1
|
Alvarez-Bustamante JA, Muñoz AM. Modeling Zinc Absorption in the Adult Population of Colombia: Insights for Nutritional Evaluation and Intervention Strategies. Biol Trace Elem Res 2025; 203:105-112. [PMID: 38739259 DOI: 10.1007/s12011-024-04180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Zinc is a vital trace element, yet its deficiency is common in various populations. This study addresses the gap in understanding zinc intake and its relationship with key nutritional parameters in a Colombian population. We analyzed data from 12,987 individuals, focusing on the daily intake of zinc, phytate, protein, and calcium, and used the phytate/zinc molar ratio as an input parameter in the Miller et al. (2013) model. This model was employed to estimate the total absorbed zinc (TAZ) and the fractional absorption of zinc (FAZ). Our findings highlight a general trend towards insufficient intake compared to the standards of the Institute of Medicine (IOM) and Colombia, with a significant percentage of the population falling below the estimated average requirement (EAR) and recommended daily allowance (RDA) for zinc, underscoring the need for targeted nutritional strategies. Our study contributes to a broader understanding of zinc nutrition and public health implications in Colombia, providing a basis for future dietary guidelines and health interventions.
Collapse
|
2
|
Nikooyeh B, Ghodsi D, Yari Z, Rasekhi H, Amini M, Rabiei S, Ebrahimof S, Abdollahi Z, Minaie M, Motlagh ME, Neyestani TR. Multifaceted determinants of micronutrient status in early childhood in Iran : National food and nutrition surveillance. Eur J Nutr 2024; 64:43. [PMID: 39666056 DOI: 10.1007/s00394-024-03545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE This study examined the status and determinants of key micronutrients among 24-60 month children in underprivileged provinces of Iran, highlighting ongoing challenges despite intervention efforts. METHODS This study analyzed data from the National Food and Nutrition Surveillance program. A multistage cluster sampling method was used, recruiting 280 children per province from Khuzestan, Kerman, Ilam, Bushehr, Hormozgan, Kohgiluyeh va Boyerahmad, Sistan va Baluchestan and South Khorasan. Demographic, dietary, and anthropometric data were collected, and micronutrient status was assessed through hemoglobin, serum ferritin, zinc, retinol and 25-hydroxycalciferol assays. RESULTS This study included 2,247 children (42.2 ± 0.3 months). About 40% of children had low dietary diversity, and 48.4% were from low socioeconomic status (SES) families. Anemia was found in 24% of the children. Vitamin D and A deficiency affected 74%, and 22.3% of children, respectively. Notably, 39.1% had multiple micronutrient deficiencies. Father's occupation (odds ratio [OR] (95% confidence interval [CI]; freelance vs. employed: 1.86 (1.13, 3.06), worker vs. employed: 2.3 (1.43, 3.69)) and SES (middle vs. high: 2.15 (1.09, 4.2)) were significant predictors of anemia. Urban living and higher paternal education were protective against low ferritin. Children in lower SES categories and those with poor vitamin D status were more likely to have iron (1.53 (1.12, 2.09), p = 0.007) and zinc deficiencies (2.19 (1.46, 3.29) p < 0.001). Vitamin A and D statuses were mainly influenced by SES, food security, and supplement intake, respectively. CONCLUSION Our findings revealed high prevalence of micronutrient deficiencies among 24-60 month children residing in eight underprivileged provinces of Iran. Parental education, household SES and food security were the main determinants of micronutrient deficiencies among the studied children. Improvement of the households' food access through betterment of economic condition seems inevitable which in turn necessitates an inter-sectorial collaboration.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delaram Ghodsi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rasekhi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Amini
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Rabiei
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Ebrahimof
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abdollahi
- Community Nutrition Office, Deputy of Health, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Mina Minaie
- Community Nutrition Office, Deputy of Health, Iran Ministry of Health and Medical Education, Tehran, Iran
| | | | - Tirang R Neyestani
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li Y, Sun R, Lin G, Sun P, Shi X, Li Y, Gao Y, Zhao J. Mitigating Mercury Accumulation and Enhancing Methylmercury Degradation in Rice: Insights from Zinc-Mercury Antagonism at Molecular Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25895-25904. [PMID: 39508478 DOI: 10.1021/acs.jafc.4c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Zn as an essential element has the potential to protect against mercury (Hg) toxicity in rice. However, the antagonistic effects between Zn and Hg in rice and their mechanisms remain unknown. This study proposed a promising strategy for Zn application to mitigate Hg accumulation and toxicity in rice and revealed the underlying molecular mechanisms. The findings revealed that Zn supplementation significantly reduced the uptake and transportation of both IHg and MeHg in rice, thereby alleviating Hg phytotoxicity. In particular, Zn profoundly mitigated Hg-induced oxidative damage to rice, which was attributed to the redistribution of Hg and Zn in the root and Zn competing for binding sites on glutathione. The co-binding of Zn2+ and HgCH3+ within the same active sites of Zn transporters can promote the transfer of regions with a high charge density distribution at the highest occupied molecular orbital (HOMO) level. This process facilitates proton attack on the Hg-C bond, thereby enhancing MeHg demethylation in rice. By elucidating the molecular mechanisms of Zn, IHg, and MeHg interactions in rice, this study offers new insights for developing efficient strategies to mitigate Hg risks while boosting the Zn content in crops, thereby fortifying food safety.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Ruiyang Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Peipei Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xueqian Shi
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yufeng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
4
|
Xie Z, Fang Q, Xiao S, Wang J, Lin P, Guo C, Cao H, Yin Z, Dong L, Peng D. Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn 2+ Based on Pyrano[3,2-c] Carbazole. Molecules 2024; 29:5454. [PMID: 39598843 PMCID: PMC11597256 DOI: 10.3390/molecules29225454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Zinc is a trace element, which plays an important role in many biological processes. The deficiency of zinc will lead to many diseases. Thus, it is of great significance to develop fast and efficient quantitative detection technology for zinc ions. In this study, a novel fluorescence probe FP2 was designed for Zn2+ quantification based on pyrano[3,2-c] carbazole. The structure of FP2 was characterized by 1HNMR, 13CNMR, HRMS, and X-ray diffraction. In the HEPES buffer solution, FP2 is responsive to Zn2+ and greatly enhanced. The pH value and reaction time were investigated, and the optimum reaction conditions were determined as follows: the pH was 7~9 and the reaction time was longer than 24 min. Under the optimized conditions, the concentration of FP2 and Zn2+ showed a good linear relationship in the range of 0~10 μM, and the LOD was 0.0065 μmol/L. In addition, through the 1H NMR titration experiment, density functional theory calculation, and the job plot of FP2 with Zn2+ in the HEPES buffer solution, the binding mode of FP2 and Zn2+ was explained. Finally, the method of flame atomic absorption spectrometry (FAAS) and FP2 were used to detect the content of Zn2+ in the water extract of tea. The results showed that the FP2 method is more accurate than the FAAS method, which shows that the method described in this work could be used to detect the content of Zn2+ in practical samples and verify the practicability of this method.
Collapse
Affiliation(s)
- Ziyin Xie
- College of Chemistry & Materials, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China; (Z.X.); (S.X.); (J.W.)
| | - Qingwen Fang
- College of Forestry, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, East China Woody Fragrance and Flavor Engineering Research Center of National, Forestry and Grassland Administration, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Shuzhen Xiao
- College of Chemistry & Materials, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China; (Z.X.); (S.X.); (J.W.)
| | - Jie Wang
- College of Chemistry & Materials, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China; (Z.X.); (S.X.); (J.W.)
| | - Ping Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Chunmei Guo
- Jiangxi Institute for Drug Control, Nanchang 330029, China;
| | - Huihua Cao
- Jiangxi Provincial Key Laboratory of Tea Planting and High Value Utilization of Characteristic Fruit Trees, Jiangxi Institute of Cash Crops, Nanchang 330013, China;
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Lihong Dong
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dayong Peng
- College of Chemistry & Materials, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China; (Z.X.); (S.X.); (J.W.)
| |
Collapse
|
5
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2024:10.1007/s00204-024-03891-3. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
6
|
Camp OG, Moussa DN, Hsu R, Awonuga AO, Abu-Soud HM. The interplay between oxidative stress, zinc, and metabolic dysfunction in polycystic ovarian syndrome. Mol Cell Biochem 2024:10.1007/s11010-024-05113-x. [PMID: 39266804 DOI: 10.1007/s11010-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a functional endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology that has been associated with chronic disease and comorbidities including adverse metabolic and cardiac disorders. This review aims to evaluate the role of oxidative stress and zinc in the metabolic dysfunction observed in PCOS, with a focus on insulin resistance. Recent studies indicate that oxidative stress markers are elevated in PCOS and correlate with hyperandrogenemia, obesity, and insulin resistance. Zinc, an essential trace element, is crucial for metabolic processes, particularly in the pancreas for beta-cell function and glucagon secretion. Insufficient zinc levels have been linked to diabetes, obesity, and lipid metabolism disorders. This review aims to highlight the interplay between oxidative stress, zinc, and metabolic dysfunction in PCOS, suggesting that zinc supplementation could mitigate some metabolic and endocrine manifestations of PCOS.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Richard Hsu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Shi Y, Hao R, Ji H, Gao L, Yang J. Dietary zinc supplements: beneficial health effects and application in food, medicine and animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5660-5674. [PMID: 38415843 DOI: 10.1002/jsfa.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Zinc, a crucial trace element is vital for the growth and development of humans. It is frequently described as 'the flower of life' and 'the source of intelligence'. Zinc supplements play a pivotal role in addressing zinc deficiency by serving as a vital source of this essential micronutrients, effectively replenishing depleted zinc levels in the body. In this paper, we first described the biological behavior of zinc in the human body and briefly described the physiological phenomena associated with zinc levels. The benefits and drawbacks of various zinc supplement forms are then discussed, with emphasis on the most recent zinc supplement formulations. Finally, the application of zinc supplements in food, medicine, and animal husbandry is further summarized. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Rui Hao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Haixia Ji
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Junyan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Luo C, Kong N, Li X, Sun S, Jiang C, Qiao X, Wang L, Song L. The c.503A>G polymorphism in ZIP1-II of Pacific oyster Crassostrea gigas associated with zinc content. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110988. [PMID: 38768804 DOI: 10.1016/j.cbpb.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.
Collapse
Affiliation(s)
- Cong Luo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Shiqing Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chunyu Jiang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xin Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
10
|
La QP, Le SH, Nguyen PM, Tran LC. Zinc Deficiency and the Severity of Pneumonia in Vietnamese Children: A Hospital-Based Study. Cureus 2024; 16:e65771. [PMID: 39211658 PMCID: PMC11361619 DOI: 10.7759/cureus.65771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Pneumonia is a critical global health concern that often results in severe complications and fatalities, especially among young children. Zinc plays a crucial role in immune function and maintaining respiratory epithelial integrity. Despite its importance, data on the prevalence of zinc deficiency and its impact on pneumonia severity in Vietnamese children are limited. Objectives This study aimed to investigate the prevalence of zinc deficiency and its association with pneumonia severity in Vietnamese children under five years old. The findings could significantly contribute to our understanding of the role of zinc in pneumonia severity, guiding future public health interventions, nutritional policies, and clinical practices to prevent zinc deficiency and reduce pneumonia morbidity and mortality in children. Methods An analytical cross-sectional study was conducted at a major pediatric center in Southwestern Vietnam from December 2022 to February 2024, involving 222 children aged 2 to 59 months diagnosed with pneumonia. Clinical assessments and laboratory measurements, including serum zinc levels, were performed. Statistical analyses were conducted to compare clinical characteristics and outcomes between zinc-deficient and non-deficient groups. Multivariable logistic regression was used to assess the association between zinc deficiency and pneumonia severity, with statistical significance set at p<0.05. Results The prevalence of zinc deficiency among children with pneumonia was 74.3%. Zinc-deficient children showed a significantly higher proportion of severe pneumonia (57.6% vs. 8.8%, p<0.001), as well as a higher proportion of high fever, poor feeding, vomiting, and respiratory distress compared to non-deficient children (p<0.001). Multivariable logistic regression identified zinc deficiency as an independent predictor of severe pneumonia (aOR=13.1, 95% CI: 4.7-36.8, p<0.001). Conclusion Zinc deficiency was prevalent among Vietnamese children with pneumonia and was associated with an increased risk of severe pneumonia.
Collapse
Affiliation(s)
- Qui Phu La
- Department of Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho City, VNM
| | - Son Hoang Le
- Department of Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho City, VNM
| | - Phuong Minh Nguyen
- Department of Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho City, VNM
| | - Ly Cong Tran
- Department of Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho City, VNM
| |
Collapse
|
11
|
Górska A, Markiewicz-Gospodarek A, Trubalski M, Żerebiec M, Poleszak J, Markiewicz R. Assessment of the Impact of Trace Essential Metals on Cancer Development. Int J Mol Sci 2024; 25:6842. [PMID: 38999951 PMCID: PMC11241304 DOI: 10.3390/ijms25136842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
This study examines the impact of zinc, copper, cobalt, iron, and manganese on cancer development, considering their dual roles as potential promoters or inhibitors within tumorigenesis. A comprehensive analysis of existing literature and experimental data is conducted to elucidate the intricate relationship between these trace elements and cancer progression. The findings highlight the multifaceted effects of zinc, copper, cobalt, iron, and manganese on various aspects of cancer development, including cell proliferation, angiogenesis, and metastasis. Understanding the nuanced interactions between these trace elements and cancer could offer crucial insights into tumorigenesis mechanisms and facilitate the identification of novel biomarkers and therapeutic targets for cancer prevention and treatment strategies. This research underscores the importance of considering the roles of essential trace elements in cancer biology and may ultimately contribute to advancements in precision medicine approaches for combating cancer.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Agnieszka Markiewicz-Gospodarek
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland; (M.T.); (M.Ż.); (J.P.)
| | - Marta Żerebiec
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland; (M.T.); (M.Ż.); (J.P.)
| | - Julia Poleszak
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland; (M.T.); (M.Ż.); (J.P.)
| | - Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, 4 Staszica St., 20-081 Lublin, Poland;
| |
Collapse
|
12
|
Shehzadi N, Mahmood A, Kaleem M, Chishti MS, Bashir H, Hashem A, Abd-Allah EF, Shahid H, Ishtiaq A. Zinc and nitrogen mediate the regulation of growth, leading to the upregulation of antioxidant aptitude, physio-biochemical traits, and yield in wheat plants. Sci Rep 2024; 14:12897. [PMID: 38839939 PMCID: PMC11153612 DOI: 10.1038/s41598-024-63423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.
Collapse
Affiliation(s)
- Nimra Shehzadi
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | | | - Humaira Bashir
- Government Graduate College for Women Wahdat Colony, Lahore, Pakistan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Hina Shahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Atiqa Ishtiaq
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Thakur NR, Gorthy S, Vemula A, Odeny DA, Ruperao P, Sargar PR, Mehtre SP, Kalpande HV, Habyarimana E. Genome-wide association study and expression of candidate genes for Fe and Zn concentration in sorghum grains. Sci Rep 2024; 14:12729. [PMID: 38830906 PMCID: PMC11148041 DOI: 10.1038/s41598-024-63308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Sorghum germplasm showed grain Fe and Zn genetic variability, but a few varieties were biofortified with these minerals. This work contributes to narrowing this gap. Fe and Zn concentrations along with 55,068 high-quality GBS SNP data from 140 sorghum accessions were used in this study. Both micronutrients exhibited good variability with respective ranges of 22.09-52.55 ppm and 17.92-43.16 ppm. Significant marker-trait associations were identified on chromosomes 1, 3, and 5. Two major effect SNPs (S01_72265728 and S05_58213541) explained 35% and 32% of Fe and Zn phenotypic variance, respectively. The SNP S01_72265728 was identified in the cytochrome P450 gene and showed a positive effect on Fe accumulation in the kernel, while S05_58213541 was intergenic near Sobic.005G134800 (zinc-binding ribosomal protein) and showed negative effect on Zn. Tissue-specific in silico expression analysis resulted in higher levels of Sobic.003G350800 gene product in several tissues such as leaf, root, flower, panicle, and stem. Sobic.005G188300 and Sobic.001G463800 were expressed moderately at grain maturity and anthesis in leaf, root, panicle, and seed tissues. The candidate genes expressed in leaves, stems, and grains will be targeted to improve grain and stover quality. The haplotypes identified will be useful in forward genetics breeding.
Collapse
Affiliation(s)
- Niranjan Ravindra Thakur
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | - Sunita Gorthy
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - AnilKumar Vemula
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Pradeep Ruperao
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Pramod Ramchandra Sargar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | | | - Hirakant V Kalpande
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India.
| |
Collapse
|
14
|
Wang Y, Song Y, Zhang L, Huang X. The paradoxical role of zinc on microglia. J Trace Elem Med Biol 2024; 83:127380. [PMID: 38171037 DOI: 10.1016/j.jtemb.2023.127380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Zinc is an essential trace element for humans, and its homeostasis is essential for the health of the central nervous system. Microglia, the resident immune cells in the central nervous system, play the roles of sustaining, nourishing, and immune surveillance. Microglia are sensitive to microenvironment changes and are easily activated to M1 phenotype to enhance disease progression or the M2 phenotype to improve peripheral nerves injury repair. Zinc is requisite for microglial activation, However, the cytotoxicity outcome of zinc against microglia, the activated microglia phenotype, and activated microglia function are ambiguous. Herein, we have reviewed the neurological function of zinc and microglia, particularly the ambiguous role of zinc on microglia. We also pay attention to the role of zinc homeostasis on microglial function within the central nervous system disease. Finally, we observe the relationship between zinc and microglia, attempting to design new therapeutic measures against major nervous system disorders.
Collapse
Affiliation(s)
- Yehong Wang
- Graduate Faculty, Xi'an Physical Education University, Xi'an 710068, PR China; Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China.
| | - Lingdang Zhang
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
15
|
Bombik E, Bombik A, Pietrzkiewicz K. Analysis of Zinc and Copper Content in Selected Tissues and Organs of Wild Mallard Ducks ( Anas platyrhynchos L.) in Poland. Animals (Basel) 2024; 14:1176. [PMID: 38672324 PMCID: PMC11047566 DOI: 10.3390/ani14081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The research material included selected muscles and liver of mallard ducks obtained in two research areas. A total of 28 mallards were obtained for the study-six males and six females from the Siedlce hunting district and eight males and eight females from the Leszno hunting district. Zinc and copper concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP OES). It was concluded from the study that the Leszno hunting district is more polluted than the Siedlce hunting district. Among the examined tissues of mallard ducks from both hunting districts, the highest content of zinc and copper was found in the liver. In this organ, birds shot in the Leszno hunting district were characterized by a significantly higher content of these elements compared to birds shot in the Siedlce hunting area. The significantly higher average zinc and copper concentrations in the liver of mallards harvested in this hunting district may have been influenced by fertilization of crop fields in this area with fertilizers containing these elements and by extraction of ore containing zinc and copper minerals in the Legnica-Głogów Copper District. This is an important problem with regard to the safety of consumers of game meat. It was shown that the tissues of male mallards were characterized by higher average levels of zinc and copper than those of females, but the differences were statistically significant only in the case of the average copper content in the leg muscles.
Collapse
Affiliation(s)
- Elżbieta Bombik
- Faculty of Agricultural Sciences, University in Siedlce, Prusa Street 14, 08-110 Siedlce, Poland; (A.B.); (K.P.)
| | | | | |
Collapse
|
16
|
Wang P, Yang Y, Guo J, Ma T, Hu Y, Huang L, He Y, Xi J. Resveratrol Inhibits Zinc Deficiency-Induced Mitophagy and Exerts Cardiac Cytoprotective Effects. Biol Trace Elem Res 2024; 202:1669-1682. [PMID: 37458914 DOI: 10.1007/s12011-023-03758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 02/13/2024]
Abstract
Resveratrol (Res) possesses various beneficial effects, including cardioprotective, anti-inflammatory, anti-aging, and antioxidant properties. However, the precise mechanism underlying these effects remains unclear. Here we investigated the protective effects of resveratrol on cardiomyocytes, focusing on the role of Zn2+ and mitophagy. Using the MTT/lactate dehydrogenase assay, we found that addition of a zinc chelator TPEN for 4 h induced mitophagy and resulted in a significant reduction in cell viability, increased cytotoxicity, and apoptosis in H9c2 cells. Notably, resveratrol effectively mitigated these detrimental effects caused by TPEN. Similarly, Res inhibited the TPEN-induced expression of mitophagy-associated proteins, namely P62, LC3, NIX, TOM20, PINK1, and Parkin. The inhibitory action of resveratrol on mitophagy was abrogated by the mitophagy inhibitor 3-MA. Additionally, we discovered that silencing of the Mfn2 gene could reverse the inhibitory effects of resveratrol on mitophagy via the AMPK-Mfn2 axis, thereby preventing the opening of the mitochondrial permeability transition pore (mPTP). Collectively, our data suggest that Res can safeguard mitochondria protection by impeding mitophagy and averting mPTP opening through the AMPK-Mfn2 axis in myocardial cells.
Collapse
Affiliation(s)
- Pei Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Ying Yang
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Jiabao Guo
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan, 063000, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Tingting Ma
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan, 063000, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Youcheng Hu
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Luyao Huang
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Yonggui He
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China.
| | - Jinkun Xi
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan, 063000, China.
| |
Collapse
|
17
|
Yadav A, Babu S, Krishnan P, Kaur B, Bana RS, Chakraborty D, Kumar V, Joshi B, Lal SK. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region. CHEMOSPHERE 2024; 352:141432. [PMID: 38368965 DOI: 10.1016/j.chemosphere.2024.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Zinc (Zn) and iron (Fe) malnutrition are global health challenges that need immediate attention. Hence, to address these issues, a two-pronged approach involving the development and application of novel Zn and Fe products for crop fertilization may be a potential solution. Therefore, zinc oxide (ZnO) (∼13.2 nm) and ferric oxide (Fe2O3) (∼15 nm) nanoparticles (NPs) were synthesized and characterized. Seven nutrients treatments viz, control, ZnO- NPs (25 mg kg-1), Fe2O3-NPs (25 mg kg-1), ZnO + Fe2O3-NPs (25 mg kg-1each), ZnSO4 (55.8 mg kg-1), FeSO4 (60.4 mg kg-1) and ZnSO4+ FeSO4 (55.8 and 60.4 mg kg-1) were arranged in five-time replicated Completely Randomized Design model to test the effectiveness of ZnO and Fe2O3 NPs in two soybean cultivars over conventional zinc sulfate (ZnSO4) and ferrous sulfate (FeSO4) fertilizers. The results indicated that the photosynthetic rate (Pn) and chlorophyll content increased (33.9-86.2%) significantly at the flowering stage with ZnO and Fe2O3 NPs applications, compared to their conventional counterparts. Likewise, the combined application of ZnO and Fe2O3 NPs reduced H2O2 production by 17-19% and increased the superoxide dismutase (SOD) and catalase (CAT) activities by 15-17% and 9.6-11.4% over the combined use of ZnSO4 and FeSO4, respectively. The normalized difference vegetation index (NDVI) showed an increase of 6.9-44.2% under ZnO and Fe2O3 NPs, as well as ZnSO4 and FeSO4. Furthermore, the combined application of NPs enhanced soybean seed yield by 4.6-18.3% compared to conventional Zn and Fe fertilizers. Concerning seed Zn and Fe density, conjoint application of ZnO and Fe2O3 NPs increases Zn by 1.8-2.2-fold and Fe by 19.22-22.58% over the combined application of Zn SO4 and FeSO4, respectively. While the application of NPs significantly decreased seed phytic acid concentrations by 7.3-59.9% compared to the control. These findings suggest that the combined application of ZnO and Fe2O3 NPs effectively enhances soybean productivity, seed nutrient density, and overall produce quality. Therefore, the combined application of ZnO and Fe2O3 -NPs in soybean can be a potential approach for sustainable soybean production and to reduce/arrest Zn and Fe malnutrition in a growing population.
Collapse
Affiliation(s)
- Achchhelal Yadav
- Divsion of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Subhash Babu
- Divsion of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - P Krishnan
- Divsion of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Baljeet Kaur
- Division of Plant Pathology, ICAR- Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - R S Bana
- Divsion of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Debashis Chakraborty
- Divsion of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Vikas Kumar
- ICAR- National Institute of Agricultural Economics and Policy Research, New Delhi, 110 012, India
| | - Bhawna Joshi
- Division of Environmental Science, ICAR- Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - S K Lal
- Divsion of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
18
|
Yang P, Li H, Sun M, Guo X, Liao Y, Hu M, Ye P, Liu R. Zinc deficiency drives ferroptosis resistance by lactate production in esophageal squamous cell carcinoma. Free Radic Biol Med 2024; 213:512-522. [PMID: 38301975 DOI: 10.1016/j.freeradbiomed.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Trace metal zinc is involved in key processes of solid tumors by its antioxidant properties, while the role of zinc at the onset of esophageal squamous cell carcinoma (ESCC) remains controversial. This study aimed to determine whether zinc is associated with the ESCC and underlying molecular events involving malignant progression. Based on a case-control study, we found serum and urine zinc were decreased and correlated with ESCC progression. Thus, an in vitro model for zinc deficiency (ZD) was established, and we found that ZD contributed to the proliferation, migration, and invasion of EC109 cells. Untargeted metabolomics identified 59 upregulated metabolites and 6 downregulated metabolites, among which glycolysis and ferroptosis-related oxidation of chain fatty acids might play crucial steps in ZD-treated molecular events. Interestingly, ZD disrupted redox homeostasis and enhanced cytosolic Fe2+ of EC109 cells, while lipid peroxidation, the key marker of ferroptosis occurrence, was decreased after ZD treatment. The mechanism underlying these changes may involve ZD-enhanced ESCC glycolysis and lactate production, which confer ferroptosis resistance by inhibiting of p-AMPK and leading to the upregulation of SREBP1 and SCD1 to enhance the production of anti-ferroptosis monounsaturated fatty acids.
Collapse
Affiliation(s)
- Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mohan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ping Ye
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Ahmed N, Zhang B, Chachar Z, Li J, Xiao G, Wang Q, Hayat F, Deng L, Narejo MUN, Bozdar B, Tu P. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. SCIENTIA HORTICULTURAE 2024; 323:112512. [DOI: 10.1016/j.scienta.2023.112512] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Ma Y, Wen Y, Wang C, Wu Z, Yuan X, Xiong Y, Chen K, He L, Zhang Y, Wang Z, Li L, Yang Z, Sun Y, Chen Z, Ma J. ZIP Genes Are Involved in the Retransfer of Zinc Ions during the Senescence of Zinc-Deficient Rice Leaves. Int J Mol Sci 2023; 24:13989. [PMID: 37762290 PMCID: PMC10531140 DOI: 10.3390/ijms241813989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Rice lacks sufficient amounts of zinc despite its vitality for human health. Leaf senescence enables redistribution of nutrients to other organs, yet Zn retransfer during deficiency is often overlooked. In this hydroponic experiment, we studied the effect of Zn deficiency on rice seedlings, focusing on the fourth leaf under control and deficient conditions. Growth phenotype analysis showed that the growth of rice nodal roots was inhibited in Zn deficiency, and the fourth leaf exhibited accelerated senescence and increased Zn ion transfer. Analyzing differentially expressed genes showed that Zn deficiency regulates more ZIP family genes involved in Zn ion retransfer. OsZIP3 upregulation under Zn-deficient conditions may not be induced by Zn deficiency, whereas OsZIP4 is only induced during Zn deficiency. Gene ontology enrichment analysis showed that Zn-deficient leaves mobilized more biological pathways (BPs) during aging, and the enrichment function differed from that of normal aging leaves. The most apparent "zinc ion transport" BP was stronger than that of normal senescence, possibly due to Zn-deficient leaves mobilizing large amounts of BP related to lipid metabolism during senescence. These results provide a basis for further functional analyses of genes and the study of trace element transfer during rice leaf senescence.
Collapse
Affiliation(s)
- Yangming Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yanfang Wen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Cheng Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ziniu Wu
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaojuan Yuan
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ying Xiong
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Kairui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Limei He
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yue Zhang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhonglin Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Leilei Li
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhiyuan Yang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yongjian Sun
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhongkui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Jun Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
21
|
Dong Z, Zhang L, Wang W, Jiang F, Ai H. ZnSO 4 Protects against premature ovarian failure through PI3K/AKT/GSK3β signaling pathway. Theriogenology 2023; 207:61-71. [PMID: 37269597 DOI: 10.1016/j.theriogenology.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Zinc (Zn) is an essential trace element with anti-inflammatory and antioxidant effects and plays a crucial role in the female reproductive system. We aimed to investigate the protective effect of ZnSO4 on premature ovarian failure (POF) in SD rats and granulosa cells (GCs) treated with cisplatin. We also explored the underlying mechanisms. In vivo experiments showed that ZnSO4 increased the serum levels of Zn2+, increased estrogen (E2) secretion, and decreased follicle-stimulating hormone (FSH) secretion in rats. ZnSO4 increased ovarian index, protected ovarian tissues and blood vessels, reduced excessive follicular atresia, and maintained follicular development. At the same time, ZnSO4 inhibited apoptosis in the ovaries. In vitro experiments showed that ZnSO4 combination treatment restored the intracellular levels of Zn2+ and inhibited the apoptosis of GCs. ZnSO4 inhibited cisplatin-induced reactive oxygen species (ROS) production and preserved mitochondrial membrane potential (MMP). We also found that ZnSO4 protected against POF by activating the PI3K/AKT/GSK3β signaling pathway and reducing apoptosis of GCs. These data suggest that ZnSO4 may be a potential therapeutic agent for protecting the ovaries and preserving fertility during chemotherapy.
Collapse
Affiliation(s)
- Zhe Dong
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Zhang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan Jiang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Ai
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
22
|
Abu Jamra SR, Komatsu CG, Barbosa F, Roxo-Junior P, Navarro AM. Proposal to Screen for Zinc and Selenium in Patients with IgA Deficiency. Nutrients 2023; 15:2145. [PMID: 37432290 DOI: 10.3390/nu15092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
The increase in life expectancy can be a consequence of the world's socioeconomic, sanitary and nutritional conditions. Some studies have demonstrated that individuals with a satisfactory diet variety score present a lower risk of malnutrition and better health status. Zinc and selenium are important micronutrients that play a role in many biochemical and physiological processes of the immune system. Deficient individuals can present both innate and adaptive immunity abnormalities and increased susceptibility to infections. Primary immunodeficiency diseases, also known as inborn errors of immunity, are genetic disorders classically characterized by an increased susceptibility to infection and/or dysregulation of a specific immunologic pathway. IgA deficiency (IgAD) is the most common primary antibody deficiency. This disease is defined as serum IgA levels lower than 7 mg/dL and normal IgG and IgM levels in individuals older than four years. Although many patients are asymptomatic, selected patients suffer from different clinical complications, such as pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy. Knowing the nutritional status as well as the risk of zinc and selenium deficiency could be helpful for the management of IgAD patients. OBJECTIVES to investigate the anthropometric, biochemical, and nutritional profiles and the status of zinc and selenium in patients with IgAD. METHODS in this descriptive study, we screened 16 IgAD patients for anthropometric and dietary data, biochemical evaluation and determination of plasma and erythrocyte levels of zinc and selenium. RESULTS dietary intake of zinc and selenium was adequate in 75% and 86% of the patients, respectively. These results were consistent with the plasma levels (adequate levels of zinc in all patients and selenium in 50% of children, 25% of adolescents and 100% of adults). However, erythrocyte levels were low for both micronutrients (deficiency for both in 100% of children, 75% of adolescents and 25% of adults). CONCLUSION our results highlight the elevated prevalence of erythrocyte zinc and selenium deficiency in patients with IgAD, and the need for investigation of these micronutrients in their follow-up.
Collapse
Affiliation(s)
- Soraya Regina Abu Jamra
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Camila Gomes Komatsu
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14800-060, Brazil
| | - Fernando Barbosa
- Laboratory of Toxicology and Metal Essentiality, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Sao Paulo 05508-090, Brazil
| | - Persio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Anderson Marliere Navarro
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| |
Collapse
|
23
|
Chaudhary R, Kumar V, Gupta S, Naik B, Prasad R, Mishra S, Saris PEJ, Kumar V. Finger Millet ( Eleusine coracana) Plant-Endophyte Dynamics: Plant Growth, Nutrient Uptake, and Zinc Biofortification. Microorganisms 2023; 11:microorganisms11040973. [PMID: 37110396 PMCID: PMC10143119 DOI: 10.3390/microorganisms11040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi and bacteria were isolated from finger millet and their effects on finger millet growth parameters and zinc and NPK contents in grains were studied. Out of 70 fungal and 112 bacterial endophytes, the two best fungal and bacterial isolates were selected on the basis of zinc solubilization and plant-growth-promoting attributes. The fungal isolates identified were Aspergillus terreus and Lecanicillium sp., and the bacterial isolates were Pseudomonas bijieensis and Priestia megaterium. The endophytic zinc, NPK mobilization, and plant-growth-promoting efficacy were determined in a pot experiment with zinc carbonate as the zinc source. Endophytic-primed plants showed enhanced shoot and root lengths compared to the unprimed control. Endophytes increased the zinc content in grains by between 12.12% and 18.80% compared to control plants. Endophytes also augmented the NPK concentrations in seeds compared to control plants and exhibited stability in a diverse range of pHs, temperatures, and NaCl concentrations, and exhibited growth on various carbohydrate and nitrogen sources. This is the first study reporting the interaction of Aspergillus terreus, Lecanicillium sp., Pseudomonas bijieensis, and Priestia megaterium with finger millet for grain Zn biofortification and NPK concentration enhancement. This study indicated that zinc-dissolving endophytes possess the potential for enhancing the zinc and NPK content in grains in addition to the plant-growth-promoting attributes.
Collapse
Affiliation(s)
- Renu Chaudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Bindu Naik
- Department of Life Sciences, Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun 248002, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100 Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| |
Collapse
|
24
|
Daccak D, Lidon FC, Coelho ARF, Luís IC, Marques AC, Pessoa CC, Brito MDG, Kullberg JC, Ramalho JC, Silva MJ, Rodrigues AP, Campos PS, Pais IP, Semedo JN, Silva MM, Legoinha P, Galhano C, Simões M, Pessoa MF, Reboredo FH. Assessment of Physicochemical Parameters in Two Winegrapes Varieties after Foliar Application of ZnSO 4 and ZnO. PLANTS (BASEL, SWITZERLAND) 2023; 12:1426. [PMID: 37050051 PMCID: PMC10097101 DOI: 10.3390/plants12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
One-third of the world's population is suffering from "hidden hunger" due to micronutrient deficiency. Zinc is acquired through diet, leading its deficiency to the development of disorders such as retarded growth, anorexia, infections, and hypogeusia. Accordingly, this study aimed to develop an agronomic workflow for Zn biofortification on two red winegrapes varieties (cv. Castelão and Syrah) and determine the physicochemical implications for winemaking. Both varieties produced in Setúbal (Portugal) were submitted to four foliar applications of ZnSO4 or ZnO (900 and 1350 g ha-1, respectively), during the production cycle. At harvest, Zn biofortification reached a 4.3- and 2.3-fold increase with ZnO 1350 g ha-1 in Castelão and Syrah, respectively (although, with ZnSO4 1350 g ha-1 both varieties revealed an increase in Zn concentration). On a physiological basis, lower values of NDVI were found in the biofortified grapes, although not reflected in photosynthetic parameters with cv. Syrah shows even a potential benefit with the use of Zn fertilizers. Regarding physical and chemical parameters (density, total soluble solids, dry weight, and color), relative to the control no significant changes in both varieties were observed, being suitable for winemaking. It was concluded that ZnSO4 and ZnO foliar fertilization efficiently increased Zn concentration on both varieties without a negative impact on quality, but cv. Castelão showed a better index of Zn biofortification and pointed to a potentially higher quality for winemaking.
Collapse
Affiliation(s)
- Diana Daccak
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando C. Lidon
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Rita F. Coelho
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Inês Carmo Luís
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Coelho Marques
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Cláudia Campos Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria da Graça Brito
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José Carlos Kullberg
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José C. Ramalho
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paula Scotti Campos
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Paulo Legoinha
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Carlos Galhano
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Manuela Simões
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria Fernanda Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando H. Reboredo
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| |
Collapse
|
25
|
Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Wölfle D, Dusemund B, Mortensen A, Turck D, Barmaz S, Mech A, Rincon AM, Tard A, Vianello G, Gundert‐Remy U. Re-evaluation of locust bean gum (E 410) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA J 2023; 21:e07775. [PMID: 36789355 PMCID: PMC9909383 DOI: 10.2903/j.efsa.2023.7775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Locust bean gum (E 410) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of locust bean gum (E 410) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for locust bean gum (E 410) laid down in Commission Regulation (EU) No 231/2012. The Panel identified a reference point of 1,400 mg/kg bw per day based on reduced blood zinc levels in a piglet study. It applied the margin of exposure (MoE) for the safety assessment of locust bean gum (E 410) when used as a food additive in FC 13.1.5.1 and 13.1.5.2. The Panel concluded that a MoE above 1 would not raise a safety concern. A MoE above 1 was obtained for some of the scenarios and exposure levels for infants. For toddlers (consumers only of food for special medical purposes), the MoE was above 1 for all exposure levels.
Collapse
|
26
|
Uddin SMN, Haque M, Barek MA, Chowdhury MNU, Das A, Uddin MG, Islam MS. Analysis of serum calcium, sodium, potassium, zinc, and iron in patients with pre-eclampsia in Bangladesh: A case-control study. Health Sci Rep 2023; 6:e1097. [PMID: 36761032 PMCID: PMC9895321 DOI: 10.1002/hsr2.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background and Aims Pre-eclampsia is a particular type of pregnancy condition. Although the primary etiology of pre-eclampsia is unclear, it hypothesizes that the alteration of trace elements and macro-minerals may play a crucial function in the pathogenesis of Pre-eclampsia. Therefore, our research sought to ascertain the serum level of trace elements (zinc, iron) and macro-minerals (sodium, calcium, potassium) and their possible association with pre-eclampsia. Methods The present study was conducted with 74 pre-eclampsia pregnant women (case) and 118 pregnant women having normal blood pressure (controls). Atomic Absorption Spectroscopy determined the serum level of trace components and electrolytes. Results The researchers discovered notable differences in maternal age, gestational period, body mass index, systolic and diastolic blood pressure, hemoglobin, and creatinine level. Results of serum analysis revealed that calcium (52.06 ± 3.71 mg/L vs. 65.93 ± 2.57 mg/L, p < 0.05) and potassium (63.44 ± 5.33 mg/L vs. 102.54 ± 4.25 mg/L, p < 0.001) concentrations were substantially lower in the patient group than in control. Serum zinc (0.34 ± 0.02 mg/L vs. 0.52 ± 0.02 mg/L, p < 0.001) and iron (0.38 ± 0.03 mg/L vs. 0.46 ± 0.02 mg/L, p < 0.05) concentration were also considerably decreased in pre-eclampsia participants compared with a pregnant normotensive group. Pearson's correlation research results in the patient group revealed a connection between trace elements or macro minerals. In addition, the systolic blood pressure was positively correlated with sodium (r = 0.392, p < 0.01) and negatively correlated with potassium (r = -0.257, p < 0.05) in the control group. Conclusions This study concludes that calcium, potassium, iron, and zinc levels were lower, whereas sodium levels were higher in Bangladeshi pre-eclampsia patients compared to controls. These findings with Pearson's correlation and the inter-element relationship between the patient and a control subject results can act as critical indication factors for patients with pre-eclampsia in Bangladesh and, as a result, may require a higher intake of calcium, potassium, iron, and zinc for effective therapeutic intervention and reduce the intake of sodium.
Collapse
Affiliation(s)
- S. M. Naim Uddin
- Department of PharmacyUniversity of ChittagongChittagongBangladesh
| | - Mahmodul Haque
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md Abdul Barek
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | | | - Abhijit Das
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Giash Uddin
- Department of PharmacyUniversity of ChittagongChittagongBangladesh
| | | |
Collapse
|
27
|
Non-Negligible Role of Trace Elements in Influenza Virus Infection. Metabolites 2023; 13:metabo13020184. [PMID: 36837803 PMCID: PMC9967670 DOI: 10.3390/metabo13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Influenza virus has continuously spread around the globe for more than 100 years since the first influenza epidemic in 1918. The rapid and unpredictable gene variation of the influenza virus could possibly bring about another pandemic in future, which might threaten to overwhelm us without adequate preparation. Consequently, it is extremely urgent to identify effective broad-spectrum antiviral treatments for a variety of influenza virus variants. As essential body components, trace elements are great potential candidates with an as yet poorly understood ability to protect the host from influenza infection. Herein, we have summarized the present state of knowledge concerning the function of trace elements in influenza virus replication along with an analysis of their potential molecular mechanisms. Modulation of host immune responses to the influenza virus is one of the most common modes to achieve the anti-influenza activity of trace elements, such as selenium and zinc. Simultaneously, some antioxidant and antiviral signal pathways can be altered with the participation of trace elements. More interestingly, some micro-elements including selenium, zinc, copper and manganese, directly target viral proteins and regulate their stability and activity to influence the life cycle of the influenza virus. Further verification of the antiviral effect and the mechanism will promote the application of trace elements as adjuvants in the clinic.
Collapse
|
28
|
Nakanishi K, Toyoshima M, Ichikawa G, Suzuki S. Zinc deficiency is associated with gynecologic cancer recurrence. Front Oncol 2022; 12:1025060. [PMID: 36505858 PMCID: PMC9729934 DOI: 10.3389/fonc.2022.1025060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Zinc deficiency can cause various symptoms, including hair loss, anemia, and taste disorders. Recently, the association between cancer and zinc deficiency has received much attention with respect to its antioxidant properties. However, only a few studies have investigated the association between gynecologic cancers and zinc; to date, no studies have evaluated serum zinc status at the onset of gynecologic cancer or the relationship between zinc and cancer recurrence. The objectives of the present study were to determine whether serum zinc concentrations are associated with the development of gynecologic cancer, to clarify serum zinc dynamics between the onset and recurrence of gynecologic cancer, and to identify the associated factors. Accordingly, we retrospectively determined serum zinc concentrations before treatment in gynecologic patients with benign disease or cancer at the Nippon Medical School Chiba Hokusoh Hospital. We investigated anemia and hypoalbuminemia-the most common causes of zinc deficiency-as indicators of hyponutrition to determine the causal relationship of this deficiency with chemotherapy, radiation therapy, and recurrence, which may affect zinc concentration during cancer recurrence. The results indicated that there was no difference in zinc concentration between preoperative cancer patients and noncancer patients and that serum zinc concentrations were not associated with developing gynecologic cancers. However, patients with gynecologic cancer exhibited significantly lower serum zinc concentrations following treatment, and patients with recurrent cancer were 4.8 times more likely to develop zinc deficiency than those with nonrecurrent cancer. A serum zinc concentration of <61 μg/dL was an independent predictor of recurrence. Once zinc deficiency occurred, the recurrence rate of zinc deficiency reached as high as 69%. Overall, our study indicates that zinc deficiency is associated with recurrence in gynecological cancers and physicians should monitor zinc levels during disease management.
Collapse
Affiliation(s)
- Kazuho Nakanishi
- Department of Obstetrics and Gynecology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan,*Correspondence: Kazuho Nakanishi,
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Go Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
29
|
Anton IC, Mititelu-Tartau L, Popa EG, Poroch M, Poroch V, Pelin AM, Pavel LL, Drochioi IC, Botnariu GE. Zinc Chloride Enhances the Antioxidant Status, Improving the Functional and Structural Organic Disturbances in Streptozotocin-Induced Diabetes in Rats. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1620. [PMID: 36363577 PMCID: PMC9695737 DOI: 10.3390/medicina58111620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 12/01/2023]
Abstract
Background and Objectives: Diabetes mellitus (DM) is a complex disease affecting the whole metabolic balance of the body and resulting in multiple organ complications: cardiovascular, neuronal, renal, etc. Our study focuses on investigating the effect of zinc chloride (Zn) on certain blood parameters suggestive for assessing the metabolic disturbances, the liver and kidney function, the oxidative stress and the immune defense capacity in experimental-induced DM with streptozotocin (STZ) and cholesterol in rats. Materials and Methods: The animals were assigned to three groups, as follows: Group 1 (Control): buffer citrate solution 0.1 mL/100 g body; Group 2 (STZ): 20 mg/kg body STZ and fat diet (10 g cholesterol/100 g diet); Group 3 (STZ+Zn): 20 mg/kg body STZ + 5 mg/kg body Zn chloride and the same fat diet. DM was induced by administering STZ in a single take daily, for three consecutive days, Zn and citrate buffer were administered orally for a month. The protocol was approved by the Ethics Committee of the University 'Grigore T Popa' Iasi, in agreement with the International Regulations about the handling of laboratory animals. Results: The use of STZ in rats fed with cholesterol was correlated with important weight gain, hyperglycemia, the intensification of the transaminases activity and the increase in serum alkaline phosphatase, cholesterol, triglyceride, urea, creatinine and in malondialdehyde. Conclusions: The treatment with Zn resulted in weight loss and a decrease in blood sugar in diabetic rats. Supplementation with Zn notably reduced oxidative stress, preserved the pancreatic architecture and restored the liver and kidney function and structure in STZ-induced DM in rats.
Collapse
Affiliation(s)
- Irina Claudia Anton
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Eliza Gratiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Mihaela Poroch
- Department of Family Medicine, Preventive Medicine and Interdisciplinarity, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Vladimir Poroch
- 2nd Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800010 Galați, Romania
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800010 Galați, Romania
| | - Ilie Cristian Drochioi
- Surgical Department, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gina Eosefina Botnariu
- Department of Diabetes, Nutrition and Metabolic Disease, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| |
Collapse
|
30
|
Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, Bijata M, Włodarczyk J, Szafarz M, Wyska E, Muszyńska B, Krakowska A, Opoka W, Nowak G, Szewczyk B. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol 2022; 13:933364. [PMID: 36091748 PMCID: PMC9448861 DOI: 10.3389/fphar.2022.933364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25–6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Julia Masternak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Ewa Bączyńska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Krystian Bijata
- Faculty of Chemistry, University of Warsaw, Warszawa, Poland
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| |
Collapse
|
31
|
Enrichment of Grapes with Zinc-Efficiency of Foliar Fertilization with ZnSO4 and ZnO and Implications on Winemaking. PLANTS 2022; 11:plants11111399. [PMID: 35684172 PMCID: PMC9182840 DOI: 10.3390/plants11111399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Grapes and wine are widely consumed in the world, yet their mineral content can be influenced by many factors such as the mineral composition of soils, viticulture practices and environmental conditions. In this context, considering the importance of Zn in the human physiology, the enrichment of Moscatel and Castelão grapes (white and red variety, respectively) with this nutrient prompted this study; further assessment of tissue deposition and some implications for wine production. Using two foliar fertilizers (ZnO or ZnSO4, at 150, 450 and 900 g ha−1), decreases in net photosynthesis and stomatal conductance occurred in both varieties, suggesting that the physiological threshold of Zn toxicity was reached without visible symptoms. Following foliar spraying with both fertilizers, the content of Zn in leaves of the Castelão and Moscatel varieties showed higher values in all treatments relative to the control. Moreover, in grapes this tendency occurred only in Castelão. Concerning Cu, Fe, Ca, K, S and P, some significant differences also happened in leaves and grapes among treatments. At harvest, the indexes of Zn enrichment in grapes increased between 2.14- and 8.38-fold and between 1.02- and 1.44-fold in Castelão and Moscatel varieties, respectively. Zinc in the dried skin of Castelão only increased with ZnO and ZnSO4 sprayed at 900 g ha−1 (ca. 2.71- and 1.5-fold relative to the control, respectively), but in Moscatel a clear accumulation trend could not be found. The dry weight of grapes ranged (in %) between 16 and 23 (but did not vary significantly among treatments of each variety or in each treatment between varieties), and total soluble solids (e.g., mainly soluble sugars and proteins) and color parameters showed some significant variations. Through winemaking, the contents of Zn increased in both varieties (1.34- and 3.57-fold, in Castelão and Moscatel, respectively) and in all treatments, although non-significantly in Castelão. It is concluded that, to increase the contents of Zn in grapes without reaching the threshold of toxicity, ZnO or ZnSO4 can be used for foliar spraying of Castelão and Moscatel varieties until 900 g ha−1 and that winemaking augments the level of this nutrient.
Collapse
|