1
|
Boccardi V, Cari L, Bastiani P, Scamosci M, Cecchetti R, Nocentini G, Mecocci P. Aberrant telomeric structures and serum markers of telomere dysfunction in healthy aging: a preliminary study. Biogerontology 2024; 25:1069-1077. [PMID: 39001954 DOI: 10.1007/s10522-024-10120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Telomeres undergo a progressive shortening process as individuals age, and it has been proposed that severely shortened and dysfunctional telomeres play a role in the aging process and the onset of age-related diseases in human beings. An emerging body of evidence indicates that the shortening of telomeres in cultured human cells is also influenced by other replication defects occurring within telomeric repeats. These abnormalities can be detected on metaphase chromosomes. Recent studies have also identified a set of serological markers for telomere dysfunction and DNA damage (elongation factor 1α [EF-1α], stathmin, and N-acetyl-glucosaminidase). With this study, the correlation between telomere abnormalities (by FISH) and these biomarkers as measured in blood serum (by ELISA) from a cohort of 22 healthy subjects at different ages (range 26-101 years) was analyzed. A strong positive correlation between aging and the presence of aberrant telomere structures, sister telomere loss (STL), and sister telomere chromatid fusions (STCF) was detected. When serum markers of telomere dysfunction were correlated with telomere abnormalities, we found that stathmin correlated with total aberrant telomeres structures (r = 0.431, p = 0.0453) and STCF (r = 0.533, p = 0.0107). These findings suggest that serum stathmin can be considered an easy-to-get marker of telomere dysfunction and may serve as valuable indicators of aging.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy.
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Luigi Cari
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Patrizia Bastiani
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Michela Scamosci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Roberta Cecchetti
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024:S0092-8674(24)01019-5. [PMID: 39353436 DOI: 10.1016/j.cell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yadong Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Boulter M, Biggar KK. Biological Relevance of Dual Lysine and N-Terminal Methyltransferase METTL13. Biomolecules 2024; 14:1112. [PMID: 39334878 PMCID: PMC11430744 DOI: 10.3390/biom14091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The dual methyltransferase methyltransferase-like protein 13, also referred to as METTL13, or formerly known as FEAT (faintly expressed in healthy tissues, aberrantly overexpressed in tumors), has garnered attention as a significant enzyme in various cancer types, as evidenced by prior literature reviews. Recent studies have shed light on new potential roles for METTL13, hinting at its promise as a therapeutic target. This review aims to delve into the multifaceted biology of METTL13, elucidating its proposed mechanisms of action, regulatory pathways, and its implications in disease states, as supported by the current body of literature. Furthermore, the review will highlight emerging trends and gaps in our understanding of METTL13, paving the way for future research efforts. By contextualizing METTL13 within the broader landscape of cancer biology and therapeutics, this study serves as an introductory guide to METTL13, aiming to provide readers with a thorough understanding of its role in disease phenotypes.
Collapse
Affiliation(s)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1N 5B6, Canada;
| |
Collapse
|
4
|
Katow H, Ryoo HD. eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle. Dis Model Mech 2024; 17:dmm050729. [PMID: 39207054 PMCID: PMC11381931 DOI: 10.1242/dmm.050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.
Collapse
Affiliation(s)
- Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Wen Y, Ren C, Zhu L, Huang L, Qi H, Yu W, Wang K, Zhao M, Xu Q. Unmasking of molecular players: proteomic profiling of vitreous humor in pathologic myopia. BMC Ophthalmol 2024; 24:352. [PMID: 39160465 PMCID: PMC11334356 DOI: 10.1186/s12886-024-03584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND This study aimed to identify the differentially expressed proteins in the vitreous humor (VH) of eyes with and without pathologic myopia (PM), providing insights into the molecular pathogenesis. METHODS A cross-sectional, observational study was conducted. VH samples were collected from patients undergoing vitrectomy for idiopathic epiretinal membrane (ERM), macular hole (MH), or myopic retinoschisis (MRS). Label-free quantitative proteomic analysis identified differential protein expression, with validation using ELISA. RESULTS The proteomic profiling revealed significantly higher expressions of tubulin alpha 1a (TUBA1A) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) in PM groups (MH-PM, MRS-PM) compared to controls (MH, ERM). Conversely, xylosyltransferase 1 (XYLT1), versican core protein (VCAN), and testican-2 (SPOCK2) expressions were lower in PM. ELISA validation confirmed these findings. CONCLUSIONS Our study provides novel insights into the molecular mechanisms of PM. The differentially expressed proteins EEF1A1, TUBA1A, XYLT1, VCAN, and SPOCK2 may play crucial roles in chorioretinal cell apoptosis, scleral extracellular matrix (ECM) synthesis, and scleral remodeling in PM. These proteins represent potential new targets for therapeutic intervention in PM, highlighting the importance of further investigations to elucidate their functions and underlying mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Yue Wen
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Chi Ren
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Huijun Qi
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Wenzhen Yu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Kai Wang
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China.
- College of Optometry, Peking University People's Hospital, Beijing, China.
- Eye Disease and Optometry Institute, Beijing, China.
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China.
| | - Qiong Xu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China.
- College of Optometry, Peking University People's Hospital, Beijing, China.
- Eye Disease and Optometry Institute, Beijing, China.
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China.
| |
Collapse
|
6
|
Luan H, Song D, Huang K, Li S, Xu H, Kachroo P, Kachroo A, Zhao L. Genome-wide analysis of the soybean eEF gene family and its involvement in virus resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1421221. [PMID: 39224853 PMCID: PMC11366645 DOI: 10.3389/fpls.2024.1421221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Eukaryotic elongation factors (eEFs) are protein factors that mediate the extension of peptide chain, among which eukaryotic elongation factor 1 alpha (eEF1A) is one of the most abundant protein synthesis factors. Previously we showed that the P3 protein of Soybean mosaic virus (SMV), one of the most destructive and successful viral pathogens of soybean, targets a component of the soybean translation elongation complex to facilitate its pathogenesis. Here, we conducted a systematic analyses of the soybean eEF (GmeEF) gene family in soybean and examinedits role in virus resistance. In this study, GmeEF family members were identified and characterized based on sequence analysis. The 42 members, which were unevenly distributed across the 15 chromosomes, were renamed according to their chromosomal locations. The GmeEF members were further divided into 12 subgroups based on conserved motif, gene structure, and phylogenetic analyses. Analysis of the promoter regions showed conspicuous presence of myelocytomatosis (MYC) and ethylene-responsive (ERE) cis-acting elements, which are typically involved in drought and phytohormone response, respectively, and thereby in plant stress response signaling. Transcriptome data showed that the expression of 15 GmeEF gene family members changed significantly in response to SMV infection. To further examine EF1A function in pathogen response, three different Arabidopsis mutants carrying T-DNA insertions in orthologous genes were analyzed for their response to Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV). Results showed that there was no difference in viral response between the mutants and the wild type plants. This study provides a systematic analysis of the GmeEF gene family through analysis of expression patterns and predicted protein features. Our results lay a foundation for understanding the role of eEF gene in soybean anti-viral response.
Collapse
Affiliation(s)
- Hexiang Luan
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Daiqiao Song
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Kai Huang
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shuxin Li
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hao Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Zhang X, Yu C, Song L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens 2024; 13:623. [PMID: 39204224 PMCID: PMC11357678 DOI: 10.3390/pathogens13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Exosomes are membrane-bound structures released by cells into the external environment that carry a significant amount of important cargo, such as proteins, DNA, RNA, and lipids. They play a crucial role in intercellular communication. Parasites have complex life cycles and can release exosomes at different stages. Exosomes released by parasitic pathogens or infected cells contain parasitic nucleic acids, antigenic molecules, virulence factors, drug-resistant proteins, proteases, lipids, etc. These components can regulate host gene expression across species or modulate signaling pathways, thereby dampening or activating host immune responses, causing pathological damage, and participating in disease progression. This review focuses on the means by which parasitic exosomes modulate host immune responses, elaborates on the pathogenic mechanisms of parasites, clarifies the interactions between parasites and hosts, and provides a theoretical basis and research directions for the prevention and treatment of parasitic diseases.
Collapse
Affiliation(s)
| | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| |
Collapse
|
8
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
9
|
Zheng SM, Feng YC, Zhu Q, Li RQ, Yan QQ, Teng L, Yue YM, Han MM, Ye K, Zhang SN, Qi TF, Tang CX, Zhao XH, Zhang YY, Xu L, Xu R, Xing J, Baker M, Liu T, Thorne RF, Jin L, Preiss T, Zhang XD, Cang S, Gao JN. MILIP Binding to tRNAs Promotes Protein Synthesis to Drive Triple-Negative Breast Cancer. Cancer Res 2024; 84:1460-1474. [PMID: 38593213 PMCID: PMC11063688 DOI: 10.1158/0008-5472.can-23-3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.
Collapse
Affiliation(s)
- Si Min Zheng
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Yu Chen Feng
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Qin Zhu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Ruo Qi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Qian Qian Yan
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Liu Teng
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Man Man Han
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Sheng Nan Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Teng Fei Qi
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Cai Xia Tang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Jun Xing
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Mark Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, New South Wales, Australia
| | - Rick F. Thorne
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Shundong Cang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, P.R. China
| | - Jin Nan Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| |
Collapse
|
10
|
Zhou R, Tu Z, Chen D, Wang W, Liu S, She L, Li Z, Liu J, Li Y, Cui Y, Pan P, Xie F. Quantitative proteome and lysine succinylome characterization of zinc chloride smoke-induced lung injury in mice. Heliyon 2024; 10:e27450. [PMID: 38524532 PMCID: PMC10957386 DOI: 10.1016/j.heliyon.2024.e27450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
The inhalation of zinc chloride (ZnCl2) smoke is one of common resources of lung injury, potentially resulting in severe pulmonary complications and even mortality. The influence of ZnCl2 smoke on lysine succinylation (Ksucc) in the lungs remains uncertain. In this study, we used a ZnCl2 smoke inhalation mouse model to perform global proteomic and lysine succinylome analyses. A total of 6781 Ksucc sites were identified in the lungs, with injured lungs demonstrating a reduction to approximately 2000 Ksucc sites, and 91 proteins exhibiting at least five differences in the number of Ksucc sites. Quantitative analysis revealed variations in expression of 384 proteins and 749 Ksucc sites. The analysis of protein-protein interactions was conducted for proteins displaying differential expression and differentially expressed lysine succinylation. Notably, proteins with altered Ksucc exhibited increased connectivity compared with that in differentially expressed proteins. Beyond metabolic pathways, these highly connected proteins were also involved in lung injury-associated pathological reactions, including processes such as focal adhesion, adherens junction, and complement and coagulation cascades. Collectively, our findings contribute to the understanding of the molecular mechanisms underlaying ZnCl2 smoke-induced lung injury with a specific emphasis on lysine succinylation. These findings could pave the way for targeted interventions and therapeutic strategies to mitigate severe pulmonary complications and mortality associated with such injuries in humans.
Collapse
Affiliation(s)
- Rui Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Zhiwei Tu
- National Center for Protein Sciences (Beijing), Institute of Lifeomics, 102206, Beijing, China
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 515100, Shenzhen, Guangdong, China
| | - Wanmei Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Shuzi Liu
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Linjun She
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Zhan Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Jihong Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Yu Cui
- National Center for Protein Sciences (Beijing), Institute of Lifeomics, 102206, Beijing, China
- State Key Laboratory of Proteomics, 102206, Beijing, China
| | - Pan Pan
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| |
Collapse
|
11
|
Alfaro-Sifuentes R, Lares-Jiménez LF, Rojas-Hernández S, Carrasco-Yépez MM, Rojas-Ortega DA, Rodriguez-Anaya LZ, Gonzalez-Galaviz JR, Lares-Villa F. Immunogens in Balamuthia mandrillaris: a proteomic exploration. Parasitol Res 2024; 123:173. [PMID: 38536506 DOI: 10.1007/s00436-024-08193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rosalía Alfaro-Sifuentes
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México
| | - Saul Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, México
| | | | - Diego Alexander Rojas-Ortega
- Centro de Investigación en Ciencias de La Salud (CICSA), FCS, Universidad Anáhuac México, 52786, Huixquilucan, Estado de México, México
| | | | | | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| |
Collapse
|
12
|
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, Pan B, Zhang B, Zhang H, Luo A, Xu Y, Li M, Pu Y. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci U S A 2024; 121:e2314128121. [PMID: 38359291 PMCID: PMC10895275 DOI: 10.1073/pnas.2314128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Mengdi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Pengju Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Yuxi Wu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Weiwei Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang110122, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yinzhe Xu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Yang Pu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| |
Collapse
|
13
|
Ma N, Zhou T, Li C, Luo X, Chen S, Zhu XY, Chen XH, Liu H, Tian HY, Gao QJ, Zhao DW. A pan-cancer analysis of the prognosis and immune infiltration of eEF1A2 and its potential function in thyroid carcinoma. Heliyon 2024; 10:e24455. [PMID: 38314298 PMCID: PMC10837510 DOI: 10.1016/j.heliyon.2024.e24455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose Eukaryotic translation elongation factor 1α2 (eEF1A2) promotes tumour progression in various cancers. We performed a pan-cancer analysis of eEF1A2 and explored its role in thyroid carcinoma (THCA). Methods Databases from The Cancer Genome Atlas (TCGA), the University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), and the Human Protein Atlas (HPA) were used to investigate the differential expression of eEF1A2 in pan-cancer. The pathological stage, prognostic characteristics, tumour microenvironment (TME), tumour mutational burden (TMB), and microsatellite instability (MSI) were analysed in diverse tumours with different expression levels of eEF1A2. The expression levels in papillary thyroid carcinoma (PTC) and its specific role in cell proliferation, migration, invasion, and cell glycolysis in PTC cells were verified by quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry, cell counting kit-8, colony formation, wound healing, Transwell assay, and lactate acid and glucose assays.Results:eEF1A2 was differentially expressed in various malignant tumour tissues compared to control tissues and was associated with poor pathological stage and prognosis in most types of tumours. Moreover, eEF1A2 expression closely correlated with the infiltration of immunosuppressive cells, TMB, and MSI in some tumour types. Expression of eEF1A2 in PTC is higher than the para-carcinoma, and eEF1A2 downregulation suppressed TPC-1 and BCPAP cell proliferation, migration, invasion, and glycolysis. Conclusion Our study suggests that the expression of eEF1A2 is related to the prognosis and immune infiltration of some tumours and may be a predictor of prognosis and immunotherapy. eEF1A2 could promote malignant behaviour of PTC cells.
Collapse
Affiliation(s)
- Ning Ma
- GuiZhou Medical University, Guiyang, Guizhou, China
- Department of Vascular and Thyroid Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunyu Li
- GuiZhou Medical University, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xue Luo
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Song Chen
- GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xue-Yin Zhu
- GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xing-Hong Chen
- Department of Thyroid and Breast Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Haoxi Liu
- Department of Breast and Thyroid Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Hai-Ying Tian
- Department of Ultrasound Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Qing-Jun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dai-Wei Zhao
- GuiZhou Medical University, Guiyang, Guizhou, China
- Department of Thyroid and Breast Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Breast and Thyroid Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Bai Z, Zhang D, Gao Y, Tao B, Bao S, Enninful A, Zhang D, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579143. [PMID: 38370833 PMCID: PMC10871202 DOI: 10.1101/2024.02.06.579143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Patel SA, Hassan MK, Naik M, Mohapatra N, Balan P, Korrapati PS, Dixit M. EEF1A2 promotes HIF1A mediated breast cancer angiogenesis in normoxia and participates in a positive feedback loop with HIF1A in hypoxia. Br J Cancer 2024; 130:184-200. [PMID: 38012382 PMCID: PMC10803557 DOI: 10.1038/s41416-023-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis. METHODS Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2's role in angiogenesis. RESULT Higher EEF1A2 levels in breast cancer cells enhanced cell growth, movement, blood vessel function, and tubule formation in HUVECs, as confirmed by ex-ovo and in-vivo tests. The overexpression of EEF1A2 could be counteracted by Plitidepsin. Under normoxic conditions, EEF1A2 triggered HIF1A expression via ERK-Myc and mTOR signaling in TNBC and ER/PR positive cells. Hypoxia induced the expression of EEF1A2, leading to a positive feedback loop between EEF1A2 and HIF1A. Luciferase assay and EMSA confirmed HIF1A binding on the EEF1A2 promoter, which induced its transcription. RT-PCR and polysome profiling validated that EEF1A2 affected VEGF transcription and translation positively. This led to increased VEGF release from breast cancer cells, activating ERK and PI3K-AKT signaling in endothelial cells. Breast cancer tissues with elevated EEF1A2 showed higher microvessel density. CONCLUSION EEF1A2 exhibits angiogenic potential in both normoxic and hypoxic conditions, underscoring its dual role in promoting EMT and angiogenesis, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Saket Awadhesbhai Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Md Khurshidul Hassan
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Monali Naik
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nachiketa Mohapatra
- Apollo Hospitals, Plot No. 251,Old Sainik School Road, Bhubaneswar, 750015, Odisha, India
| | - Poornima Balan
- CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
| | - Purna Sai Korrapati
- CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Yang X, Li X, Bao Q, Wang Z, He S, Qu X, Tang Y, Song B, Huang J, Yi G. Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses. Genes (Basel) 2024; 15:166. [PMID: 38397156 PMCID: PMC10888464 DOI: 10.3390/genes15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In the Suidae family, warthogs show significant survival adaptability and trait specificity. This study offers a comparative genomic analysis between the warthog and other Suidae species, including the Luchuan pig, Duroc pig, and Red River hog. By integrating the four genomes with sequences from the other four species, we identified 8868 single-copy orthologous genes. Based on 8868 orthologous protein sequences, phylogenetic assessments highlighted divergence timelines and unique evolutionary branches within suid species. Warthogs exist on different evolutionary branches compared to DRCs and LCs, with a divergence time preceding that of DRC and LC. Contraction and expansion analyses of warthog gene families have been conducted to elucidate the mechanisms of their evolutionary adaptations. Using GO, KEGG, and MGI databases, warthogs showed a preference for expansion in sensory genes and contraction in metabolic genes, underscoring phenotypic diversity and adaptive evolution direction. Associating genes with the QTLdb-pigSS11 database revealed links between gene families and immunity traits. The overlap of olfactory genes in immune-related QTL regions highlighted their importance in evolutionary adaptations. This work highlights the unique evolutionary strategies and adaptive mechanisms of warthogs, guiding future research into the distinct adaptability and disease resistance in pigs, particularly focusing on traits such as resistance to African Swine Fever Virus.
Collapse
Affiliation(s)
- Xintong Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Qi Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Sang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Xiaolu Qu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Yueting Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bangmin Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama 547500, China
| |
Collapse
|
17
|
Patel SA, Hassan MK, Dixit M. Oncogenic activation of EEF1A2 expression: a journey from a putative to an established oncogene. Cell Mol Biol Lett 2024; 29:6. [PMID: 38172654 PMCID: PMC10765684 DOI: 10.1186/s11658-023-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Protein synthesis via translation is a central process involving several essential proteins called translation factors. Although traditionally described as cellular "housekeepers," multiple studies have now supported that protein initiation and elongation factors regulate cell growth, apoptosis, and tumorigenesis. One such translation factor is eukaryotic elongation factor 1 alpha 2 (EEF1A2), a member of the eukaryotic elongation factor family, which has a canonical role in the delivery of aminoacyl-tRNA to the A-site of the ribosome in a guanosine 5'-triphosphate (GTP)-dependent manner. EEF1A2 differs from its closely related isoform, EEF1A1, in tissue distribution. While EEF1A1 is present ubiquitously, EEF1A2 replaces it in specialized tissues. The reason why certain specialized tissues need to essentially switch EEF1A1 expression altogether with EEF1A2 remains to be answered. Abnormal "switch on" of the EEF1A2 gene in normal tissues is witnessed and is seen as a cause of oncogenic transformation in a wide variety of solid tumors. This review presents the journey of finding increased expression of EEF1A2 in multiple cancers, establishing molecular mechanism, and exploring it as a target for cancer therapy. More precisely, we have compiled studies in seven types of cancers that have reported EEF1A2 overexpression. We have discussed the effect of aberrant EEF1A2 expression on the oncogenic properties of cells, signaling pathways, and interacting partners of EEF1A2. More importantly, in the last part, we have discussed the unique potential of EEF1A2 as a therapeutic target. This review article gives an up-to-date account of EEF1A2 as an oncogene and can draw the attention of the scientific community, attracting more research.
Collapse
Affiliation(s)
- Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
18
|
Dong HQ, Hu XY, Liang SJ, Wang RS, Cheng P. Selection of reference genes in liproxstatin-1-treated K562 Leukemia cells via RT-qPCR and RNA sequencing. Mol Biol Rep 2024; 51:55. [PMID: 38165476 DOI: 10.1007/s11033-023-08912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Reverse transcription quantitative polymerase chain reaction (RT-qPCR) can accurately detect relative gene expression levels in biological samples. However, widely used reference genes exhibit unstable expression under certain conditions. METHODS AND RESULTS Here, we compared the expression stability of eight reference genes (RPLP0, RPS18, RPL13, EEF1A1, β-actin, GAPDH, HPRT1, and TUBB) commonly used in liproxstatin-1 (Lip-1)-treated K562 cells using RNA-sequencing and RT-qPCR. The expression of EEF1A1, ACTB, GAPDH, HPRT1, and TUBB was considerably lower in cells treated with 20 μM Lip-1 than in the control, and GAPDH also showed significant downregulation in the 10 μM Lip-1 group. Meanwhile, when we used geNorm, NormFinder, and BestKeeper to compare expression stability, we found that GAPDH and HPRT1 were the most unstable reference genes among all those tested. Stability analysis yielded very similar results when geNorm or BestKeeper was used but not when NormFinder was used. Specifically, geNorm and BestKeeper identified RPL13 and RPLP0 as the most stable genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable under 10 μM Lip-1 treatment. TUBB and EEF1A1 were the most stable genes in both treatment groups according to the results obtained using NormFinder. An assumed most stable gene was incorporated into each software to validate the accuracy. The results suggest that NormFinder is not an appropriate algorithm for this study. CONCLUSIONS Stable reference genes were recognized using geNorm and BestKeeper but not NormFinder. Overall, RPL13 and RPLP0 were the most stable reference genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable genes under 10 μM Lip-1 treatment.
Collapse
Affiliation(s)
- Hai-Qun Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xue-Ying Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shi-Jing Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
19
|
Gan H, Zhou X, Lei Q, Wu L, Niu J, Zheng Q. RNA-dependent RNA polymerase of SARS-CoV-2 regulate host mRNA translation efficiency by hijacking eEF1A factors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166871. [PMID: 37673357 DOI: 10.1016/j.bbadis.2023.166871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
The RNA-dependent RNA polymerase (NSP12) of COVID-19 plays a significant role in the viral infection process, which promotes viral RNA replication by cooperating with NSP7 and NSP8, but little is known about its regulation on the function of host cells. We firstly found that overexpression of NSP12 had little effect on host mRNAs transcription. Using iCLIP technology, we found that NSP12 can bind a series of host RNAs with the conserved binding motif G(C/A/G)(U/G/A)UAG, especially ribosomal RNA. We found that NSP12 could directly bind to eEF1A factor via the NIRAN domain of NSP12 and N-terminal domain of eEF1A. NSP12 colocalized with eEF1A to inhibit type I interferon expression upon virus infection. In order to prove that NSP12 regulates the translation level of host cells, we found that NSP12 significantly affected the translation efficiency of many host mRNAs (such as ISG15, NF-κB2, ILK and SERPINI2) via ribosome profiling experiment, and the genes with significant upregulation in translation efficiency were mainly enriched in positive regulation of ubiquitin-dependent proteasomal process and NIK/NF-κB signaling pathway (such as NF-κB2, ILK), and negative regulation of type I interferon production, protein level of these genes were further confirmed in HEK293T and Calu3 cells upon NSP12 overexpression. These results indicate that NSP12 of SARS-CoV-2 can hijack the eEF1A factor to regulate translation efficiency of host mRNAs, which provides a new idea for us to evaluate the impact of SARS-CoV2 virus on the host and study the potential drug targets.
Collapse
Affiliation(s)
- Haili Gan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Xiaoguang Zhou
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Qiong Lei
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Linlin Wu
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Jianmin Niu
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China.
| |
Collapse
|
20
|
Chen J, Ning D, Du P, Liu Q, Mo J, Liang H, Zhang W, Zhang M, Jiang L, Zhang B, Chen X. USP11 potentiates HGF/AKT signaling and drives metastasis in hepatocellular carcinoma. Oncogene 2024; 43:123-135. [PMID: 37973952 DOI: 10.1038/s41388-023-02847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Deng Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Pengcheng Du
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Mingzhi Zhang
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
21
|
Frkatović-Hodžić A, Mijakovac A, Miškec K, Nostaeva A, Sharapov SZ, Landini A, Haller T, van den Akker E, Sharma S, Cuadrat RRC, Mangino M, Li Y, Keser T, Rudman N, Štambuk T, Pučić-Baković M, Trbojević-Akmačić I, Gudelj I, Štambuk J, Pribić T, Radovani B, Tominac P, Fischer K, Beekman M, Wuhrer M, Gieger C, Schulze MB, Wittenbecher C, Polasek O, Hayward C, Wilson JF, Spector TD, Köttgen A, Vučković F, Aulchenko YS, Vojta A, Krištić J, Klarić L, Zoldoš V, Lauc G. Mapping of the gene network that regulates glycan clock of ageing. Aging (Albany NY) 2023; 15:14509-14552. [PMID: 38149987 PMCID: PMC10781487 DOI: 10.18632/aging.205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 12/28/2023]
Abstract
Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.
Collapse
Affiliation(s)
| | - Anika Mijakovac
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karlo Miškec
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Arina Nostaeva
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Sodbo Z. Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik van den Akker
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Sapna Sharma
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rafael R. C. Cuadrat
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Tea Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Barbara Radovani
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Petra Tominac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Krista Fischer
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Marian Beekman
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B. Schulze
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- SciLifeLab, Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Yurii S. Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Meng XY, Jiang QQ, Yu XD, Zhang QY, Ke F. Eukaryotic translation elongation factor 1 alpha (eEF1A) inhibits Siniperca chuatsi rhabdovirus (SCRV) infection through two distinct mechanisms. J Virol 2023; 97:e0122623. [PMID: 37861337 PMCID: PMC10688370 DOI: 10.1128/jvi.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.
Collapse
Affiliation(s)
- Xian-Yu Meng
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Qi Jiang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Dong Yu
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Leblanc R, Ghossoub R, Goubard A, Castellano R, Fares J, Camoin L, Audebert S, Balzano M, Bou‐Tayeh B, Fauriat C, Vey N, Garciaz S, Borg J, Collette Y, Aurrand‐Lions M, David G, Zimmermann P. Downregulation of stromal syntenin sustains AML development. EMBO Mol Med 2023; 15:e17570. [PMID: 37819151 PMCID: PMC10630886 DOI: 10.15252/emmm.202317570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.
Collapse
Affiliation(s)
- Raphael Leblanc
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Rania Ghossoub
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Armelle Goubard
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Rémy Castellano
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Joanna Fares
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Luc Camoin
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Stephane Audebert
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Marielle Balzano
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Berna Bou‐Tayeh
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Norbert Vey
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Sylvain Garciaz
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Jean‐Paul Borg
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Yves Collette
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Michel Aurrand‐Lions
- Team Leuko/Stromal Interactions in Normal and Pathological Hematopoiesis, Centre de Recherche en Cancérologie de Marseille, Aix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Guido David
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
- Department of Human GeneticsK U LeuvenLeuvenBelgium
| | - Pascale Zimmermann
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
- Department of Human GeneticsK U LeuvenLeuvenBelgium
| |
Collapse
|
24
|
Carrion SA, Michal JJ, Jiang Z. Alternative Transcripts Diversify Genome Function for Phenome Relevance to Health and Diseases. Genes (Basel) 2023; 14:2051. [PMID: 38002994 PMCID: PMC10671453 DOI: 10.3390/genes14112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Manipulation using alternative exon splicing (AES), alternative transcription start (ATS), and alternative polyadenylation (APA) sites are key to transcript diversity underlying health and disease. All three are pervasive in organisms, present in at least 50% of human protein-coding genes. In fact, ATS and APA site use has the highest impact on protein identity, with their ability to alter which first and last exons are utilized as well as impacting stability and translation efficiency. These RNA variants have been shown to be highly specific, both in tissue type and stage, with demonstrated importance to cell proliferation, differentiation and the transition from fetal to adult cells. While alternative exon splicing has a limited effect on protein identity, its ubiquity highlights the importance of these minor alterations, which can alter other features such as localization. The three processes are also highly interwoven, with overlapping, complementary, and competing factors, RNA polymerase II and its CTD (C-terminal domain) chief among them. Their role in development means dysregulation leads to a wide variety of disorders and cancers, with some forms of disease disproportionately affected by specific mechanisms (AES, ATS, or APA). Challenges associated with the genome-wide profiling of RNA variants and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA; (S.A.C.); (J.J.M.)
| |
Collapse
|
25
|
Camacho MF, Stuginski DR, Andrade-Silva D, Nishiyama-Jr MY, Valente RH, Zelanis A. A snapshot of Bothrops jararaca snake venom gland subcellular proteome. Biochimie 2023; 214:1-10. [PMID: 37315762 DOI: 10.1016/j.biochi.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.
Collapse
Affiliation(s)
- Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil
| | - Daniel R Stuginski
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Débora Andrade-Silva
- Telomeres Laboratory, Chemical and Biological Sciences Department, IBB-UNESP, Botucatu, São Paulo, Brazil
| | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
26
|
Zhu L, Li Y, Qiu L, Chen X, Guo B, Li H, Qi P. Screening of genes encoding proteins that interact with Nrf2: Probing a cDNA library from Mytilus coruscus using a yeast two-hybrid system. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109112. [PMID: 37751644 DOI: 10.1016/j.fsi.2023.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The Nuclear factor Erythroid 2-related factor 2 (Nrf2) is the most important endogenous antioxidant factor in organisms, and it has been demonstrated that it exerts extensive control over the immune response by interacting with crucial innate immunity components directly or indirectly. Although Nrf2 has been widely confirmed to be involved in stress resistance in mammals and some fish, its contribution to mollusks oxidative stress resistance has not frequently been documented. In this investigation, total RNA was taken from the digestive gland of M. coruscus, and a cDNA library was constructed and screened using the GATEWAY recombination technology. The Nrf2 cDNA sequence of M. coruscus was cloned into the pGBKT7 vector to prepare the bait plasmid. Using yeast two-hybrid system, after auxotrophic medium screening, sequencing, and bioinformatics analysis, 13 binding proteins that interacted with Nrf2 were finally identified. They were QM-like protein, 40S ribosomal protein S4 (RPS4), ribosomal protein S2 (RPS2), ribosomal protein L12 (RPL12), EF1-alpha mRNA for elongation factor 1 alpha (eEF1-alpha), ferritin, alpha-amylase, trypsin, vdg3, period clock protein, cyclophilin A isoform 1 (CYP A), serine protease CFSP2, histone variant H2A.Z (H2A.Z). For a better understanding the physiological function of Nrf2 in animals and as a potential target for future research on protein roles in Nrf2 interactions, it is crucial to clarify these protein interactions.
Collapse
Affiliation(s)
- Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yaru Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China.
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China.
| |
Collapse
|
27
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Xu S, Chuang CY, Hawkins CL, Hägglund P, Davies MJ. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite. Redox Biol 2023; 64:102799. [PMID: 37413764 PMCID: PMC10363479 DOI: 10.1016/j.redox.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) is a powerful oxidizing/nitrating system formed at sites of inflammation, which can modify biological targets, and particularly proteins. Here, we show that multiple proteins from primary human coronary artery smooth muscle cells are nitrated, with LC-MS peptide mass mapping providing data on the sites and extents of changes on cellular and extracellular matrix (ECM) proteins. Evidence is presented for selective and specific nitrations at Tyr and Trp on 11 cellular proteins (out of 3668, including 205 ECM species) in the absence of added reagent ONOOH/ONOO-, with this being consistent with low-level endogenous nitration. A number of these have key roles in cell signaling/sensing and protein turnover. With added ONOOH/ONOO-, more proteins were modified (84 total; with 129 nitrated Tyr and 23 nitrated Trp, with multiple modifications on some proteins), with this occurring at the same and additional sites to endogenous modification. With low concentrations of ONOOH/ONOO- (50 μM) nitration occurs on specific proteins at particular sites, and is not driven by protein or Tyr/Trp abundance, with modifications detected on some low abundance proteins. However, with higher ONOOH/ONOO- concentrations (500 μM), modification is primarily driven by protein abundance. ECM species are major targets and over-represented in the pool of modified proteins, with fibronectin and thrombospondin-1 being particularly heavily modified (12 sites in each case). Both endogenous and exogenous nitration of cell- and ECM-derived species may have significant effects on cell and protein function, and potentially be involved in the development and exacerbation of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
29
|
Wu W, Xu J, Gao D, Xie Z, Chen W, Li W, Yuan Q, Duan L, Zhang Y, Yang X, Chen Y, Dong Z, Liu K, Jiang Y. TOPK promotes the growth of esophageal cancer in vitro and in vivo by enhancing YB1/eEF1A1 signal pathway. Cell Death Dis 2023; 14:364. [PMID: 37328464 PMCID: PMC10276051 DOI: 10.1038/s41419-023-05883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/30/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.
Collapse
Affiliation(s)
- Wenjie Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jialuo Xu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan Gao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenliang Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Li
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Qiang Yuan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Lina Duan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yuhan Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xiaoxiao Yang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yingying Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziming Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, 450000, China.
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
30
|
Dechtman ID, Ankory R, Sokolinsky K, Krasner E, Weiss L, Gal Y. Clinically Evaluated COVID-19 Drugs with Therapeutic Potential for Biological Warfare Agents. Microorganisms 2023; 11:1577. [PMID: 37375079 PMCID: PMC10304720 DOI: 10.3390/microorganisms11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak resulted in hundreds of millions of coronavirus cases, as well as millions of deaths worldwide. Coronavirus Disease 2019 (COVID-19), the disease resulting from exposure to this pathogen, is characterized, among other features, by a pulmonary pathology, which can progress to "cytokine storm", acute respiratory distress syndrome (ARDS), respiratory failure and death. Vaccines are the unsurpassed strategy for prevention and protection against the SARS-CoV-2 infection. However, there is still an extremely high number of severely ill people from at-risk populations. This may be attributed to waning immune response, variant-induced breakthrough infections, unvaccinated population, etc. It is therefore of high importance to utilize pharmacological-based treatments, despite the progression of the global vaccination campaign. Until the approval of Paxlovid, an efficient and highly selective anti-SARS-CoV-2 drug, and the broad-spectrum antiviral agent Lagevrio, many pharmacological-based countermeasures were, and still are, being evaluated in clinical trials. Some of these are host-directed therapies (HDTs), which modulate the endogenic response against the virus, and therefore may confer efficient protection against a wide array of pathogens. These could potentially include Biological Warfare Agents (BWAs), exposure to which may lead to mass casualties due to disease severity and a possible lack of efficient treatment. In this review, we assessed the recent literature on drugs under advanced clinical evaluation for COVID-19 with broad spectrum activity, including antiviral agents and HDTs, which may be relevant for future coping with BWAs, as well as with other agents, in particular respiratory infections.
Collapse
Affiliation(s)
- Ido-David Dechtman
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ran Ankory
- The Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Military Post 02149, Israel;
| | - Keren Sokolinsky
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
31
|
Mealey-Farr R, Jeong J, Park J, Liu S, Hausmann S, Francis JW, Angulo Ibanez M, Cho J, Chua K, Mazur PK, Gozani O. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J Biol Chem 2023; 299:104747. [PMID: 37094697 PMCID: PMC10220242 DOI: 10.1016/j.jbc.2023.104747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.
Collapse
Affiliation(s)
| | - Jinho Jeong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Juhyung Park
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joel W Francis
- Department of Biology, Stanford University, Stanford, California, USA
| | - Maria Angulo Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Joonseok Cho
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Katrin Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
32
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
33
|
Shao E, Zhao S, Dong Y, Wang Y, Fei Y, Li S, Wang L, Bashir T, Luan T, Lin L, Wang Y, Zhao W, Zhong Z. Anisomycin inhibits Coxsackievirus B replication by promoting the lysosomal degradation of eEF1A1. Antiviral Res 2023; 215:105621. [PMID: 37156267 DOI: 10.1016/j.antiviral.2023.105621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Group B Coxsackieviruses (CVB) are non-enveloped small RNA viruses in the genus Enterovirus, family Picornaviridae. CVB infection causes diverse conditions from common cold to myocarditis, encephalitis, and pancreatitis. No specific antiviral is available for the treatment of CVB infection. Anisomycin, a pyrrolidine-containing antibiotic and translation inhibitor, was reported to inhibit the replication of some picornaviruses. However, it is unknown if anisomycin can act as an antiviral against CVB infection. Here we observed that anisomycin showed potent inhibition on CVB type 3 (CVB3) infection with negligible cytotoxicity when applied at the early stage of virus infection. Mice infected with CVB3 showed markedly alleviated myocarditis with reduced viral replication. We found that CVB3 infection significantly increased the transcription of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1). CVB3 replication was suppressed by EEF1A1 knockdown, while elevated by EEF1A1 overexpression. Similar to the effect of CVB3 infection, EEF1A1 transcription was increased in response to anisomycin treatment. However, eEF1A1 protein level was decreased with anisomycin treatment in a dose-dependent manner in CVB3-infected cells. Moreover, anisomycin promoted eEF1A1 degradation, which was inhibited by the treatment of chloroquine but not MG132. We demonstrated that eEF1A1 interacted with the heat shock cognate protein 70 (HSP70), and eEF1A1 degradation was inhibited by LAMP2A knockdown, implicating that eEF1A1 is degraded through chaperone-mediated autophagy. Taken together, we demonstrated that anisomycin, which inhibits CVB replication through promoting the lysosomal degradation of eEF1A1, could be a potential antiviral candidate for the treatment of CVB infection.
Collapse
Affiliation(s)
- Enze Shao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yanru Fei
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Tahira Bashir
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China.
| | - Zhaohuan Zhong
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
34
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
36
|
Wu Q, Hu Q, Hai Y, Li Y, Gao Y. METTL13 facilitates cell growth and metastasis in gastric cancer via an eEF1A/HN1L positive feedback circuit. J Cell Commun Signal 2023; 17:121-135. [PMID: 35925508 PMCID: PMC10030728 DOI: 10.1007/s12079-022-00687-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/03/2022] [Indexed: 10/16/2022] Open
Abstract
Although improved treatment could inhibit progression of gastric cancer (GC), the recurrence and metastasis remain challenging issues. Methyltransferase like 13 (METTL13) has been implicated in most human cancers, but its function and mechanism in GC remain elusive. In the present study, we evaluated its expression in GC samples and found it was aberrantly overexpressed in cancer tissues than that in normal stomach tissues. High expression of METTL13 was closely associated with age, tumor size and T classification. Biological experiments showed that silencing METTL13 suppressed gastric cancer cell proliferation and metastasis in vivo and vitro, whereas opposite effects were observed upon METTL13 overexpression. Further mechanistic explorations revealed that METTL13 regulated the expression of HN1L (Hematological and neurological expressed 1-like), which is reported to be an oncogene in various cancers. Knockdown of HN1L dampened gastric cancer cell growth induced by METTL13. Eukaryotic translation elongation factor-1A (eEF1A), the present sole methylation substrate of METTL13, was involved in the regulation of HN1L by METTL13 in a K55 methylation independent manner. In addition, we also found HN1L could facilitate METTL13 expression in GC cells consistent with a previous report in hepatocellular carcinoma. Thus, these findings demonstrate a METTL13/eEF1A/HN1L positive feedback circuit promoting gastric cancer development and metastasis. It will help develop promising diagnostic and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
| |
Collapse
|
37
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
38
|
Sfakianos AP, Raven RM, Willis AE. The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochem Soc Trans 2022; 50:1885-1895. [PMID: 36511302 PMCID: PMC9788402 DOI: 10.1042/bst20221035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 11/19/2023]
Abstract
Protein synthesis is dysregulated in the majority of cancers and this process therefore provides a good therapeutic target. Many novel anti-cancer agents are directed to target the initiation stage of translation, however, translation elongation also holds great potential as a therapeutic target. The elongation factor eIF5A that assists the formation of peptidyl bonds during the elongation process is of considerable interest in this regard. Overexpression of eIF5A has been linked with the development of a variety of cancers and inhibitors of the molecule have been proposed for anti-cancer clinical applications. eIF5A is the only protein in the cell that contains the post-translational modification hypusine. Hypusination is a two-step enzymatic process catalysed by the Deoxyhypusine Synthase (DHPS) and Deoxyhypusine Hydroxylase (DOHH). In addition, eIF5A can be acetylated by p300/CBP-associated factor (PCAF) which leads to translocation of the protein to the nucleus and its deactivation. In addition to the nucleus, eIF5A has been found in the mitochondria and the endoplasmic reticulum (ER) with eIF5A localisation related to function from regulation of mitochondrial activity and apoptosis to maintenance of ER integrity and control of the unfolded protein response (UPR). Given the pleiotropic functions of eIF5A and by extension the hypusination enzymes, this system is being considered as a target for a range of cancers including multiple myeloma, B-Cell lymphoma, and neuroblastoma. In this review, we explore the role of eIF5A and discuss the therapeutic strategies that are currently developing both in the pre- and the clinical stage.
Collapse
Affiliation(s)
| | - Rebecca Mallory Raven
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | - Anne Elizabeth Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| |
Collapse
|
39
|
Wang HY, Yang H, Holm M, Tom H, Oltion K, Al-Khdhairawi AAQ, Weber JFF, Blanchard SC, Ruggero D, Taunton J. Synthesis and single-molecule imaging reveal stereospecific enhancement of binding kinetics by the antitumour eEF1A antagonist SR-A3. Nat Chem 2022; 14:1443-1450. [PMID: 36123449 PMCID: PMC10018702 DOI: 10.1038/s41557-022-01039-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 08/08/2022] [Indexed: 01/04/2023]
Abstract
Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique β-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.
Collapse
Affiliation(s)
- Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Haojun Yang
- Department of Urology, University of California, San Francisco, CA, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Harrison Tom
- Department of Urology, University of California, San Francisco, CA, USA
| | - Keely Oltion
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | | | - Jean-Frédéric F Weber
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (UiTM) Selangor Branch, Bandar Puncak Alam, Malaysia
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Jayathirtha M, Whitham D, Alwine S, Donnelly M, Neagu AN, Darie CC. Investigating the Function of Human Jumping Translocation Breakpoint Protein (hJTB) and Its Interacting Partners through In-Solution Proteomics of MCF7 Cells. Molecules 2022; 27:8301. [PMID: 36500393 PMCID: PMC9740069 DOI: 10.3390/molecules27238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Mary Donnelly
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “AlexandruIoanCuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
41
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
42
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
43
|
Juette MF, Carelli JD, Rundlet EJ, Brown A, Shao S, Ferguson A, Wasserman MR, Holm M, Taunton J, Blanchard SC. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022; 11:e81608. [PMID: 36264623 PMCID: PMC9584604 DOI: 10.7554/elife.81608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.
Collapse
Affiliation(s)
- Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Emily J Rundlet
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell MedicineNew YorkUnited States
| | - Alan Brown
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Sichen Shao
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Michael R Wasserman
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Jack Taunton
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| |
Collapse
|
44
|
Cohen E, Johnson C, Redmond CJ, Nair RR, Coulombe PA. Revisiting the significance of keratin expression in complex epithelia. J Cell Sci 2022; 135:jcs260594. [PMID: 36285538 PMCID: PMC10658788 DOI: 10.1242/jcs.260594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 03/17/2023] Open
Abstract
A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine J. Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raji R. Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
46
|
Li H, Huang F, Liao H, Li Z, Feng K, Huang T, Cai YD. Identification of COVID-19-Specific Immune Markers Using a Machine Learning Method. Front Mol Biosci 2022; 9:952626. [PMID: 35928229 PMCID: PMC9344575 DOI: 10.3389/fmolb.2022.952626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
Notably, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a tight relationship with the immune system. Human resistance to COVID-19 infection comprises two stages. The first stage is immune defense, while the second stage is extensive inflammation. This process is further divided into innate and adaptive immunity during the immune defense phase. These two stages involve various immune cells, including CD4+ T cells, CD8+ T cells, monocytes, dendritic cells, B cells, and natural killer cells. Various immune cells are involved and make up the complex and unique immune system response to COVID-19, providing characteristics that set it apart from other respiratory infectious diseases. In the present study, we identified cell markers for differentiating COVID-19 from common inflammatory responses, non-COVID-19 severe respiratory diseases, and healthy populations based on single-cell profiling of the gene expression of six immune cell types by using Boruta and mRMR feature selection methods. Some features such as IFI44L in B cells, S100A8 in monocytes, and NCR2 in natural killer cells are involved in the innate immune response of COVID-19. Other features such as ZFP36L2 in CD4+ T cells can regulate the inflammatory process of COVID-19. Subsequently, the IFS method was used to determine the best feature subsets and classifiers in the six immune cell types for two classification algorithms. Furthermore, we established the quantitative rules used to distinguish the disease status. The results of this study can provide theoretical support for a more in-depth investigation of COVID-19 pathogenesis and intervention strategies.
Collapse
Affiliation(s)
- Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Huiping Liao
- Ophthalmology and Optometry Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
47
|
Cardoso TF, Bruscadin JJ, Afonso J, Petrini J, Andrade BGN, de Oliveira PSN, Malheiros JM, Rocha MIP, Zerlotini A, Ferraz JBS, Mourão GB, Coutinho LL, Regitano LCA. EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle. Mamm Genome 2022; 33:619-628. [PMID: 35816191 DOI: 10.1007/s00335-022-09959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.
Collapse
Affiliation(s)
- T F Cardoso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J J Bruscadin
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J Afonso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J Petrini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - B G N Andrade
- Computer Science Department, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - P S N de Oliveira
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J M Malheiros
- Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - M I P Rocha
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A Zerlotini
- Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - J B S Ferraz
- Department of Veterinary Medicine, University of São Paulo/FZEA, Pirassununga, Brazil
| | - G B Mourão
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - L L Coutinho
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | | |
Collapse
|
48
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
49
|
Sobočan M, Brunialti D, Sprung S, Schatz C, Knez J, Kavalar R, Takač I, Haybaeck J. Initiation and elongation factor co-expression correlates with recurrence and survival in epithelial ovarian cancer. J Ovarian Res 2022; 15:73. [PMID: 35718769 PMCID: PMC9208098 DOI: 10.1186/s13048-022-00998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
High grade epithelial ovarian cancer (EOC) represents a diagnostic and therapeutic challenge due to its aggressive features and short recurrence free survival (RFS) after primary treatment. Novel targets to inform our understanding of the EOC carcinogenesis in the translational machinery can provide us with independent prognostic markers and provide drugable targets. We have identified candidate eukaryotic initiation factors (eIF) and eukaryotic elongation factors (eEF) in the translational machinery for differential expression in EOC through in-silico analysis. We present the analysis of 150 ovarian tissue microarray (TMA) samples on the expression of the translational markers eIF2α, eIF2G, eIF5 (eIF5A and eIF5B), eIF6 and eEF1A1. All translational markers were differentially expressed among non-neoplastic ovarian samples and tumour samples (borderline tumours and EOC). In EOC, expression of eIF5A was found to be significantly correlated with recurrence free survival (RFS) and expression of eIF2G and eEF1A1 with overall survival (OS). Expression correlation among factor subunits showed that the correlation of eEF1A1, eIF2G, EIF2α and eIF5A were significantly interconnected. eIF5A was also correlated with eIF5B and eIF6. Our study demonstrates that EOCs have different translational profile compared to benign ovarian tissue and that eIF5A is a central dysregulated factor of the translation machinery.
Collapse
Affiliation(s)
- Monika Sobočan
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
- Division of Gynecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia.
| | - Daniela Brunialti
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sussanne Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jure Knez
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rajko Kavalar
- Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia
| | - Iztok Takač
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
50
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|