1
|
Zhang ZR, Liu MQ, Ji Y, Xiao D, Wang WF, Zhou XC, Wang LH, Li D, Zou H, Yang XP. Sotorasib inhibits ubiquitination degradation of TXNIP and suppresses glucose metabolism in KRASG12C mutant bladder cancer. Am J Cancer Res 2024; 14:5251-5268. [PMID: 39659927 PMCID: PMC11626273 DOI: 10.62347/xebr7848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system. Currently, treatment strategies for bladder cancer remain limited, highlighting the urgent need to explore novel therapeutic approaches. Sotorasib, the first successful small molecule drug targeting KRAS, has been approved for treating non-small cell lung cancer (NSCLC), but it has not yet been studied in bladder cancer. Additionally, glucose metabolism-related proteins, such as GLUT1, PKM2, and LDHA are highly expressed in most bladder cancer cell lines, promoting tumor progression. KRASG12D mutant cells exhibit enhanced glucose uptake and glycolysis. However, little is known about whether KRASG12C mutant cells exhibit enhanced glucose metabolism. Various techniques, including glucose and lactate analysis, Seahorse assay, western blot, qRT-PCR, and immunofluorescence, were used to investigate whether Sotorasib can inhibit glucose metabolism in bladder cancer cells. The results demonstrated that Sotorasib significantly inhibited glucose metabolism in KRASG12C mutant bladder cancer, both in vitro and in vivo, but not in wild-type bladder cancer. Furthermore, Sotorasib's inhibition of glucose metabolism was associated with suppressing the degradation of thioredoxin-interacting protein (TXNIP), a negative regulator of glucose metabolism. Additionally, Sotorasib increased TXNIP expression by regulating the RAS/RAF/ERK axis. This study uncovers the mechanism by which Sotorasib inhibits glucose metabolism in KRASG12C mutant bladder cancer cells and suggests a potential therapeutic benefit for the treatment of KRASG12C mutant bladder cancer.
Collapse
Affiliation(s)
- Zhi-Rong Zhang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Min-Qi Liu
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Yang Ji
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Wei-Fan Wang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Xiao-Chen Zhou
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Ling-Hui Wang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Hui Zou
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Xiao-Ping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| |
Collapse
|
2
|
Giovannini S, Li Y, Pecorari R, Fierro C, Fiorilli C, Corigliano F, Moriconi V, Zhou J, De Antoni A, Smirnov A, Rinalducci S, Timperio AM, Agostini M, Zhang J, Shi Y, Candi E, Melino G, Bernassola F. Thioredoxin-interacting protein (TXNIP) is a substrate of the NEDD4-like E3 ubiquitin-protein ligase WWP1 in cellular redox state regulation of acute myeloid leukemia cells. Mol Oncol 2024. [PMID: 39364720 DOI: 10.1002/1878-0261.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024] Open
Abstract
The HECT-type E3 ubiquitin WWP1 (also known as NEDD4-like E3 ubiquitin-protein ligase WWP1) acts as an oncogenic factor in acute myeloid leukemia (AML) cells. WWP1 overexpression in AML confers a proliferative advantage to leukemic blasts (abnormal immature white blood cells) and counteracts apoptotic cell death and differentiation. In an effort to elucidate the molecular basis of WWP1 oncogenic activities, we identified WWP1 as a previously unknown negative regulator of thioredoxin-interacting protein (TXNIP)-mediated reactive oxygen species (ROS) production in AML cells. TXNIP inhibits the disulfide reductase enzymatic activity of thioredoxin (Trx), impairing its antioxidant function and, ultimately, leading to the disruption of cellular redox homeostasis. In addition, TXNIP restricts cell growth and survival by blocking glucose uptake and metabolism. Here, we found that WWP1 directly interacts with TXNIP, thus promoting its ubiquitin-dependent proteasomal proteolysis. As a result, accumulation of TXNIP in response to WWP1 inactivation in AML blasts reduces Trx activity and increases ROS production, hence inducing cellular oxidative stress. Increased ROS generation in WWP1-depleted cells culminates in DNA strand breaks and subsequent apoptosis. Coherently with TXNIP stabilization following WWP1 inactivation, we also observed an impairment of both glucose up-take and consumption. Hence, a contribution to the increased cell death observed in WWP1-depleted cells also possibly arises from the attenuation of glucose up-take and glycolytic flux resulting from TXNIP accumulation. Future studies are needed to establish whether TXNIP-dependent deregulation of redox homeostasis in WWP1-overexpressing blasts may affect the response of leukemic cells to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | - Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Rosalba Pecorari
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | - Claudia Fiorilli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | - Federica Corigliano
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | - Valeria Moriconi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | - Ji Zhou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
- Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Anna De Antoni
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
3
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
4
|
Pedreañez A, Mosquera-Sulbaran JA, Tene D. Role of the receptor for advanced glycation end products in the severity of SARS-CoV-2 infection in diabetic patients. Diabetol Int 2024; 15:732-744. [PMID: 39469543 PMCID: PMC11512988 DOI: 10.1007/s13340-024-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a severe disease in older adults and in individuals with associated comorbidities such as diabetes mellitus. Patients with diabetes infected with SARS-CoV-2 are more likely to develop severe pneumonia, hospitalization, and mortality compared with infected non-diabetic patients. During diabetes, hyperglycemia contributes to the maintenance of a low-grade inflammatory state which has been implicated in the microvascular and macrovascular complications associated with this pathology. The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition receptor, expressed on a wide variety of cells, which participates as an important mediator of inflammatory responses in many diseases, including lung diseases. This review highlights the role of RAGE in the pathophysiology of COVID-19 with special emphasis on diabetic patients. These data could explain the severity of the disease, positioning it as a key therapeutic target in the clinical management of this infection.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo 4001-A, Maracaibo, Zulia Venezuela
| | - Jesús A. Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| |
Collapse
|
5
|
Altahla R, Tao X. Thioredoxin-Interacting Protein's Role in NLRP3 Activation and Osteoarthritis Pathogenesis by Pyroptosis Pathway: In Vivo Study. Metabolites 2024; 14:488. [PMID: 39330495 PMCID: PMC11433649 DOI: 10.3390/metabo14090488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has been involved in oxidative stress and activation of the NOD-like receptor protein-3 (NLRP3) inflammasome, directly linking it to the pyroptosis pathway. Furthermore, pyroptosis may contribute to the inflammatory process in osteoarthritis (OA). The purpose of this study was to investigate the role of TXNIP in activating the NLRP3 inflammasome through the pyroptosis pathway in an OA rat model. Destabilization of the medial meniscus (DMM) was induced in the OA model with intra-articular injections of adeno-associated virus (AAV) overexpressing (OE) or knocking down (KD) TXNIP. A total of 48 healthy rats were randomly divided into six groups (N = 8 each). During the experiment, the rats' weights, mechanical pain thresholds, and thermal pain thresholds were measured weekly. Morphology staining, micro-CT, 3D imaging, and immunofluorescence (IF) staining were used to measure the expression level of TXNIP, and ELISA techniques were employed. OE-TXNIP-AAV in DMM rats aggravated cartilage destruction and subchondral bone loss, whereas KD-TXNIP slowed the progression of OA. The histological results showed that DMM modeling and OE-TXNIP-AAV intra-articular injection caused joint structure destruction, decreased anabolic protein expression, and increased catabolic protein expression and pyroptosis markers. Conversely, KD-TXNIP-AAV slowed joint degeneration. OE-TXNIP-AVV worsened OA by accelerating joint degeneration and damage, while KD-TXNIP-AAV treatment had a protective effect.
Collapse
Affiliation(s)
- Ruba Altahla
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Tao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Alaklabi S, Maguire O, Pattnaik H, Zhang Y, Chow J, Wang J, Minderman H, Iyer R. Immune Cell Molecular Pharmacodynamics of Lanreotide in Relation to Treatment Response in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:3104. [PMID: 39272962 PMCID: PMC11394651 DOI: 10.3390/cancers16173104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.
Collapse
Affiliation(s)
- Sabah Alaklabi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Harsha Pattnaik
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jacky Chow
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
He X, Dou L, Wang J, Xia L, Miao J, Yan Y. Nobiletin regulates the proliferation and migration of ovarian cancer A2780 cells via DPP4 and TXNIP. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03334-x. [PMID: 39102034 DOI: 10.1007/s00210-024-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nobiletin is an active compound extracted from citrus fruits. Research has indicated that nobiletin has a potential inhibitory effect on ovarian cancer (OV). However, the mechanism of action remains unclear. The OV A2780 cells were treated using nobiletin, cell viability was examined using a cell counting kit-8 experiment, and cell migration was examined with a wound healing experiment. Nobiletin targets were retrieved from target databases. Differentially expressed genes (DEG) and weighted gene co-expression network analysis (WGCNA) were conducted on GSE26712 (OV). The intersection of the critical genes for nobiletin's action on OV and gene enrichment and immune infiltration analyses were performed. The Cancer Genome Atlas-OV data and molecular docking helped validate the findings. After adding nobiletin, cell viability and migration significantly decreased (P < 0.01). A total of 88 nobiletin targets and 1288 DEG were identified. The intersection genes were enriched inflammatory response and response to hypoxia. The most related module obtained from WGCNA contained 414 genes (correlation coefficient = 0.77, P < 0.01). DPP4 and TXNIP were recognized as the hub genes. The abundance of macrophages M2 and mast cells activated significantly enhanced with increased DPP4 expression (P < 0.05). The binding energy between DPP4/TXNIP and nobiletin was - 7.012/ - 7.184 kcal/mol, forming 5/2 hydrogen bonds. Nobiletin effectively suppresses the viability and migration of OV A2780 cells. In this process, DPP4 and TXNIP are the key target, immune regulation, and oxidative stress playing significant roles.
Collapse
Affiliation(s)
- Xiuzhen He
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lu Dou
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Jie Wang
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lili Xia
- The Third Surgery, Chongqing City Wanzhou District Shanghai Hospital, Chongqing, 404120, China
| | - Jiawei Miao
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Yongbo Yan
- Pharmacy Department, The People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.
| |
Collapse
|
8
|
Wang M, Ding X, Fang X, Xu J, Chen Y, Qian Y, Zhang J, Yu D, Zhang X, Ma X, Zhu T, Gu J, Zhang X. Circ6834 suppresses non-small cell lung cancer progression by destabilizing ANHAK and regulating miR-873-5p/TXNIP axis. Mol Cancer 2024; 23:128. [PMID: 38890620 PMCID: PMC11184876 DOI: 10.1186/s12943-024-02038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in cancer progression and metastasis. However, the expression profiles and biological roles of circRNAs in non-small cell lung cancer (NSCLC) remain unclear. METHODS In this study, we identified a novel circRNA, hsa_circ_0006834 (termed circ6834), in NSCLC by RNA-seq and investigated the biological role of circ6834 in NSCLC progression in vitro and in vivo. Finally, the molecular mechanism of circ6834 was revealed by tagged RNA affinity purification (TRAP), western blot, RNA immunoprecipitation, dual luciferase reporter gene assays and rescue experiments. RESULTS Our results showed that circ6834 was downregulated in NSCLC tumor tissues and cell lines. Circ6834 overexpression inhibited NSCLC cell growth and metastasis both in vitro and in vivo, while circ6834 knockdown had the opposite effect. We found that TGF-β treatment decreased circ6834 expression, which was associated with the QKI reduction in NSCLC cells and circ6834 antagonized TGF-β-induced EMT and metastasis in NSCLC cells. Mechanistically, circ6834 bound to AHNAK protein, a key regulator of TGF-β/Smad signaling, and inhibited its stability by enhancing TRIM25-mediated ubiquitination and degradation. In addition, circ6834 acted as a miRNA sponge for miR-873-5p and upregulated TXNIP gene expression, which together inactivated the TGF-β/Smad signaling pathway in NSCLC cells. CONCLUSION In conclusion, circ6834 is a tumor-suppressive circRNA that inhibits NSCLC progression by forming a negative regulatory feedback loop with the TGF-β/Smad signaling pathway and represents a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoge Ding
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjian Fang
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Jing Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yanke Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiuqin Ma
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Zhou Q, Nguyen TTT, Mun JY, Siegelin MD, Greene LA. DPEP Inhibits Cancer Cell Glucose Uptake, Glycolysis and Survival by Upregulating Tumor Suppressor TXNIP. Cells 2024; 13:1025. [PMID: 38920655 PMCID: PMC11201471 DOI: 10.3390/cells13121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the potential for clinical application, their mechanisms of action are not fully understood. Here, we show that one such peptide, Dpep, compromises glucose uptake and glycolysis in a cell context-dependent manner (in about two-thirds of cancer lines assessed). These actions are dependent on induction of tumor suppressor TXNIP (thioredoxin-interacting protein) mRNA and protein. Knockdown studies show that TXNIP significantly contributes to apoptotic death in those cancer cells in which it is induced by Dpep. The metabolic actions of Dpep on glycolysis led us to explore combinations of Dpep with clinically approved drugs metformin and atovaquone that inhibit oxidative phosphorylation and that are in trials for cancer treatment. Dpep showed additive to synergistic activities in all lines tested. In summary, we find that Dpep induces TXNIP in a cell context-dependent manner that in turn suppresses glucose uptake and glycolysis and contributes to apoptotic death of a range of cancer cells.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; (Q.Z.); (T.T.T.N.); (J.-Y.M.); (M.D.S.)
| | - Trang Thi Thu Nguyen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; (Q.Z.); (T.T.T.N.); (J.-Y.M.); (M.D.S.)
- Ronald O. Perelman Department of Dermatology, Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Jeong-Yeon Mun
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; (Q.Z.); (T.T.T.N.); (J.-Y.M.); (M.D.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; (Q.Z.); (T.T.T.N.); (J.-Y.M.); (M.D.S.)
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; (Q.Z.); (T.T.T.N.); (J.-Y.M.); (M.D.S.)
| |
Collapse
|
10
|
Chen J, Duan S, Wang Y, Ling Y, Hou X, Zhang S, Liu X, Long X, Lan J, Zhou M, Xu H, Zheng H, Zhou J. MYG1 drives glycolysis and colorectal cancer development through nuclear-mitochondrial collaboration. Nat Commun 2024; 15:4969. [PMID: 38862489 PMCID: PMC11167044 DOI: 10.1038/s41467-024-49221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic remodeling is a strategy for tumor survival under stress. However, the molecular mechanisms during the metabolic remodeling of colorectal cancer (CRC) remain unclear. Melanocyte proliferating gene 1 (MYG1) is a 3'-5' RNA exonuclease and plays a key role in mitochondrial functions. Here, we uncover that MYG1 expression is upregulated in CRC progression and highly expressed MYG1 promotes glycolysis and CRC progression independent of its exonuclease activity. Mechanistically, nuclear MYG1 recruits HSP90/GSK3β complex to promote PKM2 phosphorylation, increasing its stability. PKM2 transcriptionally activates MYC and promotes MYC-medicated glycolysis. Conversely, c-Myc also transcriptionally upregulates MYG1, driving the progression of CRC. Meanwhile, mitochondrial MYG1 on the one hand inhibits oxidative phosphorylation (OXPHOS), and on the other hand blocks the release of Cyt c from mitochondria and inhibits cell apoptosis. Clinically, patients with KRAS mutation show high expression of MYG1, indicating a high level of glycolysis and a poor prognosis. Targeting MYG1 may disturb metabolic balance of CRC and serve as a potential target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulu Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuping Ling
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaotao Hou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sijing Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xunhua Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Long
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Miao Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huimeng Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haoxuan Zheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Wang Z, Zhang C, Guo J, Yang Y, Li P, Wang Z, Liu S, Zhang L, Zeng X, Zhai J, Wang X, Zhao Q, Chen Z, Zhu P, He Q. CRISPR-Cas9 screening identifies INTS3 as an anti-apoptotic RNA-binding protein and therapeutic target for colorectal cancer. iScience 2024; 27:109676. [PMID: 38665208 PMCID: PMC11043890 DOI: 10.1016/j.isci.2024.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Growing evidences indicate that RNA-binding proteins (RBPs) play critical roles in regulating the RNA splicing, polyadenylation, stability, localization, translation, and turnover. Abnormal expression of RBPs can promote tumorigenesis. Here, we performed a CRISPR screen using an RBP pooled CRISPR knockout library and identified 27 potential RBPs with role in supporting colorectal cancer (CRC) survival. We found that the deletion/depletion of INTS3 triggered apoptosis in CRC. The in vitro experiments and RNA sequencing revealed that INTS3 destabilized pro-apoptotic gene transcripts and contributed to the survival of CRC cells. INTS3 loss delayed CRC cells growth in vivo. Furthermore, delivery of DOTAP/cholesterol-mshINTS3 nanoparticles inhibited CRC tumor growth. Collectively, our work highlights the role of INTS3 in supporting CRC survival and provides several novel therapeutic targets for treatment.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cheng Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jing Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yanmei Yang
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peixian Li
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ziyan Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoyu Zeng
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jincheng Zhai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xinyong Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qi Zhao
- Department of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
12
|
Fei Q, Jin K, Shi S, Li T, Guo D, Lin M, Yu X, Wu W, Ye L. Suppression of pancreatic cancer proliferation through TXNIP-mediated inhibition of the MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:513-524. [PMID: 38229544 PMCID: PMC11094629 DOI: 10.3724/abbs.2023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qinglin Fei
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Saimeng Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Tianjiao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Duancheng Guo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Mengxiong Lin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Longyun Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
13
|
Ahn SH, Jang SK, Kim YJ, Kim G, Park KS, Park IC, Jin HO. Amino acid deprivation induces TXNIP expression by NRF2 downregulation. IUBMB Life 2024; 76:212-222. [PMID: 38054509 DOI: 10.1002/iub.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Thioredoxin-interacting protein (TXNIP) is sensitive to oxidative stress and is involved in the pathogenesis of various metabolic, cardiovascular, and neurodegenerative disorders. Therefore, several studies have suggested that TXNIP is a promising therapeutic target for several diseases, particularly cancer and diabetes. However, the regulation of TXNIP expression under amino acid (AA)-restricted conditions is not well understood. In the present study, we demonstrated that TXNIP expression was promoted by the deprivation of AAs, especially arginine, glutamine, lysine, and methionine, in non-small cell lung cancer (NSCLC) cells. Interestingly, we determined that increased TXNIP expression induced by AA deprivation was associated with nuclear factor erythroid 2-related factor 2 (NRF2) downregulation, but not with activating transcription factor 4 (ATF4) activation. Furthermore, N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), suppressed TXNIP expression in NSCLC cells deprived of AA. Collectively, the induction of TXNIP expression by AA deprivation was mediated by ROS production, potentially through NRF2 downregulation. Our findings suggest that TXNIP expression may be associated with the redox homeostasis of AA metabolism and provide a possible rationale for a therapeutic strategy to treat cancer with AA restriction.
Collapse
Affiliation(s)
- Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
14
|
Lee KT, Pranoto IKA, Kim SY, Choi HJ, To NB, Chae H, Lee JY, Kim JE, Kwon YV, Nam JW. Comparative interactome analysis of α-arrestin families in human and Drosophila. eLife 2024; 12:RP88328. [PMID: 38270169 PMCID: PMC10945707 DOI: 10.7554/elife.88328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike β-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.
Collapse
Affiliation(s)
- Kyung-Tae Lee
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
| | - Inez KA Pranoto
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hee-Joo Choi
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Biomedical Research Institute, Hanyang UniversitySeoulRepublic of Korea
| | - Ngoc Bao To
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hansong Chae
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Jeong-Yeon Lee
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Young V Kwon
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
| |
Collapse
|
15
|
Liang S, Bai YM, Zhou B. Identification of key ferroptosis genes and mechanisms associated with breast cancer using bioinformatics, machine learning, and experimental validation. Aging (Albany NY) 2024; 16:1781-1795. [PMID: 38244591 PMCID: PMC10866432 DOI: 10.18632/aging.205459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE The aim of this paper is to mine ferroptosis genes associated with breast cancer based on bioinformatics and machine learning, and to perform in vitro functional validation. METHODS Transcriptional and clinical data of breast cancer patients were downloaded from TCGA database and ferroptosis-related genes were obtained from FerrDB database. Significant differentially expressed ferroptosis-related genes between breast cancer tissues and adjacent normal tissues were selected. Functional enrichment analysis was performed on these differentially expressed genes. Four machine learning algorithms were used to identify key ferroptosis-related genes associated with breast cancer. A multi-factor Cox regression analysis was used to construct a risk score model for the key ferroptosis-related genes. The accuracy of the risk score model was validated using Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis. Finally, cell experiments were conducted to validate the biological functions of the key ferroptosis-related genes in breast cancer cells MCF-7, further confirming the accuracy of the analysis results. RESULTS A total of 52 significantly differentially expressed ferroptosis-related genes were identified, which were mainly enriched in cancer pathways, central carbon metabolism in cancer, HIF-1 signaling pathway, and NOD-like receptor signaling pathway. Three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) closely related to the occurrence, development, and prognosis of breast cancer were identified using machine learning algorithms. The risk model constructed using these three key ferroptosis-related genes showed that the prognosis of the low-risk group was better than that of the high-risk group (P < 0.001). The ROC curve analysis showed that the prognosis model had good predictive ability. In vitro experiments validated the reliability of the bioinformatics and machine learning screening results. Downregulation of SLC2A1 expression promoted ferroptosis and suppressed tumor cell growth in breast cancer cells (P < 0.01), while overexpression of TXNIP or ATF3 had the same effect (P < 0.01). CONCLUSION This study identified three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) associated with breast cancer, which are closely related to the occurrence, development, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan 750001, China
| | - Yan-Ming Bai
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
16
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
17
|
Zhou Q, Greene LA. Dpep Inhibits Cancer Cell Growth and Survival via Shared and Context-Dependent Transcriptome Perturbations. Cancers (Basel) 2023; 15:5318. [PMID: 38001578 PMCID: PMC10669862 DOI: 10.3390/cancers15225318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Dpep is a cell-penetrating peptide targeting transcription factors ATF5, CEBPB, and CEBPD, and that selectively promotes the apoptotic death of multiple tumor cell types in vitro and in vivo. As such, it is a potential therapeutic. To better understand its mechanism of action, we used PLATE-seq to compare the transcriptomes of six cancer cell lines of diverse origins before and after Dpep exposure. This revealed a context-dependent pattern of regulated genes that was unique to each line, but that exhibited a number of elements that were shared with other lines. This included the upregulation of pro-apoptotic genes and tumor suppressors as well as the enrichment of genes associated with responses to hypoxia and interferons. Downregulated transcripts included oncogenes and dependency genes, as well as enriched genes associated with different phases of the cell cycle and with DNA repair. In each case, such changes have the potential to lie upstream of apoptotic cell death. We also detected the regulation of unique as well as shared sets of transcription factors in each line, suggesting that Dpep may initiate a cascade of transcriptional responses that culminate in cancer cell death. Such death thus appears to reflect context-dependent, yet shared, disruption of multiple cellular pathways as well as of individual survival-relevant genes.
Collapse
Affiliation(s)
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| |
Collapse
|
18
|
Angarola BL, Sharma S, Katiyar N, Gu Kang H, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukow O. Comprehensive single cell aging atlas of mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563147. [PMID: 37961129 PMCID: PMC10634680 DOI: 10.1101/2023.10.20.563147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| |
Collapse
|
19
|
Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal P, Alexandria S, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma M, Sisk R, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg S, Ho K, Ley K, Giannarelli C, Thorp EB, Feinstein MJ. Single-cell profiling reveals inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight 2023; 8:e171359. [PMID: 37471165 PMCID: PMC10544225 DOI: 10.1172/jci.insight.171359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Collapse
Affiliation(s)
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine
| | | | | | | | - Inhyeok Lee
- Division of Cardiology, Department of Medicine
| | - Kristofor Glinton
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Shaina Alexandria
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | - Ching Man Wai
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ricardo Tellez
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Xinkun Wang
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Matthew Schipma
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ryan Sisk
- Division of Cardiology, Department of Medicine
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, California, USA
| | | | | | - Donald M. Lloyd-Jones
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | | | | | - Karen Ho
- Division of Vascular Surgery, NUFSM, Chicago, Illinois, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta, Georgia, USA
| | - Chiara Giannarelli
- Department of Medicine and
- Department of Pathology, New York University, New York, New York, USA
| | | | - Matthew J. Feinstein
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| |
Collapse
|
20
|
Schiebout C, Lust H, Huang Y, Frost HR. Cell type-specific interaction analysis using doublets in scRNA-seq. BIOINFORMATICS ADVANCES 2023; 3:vbad120. [PMID: 37745004 PMCID: PMC10516525 DOI: 10.1093/bioadv/vbad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Summary Doublets are usually considered an unwanted artifact of single-cell RNA-sequencing (scRNA-seq) and are only identified in datasets for the sake of removal. However, if cells have a juxtacrine interaction with one another in situ and maintain this association through an scRNA-seq processing pipeline that only partially dissociates the tissue, these doublets can provide meaningful biological information regarding the intercellular signals and processes occurring in the analyzed tissue. This is especially true for cases such as the immune compartment of the tumor microenvironment, where the frequency and the type of immune cell juxtacrine interactions can be a prognostic indicator. We developed Cell type-specific Interaction Analysis using Doublets in scRNA-seq (CIcADA) as a pipeline for identifying and analyzing biologically meaningful doublets in scRNA-seq data. CIcADA identifies putative doublets using multi-label cell type scores and characterizes interaction dynamics through a comparison against synthetic doublets of the same cell type composition. In performing CIcADA on several scRNA-seq tumor datasets, we found that the identified doublets were consistently upregulating expression of immune response genes. Availability and implementation An R package implementing the CIcADA method is in development and will be released on CRAN, but for now it is available at https://github.com/schiebout/CAMML.
Collapse
Affiliation(s)
- Courtney Schiebout
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH 03755, United States
| | - Hannah Lust
- MDI Biological Laboratory, Bar Harbor, ME 04609, United States
| | - Yina Huang
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, United States
| | - H Robert Frost
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH 03755, United States
| |
Collapse
|
21
|
Lu Y, Liu Y, Lan J, Chan YT, Feng Z, Huang L, Wang N, Pan W, Feng Y. Thioredoxin-interacting protein-activated intracellular potassium deprivation mediates the anti-tumour effect of a novel histone acetylation inhibitor HL23, a fangchinoline derivative, in human hepatocellular carcinoma. J Adv Res 2023; 51:181-196. [PMID: 36351536 PMCID: PMC10491973 DOI: 10.1016/j.jare.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Hyperactivated histone deacetylases (HDACs) act as epigenetic repressors on gene transcription and are frequently observed in human hepatocellular carcinoma (HCC). Although multiple pharmacological HDAC inhibitors (HDACis) have been developed, none is available in human HCC. OBJECTIVES To investigate the pharmacological effects of a fangchinoline derivative HL23, as a novel HDACi and its molecular mechanisms through TXNIP-mediated potassium deprivation in HCC. METHODS Both in vitro assays and orthotopic HCC mouse models were used to investigate the effects of HL23 in this study. The inhibitory activity of HL23 on HDACs was evaluated by in silico studies and cellular assays. Chromatin immunoprecipitation (ChIP) was conducted to confirm the regulation of HL23 on acetylation mark at TXNIP promoter. Genome-wide transcriptome analysis together with bioinformatic analysis were conducted to identify the regulatory mechanisms of HL23. The clinical significance of TXNIP and HDACs was evaluated by analysing publicly available database. RESULTS HL23 exerted compatible HDACs inhibition potency as Vorinostat (SAHA) while had superior anti-HCC effects than SAHA and sorafenib. Both in vitro and in vivo studies showed HL23 significantly suppressed HCC progression and metastasis. HL23 significantly upregulated TXNIP expression via regulating acetylation mark (H3K9ac) at TXNIP promoter. TXNIP was responsible for anti-HCC activity of HL23 through mediating potassium channel activity. HDAC1 was predicted to be the target of HL23 and HDAC1lowTXNIPhigh could jointly predict promising survival outcome of patients with HCC. Combination treatment with HL23 and sorafenib could significantly enhance sorafenib efficacy. CONCLUSION Our study identified HL23 as a novel HDACi through enhancing acetylation at TXNIP promoter to trigger TXNIP-dependent potassium deprivation and enhance sorafenib efficacy in HCC treatment.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China; Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lan Huang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
22
|
Chen F, Chai YH, Zhang F, Liu YQ, Zhang Y, Shi YJ, Zhang JM, Leng YF. Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of salidroside on intestine ischemia reperfusion. Biosci Rep 2023; 43:BSR20230539. [PMID: 37530723 PMCID: PMC10462912 DOI: 10.1042/bsr20230539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salidroside (SAL), a phenolic natural product present in Rhodiola rosea, are commonly used in the treatment of various ischemic-hypoxic diseases, including intestinal ischemia-reperfusion (IR) injury. However, their efficacy and potential mechanisms in the treatment of intestinal IR injury have not been investigated. OBJECTIVE The objective of the present study is to investigate the pharmacological mechanism of action of SAL on intestinal IR injury using a network pharmacology approach combined with experimental validation. METHODS In the present study, we used the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and analysis platform and Comparative Toxicogenomics Database (CTD) to predict possible target genes of SAL, collected relevant target genes of intestinal IR injury from GeneCards and DisGenet websites, and collected summary data to screen common target genes. Then, the protein-protein interaction (PPI) target network was constructed and analyzed by STRING database and Cytoscape 3.8.2 with the above intersecting genes. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed and the component-target-pathway network was constructed, followed by the use of molecular docking and molecular dynamic simulation to verify the possible binding conformation between SAL and candidate targets to further explore the potential targets of SAL in the treatment of intestinal IR injury. Finally, an in vivo model of mouse superior mesenteric artery ligation was established to assess the anti-intestinal IR injury effect of SAL by assessing histopathological changes in mouse small intestine by HE staining, detecting inflammatory factor expression by ELISA kit, and detecting the expression of key protein targets by Western blotting. RESULTS A total of 166 SAL target genes and 1740 disease-related targets were retrieved, and 88 overlapping proteins were obtained as potential therapeutic targets. The pathway enrichment analysis revealed that the pharmacological effects of SAL on intestinal IR injury were anti-hypoxic, anti-inflammatory and metabolic pathway related, and the molecular docking and molecular dynamic simulation results showed that the core bioactive components had good binding affinity for TXNIP and AMPK, and the immunoblotting results indicated that the expression levels of TXNIP and AMPK in the small intestinal tissues of mice in the drug-treated group compared with the model group were significantly changed. CONCLUSION SAL may target AMPK and TXNIP domains to act as a therapeutic agent for intestinal IR. These findings comprehensively reveal the potential therapeutic targets for SAL against intestinal IR and provide theoretical basis for the clinical application of SAL in the treatment of intestinal IR.
Collapse
Affiliation(s)
- Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yi-hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Fa Zhang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yong-qiang Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yan Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Ya-jing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Jian-ming Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yu-fang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| |
Collapse
|
23
|
Wang B, Yu X, Chen T, Qiu C, Lu W, Zheng X, Wu Z. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:473-484. [PMID: 37643981 PMCID: PMC10495250 DOI: 10.3724/zdxbyxb-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To investigate the role and mechanism of circRNA-SR-related CTD associated factor 8 (SCAF8) in regulating endothelial cell pyroptosis in high glucose environment. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and divided into six groups. The normal control group and high glucose control group were cultured in cell culture medium with 5 and 33 mmol/L glucose, respectively. The RNA control group, circRNA-SCAF8 inhibition group, miR-93-5p overexpression group and miR-93-5p inhibition group were added with non-functional siRNA, circRNA-SCAF8 inhibitor, miR-93-5p overexpression molecule and miR-93-5p inhibitor in high glucose environment, respectively. Cell viability and pyroptosis were detected by cell counting kit-8 (CCK-8) assay, flow cytometry and Hoechst 33342/propidium iodide fluorescence double staining. Western blotting and enzyme-linked immunosorbent assay were used to detect the expression of pyroptosis-related factors including apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartic acid specific protease-1 (caspase-1) and Gasdermin D (GSDMD), NOD like receptor protein 3 (NLRP-3), thioredoxin interacting proteins (TXNIP), IL-18 and IL-1β. The expression of circRNA-SCAF8, miR-93-5p and TXNIP was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fluorescence in situ hybridization (FISH) was used to locate circRNA-SCAF8 and miR-93-5p. Dual luciferase assay was used to verify the targeted regulatory relationship between miR-93-5p and upstream and downstream molecules. RESULTS Compared with the RNA control group, the cell survival rate of circRNA-SCAF8 inhibition group and miR-93-5p overexpression group increased (both P<0.01), the pyroptosis decreased (both P<0.01), and the expressions of pyroptosis-related factors such as TXNIP, NLRP-3, caspase-1, GSDMD, ASC, IL-18 and IL-1β were significantly decreased (all P<0.05). The expression of miR-93-5p was significantly increased after inhibition of circRNA-SCAF8 (P<0.01), and the expression of circRNA-SCAF8 tended to decrease after overexpression of miR-93-5p, but with no statistical significance (P>0.05). Dual luciferase assay showed that miR-93-5p downre-gulated circRNA-SCAF8 expression by binding to the 3 ´ UTR region of circRNA-SCAF8, and miR-93-5p downregulated TXNIP expression by binding to the 3 ´ UTR region of TXNIP. FISH showed that circRNA-SCAF8 and miR-93-5p were both located in the cytoplasm and were highly associated in the cells. qRT-PCR showed that the relative expression of TXNIP increased or decreased after overexpression or inhibition of miR-93-5p compared with the RNA control group, respectively (both P<0.05), suggesting that miR-93-5p could regulate TXNIP gene expression. CONCLUSIONS CircRNA-SCAF8/miR-93-5p/TXNIP axis is involved in the regulation of pyroptosis in HUVECs under high glucose.
Collapse
Affiliation(s)
- Bing Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinyu Yu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tianchi Chen
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenyang Qiu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Lu
- Department of Vascular Surgery, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou 324000, Zhejiang Province, China
| | - Xiangtao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Ziheng Wu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
24
|
Arratia F, Fierro C, Blanco A, Fuentes S, Nahuelquen D, Montecino M, Rojas A, Aguilar R. Selective Concurrence of the Long Non-Coding RNA MALAT1 and the Polycomb Repressive Complex 2 to Promoter Regions of Active Genes in MCF7 Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:4735-4748. [PMID: 37367050 DOI: 10.3390/cimb45060301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
In cancer cells, the long non-coding RNA (lncRNA) MALAT1 has arisen as a key partner for the Polycomb Repressive Complex 2 (PRC2), an epigenetic modifier. However, it is unknown whether this partnership occurs genome-wide at the chromatin level, as most of the studies focus on single genes that are usually repressed. Due to the genomic binding properties of both macromolecules, we wondered whether there are binding sites shared by PRC2 and MALAT1. Using public genome-binding datasets for PRC2 and MALAT1 derived from independent ChIP- and CHART-seq experiments performed with the breast cancer cell line MCF7, we searched for regions containing PRC2 and MALAT1 overlapping peaks. Peak calls for each molecule were performed using MACS2 and then overlapping peaks were identified by bedtools intersect. Using this approach, we identified 1293 genomic sites where PRC2 and MALAT1 concur. Interestingly, 54.75% of those sites are within gene promoter regions (<3000 bases from the TSS). These analyses were also linked with the transcription profiles of MCF7 cells, obtained from public RNA-seq data. Hence, it is suggested that MALAT1 and PRC2 can concomitantly bind to promoters of actively-transcribed genes in MCF7 cells. Gene ontology analyses revealed an enrichment of genes related to categories including cancer malignancy and epigenetic regulation. Thus, by re-visiting occupancy and transcriptomic data, we identified a key gene subset controlled by the collaboration of MALAT1 and PRC2.
Collapse
Affiliation(s)
- Felipe Arratia
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Cristopher Fierro
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Alejandro Blanco
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Sebastian Fuentes
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Daniela Nahuelquen
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| | - Adriana Rojas
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
25
|
Ahn B. The Function of MondoA and ChREBP Nutrient-Sensing Factors in Metabolic Disease. Int J Mol Sci 2023; 24:ijms24108811. [PMID: 37240157 DOI: 10.3390/ijms24108811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a major global public health concern associated with an increased risk of many health problems, including type 2 diabetes, heart disease, stroke, and some types of cancer. Obesity is also a critical factor in the development of insulin resistance and type 2 diabetes. Insulin resistance is associated with metabolic inflexibility, which interferes with the body's ability to switch from free fatty acids to carbohydrate substrates, as well as with the ectopic accumulation of triglycerides in non-adipose tissue, such as that of skeletal muscle, the liver, heart, and pancreas. Recent studies have demonstrated that MondoA (MLX-interacting protein or MLXIP) and the carbohydrate response element-binding protein (ChREBP, also known as MLXIPL and MondoB) play crucial roles in the regulation of nutrient metabolism and energy homeostasis in the body. This review summarizes recent advances in elucidating the function of MondoA and ChREBP in insulin resistance and related pathological conditions. This review provides an overview of the mechanisms by which MondoA and ChREBP transcription factors regulate glucose and lipid metabolism in metabolically active organs. Understanding the underlying mechanism of MondoA and ChREBP in insulin resistance and obesity can foster the development of new therapeutic strategies for treating metabolic diseases.
Collapse
Affiliation(s)
- Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
26
|
Transcriptomic Profile of Canine Mammary Ductal Carcinoma. Int J Mol Sci 2023; 24:ijms24065212. [PMID: 36982287 PMCID: PMC10049542 DOI: 10.3390/ijms24065212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Dogs can be excellent models for spontaneous studies about breast cancers, presenting similarities in clinical behavior and molecular pathways of the disease. Thus, analyses of the canine transcriptome can identify deregulated genes and pathways, contributing to the identification of biomarkers and new therapeutic targets, benefiting humans and animals. In this context, this study aimed to determine the transcriptional profile of canine mammary ductal carcinoma and contribute to the clarification of the importance of deregulated molecules in the molecular pathways involved in the disease. Therefore, we used mammary ductal carcinoma tissue samples and non-tumor mammary tissue from the radical mastectomy of six female dogs. Sequencing was performed on the NextSeq-500 System platform. A comparison of carcinoma tissue and normal tissue revealed 633 downregulated and 573 upregulated genes, which were able to differentiate the groups by principal component analysis. Gene ontology analysis indicated that inflammatory, cell differentiation and adhesion, and extracellular matrix maintenance pathways were mainly deregulated in this series. The main differentially expressed genes observed in this research can indicate greater disease aggressiveness and worse prognosis. Finally, the study of the canine transcriptome indicates that it is an excellent model to generate information relevant to oncology in both species.
Collapse
|
27
|
Schiebout C, Lust HE, Huang YH, Frost HR. Cell type-specific Interaction Analysis using Doublets in scRNA-seq (CIcADA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528326. [PMID: 36824707 PMCID: PMC9949061 DOI: 10.1101/2023.02.13.528326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Motivation Doublets are usually considered an unwanted artifact of single-cell RNA-sequencing (scRNA-seq) and are only identified in datasets for the sake of removal. However, if cells have a juxtacrine attachment to one another in situ and maintain this association through an scRNA-seq processing pipeline that only partially dissociates the tissue, these doublets can provide meaningful biological information regarding the interactions and cell processes occurring in the analyzed tissue. This is especially true for cases such as the immune compartment of the tumor microenvironment, where the frequency and type of immune cell juxtacrine interactions can be a prognostic indicator. Results We developed Cell type-specific Interaction Analysis using Doublets in scRNA-seq (CIcADA) as a pipeline for identifying and analyzing biological doublets in scRNA-seq data. CIcADA identifies putative doublets using multi-label cell type scores and characterizes interaction dynamics through a comparison against synthetic doublets of the same cell type composition. In performing CIcADA on several scRNA-seq tumor datasets, we found that the identified doublets were consistently upregulating expression of immune response genes. Contact Courtney.T.Schiebout.GR@Dartmouth.edu , Hildreth.R.Frost@Dartmouth.edu.
Collapse
Affiliation(s)
- Courtney Schiebout
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH USA
| | | | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH USA
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH USA
| |
Collapse
|
28
|
Hukkamlı B, Dağdelen B, Sönmez Aydın F, Budak H. Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Cell Biochem Biophys 2023:10.1007/s12013-023-01126-3. [PMID: 36773183 DOI: 10.1007/s12013-023-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1 protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by inflammation and inflammation-induced oxidative stress.
Collapse
Affiliation(s)
- Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, 57200, Türkiye
| | - Burak Dağdelen
- Department of Medical Biology, Faculty of Medicine, Selçuk University, Konya, 42250, Türkiye
| | - Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School, Doğuş University, Istanbul, 34775, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
29
|
Dagdeviren S, Lee RT, Wu N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid Redox Signal 2023; 38:442-460. [PMID: 35754346 PMCID: PMC9968628 DOI: 10.1089/ars.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Significance: Thioredoxin interacting protein (TXNIP) is a member of the arrestin fold superfamily with important cellular functions, including cellular transport, mitochondrial energy generation, and protein cycling. It is the only arrestin-domain protein known to covalently bind to thioredoxin and plays roles in glucose metabolism, inflammation, apoptosis, and cancer. Recent Advances: The crystal structure of the TXNIP-thioredoxin complex provided details about this fascinating interaction. Recent studies showed that TXNIP is induced by endoplasmic reticulum (ER) stress, activates NLR family pyrin domain containing 3 (NLRP3) inflammasomes, and can regulate glucose transport into cells. The tumor suppressor role of TXNIP in various cancer types and the role of TXNIP in fructose absorption are now described. Critical Issues: The influence of TXNIP on redox state is more complex than its interaction with thioredoxin. Future Directions: It is incompletely understood which functions of TXNIP are thioredoxin-dependent. It is also unclear whether TXNIP binding can inhibit glucose transporters without endocytosis. TXNIP-regulated control of ER stress should also be investigated further. Antioxid. Redox Signal. 38, 442-460.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ning Wu
- Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
30
|
Poverennaya EV, Pyatnitskiy MA, Dolgalev GV, Arzumanian VA, Kiseleva OI, Kurbatov IY, Kurbatov LK, Vakhrushev IV, Romashin DD, Kim YS, Ponomarenko EA. Exploiting Multi-Omics Profiling and Systems Biology to Investigate Functions of TOMM34. BIOLOGY 2023; 12:198. [PMID: 36829477 PMCID: PMC9952762 DOI: 10.3390/biology12020198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated. Here, we report genes and pathways associated with TOMM34, Translocase of Outer Mitochondrial Membrane, which plays role in the mitochondrial protein import as a part of cytosolic complex together with Hsp70/Hsp90 and is upregulated in various cancers. We identified genes, proteins, and metabolites altered in TOMM34-/- HepG2 cells. To our knowledge, this is the first attempt to study the functional capacity of TOMM34 using a multi-omics strategy. We demonstrate that TOMM34 affects various processes including oxidative phosphorylation, citric acid cycle, metabolism of purine, and several amino acids. Besides the analysis of already known pathways, we utilized de novo network enrichment algorithm to extract novel perturbed subnetworks, thus obtaining evidence that TOMM34 potentially plays role in several other cellular processes, including NOTCH-, MAPK-, and STAT3-signaling. Collectively, our findings provide new insights into TOMM34's cellular functions.
Collapse
Affiliation(s)
| | - Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Faculty Of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | | | | | | | | | | | | | | | - Yan S. Kim
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
31
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
32
|
Persyn E, Wahlen S, Kiekens L, Taveirne S, Van Loocke W, Van Ammel E, Van Nieuwerburgh F, Taghon T, Vandekerckhove B, Van Vlierberghe P, Leclercq G. TXNIP Promotes Human NK Cell Development but Is Dispensable for NK Cell Functionality. Int J Mol Sci 2022; 23:ijms231911345. [PMID: 36232644 PMCID: PMC9570291 DOI: 10.3390/ijms231911345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
The ability of natural killer (NK) cells to kill tumor cells without prior sensitization makes them a rising player in immunotherapy. Increased understanding of the development and functioning of NK cells will improve their clinical utilization. As opposed to murine NK cell development, human NK cell development is still less understood. Here, we studied the role of thioredoxin-interacting protein (TXNIP) in human NK cell differentiation by stable TXNIP knockdown or overexpression in cord blood hematopoietic stem cells, followed by in vitro NK cell differentiation. TXNIP overexpression only had marginal effects, indicating that endogenous TXNIP levels are sufficient in this process. TXNIP knockdown, however, reduced proliferation of early differentiation stages and greatly decreased NK cell numbers. Transcriptome analysis and experimental confirmation showed that reduced protein synthesis upon TXNIP knockdown likely caused this low proliferation. Contrary to its profound effects on the early differentiation stages, TXNIP knockdown led to limited alterations in NK cell phenotype, and it had no effect on NK cell cytotoxicity or cytokine production. Thus, TXNIP promotes human NK cell differentiation by affecting protein synthesis and proliferation of early NK cell differentiation stages, but it is redundant for functional NK cell maturation.
Collapse
Affiliation(s)
- Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-37-34
| |
Collapse
|
33
|
Kim YH, Jo DS, Park NY, Bae JE, Kim JB, Lee HJ, Kim SH, Kim SH, Lee S, Son M, Park K, Jeong K, Yeom E, Cho DH. Inhibition of BRD4 Promotes Pexophagy by Increasing ROS and ATM Activation. Cells 2022; 11:cells11182839. [PMID: 36139416 PMCID: PMC9497081 DOI: 10.3390/cells11182839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
Although autophagy regulates the quality and quantity of cellular compartments, the regulatory mechanisms underlying peroxisomal autophagy (pexophagy) remain largely unknown. In this study, we identified several BRD4 inhibitors, including molibresib, a novel pexophagy inducer, via chemical library screening. Treatment with molibresib promotes loss of peroxisomes selectively, but not mitochondria, ER, or Golgi apparatus in HeLa cells. Consistently, depletion of BRD4 expression also induced pexophagy in RPE cells. In addition, the inhibition of BRD4 by molibresib increased autophagic degradation of peroxisome ATG7-dependency. We further found that molibresib produced reactive oxygen species (ROS), which potentiates ATM activation. Inhibition of ROS or ATM suppressed the loss of peroxisomes in molibresib-treated cells. Taken together, our data suggest that inhibition of BRD4 promotes pexophagy by increasing ROS and ATM activation.
Collapse
Affiliation(s)
- Yong Hwan Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Doo Sin Jo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Na Yeon Park
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Joon Bum Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Ha Jung Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - So Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Seong Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Sunwoo Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Mikyung Son
- Orgasis Corp., Suwon 16229, Gyeonggi-do, Korea
| | - Kyuhee Park
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Gyeonggi-do, Korea
| | - Kwiwan Jeong
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Gyeonggi-do, Korea
| | - Eunbyul Yeom
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- Orgasis Corp., Suwon 16229, Gyeonggi-do, Korea
- Correspondence: ; Tel.: +82-53-950-5382
| |
Collapse
|
34
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
35
|
Liu P, Yang F, Zhang L, Hu Y, Chen B, Wang J, Su L, Wu M, Chen W. Emerging role of different DNA methyltransferases in the pathogenesis of cancer. Front Pharmacol 2022; 13:958146. [PMID: 36091786 PMCID: PMC9453300 DOI: 10.3389/fphar.2022.958146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is one of the most essential epigenetic mechanisms to regulate gene expression. DNA methyltransferases (DNMTs) play a vital role in DNA methylation in the genome. In mammals, DNMTs act with some elements to regulate the dynamic DNA methylation patterns of embryonic and adult cells. Conversely, the aberrant function of DNMTs is frequently the hallmark in judging cancer, including total hypomethylation and partial hypermethylation of tumor suppressor genes (TSGs), which improve the malignancy of tumors, aggravate the ailment for patients, and significantly exacerbate the difficulty of cancer therapy. Since DNA methylation is reversible, currently, DNMTs are viewed as an important epigenetic target for drug development. However, the impression of DNMTs on cancers is still controversial, and therapeutic methods targeting DNMTs remain under exploration. This review mainly summarizes the relationship between the main DNMTs and cancers as well as regulatory mechanisms and clinical applications of DNMTs in cancer and highlights several forthcoming strategies for targeting DNMTs.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Human Resources, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lizhi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Su
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingyue Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
36
|
Yuan Y, Liu Q, Wu Z, Zhong W, Lin Z, Luo W. TXNIP inhibits the progression of osteosarcoma through DDIT4-mediated mTORC1 suppression. Am J Cancer Res 2022; 12:3760-3779. [PMID: 36119812 PMCID: PMC9442022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in adolescents and children. The pathogenesis of this disease is complex and the mechanisms involved have not been fully elucidated. Thioredoxin-interacting protein (TXNIP), as a member of the α-rhodopsin inhibitory protein family, can combine with thioredoxin to inhibit its antioxidant function. This process inhibits glucose absorption and metabolic rearrangement necessary for the regulation of cellular growth. In recent years, TXNIP has emerged as a new candidate target for tumors. However, the biological function and role of TXNIP in OS remains unclear. This study confirmed the low expression of TXNIP in OS tissues and cells, which was significantly related to the poor survival rate and clinical characteristics of patients with OS. Various cell phenotype experiments have shown that TXNIP inhibits the proliferation, migration, and invasion of OS cells, and promotes their apoptosis. Further studies found that the tumor suppressor effect of TXNIP was mediated by upregulating DNA damage-inducible transcript 4 (DDIT4) and inhibiting the phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) downstream substrate S6. Based on the above, our study explored the key role of TXNIP/DDIT4/mTORC1 suppression as a regulatory axis in the progression of OS, and laid the foundation for precise targeted therapy for OS.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalChangsha, Hunan, P. R. China
| |
Collapse
|
37
|
Loh JK, Wang ML, Cheong SK, Tsai FT, Huang SH, Wu JR, Yang YP, Chiou SH, Ong AHK. The study of cancer cell in stromal environment through induced pluripotent stem cell-derived mesenchymal stem cells. J Chin Med Assoc 2022; 85:821-830. [PMID: 35666590 DOI: 10.1097/jcma.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The development of mesenchymal stem cells (MSCs) has gained reputation from its therapeutic potential in stem cell regeneration, anti-inflammation, tumor suppression, and drug delivery treatment. Previous studies have shown MSCs have both promoting and suppressing effects against cancer cells. While the limitation of obtaining a large quantity of homologous MSCs for studies and treatment remains a challenge, an alternative approach involving the production of MSCs derived from induced pluripotent stem cells (iPSCs; induced MSCs [iMSCs]) may be a promising prospect given its ability to undergo prolonged passage and with similar therapeutic profiles as that of their MSC counterparts. However, the influence of iMSC in the interaction of cancer cells remains to be explored as such studies are not well established. In this study, we aim to differentiate iPSCs into MSC-like cells as a potential substitute for adult MSCs and evaluate its effect on non-small-cell lung cancer (NSCLC). METHODS iMSCs were derived from iPSCs and validated with reference to the International Society of Cellular Therapy guidelines on MSC criteria. To create a stromal environment, the conditioned medium (CM) of iMSCs was harvested and applied for coculturing of NSCLC of H1975 at different concentrations. The H1975 was then harvested for RNA extraction and subjected to next-generation sequencing (NGS) for analysis. RESULTS The morphology of iMSCs-CM-treated H1975 was different from an untreated H1975. Our NGS data suggest the occurrence of apoptotic events and the presence of cytokines from H1975's RNA that are treated with iMSCs-CM. CONCLUSION Our results have shown that iMSCs may suppress the growth of H1975 by releasing proapoptotic cytokines into coculture media. Using iPSC-derived MSC models allows a deeper study of tumor cross talk between MSC and cancer cells that can be applied for potential future cancer therapy.
Collapse
Affiliation(s)
- Jit-Kai Loh
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shu-Huei Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
38
|
Colorectal Cancer Cell Differentiation Is Dependent on the Repression of Aerobic Glycolysis by NDRG2-TXNIP Axis. Dig Dis Sci 2022; 67:3763-3772. [PMID: 34373985 DOI: 10.1007/s10620-021-07188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/21/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Poorly differentiated colorectal cancers are more aggressive. Metabolism reprogramming is a significant hallmark in cancer, and aerobic glycolysis is common. However, how cancer cells reprogramming glucose metabolism contributes to cell differentiation was largely unknown. Previous studies have reported that tumor suppressor NDRG2 could promote colorectal cancers differentiation. AIMS This study aims to demonstrate that NDRG2 promotes the differentiation of colorectal cancers, potentially through the inhibition of aerobic glycolysis via TXNIP induction. METHODS Western blotting, qRT-PCR and immunohistochemical staining were used to detect the expression of related molecules. MTT assay was used to reflect cell viability and proliferation. Immunofluorescent assay was performed to identify the expression and distribution of molecules. Luciferase analysis and CHIP assays were used to investigate the mechanism. Bioinformatic analysis was performed to predict the relevance. RESULTS In colorectal cancers, NDRG2 could inhibit cell proliferation, reduce glucose uptake and decrease expression of key glycolysis enzymes. Upregulated NDRG2 is associated with differentiated cancer. However, deletion of TXNIP, a classic glucose metabolism inhibitor, could obviously alter the function of NDRG2 in differentiation, glucose uptake, expression of key glycolysis enzymes and proliferation. Mechanistically, high glucose flux promotes the activity of TXNIP promoter. And NDRG2 promotes the occupancy of transcription factor Mondo A on TXNIP promoter, predominantly through the suppression of c-myc, which could complete with Mondo A binding to TXNIP promoter. In clinical samples, high expression of TXNIP indicates good prognosis and outcome. CONCLUSIONS NDRG2-dependent induction of TXNIP is critical for the aerobic glycolysis during colorectal cancers differentiation.
Collapse
|
39
|
Park KH, Yang JW, Kwon JH, Lee H, Yoon YD, Choi BJ, Lee MY, Lee CW, Han SB, Kang JS. Targeted Induction of Endogenous VDUP1 by Small Activating RNA Inhibits the Growth of Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23147743. [PMID: 35887091 PMCID: PMC9323751 DOI: 10.3390/ijms23147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Recent studies have reported that small double-strand RNAs (dsRNAs) can activate endogenous genes via an RNA-based promoter targeting mechanism termed RNA activation (RNAa). In the present study, we showed that dsVDUP1-834, a novel small activating RNA (saRNA) targeting promoter of vitamin D3 up-regulated protein 1 (VDUP1) gene, up-regulated expression of VDUP1 at both mRNA and protein levels in A549 lung cancer cells. We also demonstrated that dsVDUP1-834 inhibited cell proliferation in A549 lung cancer cells. Further studies showed that dsVDUP1-834 induced cell-cycle arrest by increasing p27 and p53 and decreasing cyclin A and cyclin B1. In addition, knockdown of VDUP1 abrogated dsVDUP1-834-induced up-regulation of VDUP1 gene expression and related effects. The activation of VDUP1 by dsVDUP1-834 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 3 (H3ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) at the target site of VDUP1 promoter. Moreover, the enrichment of Ago2 was detected at the dsVDUP1-834 target site, and Ago2 knockdown significantly suppressed dsVDUP1-834-mediated inhibition of cell proliferation and modulation of cell-cycle regulators. Taken together, the results presented in this report demonstrate that dsVDUP1-834 induces VDUP1 gene expression by epigenetic changes, resulting in cell growth inhibition and cell-cycle arrest. Our results suggest that targeted induction of VDUP1 by dsVDUP1-834 might be a promising therapeutic strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung-1, Heungdeok, Cheongwon, Cheongju 28116, Chungbuk, Korea;
| | - Jeong-Wook Yang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Joo-Hee Kwon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Hyunju Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Yeo Dae Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Byeong Jo Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Chang Woo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung-1, Heungdeok, Cheongwon, Cheongju 28116, Chungbuk, Korea;
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
- Correspondence: ; Tel.: +82-43-240-6524
| |
Collapse
|
40
|
Allen CNS, Santerre M, Arjona SP, Ghaleb LJ, Herzi M, Llewellyn MD, Shcherbik N, Sawaya BE. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022; 14:983. [PMID: 35632725 PMCID: PMC9143006 DOI: 10.3390/v14050983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Clinical studies indicate that patients infected with SARS-CoV-2 develop hyperinflammation, which correlates with increased mortality. The SARS-CoV-2/COVID-19-dependent inflammation is thought to occur via increased cytokine production and hyperactivity of RAGE in several cell types, a phenomenon observed for other disorders and diseases. Metabolic reprogramming has been shown to contribute to inflammation and is considered a hallmark of cancer, neurodegenerative diseases, and viral infections. Malfunctioning glycolysis, which normally aims to convert glucose into pyruvate, leads to the accumulation of advanced glycation end products (AGEs). Being aberrantly generated, AGEs then bind to their receptor, RAGE, and activate several pro-inflammatory genes, such as IL-1b and IL-6, thus, increasing hypoxia and inducing senescence. Using the lung epithelial cell (BEAS-2B) line, we demonstrated that SARS-CoV-2 proteins reprogram the cellular metabolism and increase pyruvate kinase muscle isoform 2 (PKM2). This deregulation promotes the accumulation of AGEs and senescence induction. We showed the ability of the PKM2 stabilizer, Tepp-46, to reverse the observed glycolysis changes/alterations and restore this essential metabolic process.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Lea J. Ghaleb
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Muna Herzi
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Megan D. Llewellyn
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA;
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
41
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Li L, Liu Y, Zhao Y, Feng R, Li Y, Yu X, Liu Z, Wang L. Deubiquitinase USP8 increases ID1 stability and promotes esophageal squamous cell carcinoma tumorigenesis. Cancer Lett 2022; 542:215760. [DOI: 10.1016/j.canlet.2022.215760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
43
|
α-Arrestins and Their Functions: From Yeast to Human Health. Int J Mol Sci 2022; 23:ijms23094988. [PMID: 35563378 PMCID: PMC9105457 DOI: 10.3390/ijms23094988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the β-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate’s targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.
Collapse
|
44
|
Lei Z, Chen Y, Wang J, Zhang Y, Shi W, Wang X, Xing D, Li D, Jiao X. Txnip deficiency promotes β-cell proliferation in the HFD-induced obesity mouse model. Endocr Connect 2022; 11:EC-21-0641. [PMID: 35294398 PMCID: PMC9066588 DOI: 10.1530/ec-21-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Elucidating the mechanisms of regulation of β-cell proliferation is key to understanding the pathogenesis of diabetes mellitus. Txnip is a tumor suppressor that is upregulated in diabetes and plays an important role in the regulation of insulin sensitivity; however, its potential effect on pancreatic β-cell proliferation remains unclear. Here, we evaluated the role of Txnip in pancreatic β-cell compensatory proliferation by subjecting WT and Txnip knockout (KO) mice to a high-fat diet (HFD). Our results demonstrate that Txnip deficiency improves glucose tolerance and increases insulin sensitivity in HFD-induced obesity. The antidiabetogenic effect of Txnip deficiency was accompanied by increased β-cell proliferation and enhanced β-cell mass expansion. Furthermore, Txnip deficiency modulated the expression of a set of transcription factors with key roles in β-cell proliferation and cell cycle regulation. Txnip KO in HFD mice also led to activated levels of p-PI3K, p-AKT, p-mTOR and p-GSK3β, suggesting that Txnip may act via PI3K/AKT signaling to suppress β-cell proliferation. Thus, our work provides a theoretical basis for Txnip as a new therapeutic target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Zhandong Lei
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yunfei Chen
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Correspondence should be addressed to X Jiao:
| |
Collapse
|
45
|
Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis 2022; 13:338. [PMID: 35414060 PMCID: PMC9005717 DOI: 10.1038/s41419-022-04783-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Given that triple-negative breast cancer (TNBC) lacks specific receptors (estrogen and progesterone receptors and human epidermal growth factor receptor 2) and cannot be treated with endocrine therapy, chemotherapy has remained the mainstay of treatment. Drug resistance is reportedly the main obstacle to the clinical use of doxorubicin (DOX) in this patient population. Accordingly, screening molecules related to chemoresistance and studying their specific mechanisms has clinical significance for improving the efficacy of chemotherapy in TNBC patients. Thioredoxin-interacting protein (TXNIP) is a metabolism-related protein that plays a tumor suppressor role in various malignant tumors; however, the specific role of TXNIP in tumor chemoresistance has not been reported. In the present study, we explored the potential molecular mechanism of TXNIP in the chemoresistance of TNBC for the first time. The results showed that TXNIP inhibited the proliferation of TNBC drug-resistant cells and promoted apoptosis in vitro and in vivo. Furthermore, TXNIP promoted the synthesis of reactive oxygen species (ROS) and the accumulation of DNA damage caused by DOX and increased γ-H2AX levels in a time and dose-dependent manner. Moreover, ROS scavenger pretreatment could block DNA damage induced by TXNIP and restore the resistance of TNBC resistant cells to DOX to a certain extent. In addition, we found that the small molecule c-Myc inhibitor 10058-F4 promoted TXNIP expression, increased ROS synthesis in cells, and could enhance the cytotoxicity of chemotherapy drugs in vitro and in vivo when combined with DOX. These results indicated that c-Myc inhibitor 10058-F4 could induce TXNIP upregulation in TNBC drug-resistant cells, and the upregulated TXNIP increased the accumulation of ROS-dependent DNA damage, thereby decreasing chemotherapy resistance of TNBC. Our findings reveal a new mechanism of mediating drug resistance and provide a new drug combination strategy to overcome DOX resistance in TNBC.
Collapse
|
46
|
TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7805115. [PMID: 35450411 PMCID: PMC9017576 DOI: 10.1155/2022/7805115] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial. A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment using TXNIP as a therapeutic target.
Collapse
|
47
|
Yu F, Lin Y, Tan G, Ai M, Gong H, Liu W, Huang J, Zou Z. Tumor-derived exosomal microRNA-15b-5p augments laryngeal cancer by targeting TXNIP. Cell Cycle 2022; 21:730-740. [PMID: 35156506 PMCID: PMC8973331 DOI: 10.1080/15384101.2021.2022845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor-derived exosomes (EXO) are information carriers of microRNA (miR) in cancer development. Here, we explored the synergism of tumor-derived EXO and miR-15b-5p in laryngeal cancer (LCa). miR-15b-5p and thioredoxin-interacting protein (TXNIP) levels were firstly measured in clinical LCa tissues. The association between miR-15b-5p and TXNIP was determined. miR-15b-5p mimic was transfected into HEP-2 cells, and the corresponding exosomes were extracted. miR-15b-5p mimic-modified EXO were co-cultured with HEP-2 cells, and TXNIP low expression/high expression vector was transfected into HEP-2 cells Finally, cell growth was observed in vitro and in vivo. miR-15b-5p level was high while TXNIP level was low in LCa, and miR-15b-5p negatively modulated TXNIP expression. HEP-2 cells-derived EXO or inhibition of TXNIP enhanced HEP-2 cell growth in vitro and in vivo. Up-regulated miR-15b-5p further strengthened the pro-tumor effect of EXO, but this effect was reversed by overexpression of TXNIP. Overall, tumor-derived exosomal miR-15b-5p augments LCa through targeting down-regulation of TXNIP.
Collapse
Affiliation(s)
- Feng Yu
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China,CONTACT Feng Yu Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery,Jinan University, Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital,No. 396 Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong Province510220, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Guojie Tan
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Maomao Ai
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Huicheng Gong
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiali Huang
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Zirou Zou
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Effects of Quercitrin on PRV-Induced Secretion of Reactive Oxygen Species and Prediction of lncRNA Regulatory Targets in 3D4/2 Cells. Antioxidants (Basel) 2022; 11:antiox11040631. [PMID: 35453316 PMCID: PMC9031018 DOI: 10.3390/antiox11040631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Quercitrin is a kind of flavonoid that is found in many plants; it has good antioxidant activity, and can regulate oxidative stress induced by Pseudorabies virus (PRV)-infected cells. In this study, the secretion of reactive oxygen species (ROS) induced by PRV infection was detected by flow cytometry, and RNA expression profiles of the 3D4/2 cells were produced and analyzed by sequenced GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes); the sequencing results were verified by RT-qCR. The results showed that the secretion of ROS induced by PRV infection in 3D4/2 cells could be significantly decreased by quercitrin. The differentially expressed 1055 mRNA, 867 lncRNA, 99 miRNA, and 69 circRNA were detected between the control group and the PRV infection group. The differentially expressed 1202 mRNA, 785 lncRNA, 115 miRNA, and 79 circRNA were found between the PRV+ quercitrin group and the control group. The differentially expressed 357 mRNA, 69 lncRNA, 111 miRNA, and 81 circRNA were obtained between the PRV+ quercitrin group and the PRV group. The significantly differentially expressed mRNAs were mainly involved in cell metabolism, regulatory protein phosphorylation, protein phosphorylation, antioxidation, regulatory phosphorylation, and so on. Among them, the mRNAs related to antioxidant response and oxidative stress were thioredoxin-interacting protein (TXNIP) and nitric oxide synthase 2 (NOS2). According to the network diagram of lncRNA–miRNA–mRNA, two targeted miRNA (ssc-miR-450c-3p and novel-m0400-3p) relationships with TXNIP and NOS2 were screened. This study provides a scientific foundation for further research for the function of quercitrin in anti-virus-induced oxidative stress.
Collapse
|
49
|
Liang C, Fan J, Liang C, Guo J. Identification and Validation of a Pyroptosis-Related Prognostic Model for Gastric Cancer. Front Genet 2022; 12:699503. [PMID: 35280928 PMCID: PMC8916103 DOI: 10.3389/fgene.2021.699503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death triggered by caspase-1/4/5/11 that plays an important role in the occurrence and development of gastric cancer (GC). We investigated the prognostic value of pyroptosis-related genes in GC. The “LIMMA” R package and univariate Cox analysis were used to find pyroptosis-related genes with differential expression and prognostic value in the TCGA cohort and the identified genes were analyzed for GO enrichment and KEGG pathways. The selected genes were then included in a multivariate Cox proportional hazard regression analysis, and a ten genes prognostic model (BIRC2, CD274, IRGM, ANXA2, GBP5, TXNIP, POP1, GBP1, DHX9, and TLR2) was established. To evaluate the predictive value of the risk score on prognosis, patients were divided into high-risk and low-risk groups according to the median risk score, and survival analysis was carried out. Compared with the low-risk group, the OS of GC patients in the high-risk group was significantly worse. Additionally, these results were verified in the GSE84437 and GSE66229 datasets. Finally, through the combination of prognostic gene characteristics and clinicopathological features, a nomogram was established to predict individual survival probability. The results show that the genetic risk characteristics related to clinical features can be used as independent prognostic indicators for patients with GC. In summary, the pyroptosis-related risk signals proposed in this study can potentially predict the prognosis of patients with GC. In addition, we also found significant infiltration of dendritic cells, macrophages, and neutrophils in tissues of high-risk patients.
Collapse
Affiliation(s)
- Chaowei Liang
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxin Fan
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chaojie Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| | - Jiansheng Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| |
Collapse
|
50
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|