky MAH, Tran NT, Zhang M, Zhang Y, Liang H, Wang Y, Zhang Y, Ma H, Zheng H, Li S. In vitro fermentation of Gracilaria lemaneiformis and its sulfated polysaccharides by rabbitfish gut microbes. Int J Biol Macromol 2023; 246:125561. [PMID: 37364810 DOI: 10.1016/j.ijbiomac.2023.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
This study intended to characterize the Gracilaria lemaneiformis (SW)-derived polysaccharide (GLP) and explore the fermentation aspects of SW and GLP by rabbitfish (Siganus canaliculatus) intestinal microbes. The GLP was mainly composed of galactose and anhydrogalactose (at 2.0:0.75 molar ratio) with the linear mainstay of α-(1 → 4) linked 3,6-anhydro-α-l-galactopyranose and β-(1 → 3)-linked galactopyranose units. The in vitro fermentation results showed that the SW and GLP could reinforce the short-chain fatty (SCFAs) production and change the diversity and composition of gut microbiota. Moreover, GLP boosted the Fusobacteria and reduced the Firmicutes abundance, while SW increased the Proteobacteria abundance. Furthermore, the adequacy of feasibly harmful bacteria (such as Vibrio) declined. Interestingly, most metabolic processes were correlated with the GLP and SW groups than the control and galactooligosaccharide (GOS)-treated groups. In addition, the intestinal microbes degrade the GLP with 88.21 % of the molecular weight reduction from 1.36 × 105 g/mol (at 0 h) to 1.6 × 104 g/mol (at 24 h). Therefore, the findings suggest that the SW and GLP have prebiotic potential and could be applied as functional feed additives in aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
4
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
5
|
Tian D, Yu Y, Yu Y, Lu L, Tong D, Zhang W, Zhang X, Shi W, Liu G. Tris(2-chloroethyl) Phosphate Exerts Hepatotoxic Impacts on Zebrafish by Disrupting Hypothalamic-Pituitary-Thyroid and Gut-Liver Axes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276532 DOI: 10.1021/acs.est.3c01631] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 μg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
6
|
Kim M, An G, Park J, Song G, Lim W. Bensulide-induced oxidative stress causes developmental defects of cardiovascular system and liver in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131577. [PMID: 37156044 DOI: 10.1016/j.jhazmat.2023.131577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bensulide is an organophosphate herbicide commonly used in agricultural crops; however, no studies have reported on its toxic effects in the embryonic development of vertebrates, particularly gene expression level and cellular response. Therefore, to identify developmental toxicity, zebrafish eggs 8 h post-fertilization (hpf) were exposed to bensulide concentrations of up to 3 mg/L. The results indicated that exposure to 3 mg/L bensulide inhibited the hatching of all eggs and decreased the size of the body, eyes, and inner ear. There were demonstrated effects observed in the cardiovascular system and liver caused by bensulide in fli1:eGFP and L-fabp:dsRed transgenic zebrafish models, respectively. Following exposure to 3 mg/L bensulide, normal heart development, including cardiac looping, was disrupted and the heart rate of 96 hpf zebrafish larvae decreased to 16.37%. Development of the liver, the main detoxification organ, was also inhibited by bensulide, and after exposure to 3 mg/L bensulide its size reduced to 41.98%. Additionally, exposure to bensulide resulted in inhibition of antioxidant enzyme expression and an increase in ROS levels by up to 238.29%. Collectively, we identified various biological responses associated with the toxicity of bensulide, which led to various organ malformations and cytotoxic effects in zebrafish.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
8
|
Fermented Wheat Bran Polysaccharides Improved Intestinal Health of Zebrafish in Terms of Intestinal Motility and Barrier Function. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Intestinal barrier dysfunction and gut microbiota disorders have been associated with various intestinal and extraintestinal diseases. Fermented wheat bran polysaccharides (FWBP) are promising natural products for enhancing the growth performance and antioxidant function of zebrafish. The present study was conducted, in order to investigate the effects of FWBP on the intestinal motility and barrier function of zebrafish, which could provide evidence for the further potential of using FWBP as a functional food ingredient in the consideration of gut health. In Experiment 1, the normal or loperamide hydrochloride-induced constipation zebrafish larvae were treated with three concentrations of FWBP (10, 20, 40 μg/mL). In Experiment 2, 180 one month-old healthy zebrafish were randomly divided into three groups (six replicates/group and 10 zebrafish/tank) and fed with a basal diet, 0.05% FWBP, or 0.10% FWBP for eight weeks. The results showed that FWBP treatment for 6 h can reduce the fluorescence intensity and alleviate constipation, thereby promoting the gastrointestinal motility of zebrafish. When compared with control group, zebrafish fed diets containing FWBP showed an increased villus height (p < 0.05), an up-regulated mRNA expression of the tight junction protein 1α, muc2.1, muc5.1, matrix metalloproteinases 9 and defensin1 (p < 0.05), an increased abundance of the phylum Firmicutes (p < 0.05), and a decreased abundance of the phylum Proteobacteria, family Aeromonadaceae, and genus Aeromonas (p < 0.05). In addition, 0.05% FWBP supplementation up-regulated the intestinal mRNA expression of IL-10 and Occludin1 (p < 0.05), enhanced the Shannon and Chao1 indexes (p < 0.05), and increased the abundance of Bacteroidota and Actinobacteriota at the phylum level (p < 0.05). Additionally, 0.1% FWBP supplementation significantly improved the villus height to crypt depth ratio (p < 0.05) and increased the mRNA expression of IL-17 (p < 0.05). These findings reveal that FWBP can promote the intestinal motility and enhance the intestinal barrier function, thus improving the intestinal health of zebrafish.
Collapse
|
9
|
Tian D, Shi W, Yu Y, Zhou W, Tang Y, Zhang W, Huang L, Han Y, Liu G. Enrofloxacin exposure induces anxiety-like behavioral responses in zebrafish by affecting the microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160094. [PMID: 36372168 DOI: 10.1016/j.scitotenv.2022.160094] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of antibiotic residues in aqueous environments poses a great potential threat to aquatic organisms. Nevertheless, the behavioral effects of environmentally realistic levels of antibiotics remain poorly understood in fish species. In this study, the behavioral impacts of enrofloxacin, one of typical fluoroquinolone antibiotics that is frequently detected in aquatic environments, were evaluated by the classic light-dark test (LDT) and novel tank task (NTT) in zebrafish. Furthermore, the effects of enrofloxacin exposure on the microbiota-gut-brain axis were also assessed to reveal potential affecting mechanisms underlying the behavioral abnormality observed. Our results demonstrated that zebrafish exposed to 60 μg/L enrofloxacin for 28 days took significantly longer to enter the stressful area of the testing tank and spent significantly less time there in both the LDT and NTT, indicating abnormal anxiety-like behaviors induced by the exposure. In addition, exposure to enrofloxacin at 6 and 60 μg/L resulted in a significant elevation in Bacteroidetes and a marked decline in the Firmicutes/Bacteroidetes ratio of the gut microbiota. Moreover, the intestinal contents of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), glucagon-like peptide 1 (GLP-1), and 5-hydroxytryptamine (5-HT) in zebrafish were significantly upregulated, whereas those of plasma adrenocorticotropic hormone (ACTH) and cortisol (COR) were markedly downregulated upon enrofloxacin exposure. Incubation of zebrafish with a high dose of enrofloxacin (60 μg/L) also resulted in evident increases in the contents of corticotropin-releasing hormone (CRH), brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) in the brain. Fortunately, no significant alteration in the expression of glial fibrillary acidic protein (GFAP) was detected in the brain after enrofloxacin exposure. Our findings suggest that the disruption of the microbiota-gut-brain axis may account for enrofloxacin-induced anxiety-like behaviors in zebrafish. Since the disruption of microbiota-gut-brain axis may give rise to various clinical symptoms, the health risk of antibiotic exposure deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Guo G, Yang W, Fan C, Lan R, Gao Z, Gan S, Yu H, Yin F, Wang Z. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs. Front Vet Sci 2022; 9:1007346. [PMID: 36337209 PMCID: PMC9630570 DOI: 10.3389/fvets.2022.1007346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 08/13/2023] Open
Abstract
This paper explores the effects of fucoidan on the frequency of diarrhea, colon morphology, colon antioxidant status, cytokine content, short-chain fatty acids, and microflora of cecal contents in early weaned lambs in order to provide a reference for the intestinal health of young ruminants. Fucoidan is a natural active polysaccharide extracted from kelp and other large brown algae. It has many biological effects, such as improving immunity, nourishing the stomach and intestines, and anti-tumor properties. This study investigated the effects of fucoidan supplementation in milk replacer on the large intestine's ability to act as an intestinal barrier in weaned lambs. With six duplicate pens and one lamb per pen, a total of 24 weaned lambs (average starting body weight of 7.32 ± 0.37 kg) were randomly assigned to one of four milk replacer treatments. Four concentrations of fucoidan supplementation (0, 0.1, 0.3, and 0.6% dry matter intake) were employed to investigate the effects of fucoidan on cecal fermentation and colon microbial organization. The test period lasted 37 days (1 week before the test and 1 month after the test), and lamb cecal contents and colon organization were collected for examination. In addition, the fecal status of all lambs was observed and recorded daily, allowing us to calculate the incidence of diarrhea in weaned lambs. The findings demonstrated that fucoidan may significantly increase the concentration of short-chain fatty acids (propionic acid and butyric acid) in the cecal digesta of weaned lambs. In weaned lambs, 16S rDNA testing showed that fucoidan at 0.3-0.6% (dry matter intake) was beneficial for boosting the variety of the intestinal bacteria and modifying the relative abundance of a few bacterial strains. In addition, fucoidan enhanced colon antioxidant and immune functions and decreased the diarrhea rate to relieve weaning stress. This result demonstrates that milk replacer supplementation with fucoidan contributes to the improvement in the large intestinal health of weaned lambs.
Collapse
Affiliation(s)
- Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiguang Yang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Chaojie Fan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhenhua Gao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhijing Wang
- Animal Disease Prevention and Control Center, Guangdong Qingyuan Agricultural Bureau, Qingyuan, China
| |
Collapse
|
11
|
Yang Y, Liang M, Ouyang D, Tong H, Wu M, Su L. Research Progress on the Protective Effect of Brown Algae-Derived Polysaccharides on Metabolic Diseases and Intestinal Barrier Injury. Int J Mol Sci 2022; 23:10784. [PMID: 36142699 PMCID: PMC9503908 DOI: 10.3390/ijms231810784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the human body, the intestine is the largest digestive and immune organ, where nutrients are digested and absorbed, and this organ plays a key role in host immunity. In recent years, intestinal health issues have gained attention and many studies have shown that oxidative stress, inflammation, intestinal barrier damage, and an imbalance of intestinal microbiota may cause a range of intestinal diseases, as well as other problems. Brown algae polysaccharides, mainly including alginate, fucoidan, and laminaran, are food-derived natural products that have received wide attention from scholars owing to their good biological activity and low toxic side effects. It has been found that brown algae polysaccharides can repair intestinal physical, chemical, immune and biological barrier damage. Principally, this review describes the protective effects and mechanisms of brown algae-derived polysaccharides on intestinal health, as indicated by the ability of polysaccharides to maintain intestinal barrier integrity, inhibit lipid peroxidation-associated damage, and suppress inflammatory cytokines. Furthermore, our review aims to provide new ideas on the prevention and treatment of intestinal diseases and act as a reference for the development of fucoidan as a functional product for intestinal protection.
Collapse
Affiliation(s)
- Ying Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Dan Ouyang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Effects of Dietary Fucoidan Supplementation on Serum Biochemical Parameters, Small Intestinal Barrier Function, and Cecal Microbiota of Weaned Goat Kids. Animals (Basel) 2022; 12:ani12121591. [PMID: 35739927 PMCID: PMC9219480 DOI: 10.3390/ani12121591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to evaluate the effects of fucoidan supplementation on serum biochemical parameters, small intestinal barrier function, and cecal microbiota of weaned goat kids. A total of 60 2-month-old weaned castrated male goat kids (Chuanzhong black goat) were used in this 30-day experiment. The goat kids were randomly divided into four groups: a control group (CON) fed the basal diet, and three other groups supplemented with 0.1%, 0.3%, and 0.5% fucoidan in the basal diet (denoted as F1, F2, and F3 groups, respectively). The results indicated that dietary fucoidan supplementation decreased (p < 0.05) the activity of lactate dehydrogenase (LDH) and the content of glucose (GLU) as measured on day 15. As measured on day 30, dietary fucoidan increased (p < 0.05) the content of total protein (TP) and decreased the activity of aspartate aminotransferase (AST), and supplementation with 0.3% and 0.5% fucoidan decreased (p < 0.05) the activity of LDH. Dietary fucoidan decreased (p < 0.05) the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO). Dietary fucoidan increased (p < 0.05) the activity of catalase (CAT) in the duodenum. Dietary 0.3% and 0.5% fucoidan enhanced (p < 0.05) the activity of glutathione peroxidase (GSH-Px) in the ileum, the activity of total superoxide dismutase (T-SOD) in the jejunum and ileum, and the activity of CAT in the ileum. Dietary 0.3% and 0.5% fucoidan reduced the contents of malondialdehyde (MDA) in the duodenum, jejunum, and ileum and the content of hydrogen peroxide (H2O2) in the duodenum. Dietary fucoidan increased (p < 0.05) the content of secretory immunoglobulin A (sIgA) in the duodenum. Supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of ZO-1 and claudin-1 in the duodenum, jejunum, and ileum, and dietary supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of occludin in the jejunum and ileum. The 16S rRNA high-throughput sequencing results showed that at the phylum level, dietary fucoidan increased (p < 0.05) the abundance of Bacteroidetes while decreasing (p < 0.05) the abundance of Firmicutes. At the genus level, dietary 0.3% and 0.5% fucoidan increased (p < 0.05) the abundances of Unspecified_Ruminococcaceae, Unspecified_Bacteroidale, Unspecified_Clostridiales, and Akkermansia. In conclusion, dietary fucoidan supplementation had positive effects on intestinal permeability, antioxidant capacity, immunity function, tight junctions, and the cecal microflora balance in weaned goat kids.
Collapse
|
13
|
Shannon E, Conlon M, Hayes M. The Prebiotic Effect of Australian Seaweeds on Commensal Bacteria and Short Chain Fatty Acid Production in a Simulated Gut Model. Nutrients 2022; 14:nu14102163. [PMID: 35631304 PMCID: PMC9146517 DOI: 10.3390/nu14102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.
Collapse
Affiliation(s)
- Emer Shannon
- Teagasc Food Biosciences, Ashtown Food Research Centre, Dunsinea Lane, Ashtown, D15 KN3K Dublin, Ireland;
- The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, SA 5000, Australia;
- Correspondence: ; Tel.: +353-1-8059980
| | - Michael Conlon
- The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Teagasc Food Biosciences, Ashtown Food Research Centre, Dunsinea Lane, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
14
|
Li M, Zhao X, Xie J, Tong X, Shan J, Shi M, Wang G, Ye W, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Dietary Inclusion of Seabuckthorn ( Hippophae rhamnoides) Mitigates Foodborne Enteritis in Zebrafish Through the Gut-Liver Immune Axis. Front Physiol 2022; 13:831226. [PMID: 35464096 PMCID: PMC9019508 DOI: 10.3389/fphys.2022.831226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
To help prevent foodborne enteritis in aquaculture, several feed additives, such as herbal medicine, have been added to fish diets. Predictions of effective herb medicines for treating fish foodborne enteritis from key regulated DEGs (differentially expressed genes) in transcriptomic data can aid in the development of feed additives using the Traditional Chinese Medicine Integrated Database. Seabuckthorn has been assessed as a promising candidate for treating grass carp soybean-induced enteritis (SBMIE). In the present study, the SBMIE zebrafish model was used to assess seabuckthorn's therapeutic or preventative effects. The results showed that intestinal and hepatic inflammation was reduced when seabuckthorn was added, either pathologically (improved intestinal villi morphology, less oil-drops) or growth-related (body fat deposition). Moreover, seabuckthorn may block the intestinal p53 signaling pathway, while activating the PPAR signaling pathway and fatty acid metabolism in the liver. 16S rRNA gene sequencing results also indicated a significant increase in OTU numbers and skewed overlapping with the fish meal group following the addition of seabuckthorn. Additionally, there were signs of altered gut microbiota taxa composition, particularly for reduced TM7, Sphingomonas, and Shigella, following the addition of seabuckthorn. Hindgut imaging of fluorescent immune cells in SBMIE larvae revealed the immune regulatory mechanisms at the cellular level. Seabuckthorn may significantly inhibit the inflammatory gathering of neutrophils, macrophages, and mature T cells, as well as cellular protrusions' formation. On the other hand, in larvae, seabuckthorn inhibited the inflammatory aggregation of lck+ T cells but not immature lymphocytes, indicating that it affected intestinal adaptive immunity. Although seabuckthorn did not affect the distribution of intestinal CD4+ cells, the number of hepatic CD4+ cells were reduced in fish from the seabuckthorn supplementation group. Thus, the current data indicate that seabuckthorn may alleviate foodborne gut-liver symptoms by enhancing intestinal mucosal immunity and microbiota while simultaneously inhibiting hepatic adipose disposition, making it a potential additive for preventing fish foodborne gut-liver symptoms.
Collapse
Affiliation(s)
- Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
16
|
Xie J, Li M, Ye W, Shan J, Zhao X, Duan Y, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Sinomenine Hydrochloride Ameliorates Fish Foodborne Enteritis via α7nAchR-Mediated Anti-Inflammatory Effect Whilst Altering Microbiota Composition. Front Immunol 2021; 12:766845. [PMID: 34887862 PMCID: PMC8650311 DOI: 10.3389/fimmu.2021.766845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Foodborne intestinal inflammation is a major health and welfare issue in aquaculture. To prevent enteritis, various additives have been incorporated into the fish diet. Considering anti-inflammatory immune regulation, an effective natural compound could potentially treat or prevent intestinal inflammation. Our previous study has revealed galantamine’s effect on soybean induced enteritis (SBMIE) and has highlighted the possible role of the cholinergic anti-inflammatory pathway in the fish gut. To further activate the intestinal cholinergic related anti-inflammatory function, α7nAchR signaling was considered. In this study, sinomenine, a typical agonist of α7nAChR in mammals, was tested to treat fish foodborne enteritis via its potential anti-inflammation effect using the zebrafish foodborne enteritis model. After sinomenine’s dietary inclusion, results suggested that there was an alleviation of intestinal inflammation at a pathological level. This outcome was demonstrated through the improved morphology of intestinal villi. At a molecular level, SN suppressed inflammatory cytokines’ expression (especially for tnf-α) and upregulated anti-inflammation-related functions (indicated by expression of il-10, il-22, and foxp3a). To systematically understand sinomenine’s intestinal effect on SBMIE, transcriptomic analysis was done on the SBMIE adult fish model. DEGs (sinomenine vs soybean meal groups) were enriched in GO terms related to the negative regulation of lymphocyte/leukocyte activation and alpha-beta T cell proliferation, as well as the regulation of lymphocyte migration. The KEGG pathways for glycolysis and insulin signaling indicated metabolic adjustments of α7nAchR mediated anti-inflammatory effect. To demonstrate the immune cells’ response, in the SBMIE larva model, inflammatory gatherings of neutrophils, macrophages, and lymphocytes caused by soybean meal could be relieved significantly with the inclusion of sinomenine. This was consistent within the sinomenine group as CD4+ or Foxp3+ lymphocytes were found with a higher proportion at the base of mucosal folds, which may suggest the Treg population. Echoing, the sinomenine group’s 16s sequencing result, there were fewer enteritis-related TM7, Sphingomonas and Shigella, but more Cetobacterium, which were related to glucose metabolism. Our findings indicate that sinomenine hydrochloride could be important in the prevention of fish foodborne enteritis at both immune and microbiota levels.
Collapse
Affiliation(s)
- Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
17
|
Cornuault JK, Byatt G, Paquet ME, De Koninck P, Moineau S. Zebrafish: a big fish in the study of the gut microbiota. Curr Opin Biotechnol 2021; 73:308-313. [PMID: 34653834 DOI: 10.1016/j.copbio.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/03/2022]
Abstract
The importance of the gut microbiota in host health is now well established, but the underlying mechanisms remain poorly understood. Among the animal models used to investigate microbiota-host interactions, the zebrafish (Danio renio) is gaining attention. Several factors contribute to the recent interest in this model, including its low cost, the ability to assess large cohorts, the possibility to obtain germ-free larvae from non-axenic parents, and the availability of optical methodologies to probe the transparent larvae and adults from various genetic lines. We review recent findings on the zebrafish gut microbiota and its modulation by exogenous microbes, nutrition, and environmental factors. We also highlight the potential of this model for assessing the impact of the gut microbiota on brain development.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Gabriel Byatt
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Marie-Eve Paquet
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Paul De Koninck
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
18
|
Abstract
Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5-20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea;
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan 49112, Korea
| |
Collapse
|
19
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
20
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
21
|
Abdel-Warith AWA, Younis EM, Al-Asgah NA, Gewaily MS, El-Tonoby SM, Dawood MAO. Role of Fucoidan on the Growth Behavior and Blood Metabolites and Toxic Effects of Atrazine in Nile Tilapia Oreochromis niloticus (Linnaeus, 1758). Animals (Basel) 2021; 11:ani11051448. [PMID: 34069982 PMCID: PMC8157872 DOI: 10.3390/ani11051448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Toxic derivatives reach the ponds and cages where fish are grown, and the continuous exposure to these contaminants proved to impair the healthy status of several finfish species. In some countries famous for cultivating rice and corn, atrazine (ATZ) is massively applied to protect plants from invaders. Many functional additives are permitted for application in the aquaculture sector as natural alternatives for chemotherapies. In this study, the toxicity impacts of ATZ and the protective role of fucoidan were investigated on the health performance of Nile tilapia. Long-term exposure to ATZ resulted in low growth rate, impaired hepato-renal function, intestinal inflammation, and oxidative stress in Nile tilapia. However, the obtained results soundly support fucoidan’s potential role to cope with the impacts of ATZ on Nile tilapia. Abstract Waterborne herbicides are stressful agents that threaten the productivity and safety of finfish species. In this study, the toxicity impacts of atrazine (ATZ) and the protective role of fucoidan were investigated on the health performance of Nile tilapia. For 40 days, the total number of 180 Nile tilapia was assigned in four groups (triplicates, 15 fish/replicate), where the first (control) and third groups were offered the control diet, while the second and fourth groups were offered a fucoidan (FCN). Further, in the third and fourth groups, the water was mixed with atrazine (ATZ) at 1.39 mg/L daily. The growth rate, FCR, and survival rate were markedly enhanced by fucoidan but severely declined by ATZ exposure (p < 0.05). The morphological structure of the intestine in the control fish revealed normal structure, while fucoidan-treated groups showed eminent enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed deterioration and the intestinal mucosa, inflammatory cell infiltration, and separation of lining epithelium. The highest Hb, PCV, RBCs, WBCs, total protein, and albumin were observed in Nile tilapia fed fucoidan, but the worst values were seen in ATZ-intoxicated fish (p < 0.05). The liver-related enzymes (ALT and AST) and kidney function (urea and creatinine) showed impaired values by ATZ toxicity and were regulated by dietary fucoidan. Meanwhile, fish fed fucoidan and exposed to ATZ had lower total cholesterol and triglyceride values than fish exposed to ATZ without fucoidan feeding (p < 0.05). The SOD, CAT, GPx, cortisol, and glucose levels were increased in ATZ-exposed fish and reduced by fucoidan (p < 0.05). However, the level of malondialdehyde (MDA) was reduced in fucoidan-fed fish and increased in ATZ-exposed fish (p < 0.05). Altogether, dietary fucoidan is required in fish diets to alleviate the impacts of ATZ-induced toxicity.
Collapse
Affiliation(s)
- Abdel-Wahab A. Abdel-Warith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Nasser A. Al-Asgah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Shaimaa M. El-Tonoby
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence:
| |
Collapse
|
22
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|