1
|
Liang J, Deng X, Zhang Y, Fei T, Ouyang M, Yu C, Xiang Y, Jia D, Duan F. Bioinformatics insights into the role of GFPT1 in breast invasive carcinoma: implications for tumor prognosis, immune modulation, and therapeutic applications. Front Genet 2024; 15:1482929. [PMID: 39664728 PMCID: PMC11633769 DOI: 10.3389/fgene.2024.1482929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Metabolic reprogramming is a hallmark of cancer, including alterations in the hexosamine biosynthesis pathway (HBP). Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the key regulatory enzyme in the HBP; however, its role in invasive breast carcinoma remains underexplored. Methods This study utilized integrated data from The Cancer Genome Atlas (TCGA) to assess GFPT1 expression in breast cancer (BRCA) patients. Functional enrichment and mutational landscape analyses were performed, along with chemosensitivity predictions. In vitro experiments were conducted by silencing GFPT1 in malignant breast epithelial cells to evaluate changes in proliferation, migration, and apoptosis. Results Elevated GFPT1 expression was linked to advanced-stage breast cancer and identified as an independent prognostic marker for overall survival (OS). High GFPT1 levels were associated with increased cytoplasmic translation, activation of oncogenic pathways, and infiltration of M2 macrophages. The GFPT1-High group also showed a higher mutational burden, with frequent TP53 mutations. Chemosensitivity analysis revealed increased IC50 values for chemotherapy drugs in this group. GFPT1 silencing led to reduced cell proliferation and migration, along with enhanced apoptosis. Conclusion These findings indicate that GFPT1 is a novel prognostic biomarker and a predictive indicator of chemotherapy response in invasive breast carcinoma. GFPT1 influences mRNA translation, cell cycle regulation, and M2 macrophage infiltration, thereby promoting cancer cell proliferation and metastasis.
Collapse
Affiliation(s)
- Jianghui Liang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaolian Deng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingyi Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianchi Fei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Muzi Ouyang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chengjie Yu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yang Xiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dongwei Jia
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangfang Duan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Kalník M, Gabko P, Kóňa J, Šesták S, Moncoľ J, Bella M. (5S)-5-Benzylswainsonines as potent and selective inhibitors of Golgi α-mannosidase II: synthesis, enzyme evaluation and molecular modelling. Bioorg Chem 2024; 150:107578. [PMID: 38955002 DOI: 10.1016/j.bioorg.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Development of novel anti-cancer therapeutics based on Golgi α-mannosidase II (GMII) inhibition is considerably impeded by an undesired co-inhibition of lysosomal α-mannosidase leading to severe side-effects. In this contribution, we describe a fully stereoselective synthesis of (5S)-5-[4-(halo)benzyl]swainsonines as highly potent and selective inhibitors of GMII. The synthesis starts from a previously reported aldehyde readily available from l-ribose, and the key features include an intramolecular reductive amination with substrate-controlled stereoselectivity and a late-stage derivatisation of the benzyl group via ipso-substitution. These novel swainsonine analogues were found to be nanomolar inhibitors of the Golgi-type α-mannosidase AMAN-2 (Ki = 23-75 nM) with excellent selectivity (selectivity index = 205-870) over the lysosomal-type Jack bean α-mannosidase. Finally, molecular docking and pKa calculations were performed to provide more insight into the structure of the inhibitor:enzyme complexes, and a pair interaction energy analysis (FMO-PIEDA) was carried out to rationalise the observed potency and selectivity of the inhibitors.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Gabko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia; Medical Vision, Civic Research Association, Záhradnícka 4837/55, SK-82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
3
|
Lam D, Arroyo B, Liberchuk AN, Wolfe AL. Effects of N361 Glycosylation on Epidermal Growth Factor Receptor Biological Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603279. [PMID: 39071333 PMCID: PMC11275927 DOI: 10.1101/2024.07.12.603279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase that is frequently modified by glycosylation post-translationally. In cancer, EGFR amplifications and hotspot mutations such as L858R that promote proliferation have been detected in a significant fraction of non-small cell lung carcinomas and breast adenocarcinomas. Molecular dynamic simulations suggested that glycosylation at asparagine residue 361 (N361) promotes dimerization and ligand binding. We stably expressed glycosylation-deficient mutant EGFR N361A, with or without the oncogenic mutation L858R. Immunofluorescence and flow cytometry demonstrated that the mutants were each well expressed at the cell membrane. N361A decreased proliferation relative to wild-type EGFR as well as decreased sensitivity to ligands. Proximity ligation assays measuring co-localization of EGFR with its binding partner HER2 in cells revealed that N361A mutations increased co-localization. N361A, located near the binding interface for the EGFR inhibitor necitumumab, desensitized cells expressing the oncogenic EGFR L858R to antibody-based inhibition. These findings underline the critical relevance of post-translational modifications on oncogene function.
Collapse
Affiliation(s)
- Dennis Lam
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
| | - Brandon Arroyo
- Department of Biological Sciences, Hunter College of the City University of New York
- Maximizing Access to Research Careers Program, Hunter College of the City University of New York
| | - Ariel N. Liberchuk
- Department of Biological Sciences, Hunter College of the City University of New York
- Macaulay Honors College, Hunter College of the City University of New York
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
- Biochemistry Ph.D. Program, Graduate Center of the City University of New York
- Molecular, Cellular, and Developmental Biology Ph.D. Subprogram, Graduate Center of the City University of New York
| |
Collapse
|
4
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
5
|
Schuurmans F, Wagemans KE, Adema GJ, Cornelissen LAM. Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function. Front Immunol 2024; 15:1409238. [PMID: 38881904 PMCID: PMC11176483 DOI: 10.3389/fimmu.2024.1409238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The T cell is an immune cell subset highly effective in eliminating cancer cells. Cancer immunotherapy empowers T cells and occupies a solid position in cancer treatment. The response rate, however, remains relatively low (<30%). The efficacy of immunotherapy is highly dependent on T cell infiltration into the tumor microenvironment (TME) and the ability of these infiltrated T cells to sustain their function within the TME. A better understanding of the inhibitory impact of the TME on T cells is crucial to improve cancer immunotherapy. Tumor cells are well described for their switch into aerobic glycolysis (Warburg effect), resulting in high glucose consumption and a metabolically distinct TME. Conversely, glycosylation, a predominant posttranslational modification of proteins, also relies on glucose molecules. Proper glycosylation of T cell receptors influences the immunological synapse between T cells and tumor cells, thereby affecting T cell effector functions including their cytolytic and cytostatic activities. This review delves into the complex interplay between tumor glucose metabolism and the glycocalyx of T cells, shedding light on how the TME can induce alterations in the T cell glycocalyx, which can subsequently influence the T cell's ability to target and eliminate tumor cells.
Collapse
Affiliation(s)
| | | | | | - Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
6
|
Zhang J, Wang Y, Wang L, You L, Zhang T. Pancreatic ductal adenocarcinoma chemoresistance: From metabolism reprogramming to novel treatment. Chin Med J (Engl) 2024; 137:408-420. [PMID: 37545027 PMCID: PMC10876258 DOI: 10.1097/cm9.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/08/2023] Open
Abstract
ABSTRACT As pancreatic cancer (PC) is highly malignant, its patients tend to develop metastasis at an early stage and show a poor response to conventional chemotherapies. First-line chemotherapies for PC, according to current guidelines, include fluoropyrimidine- and gemcitabine-based regimens. Accumulating research on drug resistance has shown that biochemical metabolic aberrations in PC, especially those involving glycolysis and glutamine metabolism, are highly associated with chemoresistance. Additionally, lipid metabolism is a major factor in chemoresistance. However, emerging compounds that target these key metabolic pathways have the potential to overcome chemoresistance. This review summarizes how PC develops chemoresistance through aberrations in biochemical metabolism and discusses novel critical targets and pathways within cancer metabolism for new drug research.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yutong Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lejunzi Wang
- Department of Anaesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Immunology Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
8
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
9
|
Strauss P, Nuti F, Quagliata M, Papini AM, Hurevich M. Accelerated solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites. Org Biomol Chem 2023; 21:1674-1679. [PMID: 36385318 DOI: 10.1039/d2ob01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.
Collapse
Affiliation(s)
- Poriah Strauss
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Mattan Hurevich
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
10
|
Liu P, Liu J, Ding M, Liu Y, Zhang Y, Chen X, Zhou Z. FUT2 promotes the tumorigenicity and metastasis of colorectal cancer cells via the Wnt/β‑catenin pathway. Int J Oncol 2023; 62:35. [PMID: 36734282 PMCID: PMC9911090 DOI: 10.3892/ijo.2023.5483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
The incidence of colorectal cancer (CRC), a leading cause of cancer‑related mortality, has increased globally. Fucosyltransferase 2 (FUT2), catalyzing the α1, 2‑linked fucose in mammals, has been reported to be overexpressed in several malignant cancers, including CRC. However, the effects of FUT2 on CRC remain largely unknown. Herein, it was determined that the FUT2 expression levels in CRC tissues were higher than those in adjacent non‑tumor tissues, whereas no association with tumor stage was revealed. The results of biological functional analysis revealed that FUT2 knockdown inhibited the proliferation, migration and invasion of human CRC cells. Moreover, the knockdown of FUT2 arrested the CRC cells at the G0/G1 phase and promoted the apoptosis of human CRC cells. Western blot analysis demonstrated that the expression levels of β‑catenin, C‑myc and cyclin D1 were decreased by FUT2 knockdown in CRC cells, whereas the expression of glycogen synthase kinase‑3β and the phosphorylation levels of β‑catenin were increased. Additionally, Wnt2 was fucosylated by FUT2 in CRC cells. Furthermore, the knockdown of FUT2 inhibited the growth of human CRC in vivo. Overall, the findings of the present study suggest that FUT2 may be used as a potential diagnostic biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Department of Clinical Laboratory, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jingyu Liu
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Mengyang Ding
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yijing Liu
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yue Zhang
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Correspondence to: Professor Xiaoming Chen, Institute of Glycobiological Engineering, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang 325035, P.R. China, E-mail:
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China,Dr Zhenxu Zhou, Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang 325000, P.R. China, E-mail:
| |
Collapse
|
11
|
Zhang J, Lai Z, Ding R, Zhou J, Yuan Z, Li D, Qin X, Zhou J, Li Z. Diagnostic potential of site-specific serotransferrin N-glycosylation in discriminating different liver diseases. Clin Chim Acta 2023; 539:175-183. [PMID: 36543268 DOI: 10.1016/j.cca.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered glycosylation modulates the structure and function of disease-related proteins. The associations between serotransferrin (STF) N-glycosylation and liver diseases (LDs) have been revealed. However, how intact N-glycopeptides vary among different types of liver diseases remains unclear. METHODS Intact STF N-glycopeptides from patients with chronic liver disease (CLD, n = 92), primary liver cancer (PLC, n = 123), metastatic liver cancer (MLC, n = 57), and healthy controls (HCs, n = 59) were determined using high-resolution mass spectrometry. RESULTS Significant changes were displayed in STF glycosylation among 4 groups. The LD screening model, including Asn432 G1S/G2S, Asn432 G2S/G2S2, and Asn630 G2NS2/G2FNS2, was constructed to differentiate LDs from HCs, with a AUC of 0.92. The liver cancer (LC) diagnostic model, a combination of Asn432 G1-N/G1S-N, Asn432 G1/G2, Asn432 G2FS/G2FS2, and Asn630 G1S-N /G1S, showed good performance in discriminating LC from CLD (AUC = 0.93). Moreover, AFP-negative LC patients (93 %) were successfully predicted by the LC diagnostic model. Furthermore, the MLC triage model, composed of Asn432 G1/G2, Asn432 G3F/G3FS, Asn630 G2/G2S, Asn630 G2S2/G2NS2, and Asn630 G3FS/G3FS2, yielded an AUC of 0.98 between PLC and MLC. CONCLUSIONS STF N-glycosylation is a potential biomarker for the accurate classification of different LDs.
Collapse
Affiliation(s)
- Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Rui Ding
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Xuzhen Qin
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China.
| | - Jiang Zhou
- Department of Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
12
|
Biswas M, Yamazaki T, Tomono S, Karnan S, Takagi H, Ichimonji I, Inui M, Nagaoka F, Hosokawa Y, Akashi-Takamura S. Cell surface expression of human RP105 depends on N-glycosylation of MD-1. FEBS Lett 2022; 596:3211-3231. [PMID: 35849076 DOI: 10.1002/1873-3468.14452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023]
Abstract
For its cell surface expression, radioprotective 105 (RP105) - an orphan Toll-like receptor - must form a complex with a soluble glycoprotein called myeloid differentiation 1 (MD-1). The number of RP105-negative cells is significantly increased in patients with systemic lupus erythematosus (SLE); however, to elucidate the mechanism underlying this increase, how RP105 is expressed on the cell surface depending on MD-1 should be investigated. We demonstrated that RP105 exhibits two forms depending on MD-1 and its two N-glycosylation sites, N96 and N156. Cell surface expression of RP105 decreased in the presence of mutant MD-1 (N96Q/N156Q). Nonglycosylated MD-1 decreased the de novo cell surface expression of RP105 but not pre-expressed RP105. Thus, the N-glycans of MD-1 may represent targets for SLE therapy.
Collapse
Affiliation(s)
- Mrityunjoy Biswas
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| |
Collapse
|
13
|
O-GlcNAc Modification and Its Role in Diabetic Retinopathy. Metabolites 2022; 12:metabo12080725. [PMID: 36005597 PMCID: PMC9415332 DOI: 10.3390/metabo12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and has emerged as a significant health problem. Currently, there are no effective therapeutic strategies owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the mechanism of molecular pathogenesis requires further elucidation to identify potential targets that can aid in the prevention of DR. As a type of protein translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc modification might represent a novel alternative therapeutic target for DR in the future.
Collapse
|
14
|
Yao L, Wu L, Wang R, Liu Y, Luo F, Zhang Y, Chen G. Liposome-Based Carbohydrate Vaccine for Simultaneously Eliciting Humoral and Cellular Antitumor Immunity. ACS Macro Lett 2022; 11:975-981. [PMID: 35833848 DOI: 10.1021/acsmacrolett.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor-associated carbohydrate antigen (TACA)-based cancer vaccines achieved promising results, whereas missing the T cell-mediated cellular immune response is still a crucial problem to be solved. Here, we have developed Tn antigen (GalNAc)-modified liposome-encapsulated TLR9 agonist CpG ODN adjuvant as a cancer vaccine. The glyco-liposome vaccines exhibit strong binding ability with an anti-Tn specific antibody and enhance antigen presentation of both bone marrow-derived dendritic cells (BMDCs) and spleen B cells. In vivo immunogenicity studies have demonstrated that the glyco-liposome vaccines can significantly enhance the generation of high anti-Tn antigen antibody titers and further induce a Th1-dependent cellular immune response, evidenced by IFN-γ secretion in an immune coculture of immunized T cells with Tn-expression 4T1 cancer cells. Collectively, our results highlight a liposome-based carbohydrate vaccine as a promising platform, which can simultaneously elicit both humoral and cellular antitumor immunity.
Collapse
Affiliation(s)
- Lintong Yao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Libin Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Rujin Wang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yu Liu
- Colorectal Cancer Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yufei Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Wang N, Yu M, Fu Y, Ma Z. Blocking ATM Attenuates SKOV3 Cell Proliferation and Migration by Disturbing OGT/OGA Expression via hsa-miR-542-5p. Front Oncol 2022; 12:839508. [PMID: 35795059 PMCID: PMC9251376 DOI: 10.3389/fonc.2022.839508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Blocking ataxia telangiectasia mutated (ATM), a crucial player in DNA repair responses, has been proposed as a promising strategy in anti-cancer therapy. Most previous studies have focused on DNA damage response-related pathways after administration of ATM inhibitors. However, ATM inhibition could potentially influence a wide range of changes in gene expression, which remain poorly defined. Here, we report that administration of the ATM inhibitor KU60019 led to impaired migration and enhanced apoptosis in the ovarian cancer cell line SKOV3, accompanied by abnormally elevated O-GlcNAc transferase and O-GlcNAcase expression levels. In addition, KU60019 treatment significantly suppressed expression of hsa-miR-542-5p in SKOV3 cells. Up-regulation of hsa-miR-542-5p expression inhibited increases in OGT and OGA level, and reversed the effects of ATM inhibition on apoptosis and migration in SKOV3 cells. Finally, we found aberrant expression of OGT and OGA to be associated with ovarian cancer patient survival. Taken together, our results suggest that ATM inhibition may promote SKOV3 cell apoptosis via suppressing hsa-miR-542-5p and elevating OGT and OGA expression, providing new insights into the application of ATM inhibitors in cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Department of Gynaecology II, The First Hospital of Jilin University, Changchun, China
| | - Miaomiao Yu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yan Fu
- Department of Gynaecology I, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhanchuan Ma, ; Yan Fu,
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhanchuan Ma, ; Yan Fu,
| |
Collapse
|
16
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
17
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
18
|
Bourouh M, Marignani PA. The Tumor Suppressor Kinase LKB1: Metabolic Nexus. Front Cell Dev Biol 2022; 10:881297. [PMID: 35573694 PMCID: PMC9097215 DOI: 10.3389/fcell.2022.881297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is a multitasking tumor suppressor kinase that is implicated in multiple malignancies such as lung, gastrointestinal, pancreatic, and breast. LKB1 was first identified as the gene responsible for Peutz-Jeghers syndrome (PJS) characterized by hamartomatous polyps and oral mucotaneous pigmentation. LKB1 functions to activate AMP-activated protein kinase (AMPK) during energy stress to shift metabolic processes from active anabolic pathways to active catabolic pathways to generate ATP. Genetic loss or inactivation of LKB1 promotes metabolic reprogramming and metabolic adaptations of cancer cells that fuel increased growth and division rates. As a result, LKB1 loss is associated with increased aggressiveness and treatment options for patients with LKB1 mutant tumors are limited. Recently, there has been new insights into the role LKB1 has on metabolic regulation and the identification of potential vulnerabilities in LKB1 mutant tumors. In this review, we discuss the tumor suppressive role of LKB1 and the impact LKB1 loss has on metabolic reprograming in cancer cells, with a focus on lung cancer. We also discuss potential therapeutic avenues to treat malignancies associated with LKB1 loss by targeting aberrant metabolic pathways associated with LKB1 loss.
Collapse
Affiliation(s)
- Mohammed Bourouh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| |
Collapse
|
19
|
Loponte HF, Oliveira IA, Rodrigues BC, Nunes-da-Fonseca R, Mohana-Borges R, Alisson-Silva F, Dias WB, Todeschini AR. Hyperglycemia alters N-glycans on colon cancer cells through increased production of activated monosaccharides. Glycoconj J 2022; 39:663-675. [PMID: 35380345 DOI: 10.1007/s10719-022-10057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
Diabetes Mellitus (DM) is both, correlated and a known risk factor for colorectal cancer (CRC). Besides favoring the incidence of CRC, DM also accelerates its progression, worsening its prognosis. Previously, hyperglycemia, the DM hallmark, has been shown to lead to aberrant glycosylation of CRC cells, heightening their malignancy both in vivo and in vitro. Here we use mass spectrometry to elucidate the composition and putative structures of N-glycans expressed by MC38 cultured in normoglycemic (LG) and hyperglycemic-like conditions (HG). N-glycans, 67, were identified in MC38 cells cultured in LG and HG. The cells grown in HG showed a greater abundance of N-glycans when compared to LNG cells, without changes in the proportion of sialylated, fucosylated and mannosylated N-glycans. Among the identified N-glycans, 16 were differentially expressed, mostly mannosylated and fucosylated, with a minority of them being sialylated. Metabolomics analysis indicates that the alterations observed in the N-glycosylation may be mostly due to increase of the activated monosaccharides pool, through an increased glucose entrance into the cells. The alterations found here corroborate data from the literature regarding the progression of CRC, advocating for development or repositioning of effective treatments against CRC in diabetic patients.
Collapse
Affiliation(s)
- H F Loponte
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - I A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - B C Rodrigues
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - F Alisson-Silva
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - W B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - A R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
21
|
Sobiepanek A, Milner-Krawczyk M, Musolf P, Starecki T, Kobiela T. Anandamide-Modulated Changes in Metabolism, Glycosylation Profile and Migration of Metastatic Melanoma Cells. Cancers (Basel) 2022; 14:cancers14061419. [PMID: 35326572 PMCID: PMC8946642 DOI: 10.3390/cancers14061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Anandamide (AEA) belongs to the group of endocannabinoids and possesses various regulatory properties in physiological as well as pathological processes occurring in the organism. In this research some basic biological tests were applied to investigate AEA-induced changes in cell metabolism and motility, as well as advanced biophysical methods for the determination of the differences in the cell glycosylation profile on a highly dangerous model of melanoma skin cancer, for which an effective therapy is not yet available. Our research suggests that anandamide treatment of metastatic melanoma cells increases the cell metabolism which leads to the reduction in the metastatic potential of cells in terms of the cell glycosylation profile and cell migration. In the view of our research, it can be presumed that anandamide usage in the combined therapy of advanced melanoma would be an advantage for the patient. Abstract An effective therapy for advanced melanoma, a skin cancer with the highest mortality, has not yet been developed. The endocannabinoid system is considered to be an attractive target for cancer treatment. The use of endocannabinoids, such as anandamide (AEA), is considered to be much greater than as a palliative agent. Thus, we checked its influence on various signaling pathways in melanoma cells. Our investigation was performed on four commercial cell lines derived from different progression stages (radial WM35 and vertical WM115 growth phases, lymph node WM266-4 metastasis, solid tumor A375-P metastasis). Cell viability, glucose uptake, quantification of reactive oxygen species production, expression of selected genes encoding glycosyltransferases, quantification of glycoproteins production and changes in the glycosylation profile and migration, as well as in cell elastic properties were analyzed. The cell glycosylation profile was investigated using the biophysical profiling method—the quartz crystal microbalance with dissipation monitoring (QCM-D). Anandamide treatment of only metastatic cells resulted in: an increase in the cell metabolism, a decrease in GFAT-1 and DPM1 expression, followed by a decrease in L1-CAM glycoprotein production, which further influenced the reduction in the cell glycosylation profile and migration. Considering our results, AEA usage is highly recommended in the combined therapy of advanced melanoma.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
- Correspondence: (A.S.); (T.K.); Tel.: +48-792-350-130 (A.S.); +48-880-010-863 (T.K.)
| | - Małgorzata Milner-Krawczyk
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
| | - Paulina Musolf
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
| | - Tomasz Starecki
- Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland;
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
- Correspondence: (A.S.); (T.K.); Tel.: +48-792-350-130 (A.S.); +48-880-010-863 (T.K.)
| |
Collapse
|
22
|
Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends Microbiol 2022; 30:866-881. [DOI: 10.1016/j.tim.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
|
23
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021; 100:151186. [PMID: 34839178 DOI: 10.1016/j.ejcb.2021.151186] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
N-linked glycosylation is a post-translational modification crucial for membrane protein folding, stability and other cellular functions. Alteration of membrane protein N-glycans is implicated in wide range of pathological conditions including cancer metastasis, chronic inflammatory diseases, and viral pathogenesis. Even though the roles of N-glycans have been studied extensively, our knowledge of their mechanisms remains unclear due to the lack of detailed structural analysis of the N-glycome. Mapping the N-glycome landscape will open new avenues to explore disease mechanisms and identify novel therapeutic targets. This review discusses the diverse structure of N-linked glycans, the function and regulation of N-glycosylation in health and disease, and ends with a focus on recent approaches to target N-glycans in rheumatoid arthritis and cancer metastasis.
Collapse
Affiliation(s)
- Sally Esmail
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
25
|
Chen W, Saxton B, Tessema M, Belinsky SA. Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1 protein. Carcinogenesis 2021; 42:1171-1178. [PMID: 34270713 DOI: 10.1093/carcin/bgab063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy using checkpoint blockers (antibodies) has been a major advance in recent years in the management of various types of solid cancers including lung cancer. One target of checkpoint blockers is programmed death ligand 1 (PD-L1) expressed by cancer cells, which engages programmed death 1 (PD-1) on T cells and Natural Killer (NK) cells resulting in suppression of their activation and cancer-killing function, respectively. Apart from antibodies, other clinically relevant agents that can inhibit PD-L1 are limited. PD-L1 protein stability depends on its glycosylation. Here we show that L-glutamine:D-fructose amidotransferase 1 (GFAT1) a rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP) which produces uridine diphosphate-N-acetyl-β-glucosamine (UDP-GlcNAc), a precursor for glycosylation, is required for the stability of PD-L1 protein. Inhibition of GFAT1 activity markedly reduced interferon γ (IFNγ)-induced PD-L1 levels in various lung cancer cell lines. GFAT1 inhibition suppressed glycosylation of PD-L1 and accelerated its proteasomal degradation. Importantly, inhibition of GFAT1 in IFNγ-treated cancer cells enhanced the activation of T cells and the cancer-killing activity of NK cells. These findings support using GFAT1 inhibitors to manipulate PD-L1 protein level that could augment the efficacy of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bryanna Saxton
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Mathewos Tessema
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Steven A Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
26
|
Krishnan S, Krishnan GP. N-Glycosylation Network Construction and Analysis to Modify Glycans on the Spike (S) Glycoprotein of SARS-CoV-2. FRONTIERS IN BIOINFORMATICS 2021; 1:667012. [PMID: 36303733 PMCID: PMC9581045 DOI: 10.3389/fbinf.2021.667012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The N-glycan structure and composition of the spike (S) protein of SARS-CoV-2 are pertinent to vaccine development and efficacy. Methods: We reconstructed the glycosylation network based on previously published mass spectrometry data using GNAT, a glycosylation network analysis tool. Our compilation of the network tool had 26 glycosyltransferase and glucosidase enzymes and could infer the pathway of glycosylation machinery based on glycans in the virus spike protein. Once the glycan biosynthesis pathway was generated, we simulated the effect of blocking specific enzymes—swainsonine or deoxynojirimycin for blocking mannosidase-II and indolizidine for blocking alpha-1,6-fucosyltransferase—to see how they would affect the biosynthesis network and the glycans that were synthesized. Results: The N-glycan biosynthesis network of SARS-CoV-2 spike protein shows an elaborate enzymatic pathway with several intermediate glycans, along with the ones identified by mass spectrometric studies. Of the 26 enzymes, the following were involved—Man-Ia, MGAT1, MGAT2, MGAT4, MGAT5, B3GalT, B4GalT, Man-II, SiaT, ST3GalI, ST3GalVI, and FucT8. Blocking specific enzymes resulted in a substantially modified glycan profile of SARS-CoV-2. Conclusion: Variations in the final N-glycan profile of the virus, given its site-specific microheterogeneity, are factors in the host response to the infection, vaccines, and antibodies. Heterogeneity in the N-glycan profile of the spike (S) protein and its potential effect on vaccine efficacy or adverse reactions to the vaccines remain unexplored. Here, we provide all the resources we generated—the glycans in the glycoCT xml format and the biosynthesis network for future work.
Collapse
|
27
|
Prognostic relevance of the hexosamine biosynthesis pathway activation in leiomyosarcoma. NPJ Genom Med 2021; 6:30. [PMID: 33941787 PMCID: PMC8093268 DOI: 10.1038/s41525-021-00193-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming of tumor cells and the increase of glucose uptake is one of the hallmarks of cancer. In order to identify metabolic pathways activated in leiomyosarcoma (LMS), we analyzed transcriptomic profiles of distinct subtypes of LMS in several datasets. Primary, recurrent and metastatic tumors in the subtype 2 of LMS showed consistent enrichment of genes involved in hexosamine biosynthesis pathway (HBP). We demonstrated that glutamine-fructose-6-phosphate transaminase 2 (GFPT2), the rate-limiting enzyme in HBP, is expressed on protein level in a subset of LMS and the expression of this enzyme is frequently retained in patient-matched primary and metastatic tumors. In a new independent cohort of 327 patients, we showed that GFPT2 is associated with poor outcome of uterine LMS but not extra-uterine LMS. Based on the analysis of a small group of patients studied by 18F-FDG-PET imaging, we propose that strong expression of GFPT2 in primary LMS may be associated with high metabolic activity. Our data suggest that HBP is a potential new therapeutic target in one of the subtypes of LMS.
Collapse
|
28
|
Sobiepanek A, Paone A, Cutruzzolà F, Kobiela T. Biophysical characterization of melanoma cell phenotype markers during metastatic progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:523-542. [PMID: 33730175 PMCID: PMC8190004 DOI: 10.1007/s00249-021-01514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
29
|
Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Front Immunol 2021; 12:638573. [PMID: 33995356 PMCID: PMC8116741 DOI: 10.3389/fimmu.2021.638573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Animal viruses are parasites of animal cells that have characteristics such as heredity and replication. Viruses can be divided into non-enveloped and enveloped viruses if a lipid bilayer membrane surrounds them or not. All the membrane proteins of enveloped viruses that function in attachment to target cells or membrane fusion are modified by glycosylation. Glycosylation is one of the most common post-translational modifications of proteins and plays an important role in many biological behaviors, such as protein folding and stabilization, virus attachment to target cell receptors and inhibition of antibody neutralization. Glycans of the host receptors can also regulate the attachment of the viruses and then influence the virus entry. With the development of glycosylation research technology, the research and development of novel virus vaccines and antiviral drugs based on glycan have received increasing attention. Here, we review the effects of host glycans and viral proteins on biological behaviors of viruses, and the opportunities for prevention and treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Dongqi Liu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yating Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Wenquan Su
- Dalian Medical University, Dalian, China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Weijie Dong
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Mathur B, Shajahan A, Arif W, Chen Q, Hand NJ, Abramowitz LK, Schoonjans K, Rader DJ, Kalsotra A, Hanover JA, Azadi P, Anakk S. Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. SCIENCE ADVANCES 2021; 7:7/17/eabf4865. [PMID: 33883138 PMCID: PMC8059921 DOI: 10.1126/sciadv.abf4865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 05/04/2023]
Abstract
Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are key regulators of metabolism. Here, we report a previously unknown function for the hepatic FXR-SHP axis in controlling protein N-linked glycosylation. Transcriptome analysis in liver-specific Fxr-Shp double knockout (LDKO) livers revealed induction of genes encoding enzymes in the N-glycosylation pathway, including Mgat5, Fut8, St3gal6, and St6gal1 FXR activation suppressed Mgat5, while Shp deletion induced St3gal6 and St6gal1 Increased percentages of core-fucosylated and triantennary glycan moieties were seen in LDKO livers, and proteins with the "hyperglycoforms" preferentially localized to exosomes and lysosomes. This up-regulation of N-glycosylation machinery was specific to the Golgi apparatus and not the endoplasmic reticulum. The increased glycan complexity in the LDKO correlated well with dilated unstacked Golgi ribbons and alterations in the secretion of albumin, cholesterol, and triglycerides. Our findings demonstrate a role for the FXR-SHP axis in maintaining glycoprotein diversity in the liver.
Collapse
Affiliation(s)
- Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qiushi Chen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Nicholas J Hand
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel J Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
31
|
Kawakita C, Mise K, Onishi Y, Sugiyama H, Yoshida M, Yamada M, Wada J. Novel urinary glycan profiling by lectin array serves as the biomarkers for predicting renal prognosis in patients with IgA nephropathy. Sci Rep 2021; 11:3394. [PMID: 33564009 PMCID: PMC7873239 DOI: 10.1038/s41598-020-77736-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
In IgA nephropathy (IgAN), IgA1 molecules are characterized by galactose deficiency in O-glycans. Here, we investigated the association between urinary glycosylation profile measured by 45 lectins at baseline and renal prognosis in 142 patients with IgAN. The primary outcome was estimated glomerular filtration rate (eGFR) decline (> 4 mL/min/1.73 m2/year), or eGFR ≥ 30% decline from baseline, or initiation of renal replacement therapies within 3 years. During follow-up (3.4 years, median), 26 patients reached the renal outcome (Group P), while 116 patients were with good renal outcome (Group G). Multivariate logistic regression analyses revealed that lectin binding signals of Erythrina cristagalli lectin (ECA) (odds ratio [OR] 2.84, 95% confidence interval [CI] 1.11–7.28) and Narcissus pseudonarcissus lectin (NPA) (OR 2.32, 95% CI 1.11–4.85) adjusted by age, sex, eGFR, and urinary protein were significantly associated with the outcome, and they recognize Gal(β1-4)GlcNAc and high-mannose including Man(α1-6)Man, respectively. The addition of two lectin-binding glycan signals to the interstitial fibrosis/tubular atrophy score further improved the model fitness (Akaike’s information criterion) and incremental predictive abilities (c-index, net reclassification improvement, and integrated discrimination improvement). Urinary N-glycan profiling by lectin array is useful in the prediction of IgAN prognosis, since ECA and NPA recognize the intermediate glycans during N-glycosylation of various glycoproteins.
Collapse
Affiliation(s)
- Chieko Kawakita
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Yoshida
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
32
|
Essawy A, Jo S, Beetch M, Lockridge A, Gustafson E, Alejandro EU. O-linked N-acetylglucosamine transferase (OGT) regulates pancreatic α-cell function in mice. J Biol Chem 2021; 296:100297. [PMID: 33460647 PMCID: PMC7949098 DOI: 10.1016/j.jbc.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.
Collapse
Affiliation(s)
- Ahmad Essawy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Abstract
Glycobiology is a glycan-based field of study that focuses on the structure, function, and biology of carbohydrates, and glycomics is a sub-study of the field of glycobiology that aims to define structure/function of glycans in living organisms. With the popularity of the glycobiology and glycomics, application of computational modeling expanded in the scientific area of glycobiology over the last decades. The recent availability of progressive Wet-Lab methods in the field of glycobiology and glycomics is promising for the impact of systems biology on the research area of the glycome, an emerging field that is termed “systems glycobiology.” This chapter will summarize the up-to-date leading edge in the use of bioinformatics tools in the field of glycobiology. The chapter provides basic knowledge both for glycobiologists interested in the application of bioinformatics tools and scientists of computational biology interested in studying the glycome.
Collapse
|
34
|
Oliveira IA, Allonso D, Fernandes TVA, Lucena DMS, Ventura GT, Dias WB, Mohana-Borges RS, Pascutti PG, Todeschini AR. Enzymatic and structural properties of human glutamine:fructose-6-phosphate amidotransferase 2 (hGFAT2). J Biol Chem 2020; 296:100180. [PMID: 33303629 PMCID: PMC7948480 DOI: 10.1074/jbc.ra120.015189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates play a central role in several cellular processes, and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in Escherichia coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi–bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics, and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.
Collapse
Affiliation(s)
- Isadora A Oliveira
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Diego Allonso
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Tácio V A Fernandes
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | - Daniela M S Lucena
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Wagner Barbosa Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Pedro G Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
35
|
Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat Commun 2020; 11:6139. [PMID: 33262351 PMCID: PMC7708455 DOI: 10.1038/s41467-020-19976-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post-translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans correspond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy. Altered protein glycosylation is increasingly recognized as a hallmark of cancer. Here, the authors profile the glycoproteome of 119 high-grade serous ovarian carcinoma tissues, showing that glycosylation patterns correlate with tumor molecular subtypes and clinical outcomes.
Collapse
|
36
|
Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, Khadka S, Ackroyd JJ, Georgiou DK, Pham CD, Arthur K, Maxwell D, Peng Z, Leonard PG, Czako B, Pisaneschi F, Mandal P, Sun Y, Zielinski R, Pando SC, Wang X, Tran T, Xu Q, Wu Q, Jiang Y, Kang Z, Asara JM, Priebe W, Bornmann W, Marszalek JR, DePinho RA, Muller FL. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nat Metab 2020; 2:1413-1426. [PMID: 33230295 PMCID: PMC7744354 DOI: 10.1038/s42255-020-00313-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We have previously identified a subset of cancers harbouring homozygous deletion of the glycolytic enzyme enolase (ENO1) that have exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small-molecule enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low-nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumours in mice at doses well-tolerated in non-human primates. Our data provide an in vivo proof of principle of the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential use across a range of therapeutic settings.
Collapse
Affiliation(s)
- Yu-Hsi Lin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Naima Hammoudi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victoria C Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunada Khadka
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Ackroyd
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenisha Arthur
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Maxwell
- Institutional Analytics & Informatics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paul G Leonard
- Core for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pijus Mandal
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuting Sun
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafal Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susana Castro Pando
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobo Wang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Tran
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyu Xu
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wu
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongying Jiang
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Bornmann
- Director of Drug Discovery and Development, Advanced Organic Synthesis LLC, Houston, Texas, USA
| | - Joseph R Marszalek
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Gu ZT, Li ZZ, Wang CF. Research advances of intracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:1150-1161. [DOI: 10.11569/wcjd.v28.i22.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most deadly malignant tumors that endanger human health, and pancreatic ductal adenocarcinoma (PDAC) is the most common histological type. Due to the lack of specific clinical symptoms, physical signs, and effective screening biomarkers for early stage PDAC, only 15%-20% of patients are qualified for surgical resection. Consequently, gemcitabine (GEM)-based monotherapy or combination therapy is still the most important or even the only treatment option. However, the overall response rate of PDAC to GEM is less than 20%, and GEM resistance is one of the most important factors affecting the efficacy of chemotherapy. At present, the mechanism of GEM resistance has not been clarified, which may involve congenital and acquired regulation. The heterogeneity of PDAC further increases its complexity. However, regulation of intracellular signaling pathways is the ultimate event to induce GEM resistance. This article will review the recent advances in research of GEM metabolism and regulation of signaling pathways in PDAC cells, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Lab of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Lab of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
38
|
Pietrobono S, Anichini G, Sala C, Manetti F, Almada LL, Pepe S, Carr RM, Paradise BD, Sarkaria JN, Davila JI, Tofani L, Battisti I, Arrigoni G, Ying L, Zhang C, Li H, Meves A, Fernandez-Zapico ME, Stecca B. ST3GAL1 is a target of the SOX2-GLI1 transcriptional complex and promotes melanoma metastasis through AXL. Nat Commun 2020; 11:5865. [PMID: 33203881 PMCID: PMC7673140 DOI: 10.1038/s41467-020-19575-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Understanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Giulia Anichini
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Viale M. Bracci 16, 53100, Siena, Italy
| | - Cesare Sala
- Department of Clinical and Experimental Medicine, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Pepe
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Viale M. Bracci 16, 53100, Siena, Italy
| | - Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaime I Davila
- Department of Health Sciences Research, Mayo Clinic, Rochester, Rochester, MN, 55905, USA
| | - Lorenzo Tofani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Ilaria Battisti
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Oris 2B, 35129, Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Oris 2B, 35129, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131, Padova, Italy
| | - Li Ying
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
39
|
Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-001222. [PMID: 33020245 PMCID: PMC7537339 DOI: 10.1136/jitc-2020-001222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
During oncogenesis, tumor cells present specific carbohydrate chains that are new targets for cancer immunotherapy. Whereas these tumor-associated carbohydrates (TACA) can be targeted with antibodies and vaccination approaches, TACA including sialic acid-containing glycans are able to inhibit anticancer immune responses by engagement of immune receptors on leukocytes. A family of immune-modulating receptors are sialic acid-binding Siglec receptors that have been recently described to inhibit antitumor activity mediated by myeloid cells, natural killer cells and T cells. Other TACA-binding receptors including selectins have been linked to cancer progression. Recent studies have shown that glycan-lectin interactions can be targeted to improve cancer immunotherapy. For example, interactions between the immune checkpoint T cell immunoglobulin and mucin-domain containing-3 and the lectin galectin-9 are targeted in clinical trials. In addition, an antibody against the lectin Siglec-15 is being tested in an early clinical trial. In this review, we summarize the previous and current efforts to target TACA and to inhibit inhibitory immune receptors binding to TACA including the Siglec-sialoglycan axis.
Collapse
Affiliation(s)
| | - Marina Natoli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| |
Collapse
|
40
|
Rasheduzzaman M, Kulasinghe A, Dolcetti R, Kenny L, Johnson NW, Kolarich D, Punyadeera C. Protein glycosylation in head and neck cancers: From diagnosis to treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188422. [PMID: 32853734 DOI: 10.1016/j.bbcan.2020.188422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Glycosylation is the most common post-translational modification (PTM) of proteins. Malignant tumour cells frequently undergo an alteration in surface protein glycosylation. This phenomenon is also common in cancers of the head and neck, most of which are squamous cell carcinomas (HNSCC). It affects cell functions, including proliferation, motility and invasiveness, thus increasing the propensity to metastasise. HNSCC represents the sixth most frequent malignancy worldwide. These neoplasms, which arise from the mucous membranes of the various anatomical subsites of the upper aero-digestive tract, are heterogeneous in terms of aetiology and clinico-pathologic features. With current treatments, only about 50% of HNSCC patients survive beyond 5-years. Therefore, there is the pressing need to dissect NHSCC heterogeneity to inform treatment choices. In particular, reliable biomarkers of predictive and prognostic value are eagerly needed. This review describes the current state of the art and bio-pathological meaning of glycosylation signatures associated with HNSCC and explores the possible role of tumour specific glycoproteins as potential biomarkers and attractive therapeutic targets. We have also compiled data relating to altered glycosylation and the nature of glycoproteins as tools for the identification of circulating tumour cells (CTCs) in the new era of liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Rasheduzzaman
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Riccardo Dolcetti
- Translational Research Institute, Woolloongabba, QLD, Australia.; The University of Queensland Diamantina Institute, 37 Kent Street Woolloongabba, QLD 4102, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Joyce Tweddell Building, Herston, QLD, 4029, Australia
| | - Newell W Johnson
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London, United Kingdom
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD, Australia.
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia..
| |
Collapse
|
41
|
Xia M, Shao J, Qiao M, Luo Z, Deng X, Ke Q, Dong X, Shen L. Identification of LCA-binding Glycans as a Novel Biomarker for Esophageal Cancer Metastasis using a Lectin Array-based Strategy. J Cancer 2020; 11:4736-4745. [PMID: 32626520 PMCID: PMC7330695 DOI: 10.7150/jca.43806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer (EC) is a unique and heterogeneous disease diagnosed mostly at advanced stages. Altered glycans presented on cell surfaces are involved in the occurrence and development of malignancy. However, the effects of glycans on EC progression are largely unexplored. Here, a lectin array was utilized to detect the glycan profiling of the normal esophageal mucosal epithelial cell line and two EC cell lines. The binding of Lens culinaris lectin (LCA) to EC cells was found to be stronger than that of the normal cells. Lectin immunohistochemical staining revealed that LCA-binding glycans were markedly elevated in EC tissues compared to adjacent non-cancerous tissues. LCA staining was significantly associated with lymph node metastasis, depth of invasion, TNM stage and poor overall survival of EC patients. Added LCA to block LCA recognized glycans could inhibit the migration and invasion of EC cells. Further analysis revealed that blocking the biosynthesis of LCA-binding glycans by tunicamycin attenuated cellular migratory and invasive abilities. Additionally, a membrane glycoprotein CD147 was recognized as a binder of LCA. There was a positive correlation between LCA-binding glycans and CD147 expression in clinical samples. Interestingly, CD147 inhibition also reduced cell migration and invasion. These findings indicated that LCA-binding glycans may function as a novel indicator to predict metastasis for patients with EC.
Collapse
Affiliation(s)
- Min Xia
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun Shao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Meimei Qiao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan,Hubei 442000, P.R. China
| |
Collapse
|
42
|
Jakubčinová J, Kozmon S, Šesták S, Baráth M. Novel 1‐ O‐Sulfono‐α‐ d‐Fructofuranosyl Sulfones as Possible Inhibitors of Human GnT‐I Enzyme. ChemistrySelect 2020. [DOI: 10.1002/slct.202001098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jana Jakubčinová
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Stanislav Kozmon
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Sergej Šesták
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Marek Baráth
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| |
Collapse
|
43
|
Abstract
Objective: To summarize the abnormal location of FLT3 caused by different glycosylation status which further leads to the distinguishing signaling pathways and discuss targeting on FLT3 glycosylation by drugs reported in recent literatures. Methods: We review FLT3 glycosylation in endoplasmic reticulum. The abnormal signal of mutant FLT3 with different glycosylation status is discussed. We also address potential FLT3 glycosylation-targeting strategies for the treatment. Results: Inhibition of FLT3 mutant cells by drugs reported in recent literatures involves the influence of glycosylation of FLT3: 2-deoxy-D-glucose, Tunicamycin and Fluvastatin are reported to inhibit N-glycosylation of FLT3; Pim-1 inhibitors are proved to block the inhibition of Pim-1 on FLT3 Oglycosylation; HSP90 inhibitors and Tyrosine Kinase Inhibitors are shown to increase fully glycosylated form of FLT3. Discussion: The FMS-like tyrosine kinase 3 (FLT3) gene expressed only in CD34+ progenitor cells in bone marrow is located on chromosome 13q12 encoding FLT3 protein. FLT3 is initially synthesized as a 110 KD protein, which glycosylated in the endoplasmic reticulum to a 130 KD immature protein rich in mannose, and further processed into a mature 160 KD protein in the Golgi apparatus, which could be transferred to the cell surface. Therapy targeting on FLT3 glycosylation is a promising direction for AML treatment. Conclusions: The abnormal location of FLT3 caused by different glycosylation status leads to the distinguishing signaling pathways. Targeting on FLT3 glycosylation may provide a new perspective for therapeutic strategies. Abbreviations: ABCG2: ATP-binding cassette transporter breast cancer resistance protein; ATF: activating transcription factor; AML: acute myeloid leukemia; CHOP: CCAAT-enhancer-binding protein homologous protein; 2-DG: 2-deoxy-D-glucose; EFS: event free survival; EPO: erythropoietin; EPOR: erythropoietin receptor; ERS: endoplasmic reticulum stress; FLT3: FMS-like tyrosine kinase 3; GPI: glycosylphosphatidylinositol; HSP: heat shock protein; ITD: internal tandem duplication; IRE1a: inositol-requiring enzyme 1 alpha; JNK: c-Jun N-terminal kinase; JMD: juxtamembrane domain; JAK: janus kinase; MAPK/ERK: mitogen activated protein kinase/extracellular signal-regulated protein kinase; OS: overall survival; PI3K/AKT: phosphatidylinositide 3-kinases/protein kinase B; PERK: RNA-activated protein kinase-like endoplasmic reticulum kinase; Pgp: P-glycoprotein; PTX3: human pentraxin-3; STAT: signal transducer and activator of transcriptions; TKD: tyrosine-kinase domain; TKI: tyrosine kinase inhibitor; TM: Tunicamycin; UPR: unfolded protein reaction.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Hematology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Fangyuan Chen
- Department of Hematology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
44
|
Verdura S, Cuyàs E, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B, Bosch-Barrera J, Encinar JA, Menendez JA. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY) 2020; 12:8-34. [PMID: 31901900 PMCID: PMC6977679 DOI: 10.18632/aging.102646] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
New strategies to block the immune evasion activity of programmed death ligand-1 (PD-L1) are urgently needed. When exploring the PD-L1-targeted effects of mechanistically diverse metabolism-targeting drugs, exposure to the dietary polyphenol resveratrol (RSV) revealed its differential capacity to generate a distinct PD-L1 electrophoretic migration pattern. Using biochemical assays, computer-aided docking/molecular dynamics simulations, and fluorescence microscopy, we found that RSV can operate as a direct inhibitor of glyco-PD-L1-processing enzymes (α-glucosidase/α-mannosidase) that modulate N-linked glycan decoration of PD-L1, thereby promoting the endoplasmic reticulum retention of a mannose-rich, abnormally glycosylated form of PD-L1. RSV was also predicted to interact with the inner surface of PD-L1 involved in the interaction with PD-1, almost perfectly occupying the target space of the small compound BMS-202 that binds to and induces dimerization of PD-L1. The ability of RSV to directly target PD-L1 interferes with its stability and trafficking, ultimately impeding its targeting to the cancer cell plasma membrane. Impedance-based real-time cell analysis (xCELLigence) showed that cytotoxic T-lymphocyte activity was notably exacerbated when cancer cells were previously exposed to RSV. This unforeseen immunomodulating mechanism of RSV might illuminate new approaches to restore T-cell function by targeting the PD-1/PD-L1 immunologic checkpoint with natural polyphenols.
Collapse
Affiliation(s)
- Sara Verdura
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eric Cortada
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology, Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Spain
| | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Medical Oncology, Catalan Institute of Oncology, Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | - Javier A Menendez
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
45
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
46
|
Sun C, Lan W, Li B, Zuo R, Xing H, Liu M, Li J, Yao Y, Wu J, Tang Y, Liu H, Zhou Y. Glucose regulates tissue-specific chondro-osteogenic differentiation of human cartilage endplate stem cells via O-GlcNAcylation of Sox9 and Runx2. Stem Cell Res Ther 2019; 10:357. [PMID: 31779679 PMCID: PMC6883626 DOI: 10.1186/s13287-019-1440-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The degenerative disc disease (DDD) is a major cause of low back pain. The physiological low-glucose microenvironment of the cartilage endplate (CEP) is disrupted in DDD. Glucose influences protein O-GlcNAcylation via the hexosamine biosynthetic pathway (HBP), which is the key to stem cell fate. Thiamet-G is an inhibitor of O-GlcNAcase for accumulating O-GlcNAcylated proteins while 6-diazo-5-oxo-L-norleucine (DON) inhibits HBP. Mechanisms of DDD are incompletely understood but include CEP degeneration and calcification. We aimed to identify the molecular mechanisms of glucose in CEP calcification in DDD. METHODS We assessed normal and degenerated CEP tissues from patients, and the effects of chondrogenesis and osteogenesis of the CEP were determined by western blot and immunohistochemical staining. Cartilage endplate stem cells (CESCs) were induced with low-, normal-, and high-glucose medium for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. CESCs were induced with low-glucose and high-glucose medium with or without Thiamet-G or DON for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. Sox9 and Runx2 O-GlcNAcylation were measured by immunofluorescence. The effects of O-GlcNAcylation on the downstream genes of Sox9 and Runx2 were determined by Q-PCR and western blot. RESULTS Degenerated CEPs from DDD patients lost chondrogenesis, acquired osteogenesis, and had higher protein O-GlcNAcylation level compared to normal CEPs from LVF patients. CESC chondrogenic differentiation gradually decreased while osteogenic differentiation gradually increased from low- to high-glucose differentiation medium. Furthermore, Thiamet-G promoted CESC osteogenic differentiation and inhibited chondrogenic differentiation in low-glucose differentiation medium; however, DON acted opposite role in high-glucose differentiation medium. Interestingly, we found that Sox9 and Runx2 were O-GlcNAcylated in differentiated CESCs. Finally, O-GlcNAcylation of Sox9 and Runx2 decreased chondrogenesis and increased osteogenesis in CESCs. CONCLUSIONS Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic and osteogenic differentiation potential of CESCs and provide insight into the mechanism of how glucose concentration regulates Sox9 and Runx2 O-GlcNAcylation to affect the differentiation of CESCs, which may represent a target for CEP degeneration therapy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yu Tang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Huan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Southwest Medical University, Lu Zhou, 646000, Sichuan, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
47
|
Qi F, Isaji T, Duan C, Yang J, Wang Y, Fukuda T, Gu J. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,3-sialylation of target proteins. FASEB J 2019; 34:881-897. [PMID: 31914669 DOI: 10.1096/fj.201901793r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
The α2,3-sialylation of N-glycans is considered important but complicated because the functions of the three β-galactoside α2,3-sialyltransferases, ST3GAL3, ST3GAL4, and ST3GAL6, could be compensating for one another. To distinguish their specific functions, we established each individual knockout (KO) cell line. Loss of either the ST3GAL3 or ST3GAL6 genes decreased cell proliferation and colony formation, as opposed to the effect in the ST3GAL4 KO cells. The phosphorylation levels of ERK and AKT were significantly suppressed in the ST3GAL6 KO and ST3GAL3 KO cells, respectively. The cell aggregations were clearly observed in the KO cells, particularly the ST3GAL3 KO and ST3GAL6 KO cells, and the expression levels of E-cadherin and claudin-1 were enhanced in both those cell lines, but were suppressed in the ST3GAL4 KO cells. Those alterations were reversed with an overexpression of each corresponding gene in rescued cells. Of particular interest, the α2,3-sialylation levels of β1 integrin were clearly suppressed in the ST3GAL4 KO cells, but these were increased in the ST3GAL3 KO and ST3GAL6 KO cells, whereas the α2,3-sialylation levels of EGFR were significantly decreased in the ST3GAL6 KO cells. The decrease in α2,3-sialylation increased the α2,6-sialylation on β1, but not EGFR. Furthermore, a cross-restoration of each of the three genes in ST3GAL6 KO cells showed that overexpression of ST3GAL6 sufficiently rescued the total α2,3-sialylation levels, cell morphology, and α2,3-sialylation of EGFR, whereas the α2,3-sialylation levels of β1 were greatly enhanced by an overexpression of ST3GAL4. These results clearly demonstrate that the three α2,3-sialyltransferases modify characteristic target proteins and regulate cell biological functions in different ways.
Collapse
Affiliation(s)
- Feng Qi
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jie Yang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
48
|
Tommasone S, Allabush F, Tagger YK, Norman J, Köpf M, Tucker JHR, Mendes PM. The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 2019; 48:5488-5505. [PMID: 31552920 DOI: 10.1039/c8cs00768c] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans - simple or complex carbohydrates - play key roles as recognition determinants and modulators of numerous physiological and pathological processes. Thus, many biotechnological, diagnostic and therapeutic opportunities abound for molecular recognition entities that can bind glycans with high selectivity and affinity. This review begins with an overview of the current biologically and synthetically derived glycan-binding scaffolds that include antibodies, lectins, aptamers and boronic acid-based entities. It is followed by a more detailed discussion on various aspects of their generation, structure and recognition properties. It serves as the basis for highlighting recent key developments and technical challenges that must be overcome in order to fully deal with the specific recognition of a highly diverse and complex range of glycan structures.
Collapse
Affiliation(s)
- Stefano Tommasone
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Yan L, Raj P, Yao W, Ying H. Glucose Metabolism in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11101460. [PMID: 31569510 PMCID: PMC6826406 DOI: 10.3390/cancers11101460] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, with a five-year survival rate of around 5% to 8%. To date, very few available drugs have been successfully used to treat PDAC due to the poor understanding of the tumor-specific features. One of the hallmarks of pancreatic cancer cells is the deregulated cellular energetics characterized by the “Warburg effect”. It has been known for decades that cancer cells have a dramatically increased glycolytic flux even in the presence of oxygen and normal mitochondrial function. Glycolytic flux is the central carbon metabolism process in all cells, which not only produces adenosine triphosphate (ATP) but also provides biomass for anabolic processes that support cell proliferation. Expression levels of glucose transporters and rate-limiting enzymes regulate the rate of glycolytic flux. Intermediates that branch out from glycolysis are responsible for redox homeostasis, glycosylation, and biosynthesis. Beyond enhanced glycolytic flux, pancreatic cancer cells activate nutrient salvage pathways, which includes autophagy and micropinocytosis, from which the generated sugars, amino acids, and fatty acids are used to buffer the stresses induced by nutrient deprivation. Further, PDAC is characterized by extensive metabolic crosstalk between tumor cells and cells in the tumor microenvironment (TME). In this review, we will give an overview on recent progresses made in understanding glucose metabolism-related deregulations in PDAC.
Collapse
Affiliation(s)
- Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Priyank Raj
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Computational analysis of the structure, glycosylation and CMP binding of human ST3GAL sialyltransferases. Carbohydr Res 2019; 486:107823. [PMID: 31557542 DOI: 10.1016/j.carres.2019.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Sialyltransferases (STs) are the fundamental enzymes which are related to many biological processes such as cell signalling, cellular recognition, cell-cell and host-pathogen interactions and metastasis of cancer. All STs catalyse the terminal sialic acid addition from CMP donor to the glycan units. ST3GAL family is one of the most important STs and divided into the six subfamily in mouse and humans which are ST3Gal I, ST3Gal II, ST3Gal III, ST3Gal IV, ST3Gal V, and ST3Gal VI. The members of the ST3GAL family transfer sialic acid to the terminal galactose residues of glycochains through an α2,3-linkage. There are many reports on the ST3GAL function in mammals but, there is a paucity of information about structure of human ST3GAL family. Herein, we investigated the structure, glycosylation and CMP binding site of human ST3GAL family using computational methods. We found for the first time N-glycosylation positions in ST3Gal IV and VI, mucin type glycosylation in ST3Gal III and O-GlcNAcylation in ST3Gal V and their relation with sialylmotifs. In addition, we predicted CMP binding positions of human ST3GAL enzyme family on three-dimensional structure using molecular docking and first demonstrated the sialylmotifs relation with the CMP binding positions in ST3Gal III-VI subfamilies.
Collapse
|